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A B S T R A C T

We combine inverse autoregressive flows (IAF) and variational Bayesian inference (variational Bayes) in
the context of geophysical inversion parameterized with deep generative models encoding complex priors.
Variational Bayes approximates the unnormalized posterior distribution parametrically within a given family of
distributions by solving an optimization problem. Although prone to bias if the chosen family of distributions
is too limited, it provides a computationally-efficient approach that scales well to high-dimensional inverse
problems. To enhance the expressiveness of the variational distribution, we explore its combination with
IAFs that allow samples from a simple base distribution to be pushed forward through a series of invertible
transformations onto an approximate posterior. The IAF is learned by maximizing the lower bound of the
evidence (marginal likelihood), which is equivalent to minimizing the Kullback–Leibler divergence between the
approximation and the target posterior distribution. In our examples, we use either a deep generative adversar-
ial network (GAN) or a variational autoencoder (VAE) to parameterize complex geostatistical priors. Although
previous attempts to perform Gauss–Newton inversion in combination with GANs of the same architecture were
proven unsuccessful, the trained IAF provides a good reconstruction of channelized subsurface models for both
GAN- and VAE-based inversions using synthetic crosshole ground-penetrating-radar data. For the considered
examples, the computational cost of our approach is seven times lower than for Markov chain Monte Carlo
(MCMC) inversion. Furthermore, the VAE-based approximations in the latent space are in good agreement. The
VAE-based inversion requires only one sample to estimate gradients with respect to the IAF parameters at each
iteration, while the GAN-based inversions need more samples and the corresponding posterior approximation
is less accurate.
1. Introduction

Probabilistic inverse modeling is often based on Bayes’ theorem:

𝑝(𝐦|𝐝) = 𝑝(𝐝|𝐦)𝑝(𝐦)
𝑝(𝐝)

, (1)

where 𝐦 are unobserved model parameters, 𝐝 are the measured data,
𝑝(𝐦|𝐝) is the posterior probability density function (PDF) of interest,
𝑝(𝐦) is the prior PDF, 𝑝(𝐝|𝐦) is the likelihood and 𝑝(𝐝) =
∫ 𝑝(𝐝|𝐦)𝑝(𝐦)𝑑𝐦 is the marginal likelihood that is often referred to as
the evidence. The latter is very challenging to estimate, especially for
problems of large dimensionality, due to the requirement of integrating
the likelihood over the prior of all possible model parameters 𝐦.
Markov chain Monte Carlo (MCMC) methods circumvent this problem
of evidence estimation by making model proposals using formalized
rules and comparing posterior probability ratios, thereby, enabling
unbiased sampling from 𝑝(𝐦|𝐝) provided that the MCMC chain(s) are
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long enough (Robert et al., 1999). In practice, MCMC methods can
incur prohibitive computational costs for many problems encountered
in the geosciences.

Variational inference (VI; Blei et al., 2017) or its Bayesian variant
termed variational Bayes (VB; Kingma and Welling, 2014) provides
an attractive alternative to MCMC methods as it replaces a sampling
problem with an optimization problem. It proceeds by approximating
the posterior PDF of interest using a surrogate distribution referred to
as the variational density, which is adjusted such that the evidence
lower bound (ELBO, see Section 2.2) is maximized. The variational
density belongs to a family of distributions from which it inherits its
parameterization. The approximation resulting from VI is limited by
the chosen parametric family of distributions. For instance, a classical
choice is to use a Gaussian distribution with unknown hyperparameters,
which often offers a poor approximation.
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Various variational techniques involving intermediate invertible
transformations have been developed to allow for more expressive vari-
ational densities. Automatic differential variational inference (ADVI;
Kucukelbir et al., 2017), for instance, attempts to accommodate dif-
ferent probabilistic models by transforming the original latent space
of the model into an unconstrained real-valued space, serving as a
‘‘common space’’. VI is then performed on the common space and
differentiation is performed with respect to the original latent space.
This approach offers an automatic, comfortable and efficient way to
perform VI for a variety of models. Nevertheless, there are several
limitations to ADVI: (1) the approximation might suffer from bias due
to implicit Gaussian approximations, (2) the approximation is sensitive
to the choice of the invertible transformation connecting the variational
density in the real-valued space and the original space and (3) it
might not be suitable when the posterior is multi-modal (Kucukelbir
et al., 2017; Zhang and Curtis, 2020a; Zhao et al., 2021). Another
approach that has seen multiple applications in geophysics (Zhang and
Curtis, 2020b; Ramgraber et al., 2021; Zhang and Curtis, 2021) is Stein
variational gradient descent (SVGD; Liu and Wang, 2016). It uses an
ensemble of particles, initialized from a base analytical distribution,
that are iteratively updated to approximate the posterior using a
smooth transformation describing an incremental perturbation. In each
step, particles are updated via perturbations in the direction of the
steepest descent, where the magnitude and direction of perturbations
are determined based on the Stein operator (more specifically Stein’s
identity and kernelized Stein discrepancy), to minimize the Kullback–
Leibler divergence (𝐷𝐾𝐿, Kullback and Leibler, 1951) between the
urrent distribution of the particles and a target distribution. An ad-
antage of SVGD is that it does not require explicit parameterization.
owever, SVGD underestimates the variance as the dimensionality
f the problem increases and, therefore, performs poorly on high-
imensional problems (Ba et al., 2019). Ba et al. (2019) argue that
ccurate estimates using SVGD could be obtained by either increasing
he number of particles, but this comes at a high computational cost
nd might not always be practical for high-dimensional problems, or
y introducing re-sampling to avoid deterministic bias.

In this study, we consider the increasingly popular family of trans-
ormations referred to as normalizing flows (Rezende and Mohamed,
015; Papamakarios et al., 2021; Kobyzev et al., 2021). Normalizing
lows transform an initial density of random variables into a target
ensity of richer form through a series of invertible, differentiable and
olume conserving maps. Their combination with VI enables a more
lexible and scalable approach allowing for approximate posterior dis-
ributions of high complexity (Rezende and Mohamed, 2015; Kingma
t al., 2016). Some example applications are flow-based generative
odels (Dinh et al., 2016, 2014; Kingma and Dhariwal, 2018), in-

erence, reparameterization and representation learning (Papamakarios
t al., 2021 and references therein). In a geophysical context, Zhao et al.
2021) assessed normalizing flows expressed by neural networks on two
omographic problems and found that it can significantly reduce the
umber of forward evaluations needed to reach a solution compared to
VGD and MCMC, while at the same time being less biased than ADVI.
owever, the authors indicate a possible drawback when training

he neural network for high-dimensional problems, for example, in
D problems. This motivates our work which seeks to combine such
pproaches with dimensionality reduction.

One of the most popular techniques to reduce dimensionality is
rincipal component analysis (PCA; Wold et al., 1987), although a
lethora of other methods exist (e.g. Kernel-PCA, linear discriminant
nalysis and deep neural networks; Dejtrakulwong et al., 2012; Konaté
t al., 2015; Hinton and Salakhutdinov, 2006). For example, Urozayev
t al. (2021) used VB to infer the low-dimensional latent variables
escribing the coefficients of a discrete cosine transform (DCT) in a
eismic imaging problem. By reducing the dimensionality and using
B, they could reduce the computational complexity and ensure that
2

eologically-meaningful solutions were obtained. Laloy et al. (2017,
2018) showed that deep generative neural networks, such as variational
autoencoders (VAEs) or generative adversarial networks (GANs), are
well-suited for dimensionality reduction when working on inverse prob-
lems with complex prior models. Such methods allow for fast sampling
from the prior and the reduction in dimensionality makes MCMC
inversions more efficient compared to alternative approaches relying
on a training image (TI) such as sequential geostatistical resampling
(Mariethoz et al., 2010; Hansen et al., 2012; Tahmasebi, 2018).

Generally speaking, there are two ways in which generative neural
networks can be used in inverse modeling. In the first approach, a pre-
trained generative network is combined with an inference framework
(e.g. MCMC). In the second approach, the generative network serves
as the inference network that is trained to generate realizations that
honor the data (Dupont et al., 2018; Mosser et al., 2018; Song et al.,
2021b,a; Laloy et al., 2021). The first approach can be further split
into two sub-approaches: (1) The distribution conditional on the data
is explored in the latent space of the generative network by sampling,
minimization or optimization methods (Laloy et al., 2017, 2019; Mosser
et al., 2020; Levy et al., 2022) and (2) a mapping is learned between an
initial simple distribution and a distribution on the latent space of the
generative network which is conditioned on data and from which we
can sample conditional realizations (Chan and Elsheikh, 2019). Here
we study this latter sub-approach for inversion and build on previous
works on normalizing flows and VI (Rezende and Mohamed, 2015;
Kingma et al., 2016; Hoffman et al., 2019). We train inverse au-
toregressive flows (IAF; Kingma et al., 2016), a type of normalizing
flows, using stochastic variational inference (SVI; Hoffman et al., 2013)
to invert synthetic, noise contaminated (indirect) geophysical data in
presence of a complex geostatistical prior. We refer to this approach as
neural-transport (Hoffman et al., 2019). Our model parameters are pa-
rameterized within the latent space of a deep generative model (DGM):
either a GAN or a VAE. Training of the IAF proceeds by randomly
drawing samples from a standard normal distribution and pushing them
through the IAF transform into a space in which VI is performed. The
parameters of the IAF are updated at each training iteration using
stochastic gradient-based optimization with the objective to maximize
the ELBO.

For the same type of subsurface models as considered herein, Laloy
et al. (2019) attempted to infer the latent parameters of a GAN us-
ing two different deterministic gradient-based inversion approaches.
They found that even when a linear forward solver was used, both
approaches performed poorly given the high non-linearity of the GAN.
Their conclusion was later reinforced by Lopez-Alvis et al. (2021) who
suggested to replace the GAN with a VAE, for which they obtained
better inversion results. This is because the VAE generator was found to
be less nonlinear and to better preserve topology compared to the GAN
generator (see Lopez-Alvis et al., 2021, for details). As neural-transport
is a stochastic approach that relies on gradient-based optimization,
we expect it to perform better than deterministic gradient-based ap-
proaches and, thereby, at least partly avoid pitfalls due to the non-
linearity and complex manifold topology of the GAN. Additionally,
neural-transport may offer a potentially-significant speedup compared
to MCMC given that (1) it allows parallelization of the problem mak-
ing it well suited to high-dimensional problems and (2) it solves an
optimization problem using gradient-based information. The objective
of this study is to assess the performance of the neural-transport ap-
proach with respect to using either a GAN or a VAE and compare its
performance against MCMC results.

The remainder of the paper is structured as follows. Section 2
briefly describes the theory behind each component of the methodology
namely, the used DGMs, IAF, VI and the combined neural-transport rou-
tine. Section 3 presents inversion results obtained from neural-transport
and a comparison of neural-transport against MCMC. Section 4 dis-
cusses the results, advantages and limitations of neural-transport and

outlines possible future developments. Section 5 concludes the study.
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2. Methods

We build upon the work of Hoffman et al. (2019) who coined the
term neural-transport (NT) to describe the trained IAF transformation.
Compared to previous work with NT, here we consider an intermediate
latent space of a DGM: either a SGAN or a VAE. The IAF (Section 2.1)
serves as an inference network in which samples from a standard
normal distribution are mapped into a target distribution. The IAF is
trained through variational Bayesian inference (Section 2.2), in which
the parameters of the transformation are iteratively updated through
gradient-based optimization. The inferred model parameters are those
within the latent space of the DGM (Section 2.3) while the physical
forward response (Section 2.4) is computed on high-dimensional model
realizations following the DGM transformation. Finally, the result-
ing approximate posterior distribution, that is conditioned on indirect
(noise-contaminated) geophysical data, can be sampled and estimated.
We describe the implementation of this approach, combining NT and
DGMs, in Section 2.5. To assess the quality of the IAF approximation we
use several metrics (Section 2.6) such as the root-mean-squared error
and structural similarity index and compare with results obtained by
MCMC inversion.

2.1. Inverse autoregressive flows

IAF is a class of normalizing flows, in which a random variable 𝐳(0)
drawn from a known probability density function (base distribution)
𝐳(0) ∼ 𝑞(𝐳(0)) is mapped into a random variable 𝐦 from the target
distribution 𝐦 ∼ 𝑞(𝐦). Given a transformation 𝐦 = 𝑓 (𝐳(0)) where
𝑓 ∶ R𝑛 ←←→ R𝑛 is an invertible, continuous and differentiable map-
ping between two random variables, one can sample from the target
distribution by applying the transformation and evaluating the target
distribution using the change of variables theorem

𝑞(𝐦) = 𝑞(𝐳(0))
|

|

|

|

|

det
𝑑𝑓 (𝐳(0))
𝑑𝐳(0)

|

|

|

|

|

−1

, (2)

where 𝑑𝑓 (𝐳(0))
𝑑𝐳(0) is the Jacobian matrix 𝐉 and det 𝑑𝑓 (𝐳(0))

𝑑𝐳(0) its determinant,
representing the change in volume as a result of the transformation 𝑓 .
If the mapping consists of several transformations, the logarithmic form
of 𝑞(𝐦) can be evaluated by:

log 𝑞(𝐦) = log 𝑞(𝐳(0)) −
𝐾
∑

𝑘=1
log

|

|

|

|

|

det
𝑑𝑓𝑘(𝐳(𝑘−1))
𝑑𝐳(𝑘−1)

|

|

|

|

|

, (3)

here 𝑘 = 1,… , 𝐾 is the number of sequential transformations and
= 𝐳(𝐾). In IAF, the transformation 𝑓𝑘 applied on the random variable

(𝑘−1)
𝑖 (𝑖 = 1, 2,… , 𝑛) is conditional on previous instances and can be
ormulated as:
(𝑘)
𝑖 ∼ 𝑞(𝑧(𝑘)𝑖 |𝐳(𝑘−1)1∶𝑖−1) = 𝑓𝑘(𝑧

(𝑘−1)
𝑖 ) = 𝑧(𝑘−1)𝑖 ⊙ 𝜎𝜙,𝑖(𝐳

(𝑘−1)
1∶𝑖−1) + 𝜇𝜙,𝑖(𝐳

(𝑘−1)
1∶𝑖−1), (4)

where 𝜙 are the trainable parameters of the IAF and 𝜎 and 𝜇 are
the scale and shift functions, respectively, conditional on previous
instances. For this type of transformation |

|

det 𝐉𝑘|| =
∏𝑛

𝑖 𝜎𝑖, making the
eterminant of the Jacobian easy to compute and the target distribution
asier to evaluate. Since 𝑧(𝑘)𝑖 only depends on known variables 𝐳(𝑘−1)1∶𝑖 ,
he mapping can be computed in parallel.

.2. Variational Bayesian inference

Variational Bayes is an approach to approximate an intractable
osterior distribution by optimization. The approximation of 𝑝(𝐦|𝐝) is
ade with a surrogate distribution 𝑞∗(𝐦) defined within a family , for
hich:
∗(𝐦) = arg min

𝑞(𝐦)∈
𝐷𝐾𝐿(𝑞(𝐦) ∥ 𝑝(𝐦|𝐝)). (5)

The notation 𝐷𝐾𝐿 in Eq. (5) indicates the Kullback–Leibler diver-
ence (KL; Kullback and Leibler, 1951), a statistical measure of the
3

i

istance between two distributions defined as 𝐷𝐾𝐿(𝑓 (𝑥) ∥ 𝑔(𝑥)) =
𝑓 (𝑥) log( 𝑓 (𝑥)𝑔(𝑥) )𝑑𝑥 for a given random variable 𝑥. We define 𝜙 as the

arameterization of the variational density 𝑞(𝐦) and it depends on our
hoice of the distribution family . Since the posterior distribution
(𝐦|𝐝) is intractable in most cases and the evidence 𝑝(𝐝) is a constant,
common approach is to instead maximize the evidence lower bound

ELBO; see Blei et al., 2017)

log 𝑝(𝐝) = E𝐦∼𝑞 log 𝑝(𝐦,𝐝) − E𝐦∼𝑞 log 𝑞𝜙(𝐦)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸𝐿𝐵𝑂

+𝐷𝐾𝐿(𝑞𝜙(𝐦) ∥ 𝑝(𝐦|𝐝)). (6)

The name ‘‘evidence lower bound’’ comes from the fact that
ogE𝑞(𝑥)𝑝(𝑥) ≥ E𝑞(𝑥) log 𝑝(𝑥) and that 𝐷𝐾𝐿(𝑞(𝐦) ∥ 𝑝(𝐦|𝐝)) ≥ 0, resulting
n the following inequality (Jordan et al., 1999):

log 𝑝(𝐝) ≥ E𝐦∼𝑞 log 𝑝(𝐦,𝐝) − E𝐦∼𝑞 log 𝑞(𝐦) = 𝐸𝐿𝐵𝑂. (7)

As we maximize the ELBO in Eq. (6), it approaches log 𝑝(𝐝). We
define a corresponding loss function (𝜙) = 𝐸𝐿𝐵𝑂 which depends on
the parameterization 𝜙 of the variational density

(𝜙) = ∫ 𝑞𝜙(𝐦) log 𝑝(𝐦,𝐝)𝑑𝐦 − ∫ 𝑞𝜙(𝐦) log 𝑞𝜙(𝐦)𝑑𝐦

= ∫ 𝑞𝜙(𝐦) log
𝑝(𝐦,𝐝)
𝑞𝜙(𝐦)

𝑑𝐦 = E𝐦∼𝑞

[

log
𝑝(𝐦,𝐝)
𝑞𝜙(𝐦)

]

. (8)

Then, 𝜙 is optimized to maximize (𝜙) (and as a consequence it
also minimizes 𝐷𝐾𝐿(𝑞𝜙(𝐦) ∥ 𝑝(𝐦|𝐝)) via gradient-based optimization in
which gradients of (𝜙) are computed with respect to 𝜙 using samples
from 𝑞𝜙(𝐦)

∇𝜙(𝜙) = E𝐦∼𝑞

[

∇𝜙 log
𝑝(𝐦,𝐝)
𝑞𝜙(𝐦)

]

. (9)

An unbiased Monte Carlo estimation of the ELBO (and its deriva-
tives) can be computed by evaluating the logarithmic ratios in Eqs. (8)
and (9) at 𝑁𝑠 samples from 𝑞𝜙(𝐦).

2.3. Deep generative models

DGMs are artificial neural networks that are trained to generate
data according to an underlying distribution of a dataset of interest.
A network is composed of input, hidden and output layers, where the
input is our input features, the output is our generated data and hidden
layers are intermediate layers connecting the input to the output.
The hidden layers are composed of small units (nodes) referred to as
neurons. Mathematically, a hidden layer can be formulated as:

ℎ(𝐗) = 𝜑(𝐗T𝐖 + 𝐛), (10)

where 𝐗 is the input vector to the layer, 𝐖 contains the weights
onnecting input features to individual neurons, 𝐛 is a vector of biases
nd 𝜑 is an activation function (sigmoid, tanh, ReLU etc.) introducing
on-linearity. In convolutional neural networks (CNNs), such as those
sed herein, weights in each layer are organized in a series of matrices
kernels) that are convolved with the input to form a series of feature
aps. Convolutional networks reduces the number of weights required,

specially for large inputs and they are advantageous in tasks where
he input exhibits local interactions between features (see Goodfellow
t al., 2016 for more information). In this study, we consider two
ypes of DGMs: spatial generative adversarial network (SGAN) and a
ariational autoencoder (VAE). These DGMs are introduced to reduce
he dimensionality of the inverse problem by learning an encoding of

complex prior, thereby, aiming at reducing the computational cost
nd improving inversion performance. Both DGMs are trained using
he binary channelized image of size 2500 × 2500 pixels introduced
y Zahner et al. (2016) and later used by Laloy et al. (2018) (Fig. 2a
n their paper) and Lopez-Alvis et al. (2021).
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2.3.1. Spatial generative adversarial networks
The SGAN (Jetchev et al., 2016; Laloy et al., 2018) is a type of

generative adversarial network (GAN; Goodfellow et al., 2014), that is,
a CNN consisting of a discriminator 𝐷 and a generator 𝐺. Adversarial
training consists of optimization with the generator and discriminator
competing against each other. The input to the generator in a SGAN
is a noise tensor 𝐙 of 2D or 3D shape, which is typically drawn from

standard normal or uniform distribution. For convenience, in this
aper we represent 𝐙 in its vector form 𝐳, however, in practice the

input to the generator of the SGAN is a tensor of rank that is higher
than one. For a 2D model domain, the output is an image 𝐗̃ of size
× 𝑛 × 𝑞, where 𝑞 represent the number of RGB channels. The size of

̃ is determined by the depth of the network as well as the number
f spatial parameters (𝑚 and 𝑛). The significance of having an input
ensor in a SGAN as opposed to a 1D vector in a standard GAN, is the
ay perturbations in the latent space are translated into changes in

he image space. As opposed to a global update, perturbing one of the
GAN’s latent parameters leads to a localized change in 𝐗̃. The input to
he discriminator is either the generated image 𝐗̃ or an image 𝐗 from a
raining set, containing the patterns we would like to learn. The output
f the discriminator is a score of either 0 or 1, representing the belief
hat the input is either generated by the generator or is a part of the
raining set (i.e., training image), respectively. The network is trained
sing the following minimization–maximization loss function:

min
𝐺(⋅)

max
𝐷(⋅)

E
𝐗∼𝑃𝑟

[log𝐷(𝐗)] + E
𝐳∼𝑝𝑔

[log(1 −𝐷(𝐺(𝐳)))]. (11)

The discriminator 𝐷 will try to maximize the function in Eq. (11)
y correctly labeling 𝐗 as 1 and 𝐺(𝐳) as 0, while the generator 𝐺 will
ry to minimize it through fooling the discriminator. For numerical
tability, an 𝑙2-norm regularization 𝛼𝐺𝐴𝑁‖𝛺‖

2
2 is applied to both the

enerator and discriminator, where 𝛺 contains the network weights
nd regularization increases as we increase 𝛼𝐺𝐴𝑁 , the weighting factor.
his type of regularization encourages the individual weights to be
mall, thus, preventing large weights on a few layer units (neurons).
he loss from Eq. (11) is then used to update the parameters of the
iscriminator and generator, where the weights of the discriminator are
pdated first and the weights of the generator are updated in a second
tage. The update to the parameters of the network is performed by
ack-propagating the error computed in the forward pass (going from
nput to output) through the respective network. The update to each
etwork parameter is proportional to a specified learning rate and the
radients of the error with respect to that parameter (see Laloy et al.
2018) for more details).

We adopt the SGAN architecture of Laloy et al. (2019) who used
generator with seven convolutional layers, instance normalization

nd ReLU activation function except for the last layer which is only
ollowed by a tanh activation function. We train the network with a
quare latent space 𝐳 of 12 × 12 out of which we use only 5 × 3
15) latent variables to generate images of size 65 × 129. The training
mages are normalized into a range of [−1, 1] before they are fed into
he discriminator. Consequently, when using the trained generator,
mages are also re-scaled into the [0, 1] range. We train the SGAN
ith the ADAM optimizer (Kingma and Ba, 2014) using a batch of 32

mages at each training iteration and the following hyperparameters:
𝐺𝐴𝑁,1 = 0.5, 𝛽𝐺𝐴𝑁,2 = 0.999, learning rate of 5𝑒−4 and 𝛼𝐺𝐴𝑁 = 1𝑒−7.

.3.2. Variational autoencoders
Variational autoencoders are a type of generative models pro-

osed by Kingma and Welling (2014) for various deep learning tasks
e.g. recognition, denoising, representation and visualization) involving
ntractable posteriors. VAEs include two neural networks: a probabilis-
ic encoder described by 𝑞𝜗(𝐳|𝐗) and a probabilistic decoder described
y 𝑝𝜃(𝐗|𝐳), where 𝜗 and 𝜃 are the parameters of the encoder and
ecoder, respectively. The former transforms an input 𝐗(𝑖) from the
raining set {𝐗𝑁 } into a probabilistic 𝑛-dimensional representation 𝐳
4

𝑖=1 𝐝
nd the latter samples 𝐳 and transform it into 𝐗̃(𝑖), that is, a reconstruc-
ion of 𝐗(𝑖). The training objective is to maximize the ELBO log 𝑝(𝐗)

(Kingma and Welling, 2014):

(𝜗, 𝜃) = E𝑞𝜗(𝐳|𝐗)
[

log(𝑝𝜃(𝐗|𝐳))
]

−𝐷𝐾𝐿(𝑞𝜗(𝐳|𝐗) ∥ 𝑝(𝐳)). (12)

The first term represents the reconstruction error of the decoder
hen transforming samples from 𝐳 into 𝐗̃ while the second term en-

ourages the variational density 𝑞𝜗(𝐳|𝐗) to be close to 𝑝(𝐳) ≡  (𝟎𝑛, 𝐈𝑛).
he model becomes non-differentiable if we sample 𝐳 directly from a
istribution parameterized by the output of the encoder as we would
eed to compute the gradients with respect to a random sample. This is
roblematic for gradient-based optimization during which gradients are
ack-propagated through the network. In order to solve this problem, 𝐳
s re-parameterized using a random auxiliary noise 𝜺 such that (Kingma
nd Welling, 2014):

̃ = 𝝁𝜗(𝐗) + 𝝈𝜗(𝐗)⊙ 𝜺, 𝜺 ∼ 𝑝(𝜺) (13)

here ⊙ denotes an element-wise product and 𝝁𝜗 and 𝝈𝜗 are mean and
tandard deviation vectors provided by the encoder. After reparameter-
zation, 𝐳 becomes deterministic and gradients can be back-propagated
hrough it. Here we use the VAE proposed by Lopez-Alvis et al. (2021)
hich has the same layer architecture as the SGAN and was trained
n the same training images. Although VAE can be fully probabilis-
ic, Lopez-Alvis et al. (2021) considered only the mean of the decoder,
herefore, making it a deterministic generator 𝐺𝜃(𝐳). After training, 𝜃
s constant and to generate 𝐗̃ samples, we simply draw samples from
̃ ≈  (𝟎𝑛, 𝐈𝑛) and push it through the generator 𝐺𝜃(𝐳). Lopez-Alvis
t al. (2021) discuss the importance of two hyper-parameters that needs
o be specified when training the VAE: 𝛽𝑉 𝐴𝐸 which is a weighting
actor multiplying the second term in Eq. (12) and 𝛼𝑉 𝐴𝐸 which controls
he distribution from which the auxiliary noise is drawn from: 𝑝(𝜺) =
(𝟎𝑛, 𝛼𝑉 𝐴𝐸 ⋅𝐈𝑛). They illustrate how well-chosen 𝛼𝑉 𝐴𝐸 - and 𝛽𝑉 𝐴𝐸 -values

eads to a well-behaved generator and better inversion performance
elative to other choices. The hyper-parameters with which the VAE is
rained are as follows: 𝛽𝑉 𝐴𝐸 = 1000, 𝛼𝑉 𝐴𝐸 = 0.1 and a learning rate of
𝑒−3 (for more details, see Lopez-Alvis et al., 2021). The VAE decoder
ontains two fully connected layers followed by four convolutional lay-
rs that are all followed by instance normalization and ReLU activation
unction except for the last layer which is only followed by a sigmoid
ctivation function. The latent space 𝐳 of the VAE is composed of a
ector of 20 parameters corresponding to output images of 65 × 129
ixels.

.4. Crosshole traveltime tomography

In our test examples, we consider a crosshole ground penetrating
adar (GPR) setup in which source and receiver antennas are distributed
ithin two vertically-oriented boreholes. The forward response can be

ormulated as follows:

= 𝑔(𝐬) + 𝝐, (14)

here 𝑔 is the forward operator, 𝐬 is the slowness field (inverse of
elocity 𝐯) of the modeled domain, 𝝐 is the observational noise and
= (𝑑1,… , 𝑑𝑁 ) ∈ 𝑁 with 𝑁 ≥ 1 is the measured first-arrival travel

imes between source–receiver pairs. We assign velocities to individual
odel parameters using 𝑣 = 0.06+0.02 ⋅(1− 𝑥̃), resulting in a continuous

ange of velocities between [0.06, 0.08] m ns−1.
We consider a non-linear forward solver implemented in the py-

IMLi geophysical modeling library (Rücker et al., 2017). In this imple-
entation, the travel times are calculated on a mesh of nodes based on

he Dijkstra method, giving the shortest path between source–receiver
ositions for a given slowness model. We use the Jacobian provided by
yGIMLi for a given source–receiver geometry and slowness model and
alculate the travel times according to:
𝑠𝑖𝑚 = 𝐉𝑔(𝐬)𝐬, (15)
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where 𝐉𝑔 is the Jacobian matrix (also known as the sensitivity matrix)
containing the length of the ray segment at each model cell for each
travel time. Note that this Jacobian refers to the physical forward
solver and not to the Jacobian of the IAF (Eq. (2)). The accuracy
of the simulated travel times can be improved by adding secondary
nodes. In our examples, the Jacobian is re-computed for each slowness
field using two secondary nodes. With the Jacobian acting as the
forward operator (Eq. (15)) we are able to comply with the automatic
differentiation (auto-differentiation) requirements of machine-learning
supported Python libraries (e.g., PyTorch and TensorFlow). Unfortu-
nately, pyGIMLi objects are not supporting data storage using pickling
which is a requirement when using most parallel computing Python
libraries. Given this limitation, in this work the forward simulations
are performed in a sequential manner.

2.5. Inversion in the latent space of a deep generative model with neural-
transport

Our inversion framework combining NT with a DGM is composed of
the methods describe in previous subsections: IAF, VI and DGMs, where
the forward response is required in order to compute the joint probabil-
ity 𝑝(𝐦,𝐝). Both DGMs define a low-dimensional latent space involving
ncorrelated variables with a well-defined prior (standard normal) that
e choose to be in agreement with the base distribution of the IAF. As
oth DGMs are implemented in PyTorch, we use Pyro (Bingham et al.,
019), a library for probabilistic programming built on Python and
yTorch, to train the IAF. In the following, we define 𝐳(0) as a random
ariable within the latent space of the IAF that is drawn from a standard
ormal base distribution, we further define our target distribution
𝜙 on the latent space of the SGAN (or VAE) such that 𝐦 = 𝐳𝐺𝐴𝑁

or 𝐳𝑉 𝐴𝐸) and 𝐗̃ as the high-dimensional, image-space parameters
efore slowness 𝐬 is assigned. For the remainder of this paper, we will
efer to random samples drawn from the base distribution (and pushed
orward to the variational distribution space) as particles. Each particle
epresents one model realization and has the same size as that of the
atent space of the DGM in use. For the sake of conciseness, we will
efer to variables from the target distribution 𝐳𝐺𝐴𝑁 (or 𝐳𝑉 𝐴𝐸) simply as
and specify in the appropriate places to which generative model they
elong.

To train the IAF, 𝑁𝑠 particles are drawn from the base distribution
(0) ∼ 𝑞(𝐳(0)) and mapped through the invertible transformation of
he IAF into the variational space 𝑞𝜙(𝐳) in which we approximate the
osterior on the DGM’s latent space 𝐳. The 𝑁𝑠 particles 𝐳 are then

transformed into high-dimensional 𝐗̃-realizations through the gener-
ator 𝐺(⋅). Slowness 𝐬 is assigned to each pixel and the likelihood is
computed for each of the 𝑁𝑠 particles using the geophysical forward
solver. We compute the logarithm of the joint distribution log 𝑝(𝐳,𝐝) =
log 𝑝(𝐝|𝐳) + log 𝑝(𝐳) (also referred to as the logarithmic form of the
unnormalized posterior 𝑝(𝐳|𝐝)). Since we have a standard-normal prior
(mean 𝜇𝑧 = 0 and standard deviation 𝜎𝑧 = 1) on both the SGAN
and VAE latent spaces, and further assume independent, identical and
normally-distributed observational noise with zero mean and standard
deviation of 𝜎𝑑 , we have

log 𝑝(𝐳,𝐝) = −1
2

(

𝑁𝑑 log(2𝜋) + 2𝑁𝑑 log(𝜎𝑑 ) + 𝜎−2𝑑

𝑁𝑑
∑

𝑖=1

[

𝑑𝑖 − 𝑔𝑖(𝐺(𝐳))
]2

+𝑁𝑧 log(2𝜋) + 2𝑁𝑧 log(𝜎𝑧) + 𝜎−2𝑧

𝑁𝑧
∑

𝑖=1
𝑧2𝑖

)

, (16)

where 𝑁𝑑 is the number of data observations, 𝑁𝑧 is the number
of latent 𝐳 parameters and 𝑧𝑖 is the 𝑖th parameter in 𝐳. Note that
the log-likelihood is evaluated on forward simulations based on the
high-dimensional 𝐗̃-space while the log-prior is evaluated on the low-
dimensional SGAN (or VAE) latent parameters. The loss function (𝜙)
5

can be calculated by using Eq. (3) to evaluate log 𝑞𝜙(𝐳):

(𝜙) = E𝐳∼𝑞

[

log
𝑝(𝐳,𝐝)
𝑞𝜙(𝐳)

]

= E𝐳∼𝑞

⎡

⎢

⎢

⎢

⎢

⎣

log
𝑝(𝐳,𝐝)

𝑞(𝐳(0))
∏𝐾

𝑘=1
|

|

|

|

det 𝑑𝑓𝑘(𝐳(𝑘−1))
𝑑𝐳(𝑘−1)

|

|

|

|

−1

⎤

⎥

⎥

⎥

⎥

⎦

.

(17)

The gradient of (𝜙) is computed through auto-differentiation. We
consider −(𝜙) and perform stochastic gradient descent to update 𝜙. A
brief summary of the above routine appears in Fig. 1 and Algorithm 1.

The architecture of the IAF can be adjusted in response to the
level of complexity of the target distribution. Hoffman et al. (2019)
used three stacked flows with two hidden layers each. We found that
two sequential flows, each containing one hidden layer and a hidden
dimensionality that is twice as large as the target distribution to be
sufficient for our considered examples. Each flow is followed by a non-
linear ReLU activation function providing the network with further
flexibility (For detailed information about the architecture of the IAF
see Appendix A). During training the network parameters are optimized
using ADAM with 𝛽𝐼𝐴𝐹 ,1 = 0.9 and 𝛽𝐼𝐴𝐹 ,2 = 0.999 and a learning rate of
.01. In order to enable gradient calculation of the model parameters
ith respect to the DGM as part of the NT routine, we do not threshold

he generated images to [0, 1] (Laloy et al., 2019).

Algorithm 1: Bayesian inference using neural-transport and a
deep generative model
1 set T (maximum number of iterations) and 𝑡 = 0
2 while (𝑡 < 𝑇 ) do
3 Draw 𝑁𝑠 particles (realizations of 𝐳(0)) from the base distribution

𝑞(𝐳(0))
4 𝐳 ← IAF𝜙(𝐳(0))
5 𝐗̃ ← G(𝐳)
6 Assign slowness values to 𝐗̃ and compute the forward simulation

𝑔(𝐬) to get simulated data 𝐝
7 Compute (𝜙) and ∇𝜙(𝜙) using Eq. (9), (16) and (17) and

update 𝜙 using stochastic gradient descent
8 𝑡 = 𝑡 + 1
9 end
10 begin G(𝐳)
11 Perform a series of transposed convolution layers with pre-trained

weights
12 return 𝐗̃
13 end
14 begin IAF𝜙(𝐳(0))
15 𝐳 = 𝑓𝑘◦𝑓𝑘−1◦...◦𝑓1(𝐳(0))
16 return 𝐳
17 end

2.6. Performance assessment

We test NT in combination with each of the two considered DGMs
using five different test models (Fig. 2) generated by the respective
generator. Following Lopez-Alvis et al. (2021), we refer to models gen-
erated by the SGAN with the abbreviation ‘mg’ and models generated
by the VAE with ‘mv’. It is seen that the SGAN provides images that are
less blurry than those produced by the VAE. To assess the performance
and quality of the approximate posterior 𝑞𝜙(𝐳) obtained from NT, we
onsider different statistical metrics. For each test model, we plot the
ean and standard deviation image of the approximate posterior. The

oot-mean-squared error (RMSE) is computed on mean values of the
atent parameters (RMSE𝐳), model parameters (RMSE𝐗) and data misfit

(RMSE𝐝) at the last iteration. We rely on RMSE𝐝 to determine if the
approximate posterior has converged. The loss function for the IAF is
used here as a complementary metric as we observed that the data
fit can decrease even after  becomes stable. We define two criteria
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Fig. 1. Illustration of one training iteration of neural-transport combined with deep generative models. The inferred model parameters (here represented in 2D as dots) are the
low-dimensional latent parameters 𝐳. The pre-trained generator 𝐺 transform the latent parameters into their corresponding high-dimensional parameters in the image-space on
which forward simulations are carried out to obtain the data vector 𝐝. The IAF (represented by transformation 𝑓 ) parameters 𝜙, are tuned during training to maximize the ELBO.
that both need to be met to declare convergence: (1) for an iteration
after which the RMSE𝐝 value averaged over all particles equals that
in the last 10% iterations of the algorithm; (2) the average WRMSE

=
√

1
𝑁𝑑

∑

[

𝑑𝑖−𝑔𝑖(𝐺(𝐳))
𝜎𝑖

]2
(data misfit weighted by the standard deviation

of the data noise) is less than 1.1. The former criterion ensures that
the approximate posterior reached a stable solution while the latter
prevents declaring convergence for models that are stuck in a local
minimum with a data misfit that is poor. The similarity of the NT
solution (mean value of the approximate posterior) to the true model
in the high-dimensional space 𝐗̃ is further assessed using the structural
similarity index (SSIM; Wang et al., 2004). It measures the similarity
between two images with respect to their structural information:

𝑆𝑆𝐼𝑀(𝐮, 𝐯) =
(2𝜇𝐮𝜇𝐯 + 𝐶1)(2𝜎𝐮𝐯 + 𝐶2)

(2𝜇2
𝐮 + 𝜇2

𝐯 + 𝐶1)(2𝜎2𝐮 + 𝜎2𝐯 + 𝐶2)
, (18)

where 𝐮 and 𝐯 are sliding windows of size 𝑀 × 𝑀 , each sub-samples
its respective [0, 1] normalized image. The values of the SSIM range
between −1 and 1, where 1 indicates perfectly matching images. Here
we use 𝑀 = 7, 𝐶1 = 0.01 and 𝐶2 = 0.03 as those values are commonly
used (Wang et al., 2004; Laloy et al., 2021 and references therein).

Additionally, we assess the performance of the NT approach against
the results obtained by MCMC. We use the differential evolution adap-
tive Metropolis (DREAM(𝑍𝑆)) algorithm (ter Braak and Vrugt, 2008;
Vrugt et al., 2009; Laloy and Vrugt, 2012) to sample the posterior in
the latent space of each considered DGM. In this MCMC algorithm,
several chains evolve in parallel and jumps are proposed based on
candidate points from an archive of past states. At each MCMC step
and for each individual chain, a sample 𝐳′ proposed according to a
symmetric proposal distribution is either accepted or rejected according
to a Metropolis acceptance probability

𝑝𝑎𝑐𝑐 (𝐳𝑡−1, 𝐳′) = min
(

1,
𝑝(𝐝|𝐳′)𝑝(𝐳′)

𝑝(𝐝|𝐳𝑡−1)𝑝(𝐳𝑡−1)

)

. (19)

If accepted, the chain moves to the proposed state, if rejected it
remains at the current state. Convergence of each latent parameter
is declared based on the Gelman–Rubin diagnostic (Gelman and Ru-
bin, 1992) when 𝑅̂ ≤ 1.2. We compare the approximate posterior
PDFs of 𝐳 obtained from NT to those obtained from MCMC inversion.
Furthermore, both posterior distributions are also compared to the
prior of the latent space. The distance between two PDFs is computed
using the KL-divergence while their predictive power is assessed using
the logarithmic scoring rule (LogS; Good, 1952). The LogS statistic is
defined as logS(𝑝̂, 𝐲) = − log 𝑝̂(𝐲) where 𝐲 are the true values of the
parameters of interest and 𝑝̂ is the PDF used to predict the probability
6

Fig. 2. Reference models used for inversion. Models labeled with: ‘mg’ are test models
generated by the SGAN and ‘mv’ are test models generated by the VAE.

of 𝐲. A lower LogS indicates a more accurate prediction. Both the
KL-divergence and LogS values are reported as mean values over all
parameters.

3. Inversion results

We consider the inversion of synthetic data created using the
forward solver described in Section 2.4 that are contaminated with
normally-distributed noise  (0, 1). We use 25 sources and 25 receivers
resulting in 625 data points. Given results from the hyperparameter
search described in Appendix B, we use 20 particles to perform inver-
sion with the SGAN and only a single particle when using the VAE.
After 250 iterations with 20 particles, the RMSE𝐝 of NT with SGAN
is still decreasing towards the target value (Fig. B.2a). Consequently,
we increase the number of training iterations to 300 (6000 forward
simulations) for the SGAN inversions. On the other hand, NT with
VAE converges towards the target value in less than 1000 iterations
with a single particle (Fig. B.2d). Since we perform only one forward
simulation per iteration we allow a maximum of 2000 training iterations
for the VAE inversions. The learning rate in both types of inversions is
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set to 0.01. We run each NT-inversion scheme on a single CPU (AMD
EPYC™ 7402) in a sequential manner due to the inability to distribute
he forward response function on multiple CPUs (see Section 2.4). It
akes around 13 h to run the VAE-based NT inversion considering 2000
raining iterations and a single particle and around 40 hours to run
he SGAN-based NT for 300 training iterations and 20 particles. The
omputational effort is completely dominated by the calculation of the
acobian of the physical forward solver (Eq. (15)) at each iteration as
t makes up 99% of the total computational time.

Figs. 3 and 4 for SGAN and VAE, respectively, show the mean and
tandard deviation of the approximate posterior compared to the true
odel as well as the ELBO loss and RMSE𝐝 during inversion. These

igures are complemented by quantitative metrics in Table 1. For all
f the mg models in Fig. 3 that were obtained using SGAN as the
GM, the main features were reconstructed with the right number and

ocation of the channels (Fig. 3b) and the largest uncertainty is located
t the boundaries of the channels (Fig. 3c) as expected given results of
revious studies (e.g., Zahner et al., 2016). The inferred models mg2
nd mg3 are of lower quality compared to the other ones with SSIM
alues of 0.71 and 0.76, while it is ≥ 0.85 for the other mg models. The

inferred model for mg2 has large uncertainty (around 0.3) on the upper
left 2 m of the model and exhibits the largest data misfit (1.42 ns while
t is ≤ 1.10 ns for the other models). It is possible that these estimates

would have improved further with more training iterations.
The results obtained when using the VAE as DGM are both qual-

tatively (Fig. 4) and quantitatively (Table 1) much better. Table 1
uggests that all mv models are well reconstructed with all RMSE𝐝 ≤
.05 ns and all SSIM ≥ 0.9. The RMSE𝐳 values are as low as 0.08 and
one is higher than 0.37, indicating a good match between the inferred
atent parameters and their true counterparts. These values are at least
ne order lower than the values obtained for the SGAN-based inversion
≥ 1.08). The RMSE𝐗 is as low as 0.04 for the VAE models (mv4)
hereas the lowest value for the SGAN models is 0.10 (mg1). Moreover,

he mean standard deviation of 𝐗, while highly dependent on the
umber of channel elements in the reference model, is consistently
ower when the VAE is used as DGM (on average by ∼ 60%). Although
here are noticeable differences in the bottom part of the inferred mv1
nd mv2 models (last 2 m) compared to their references, these do not
ranslate into large data misfits as these regions are not well constrained
y the GPR rays. Furthermore, when we train the IAF with ten particles
n the mv1 model the reconstruction improves (see Appendix C).

Three out of the five mg models and all mv models converged
ccording to the criteria in Section 2.6 (see Table 1). For the mg models,
onvergence occurs after 260 training iterations on average (with 20
articles), while for the mv models the stage at which convergence
an be declared ranges between 477 and 1767 training iterations (with
single particle). Nonetheless, it can be seen in Fig. 4 that by the

00th iteration the RMSE𝐝 for all the models is below 1.1 ns. This is in
greement with Fig. 5 where we take three exemplary latent parameters
f mv5 and plot their approximate PDF at different stages of the training
rocess. We observe that after 500 training iterations the approximate
ensity is close to the final density (2000 iterations) and after 1000
terations the density becomes very similar to the final one for the first
Fig. 5a) and tenth (Fig. 5b) latent parameters.

After demonstrating that the SGAN- and particularly the VAE-based
T produce high-quality reconstructions of the true model, we assess
ow the corresponding approximate posteriors with respect to MCMC
nversion (DREAM(𝑍𝑆)) and the standard normal prior PDF. We run
ight parallel MCMC chains for one test model of each DGM: mg5 and
v5 (these are also the models resulting in the lowest RMSE𝐳). We

imit the number of samples per chain to 20 000 which represent a
omputation time of ∼6 days on a 8-core workstation. For the SGAN-
ased MCMC inversion, 12 of the 15 parameters satisfy the 𝑅̂ criterion
ithin this computational budget. For the VAE-based MCMC inversion,
ll 20 parameters converged within 8900 samples per chain (total of
7

1 200 samples). Given the two different convergence criteria for NT
Table 1
Summary of the results obtained from inversion with neural-transport for various
reference models and using either the SGAN (20 particles) or the VAE (one particle) as
DGM. 𝑆(𝐗) is the average standard deviation of the posterior 𝑝(𝐗|𝐝, 𝐳) corresponding
to samples from 𝑞𝜙(𝐳). RMSE𝐳 is calculated on the mean latent space parameters of the
resulting posterior while the RMSE𝐗 is calculated in the model image space. RMSE𝐝 is
the data misfit RMSE value at the last iteration. The SSIM is calculated in the model
image space on [0, 1] models.

DGM Model Converged 𝑆(𝐗) RMSE SSIM

(iteration #) 𝐳 𝐗 𝐝 [ns]

SGAN

mg1 269 0.024 1.15 0.10 1.07 0.91
mg2 – 0.110 1.35 0.20 1.42 0.71
mg3 – 0.054 1.39 0.19 1.10 0.76
mg4 243 0.027 1.59 0.12 1.08 0.86
mg5 271 0.040 1.08 0.12 1.06 0.85

VAE

mv1 1767 0.020 0.37 0.12 1.05 0.94
mv2 1467 0.017 0.18 0.06 1.04 0.96
mv3 477 0.024 0.15 0.09 1.04 0.90
mv4 496 0.020 0.08 0.04 1.04 0.97
mv5 1256 0.020 0.08 0.06 1.04 0.94

and MCMC, we have that the computational time required for the VAE-
based MCMC inversion to converge to the posterior target is 7 times
larger than that required by the VAE-based NT (56 times if the MCMC
algorithm would not have been running in parallel). After 20 000 MCMC
samples per chain, the RMSE𝐳s of the posterior means are 0.31 and
0.09 for the SGAN- and VAE-based MCMC inversions, respectively. The
mean SSIM values in the model space that correspond to those posterior
latent parameters are 0.91 (mg5) and 0.95 (mv5). In addition, the final
RMSE𝐝 averaged over all chains is about 1.03 ns for both DGM-based
MCMC inversions. Compared to NT the MCMC achieves lower RMSE
values and higher SSIM values when the SGAN is the DGM, but the
performance is comparable for the VAE-based inversion.

For comparison, we plot the marginal prior and posterior latent
distributions obtained by performing both NT and MCMC sampling
for the mg5 (SGAN) and mv5 (VAE) true models (Figs. 6 and 7). The
LogS of each PDF and the KL-divergence values between the various
PDFs are provided in Table 2. The marginal posteriors obtained for
the mg5 model (Fig. 6) are considerably wider than those obtained for
mv5 (Fig. 7). This can be also observed in the range of the posterior
standard deviation displayed in Figs. 3c and 4c. The posterior derived
by the SGAN-based NT is often not centered around the true value
and receives the highest LogS (7.66; see Table 2). Moreover, when the
SGAN is used as DGM the KL-divergence value between NT and MCMC
posteriors goes to infinity due to a minimal overlap. The estimates are
more consistent when using the VAE. Here the latent posterior PDF
(Fig. 7) is either centered around or contains the true value for both
the NT inversion and the MCMC inversion and posterior uncertainty
derived by the NT is similar to that of the MCMC. Furthermore, the KL-
divergence of the NT posterior from the MCMC posterior is relatively
small (0.19), which indicates strong similarity between the two. The
two VAE-based approximate posteriors also provide relatively similar
LogS value with the NT posterior being slightly more accurate than the
MCMC one (−1.29 for NT versus −1.19 for MCMC).

4. Discussion

Our results demonstrate that the presented NT approach works well
with both SGAN and VAE in terms of reconstructing the true models in
the image space. Moreover, the approximate posterior from the VAE-
based inference provides a slightly better prediction (low LogS value)
than MCMC as well as reliable uncertainty estimates with respect to
the true latent space values (Fig. 7 and Table 2) at a much lower
computational cost. Due to the invertible transformations of the IAF,
in NT we can evaluate the approximate posterior analytically as well

as draw random samples from it.
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Fig. 3. Inferred posterior distributions for different reference models generated by the SGAN using 20 particles and 300 training iterations. (a) True mg1-mg5 models (b) mean
posterior models obtained from NT and (c) posterior standard deviation in the model image space. (d) The ELBO loss and RMSE𝐝 in ns during training. The RMSE𝐝 curves represent
the average values over all particles.
The differences in training (adversarial versus variational) and more
so the differences in architecture (fully connected and convolutional
layers in the VAE versus fully convolutional spatial GAN) between
the two DGMs lead to transformations that vary in their degree of
non-linearity. The SGAN transformation provides approximate latent
posterior distributions that are both wider and less accurate than those
obtained by the VAE-based inversions, thereby, indicating stronger
dependencies between the SGAN parameters. The stronger correlation
between the SGAN latent parameters can be explained by its spatial
architecture, that is, its 2D latent space and fully convolutional layers.
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Although the approximate posterior in the latent space of the SGAN
does not provide a good prediction of the true value, as seen from
the RMSE𝐳 and LogS values, the reconstruction of the actual model
(in the original high-dimensional image space) is reasonable with SSIM
values in the 0.71–0.91 range. This suggests that two latent vectors
that lie far from each other may correspond to similar realizations
in the high-dimensional model space. This can be explained as an
attempt of the generator to accommodate the change in topology
between the latent space and the real manifold in the high-dimensional
space (Lopez-Alvis et al., 2021). Moreover, Lopez-Alvis et al. (2021)
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Fig. 4. Inferred posterior distributions for different reference models generated by the VAE using one particle and 2000 training iterations. (a) True mv1-mv5 models (b) mean
posterior models obtained from NT and (c) posterior standard deviation in the model image space. (d) The ELBO loss and RMSE𝐝 in ns during training.
showed that the convexity of the misfit function in the latent space
of the VAE can be controlled by choosing the right hyper-parameters
during training. This is an important advantage, as Laloy et al. (2019)
showed that the misfit function in the latent space of the SGAN is in
fact a rough surface containing many local minima. Instead, the VAE
is trained in such a way that both the changes induced in topology
and the convexity of the misfit function are controlled. However, one
must also keep in mind that this comes at the expense of generation
accuracy and that realizations generated by the VAE are more lossy
and, consequently, less sharp than those obtained from a GAN (Hou
et al., 2017; Bao et al., 2022; see also our Fig. 2).
9

We stress that variational inference is limited by the parameteriza-
tion of the approximate distribution, hence, in some cases the solution
might not converge to an appropriate approximation of the posterior
if the parameterized distribution is not expressive enough. A further
improvement, for example in the case of the SGAN-based inversion, can
be achieved by running traditional MCMC or Hamiltonian Monte Carlo
(HMC; Duane et al., 1987; Neal, 2011) within the latent space of the
IAF (Hoffman et al., 2019; Papamakarios et al., 2021). In this setting,
the normalizing flow is used to reparameterize the posterior distribu-
tion and the starting point for the MCMC sampler is the approximation
resulting from training the IAF, thereby, providing a much shorter
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Fig. 5. Estimation of the variational PDF describing the marginal posterior of the 1st, 10th and 18th latent parameters of the mv5 model at various training iterations.
Fig. 6. Approximate marginal posteriors on the latent space 𝐳 obtained with neural-transport (NT) and MCMC for model mg5 in Fig. 2 as well as the prior on the latent space of
the SGAN.
burn-in. Additionally, it provides a favorable sampling geometry from
a standard normal which may improve MCMC mixing in multi-modal
problems (Nijkamp et al., 2020).
10
The results for the VAE-based inversion (Fig. 4) demonstrate that
NT can be performed with a single particle. The SGAN-based inversion
on the other hand requires more than a single particle and starts
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Fig. 7. Approximate marginal posteriors on the latent space 𝐳 obtained with neural-transport (NT) and MCMC for model mv5 in Fig. 2 as well as the prior on the latent space of
the VAE.
Table 2
Statistical summary of the posterior PDF in the latent space 𝐳 of mg5 and mv5 models
obtained by neural-transport (NT) and MCMC with DREAM(𝑍𝑆). Both are compared
against the prior PDF of 𝐳. The logS and KL-divergence are reported as the mean value
over the 𝐳 parameters.

PDF (𝑄) logS 𝐷𝐾𝐿(𝑄||𝑃 )

MCMC (𝑃 ) Prior (𝑃 )

mg5

NT 7.66 inf 3.63
MCMC 0.11 0 1.48
Prior 1.60 – 0

mv5

NT −1.29 0.19 2.84
MCMC −1.19 0 2.55
Prior 1.43 – 0

to perform well (measured in terms of data misfit only) when the
number of particles is increased to 20 for the considered case studies
(Fig. B.2). This finding is consistent with those by Laloy et al. (2019)
and Lopez-Alvis et al. (2021), where deterministic gradient-based in-
versions within the low-dimensional space of the SGAN was found to
perform poorly due to the highly non-linear SGAN transformation and
small-scale irregularities in the objective function. Increasing the num-
ber of particles allows for more regions in the latent/model space to be
explored at each iteration, thereby providing a more robust gradient
estimation. This is perhaps particularly important at the initial phase
of inversion where a vast region of the prior is explored. As opposed
to many other gradient-based methods, NT involves random sampling
at each iteration, which makes it more robust and reduces the risk of
getting stuck in a local minimum. Increasing the number of particles is
also shown to result in earlier convergence, however, it comes at the
11
cost of an increased computational expense as evolving one particle
for one iteration involves a forward simulation and the calculation
of its Jacobian. For instance, for the SGAN-based inversions with 20
particles it takes an average of 260 training iterations (among those
who have reached convergence) to converge, which translates into 5200
forward simulations. In contrast, the maximum number of iterations
needed for the single-particle VAE-based inversion to converge is 1767
forward simulations only (see Table 1). Those SGAN-based inversion
cases which have not converged possibly require either more training
iterations or more particles. Nevertheless, among the converged cases
using either the VAE or the SGAN, the total number of forward simula-
tions needed in the NT approach is always much lower than in MCMC.
When compared based on their individual convergence criteria, the
computational times required by MCMC and NT differ by a factor of
7 in favor of NT. This factor would be 56 if the eight MCMC chains
were not evolved in parallel.

In our NT applications, the forward simulations of the particles
are computed sequentially. However, the computational time when
considering multiple particles can be significantly reduced by dis-
tributing the computations associated with individual particles over
several processing units (preferably using one unit per particle). This
option is available in NT-based inversions: transformations and forward
simulations can be performed in parallel when using more than a
single particle, given that the forward simulation is parallelizable. Note
that auto-differentiation as performed by machine learning libraries
such as PyTorch and TensorFlow requires the forward solver to be
implemented in the library in use, or alternatively, that the gradients of
the forward response are provided by the user (Richardson, 2018; Laloy
et al., 2019). As mentioned in Section 2.5, to maintain a differentiable
operation we do not threshold the generated images to a binary value
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of 0 or 1 in neither the SGAN nor the VAE generations. This limitation
might affect inversion performance when the inverted model is either
binary or categorical.

Using DGMs results in a drastic reduction in the number of in-
ferred parameters (here from 8385 to only 15 and 20 SGAN and VAE
latent parameters, respectively) as well as realizations which honor
the higher-order statistical features of the model as represented by
a training image (Laloy et al., 2017, 2018). The NT mechanism on
the other hand, leverages on gradient information, random drawing
of particles and flexible parameterization of the approximate posterior
distribution. Consequently, NT combined with a DGM forms an efficient
and scalable approach for solving high-dimensional inverse problems.
As discussed in Section 3, most of the computational cost of the NT
approach comes from the forward simulation and the largest updates
to the IAF parameters occur at early training stages. Therefore, further
improvement of NT efficiency could probably be gained by updating
the Jacobian of the forward solver in Eq. (15) less frequently as the
inversion advances. Another option could be to set a large number of
particles at the beginning of the inversion and gradually decrease it as
updates to the IAF parameters are becoming smaller. We leave these
two options for future studies. Additionally, our study was limited to
channelized subsurface models and a weakly non-linear forward solver
operating in a crosshole setting. Further research is required to assess
the performance of this approach for different geomodels, physical
models (e.g. fluid flow, wave-based reflection data) and 3D problems.

5. Conclusions

Neural-transport refers to the application of variational Bayes to
train an IAF transformation, which maps samples from a simple base
distribution into samples from an approximate posterior over the latent
space of a DGM. We demonstrate that inferring a model in the latent
space of either a SGAN or a VAE using neural-transport significantly re-
duces the number of forward simulations required compared to MCMC
sampling. In this respect, DGMs play an important role in improving
the efficiency and scalability of the NT approach when dealing with
geophysical inverse problems that are generally high-dimensional. Our
results are in agreement with previous works concerning deterministic
inversions performed in the latent space of a SGAN or a VAE. Indeed,
the VAE is found to provide a better reconstruction of the true model
in both the low-dimensional latent and high-dimensional model image
spaces; the agreement with the MCMC results were also excellent. NT
combined with SGAN provides a reasonable estimation in the high-
dimensional model space and much better results overall compared
12

to previous results based on deterministic inversions. In contrast to
MCMC, where the posterior is estimated based on an ensemble of sam-
ples, NT provides a closed-form solution of the approximate posterior
such that it can be efficiently evaluated and sampled from. Performance
of NT-based inversion could be further improved by combining it with
MCMC sampling within the latent space of the NT, starting from the
solution of the NT-based inversion.

Computer code availability

Neural-transport and DGMs scripts as well as test examples are
available at the following GitHub repository:
https://github.com/ShiLevy/Neural_transport_DGM.
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Appendix A. IAF design

The IAF is constructed as sequential flows with each of them pro-
ducing a different distribution (see Fig. A.1a). Each flow involves an
autoregressive network which takes as input either variables from the
base distribution (if it is the first flow) or variables that are a result
of the preceding flow. The output of the autoregressive network is
a mean 𝜇 and logarithm of the standard deviation log(𝜎) (to prevent
negative standard deviation as output, it is therefore exponentiated
to get 𝜎). To achieve the autoregressive property, the connections
Fig. A.1. Schematic drawing of the IAF architecture. (a) General workflow of the IAF with two flows corresponding to one intermediate distribution. The number of neurons
depends on the number of input features 𝑛. (b) An illustration of an autoregressive network in which connections are masked to honor the autoregressive property.

https://github.com/ShiLevy/Neural_transport_DGM
http://p3.snf.ch/project-184574
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Fig. B.1. Average RMSE𝐝 value over model particles during inference as a function of the learning rate using (a) SGAN and (b) VAE as DGM.
Fig. B.2. Average RMSE𝐝 values during the NT inversion as a function of the number of (a) and (c) iterations and (b) and (d) forward simulations with SGAN (a, b) and VAE (c,
d) as DGM. The different curves correspond to different number of particles used to estimate the ELBO and its gradients at each NT iteration.
between layers are masked to ensure conditioning of variables only
on those preceding them (see illustration in Fig. A.1b; Germain et al.,
2015; Papamakarios et al., 2017). Before each flow the input is re-
ordered (permutation) which has been shown to improve the training
of such models (Germain et al., 2015; Kingma et al., 2016). The au-
toregressive network includes one hidden layer with 2𝑛 hidden units
(neurons). To be able to represent all degrees of conditioning, the
number of units in a hidden layer should be at least 𝑛 − 1. Here we
found that 2𝑛 units in the hidden layer performs slightly better than
using 𝑛 units (a default choice). We introduce a non-linearity to the
transformation by applying a ReLU activation function to each flow.
Results did not change significantly when other activation functions
such as LeakyReLU or ELU were used and we found ReLU to work
well for our purposes. Each additional flow in the current architecture
introduces 6𝑛2 + 2 trainable parameters therefore, the number of flows
chosen was based on a consideration of complexity/performance versus
computational effort that might vary for different types of models.
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Appendix B. Hyperparameter calibration

Once the architecture (i.e. number of flows, number of layers etc.)
of the IAF is fixed, there are two main algorithmic variables that may
affect the final results: (1) number of particles 𝑁𝑠 and (2) learning rate.
To determine proper values for these variables and test the robustness
of the approach to different choices, we perform a hyperparameter
search and show the results on models mg1 (for the SGAN) and mv3
(for the VAE) in Fig. 2. We first test the NT routine with the SGAN
and VAE using learning rates of: 0.1, 0.05, 0.01, 0.005, 0.001 and
one particle. The curves in Fig. B.1 represent the RMSE of the data
misfit RMSE𝐝 during the NT-training for the different learning rates.
For both the SGAN and VAE it is found that a learning rate of 0.01
gives the fastest and most stable convergence towards the target misfit
of 1 ns corresponding to the standard deviation of the noise added to
the synthetic data. A higher learning rate results in either instability
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Fig. C.1. (a) True mv1 model (b) mean posterior models obtained from NT using ten particles and (c) posterior standard deviation in the model image space. (d) The ELBO loss
and RMSE𝐝 in ns during training.
or convergence to a sub-optimal solution, while a lower learning rate
results in a slower convergence.

To evaluate how many particles 𝑁𝑠 to use, we fix the learning rate
at the optimal value of 0.01. We then test the NT using 1, 5, 10 and 20
particles. We compare the RMSE𝐝 averaged over the particles during
NT-training and plot them as a function of the number of training
(gradient-descent) iterations (Fig. B.2a and c) and the number of for-
ward simulations (Fig. B.2b and d). Increasing the number of particles
leads to more stable and earlier convergence with respect to the number
of iterations. However, increasing the number of particles also induces
a higher computational demand. When considering the RMSE𝐝 with
respect to the number of forward simulations as in Fig. B.2d, it becomes
clear that the VAE optimization performed using one particle only
provides the best trade-off (at least if not considering parallelization),
as the target misfit is then reached at the lowest computational cost.
In contrast, the SGAN benefits from a larger number of particles as we
found that using 20 particles reduces the risk of getting stuck in a local
minima (Fig. B.2b) and in most cases it brings the RMSE𝐝 closer to the
target misfit despite the fewer gradient-decent iterations assigned to it.
This behavior is likely due to the higher degree of non-linearity of the
SGAN, for which a higher number of particles provides more robustness
with respect to local features in the misfit function when updating the
parameters of the autoregressive network.

Appendix C. Supplementary results

The NT-inversion with the mv1 model performed relatively poorly
at the lower boundary when using one particle only (Fig. 4a–d). Indeed,
the mean model (Fig. 4b) and the standard deviation (Fig. 4c) suggest
that the true model is not part of the posterior. By extending the num-
ber of particles to ten, we find that the posterior mean is much closer
to the true model (compare Fig. C.1a–b) and the standard deviation is
higher implying a better exploration of the posterior. The lower region
of high standard deviation maps well to the interface between the lower
channel and the background matrix. This suggests that adding more
particles can also be beneficial when using VAE as DGM.
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