Research Correspondence

Two-year clinical outcomes of resorbable magnesium scaffold versus conventional drug-eluting stents in ST-segment elevation myocardial infarction: A propensity score matching analysis

Scaffolding the coronary vessels and protecting the vulnerable or ruptured plaque without a permanent metallic endoprosthesis is an appealing concept that was materialized with bioresorbable coronary scaffolds (BRS)¹. Magmaris[™] (Biotronik AG, Bülach, Switzerland) is the second generation of drugeluting, fully-resorbable, magnesium-alloy-based scaffolds demonstrating promising results in stable coronary disease². Data are scarce concerning the outcomes of BRS implantation for ST-segment elevation myocardial infarction (STEMI), but theoretically, they could offer an advantageous alternative mostly because of the preservation of the vessel's mechanical and hydraulic properties after resorption while treating the acute event³. The BEST-MAG trial was a propensity-matched study that compared the 1-year clinical outcomes of the Magmaris[™] BRS versus contemporary drug-eluting stents (DES) in the setting of STEMI⁴. Thirty patients who fulfilled the eligibility criteria were prospectively enrolled based on a prespecified intracoronary imaging-guided protocol. Primary PCI was performed with magnesium BRS and propensity score matching analysis was applied with the two groups of BIOSTEMI trial (biodegradable polymer DES, n = 648; durable polymer DES, n = 651)⁵. Numerically higher

rates of target lesion revascularization (TLR) were observed at one-year follow-up, not reaching statistical significance⁴. We herein report the 2-year results of the study.

Clinical and procedural characteristics of the matched population have been published previously at the 1-year outcomes⁴. Optical coherence tomography (OCT) was performed in all patients at baseline and at 15 months in 17 of the magnesium BRS group. The primary device-oriented composite endpoint (DOCE) of cardiac death, target vessel myocardial reinfarction (attributable to the culprit lesion), and ischemic-driven TLR occurred in 20% in the BRS group vs 10% in both the DES groups (p = 0.286) at 2 years. The secondary endpoint of definite/probable device thrombosis occurred in 3.3% of BRS and 6.7% in the biodegradable polymer DES (p = 0.561) (Fig. 1). In the 15-month follow-up OCT of the magnesium BRS group minimal lumen area decreased from $7.57 \pm 1.48 \text{ mm}^2$ to $4.72 \pm 2.22 \text{ mm}^2$ (p < 0.001). BRS struts were evident in all 17 patients and measurements are presented in Table 1.

The 2-year results of the BEST-MAG trial are in line with the 12-month results showing a trend toward more TLRs in the magnesium BRS group that does not reach statistical significance. DOCE seems to appear after 1 year and was mainly driven by an increase in TLR. Joner et al. showed that 94.8% of the magnesium is resorbed in 12 months and only amorphous calcium phosphate remains in the vessel wall of animal models⁶. On the contrary visible struts were present in all followed-up patients of our trial. In the same context, the MAGSTEMI trial was the first to investigate Magmaris™ BRS in STEMI and resulted in higher late-lumen-loss and restenosis rates for the BRS, although not powered for these outcomes⁷. The three-year results consistently demonstrated higher TLR rates for magnesium scaffolds, however, the events were clustered during the first year similar to our findings⁸. These unfavorable outcomes might be mitigated by the introduction of a third-generation thinner-strut

magnesium BRS. The device demonstrated a favorable safety profile and 38% improved performance compared to its precursor in the 12-month results of the BIOMAG-I trial⁹. Large-scale clinical trials will be needed to evaluate the efficacy and efficiency of this novel magnesium BRS and ascertain if it has a potential role in acute coronary syndromes, specifically in STEMIs. The major limitation of the trial is the small patient sample which results in it being underpowered and, thus, only hypothesis generating.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

SOURCES OF FUNDING

None.

DISCLOSURES

None.

ABBREVIATIONS

DOCE = device-oriented composite endpoint

PCI = percutaneous coronary intervention

BRS = bioresorbable coronary scaffold

STEMI = ST-segment myocardial infarction

TLR = target lesion revascularization

FIG. 1 Graphical display of the BEST-MAG trial 2-year outcomes BRS: bioresorbable coronary scaffold, BP-SES: biodegradable polymer sirolimus-eluting stent, DP-EES: durable polymer everolimus-eluting stenta. a. OCT image after primary angioplasty with magnesium scaffolds. b. OCT image of 15-month follow-up that shows partially resorbed scaffold with some remaining struts and preserved lumen area. c. OCT image of acute coronary syndrome showing strut remnants in the lumen (13 hours) and mixed ruptured plaque (10 hours). d. OCT image showing visible remaining struts of the magnesium scaffold and neointimal hyperplasia resulting in significant lumen loss

2nd generation magnesium resorbable coronary scaffolds in STEMI n = 30 Biodegradable polymer sirolimus-eluting stent (n = 30) Durable polymer everolimus-eluting stent (n = 30)										
	Magnesium BRS	BP -SES	DP - EES	p-value*	p-value [†]					
DOCE	20%	10%	10%	0,286	0,286	a b				
Cardiac death	0%	6,7%	6,7%	0,995	0,995					
Target lesion revascularization	20%	3,3%	3,3%	0,076	0,076	c d				
Target vessel myocardial infarction	6,7%	0%	3,3%	0,996	0,682					
Definite/ probable device thrombosis	3,3%	3,3%	6,7%		0,561					
Magnesium BRS n=17 OCT baseline MLA: 7.57 ± 1.48 mm ²		baseline $57 \pm 1.48 \text{ mm}^2$	OCT 15months MLA: 4.72 ± 2.22 mm ²		p-value <0.001					
*Comparison †Comparison	between Magnesium BRS between magnesium BRS	and BP-SES and DP-EES								

 TABLE 1
 Optical coherence tomography main results in 15month follow-up in 17 patients treated with resorbable magnesium scaffold

MSA after PCI	MLA in FU	Number of visible struts	Lumen loss	Endpoint
11.39 mm ²	9.2 mm ²	3	19.2%	
9.3 mm ²	6.42 mm ²	4	30.9%	TLR
9.79 mm ²	5.17 mm ²	3	47.2%	
10.33	7.13	4	30.9%	
7.06	4.29	3	39.2%	
6.96	1.65	4	76.3	TLR
5.35	3.76	3	29.7	
7.45	1.01	2	86.4	TLR
8.8	3.51	2	60.1	
6.24	2.75	3	55.9	
9.35	5.97	3	46.1	
8.03	6.68	2	16.8	
6.68	4.24	4	36.5	
7.64	3.14	4	58.9	
6.8	2.91	3	57.2	
7.44	5.48	3	26.3	
6.43	2.25	3	65%	TLR

FU, follow-up; MLA, minimal lumen area; MSA, minimal stent area; PCI, percutaneous coronary intervention; TLR, target lesion revascularization.

ACKNOWLEDGMENTS Figure created BioRender.com.

Leonidas Koliastasis¹† Johan Bennett²† Panagiotis Xaplanteris³ Ioannis Skalidis⁴ Antoine Guédès⁵ Fabian Demeure⁵ Bert Vandeloo⁶ Christophe Dugauquier⁷ Fabien Picard⁸ David W. Warne⁹ Thomas Pilgrim¹⁰ Juan F. Iglesias¹¹ *Quentin de Hemptinne¹²

*Corresponding author. 322 rue Haute, 1000, Brussels, Belgium. Tel.: +32 468 37 73 97.

E-mail: quentin.dehemptinne@stpierre-bru.be[†] Clinicaltrials.org registration number: NCT03955731.

¹Department of Cardiology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium; ²Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium; ³Department of Cardiology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium; ⁴Department of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland; ⁵CHU UCL Namur, Site de Mont Godinne, Université Catholique de Louvain, Belgium; ⁶Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZB), Department of Cardiology, Brussels, Belgium; ⁷CHR Citadelle, Liège, Belgium; ⁸Hôpital Cochin, Assistance Publique des Hôpitaux de Paris, Paris, France; ⁹Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Switzerland; ¹⁰Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland; ¹¹Department of Cardiology, Geneva University Hospitals, Geneva, Switzerland; ¹²Department of Cardiology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium

https://doi.org/10.1016/j.hjc.2023.12.004

© 2024 Hellenic Society of Cardiology. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Hellenic Society of Cardiology.

[†]These two authors contributed equally to this work.

REFERENCES

with

1. Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimuseluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. *Lancet.* 2016;388(10059): 2479-2491.

2. Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. *EuroIntervention*. 2017;13(4):432-439.

3. Bennett J, Ielasi A, Torzewski J, et al. The Resorbable Magnesium Scaffold Magmaris in Acute Coronary Syndrome: An Appraisal of Evidence and User Group Guidance. *Cardiovasc Revascularization Med.* 2022;39:106-113.

4. de Hemptinne Q, Xaplanteris P, Guedes A, et al. Magmaris Resorbable Magnesium Scaffold Versus Conventional Drug-Eluting Stent in ST-Segment Elevation Myocardial Infarction: 1-Year Results of a Propensity-Score-Matching Comparison. Cardiovasc Revascularization Med. 2022;43:28–35.

5. Iglesias JF, Muller O, Heg D, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial. *Lancet.* 2019;394(10205):1243-1253.

6. Joner M, Ruppelt P, Zumstein P, et al. Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds. *EuroIntervention*. 2018;14(9):e1040-e1048.

7. Sabate M, Alfonso F, Cequier A, et al. Magnesium-Based Resorbable Scaffold Versus Permanent Metallic Sirolimus-Eluting Stent in Patients With ST-Segment Elevation Myocardial Infarction: The MAGSTEMI Randomized Clinical Trial. *Circulation*. 2019;140(23):1904–1916.

8. Ortega-Paz L, Brugaletta S, Gomez-Lara J, et al. Magnesium-based resorbable scaffold vs permanent metallic sirolimus-eluting stent in patients with ST-segment elevation myocardial infarction: 3-year results of the MAGSTEMI randomised controlled trial. *EuroIntervention*. 2022;18(5):e389-e396.

9. Haude M, Wlodarczak A, van der Schaaf RJ, Torzewski J, Ferdinande B, Escaned J, Iglesias JF, Bennett J, Toth GG, Joner M, Toelg R, Wiemer M, Olivecrano G, Vermeersch P, Garcia-Garcia HM, Waksman R. A new resorbable magnesium scaffold for de novo coronary lesions (DREAMS 3): one-year results of the BIOMAG-I first-in-human study. *EuroIntervention*. 2023 Aug 7;19(5):e414-e422. https://doi.org/10.4244/EIJ-D-23-00326. PMID: 37334655; PMCID: PMC10397670.

KEYWORDS STEMI, resorbable magnesium scaffold, Magmaris, primary PCI