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Abstract. Let T be a positive random variable independent of the real-valued stochastic process {X(t), t ≥ 0}. In this
paper we investigate the asymptotic behaviour of P

(
supt∈[0,T ]X(t) > u

)
as u → ∞ assuming that X is a strongly

dependent stationary Gaussian process and T has a regularly varying survival function at infinity with index λ ∈ [0, 1).
Under asymptotic restrictions on the correlation function r(t) of the process, we show that P

(
supt∈[0,T ]X(t) > u

)
=

cλP (T > m(u)) (1 + o(1)) with c some positive finite constant and m(·) defined in terms of the local behaviour of the
correlation function and the standard Gaussian distribution.

Keywords: ...Gaussian processes; strong dependence; supremum over a random interval; exact tail asymp-
totics.
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1 INTRODUCTION

Consider {X(t), t ≥ 0} a standard (zero-mean and unit-variance) stationary Gaussian process with cor-
relation function r(t) and a.s. continuous sample paths. The investigation of the tail asymptotics of the
supremum of Gaussian processes is a hard problem. Typically the study of the asymptotic tail behaviour of
the supremum of the process on some finite interval [0, T ], T > 0, i.e., the asymptotics

P

(
sup
t∈[0,T ]

X(t) > u

)
, as u→∞ (1.1)

is easier to deal with compared to the case that T = ∞. The excellent monograph [28] provides the
fundamental theoretical results for dealing with both cases under various assumptions on the correlation
function and the variance function of the process. There are numerous research fields and many applications
where the asymptotic expansion of the probability in (1.1) is crucial, see e.g., [1], [22], [28], [21], and [17].
With motivations from applications in queuing theory, insurance, and hydrodynamics [12], [35], [11], [25],
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[23], and recently [3, 4] consider instead of T deterministic a positive random variable T being independent
of the Gaussian process X .

In both [12] and [3] some general Gaussian processes {X(t), t ∈ [0,∞)} with stationary increments are
considered. This paper is motivated by [4] where the Gaussian process is assumed to be stationary. We
formulate next the assumptions and the main findings of the aforementioned article:

Suppose that the correlation function r(t) := Cov(X(s), X(s+ t)) satisfies
(A1). r(t) = 1− C∗|t|α + o(|t|α) as t→ 0, with α ∈ (0, 2] and C∗ > 0;
(A2). r(t) log(t)→ 0 as t→∞.
The positive random variable T which throughout this paper is supposed to be independent of the Gaus-

sian process {X(t), t ∈ [0,∞)} has survival function H satisfying the following assumption:
(B). H is regularly varying at infinity with parameter λ ∈ [0, 1), i.e., P (T > t) = H(t) = L(t)t−λ,

where L(·) is slowly varying function at∞.
For details on regularly varying and slowly varying functions see e.g., [6].
The key findings of [4] are collected in the following theorem:

Theorem 1. Let {X(t), t ≥ 0} be a standard stationary Gaussian process with correlation function satis-
fying (A1) and (A2) being further independent of T . If H satisfies Assumption (B), then as u→∞

P

(
sup
t∈[0,T ]

X(t) > u

)
= Γ (1− λ)

(
HαC

1/α
∗√
2π

)λ
L
(
u
α−2

α exp(u2/2)
)
u
λ(2−α)

α exp

(
−λu

2

2

)
(1 + o(1)),(1.2)

where Hα is the Pickands constant and Γ (·) stands for the Euler gamma function.

In the literature Assumption (A2) is referred to as the weak dependence or the Berman’s condition (see
[5]) and consequently the stationary Gaussian process {X(t), t ∈ [0,∞)} is called a weakly dependent
stationary Gaussian process. A natural generalisation of (A2) is the following assumption
(A3). r(t) log t→ r ∈ (0,∞), as t→∞.
In analogy, the stationary Gaussian process {X(t), t ≥ 0} with correlation function satisfying Assumption
(A3) is called strongly dependent. Indeed, condition (A3) is a natural extension of (A2). For related studies
on extremes of strongly dependent Gaussian processes, we refer to [24], [28], [16], [18], [19], [30], [15],
[31], [32],[33], [34].
The aim of this paper is to study the asymptotic behaviour of the supremum of strongly dependent stationary
Gaussian processes over some random interval [0, T ]. Our results show that a similar asymptotic expansion
as that obtained in Theorem 1 still holds for strongly dependent stationary Gaussian processes.

Brief organisation of the paper: We present the main result in Section 2 followed then by several auxiliary
results and proofs displayed in Section 3.

2 MAIN RESULT

As mentioned in the Introduction [4] derived the exact asymptotics of the weakly dependent stationary
Gaussian processes assuming the regular variation of the survival function H of T , where in the asymptotics
the prominent Pickands constant appears. The reason for that is the Pickands exact asymptotics (see [26])
of the supremum of the stationary Gaussian process {X(t), t ∈ [0,∞)} over the finite interval [0, T ], T > 0
given by

P

(
sup
t∈[0,T ]

X(t) > u

)
= TC

1/α
∗ Hαu

2/αΨ(u)(1 + o(1)), as u→∞, (2.1)

provided that the correlation function of the Gaussian process satisfies Assumption (A1) and further r(t) <
1 for all t > 0. Here Ψ(·) = 1 − Φ(·) is the survival function of a N(0, 1) random variable. Pickands
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constant Hα is defined by

Hα = lim
x→∞

x−1E

(
exp

(
sup
t∈[0,x]

Z(t)

))
,

where {Z(t), t ≥ 0} is a fractional Brownian motion with continuous sample paths, mean function eZ(t) =
−tα and covariance function

cov(Z(s), Z(t)) = |t|α + |s|α − |t− s|α.

We note in passing that the first correct proof of Pickands result is given in [27]. It is also well known that
0 < Hα < ∞ ; see [26], [1], [5], [28], [29], [14], [7], [9], [13], [8] , [2], [10] for the main properties of
Pickands and related constants. Since

Ψ(u) =
1√
2πu

exp(−u2/2)(1 + o(1)), as u→∞ (2.2)

it is clear that the results of [4] show that the tail asymptotic behaviour of the supremum of weakly depen-
dent stationary Gaussian processes over random intervals depends on both the tail asymptotic behaviour of
T and that of the supremum of the processes over finite deterministic intervals. Note that our assumptions
on T imply that eT = ∞. If Assumption (A3) hods for r = 0, then a strongly dependent stationary
Gaussian process boils down to a weakly dependent one. Therefore, it is intuitive to deduce that the results
of [4] will still hold for the case r ∈ (0,∞). In the main results below, we show that indeed this is the
case. The positive constant which additionally appears in the asymptotics is

Kλ,r =

∫ ∞
0

E
(
exp

(
−x exp(−r +

√
2rW)

))
x−λdx ∈ (0,∞), (2.3)

where W is a N(0, 1) random variable.

Theorem 2.1. Let {X(t), t ≥ 0} be a standard stationary Gaussian processes with correlation function
satisfying (A1) and (A3), and let T be positive random variable independent of {X(t), t ≥ 0}. If H satisfies
Assumption (B), then we have

P

(
sup
t∈[0,T ]

X(t) > u

)
= Kλ,r

(
HαC

1/α
∗√
2π

)λ
L
(
u
α−2

α exp(u2/2)
)
u
λ(2−α)

α exp

(
−λu

2

2

)
(1 + o(1))(2.4)

as u→∞.

Remark 2.1. i) Setting

m(u) =
1

C
1/α
∗ Hαu2/αΨ(u)

, u > 0

we can re-write Eq. (2.4) as

P

(
sup
t∈[0,T ]

X(t) > u

)
= Kλ,rP (T > m(u)) (1 + o(1)), u→∞. (2.5)

ii) Since Kλ,0 = Γ (1− λ), then (2.4) agrees with (1.2) if r ↓ 0.
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3 FURTHER RESULTS AND PROOF OF THEOREM 2.1

In this section we present three lemmas and then proceed with the proof of Theorems 2.1.
Let {Xi(t), t ∈ [0,∞)}, i = 1, 2, · · · be independent copies of {X(t), t ∈ [0,∞)} and {η(t), t ∈

[0,∞)} be such that η(t) = Xi(t) for t ∈ Ji = [i − 1, i). For a fixed constant T > 0 we define
ρ(T ) = r/ log T and

ξT (t) = (1− ρ(T ))1/2η(t) + ρ1/2(T )W, 0 ≤ t ≤ T,

where W is a N(0, 1) random variable independent of {η(t), t ∈ [0,∞)}. Note in passing that {ξT (t), t ∈
[0, T ]} is a non-stationary Gaussian process with covariance function %(s, t) given by

%(s, t) =

{
r(s, t) + (1− r(s, t))ρ(T ), s ∈ Ji, t ∈ Jj , i = j,

ρ(T ), s ∈ Ji, t ∈ Jj , i 6= j.

Hereafter a, u are positive constants, k, l are integers, and we set

q = q(u) = au−2/α, ρ(a) = 1− Ha(a)

Ha
, m(u) =

1

C
1/α
∗ Hαu2/αΨ(u)

, u > 0.

Further, C shall denote a positive finite constant whose value may vary from place to place.
In the next two lemmas we shall work with subintervals of [0, T ]. We divide therefore [0, T ] onto intervals
of length 1, and split each of them into subintervals Iεj , Ij of length ε and 1− ε, respectively.

Lemma 3.1. Let a > 0 and q = q(u) = au−2/α. Suppose that both Assumptions (A1) and (A3) hold. If
for some T = Tu we have T/m(u) = O(1) as u→∞, then

∑
kq∈Ii,lq∈Ij

i,j∈{1,2,··· ,[T ]}

|r(kq, lq)− %(kq, lq)|
∫ 1

0

1√
1− r(h)(kq, lq)

exp

(
− u2

1 + r(h)(kq, lq)

)
dh→ 0 (3.1)

as T →∞, where r(h)(kq, lq) = hr(kq, lq) + (1− h)%(kq, lq).
Proof: Let ϑ(t) = supt<|kq−lq|≤T {$(kq, lq)}, where $(kq) = max{r(kq, lq), %(kq, lq)}. From As-

sumption (A1), it is easy to see that for any ε ∈ (0, 2−1/α), ϑ(ε) < 1 for all sufficiently large T .
Consequently, we may choose some positive constant β such that β < 1−ϑ(ε)

1+ϑ(ε) for all sufficiently large T .
First, we consider the case that kq, lq are in the same interval I , which implies %(kq, lq) = r(kq, lq) +
(1− r(kq, lq))ρ(T ) ∼ r(kq,−lq) for sufficiently large T . Split the left-hand-side of (3.1) into two parts as∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
|lq−kq|<ε

+
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
ε<|lq−kq|<1−ε

=: JT,1 + JT,2. (3.2)

Note that for |kq − lq| ∈ (0, ε), r(kq, lq) − %(kq, lq) = ρ(T )(1 − r(kq, lq)). By Assumption (A1) for all
|t| ≤ ε < 2−1/α

1

2
|t|α ≤ 1− r(t) ≤ 2|t|α.

Condition T/m(u) = O(1) implies thus

u2 = 2 log T − log log T +
2

α
log log T +O(1). (3.3)
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Consequently, since further q = au−2/α = a(log T )−1/α we obtain

JT,1 ≤ C
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
|lq−kq|<ε

|r(kq, lq)− %(kq, lq)| 1√
1− r(kq, lq)

exp

(
− u2

1 + r(kq, lq)

)

≤ Cρ(T )
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
|lq−kq|<ε

√
1− r(kq, lq) exp

(
− u2

1 + r(kq, lq)

)

≤ Cρ(T )T
q

∑
0<kq≤ε

√
1− r(kq) exp

(
− u2

1 + r(kq)

)

≤ CT
q
ρ(T )

∑
0<kq≤ε

√
1− r(kq) exp

(
−u

2

2

)
exp

(
−(1− r(kq))u2

2(1 + r(kq))

)

≤ CT
q
ρ(T )T−1(log T )1/2−1/α

∑
0<kq≤ε

√
1− r(kq) exp

(
−(1− r(kq))u2

2(1 + r(kq))

)

≤ C(log T )−1/2
∑

0<kq≤ε
(kq)α/2 exp

(
−1

8
|kq|α

)
≤ C(log T )−1/2. (3.4)

Using the fact that u ∼ (2 log T )1/2, we have further

JT,2 ≤ C
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
ε<|lq−kq|<1−ε

|r(kq, lq)− %(kq, lq)| exp
(
− u2

1 +$(kq, lq)

)

≤ C
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
ε<|lq−kq|<1−ε

exp

(
− u2

1 +$(kq, lq)

)

≤ C
∑

kq∈Ii, lq∈Ii,i∈{1,2,··· ,[T ]}
ε<|lq−kq|<1−ε

exp

(
− u2

1 + ϑ(ε)

)

≤ CT
q
exp

(
− u2

1 + ϑ(ε)

) ∑
ε<kq≤1−ε

1 ≤ CT
q
T
− 2

1+ϑ(ε) (log T )
α−2

α(1+ϑ(ε))

∑
ε<kq≤1−ε

1

≤ CT−
1−ϑ(ε)
1+ϑ(ε) (log T )

α+2ϑ(ε)

α(1+ϑ(ε)) . (3.5)

In the second step, we deal with the case that kq ∈ Ii and lq ∈ Ij , i 6= j. Note that in this case, the
distance between any two intervals Ii and Ij is larger than ε. We split the left-hand-side of (3.1) into two
parts as

∑
kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

ε<|lq−kq|<Tβ

+
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

Tβ<|lq−kq|<T

=: JT,3 + JT,4. (3.6)
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6 Z. Tan, E. Hashorva

Similar to the derivation of (3.5), we have

JT,3 ≤ C
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

ε<|lq−kq|<Tβ

|r(kq, lq)− %(kq, lq)| exp
(
− u2

1 +$(kq, lq)

)

≤ C
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

ε<|lq−kq|<Tβ

exp

(
− u2

1 +$(kq, lq)

)

≤ C
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

ε<|lq−kq|<Tβ

exp

(
− u2

1 + ϑ(ε)

)

≤ CT
q
exp

(
− u2

1 + ϑ(ε)

) ∑
ε<kq≤Tβ

1 ≤ CT
q
T
− 2

1+ϑ(ε) (log T )
α−2

α(1+ϑ(ε))

∑
ε<kq≤Tβ

1

≤ CT β−
1−ϑ(ε)
1+ϑ(ε) (log T )

α+2ϑ(ε)

α(1+ϑ(ε)) . (3.7)

Consequently, limT→∞ JT,3 = 0 since β < 1−ϑ(ε)
1+ϑ(ε) .

By Assumption (A3) we have ϑ(t) log t ≤ K for all large t and some constant K. Thus, $(kq, lq) ≤
ϑ(T β) ≤ K/ log T β for |kq − lq| > T β . Now using (3.3) again, we obtain

T 2

q2 log T
exp

(
− u2

1 + ϑ(T β)

)
≤ T 2

q2 log T
exp

(
− u2

1 +K/ log T β

)
∼

T 2

q2 log T

(
T−2 log T (log T )−2/α

) 1

1+K/ log Tβ

= a−2T (2K/ log Tβ)/(1+K/ log Tβ)(log T )((2/α−1)K/ log T
β)/(1+K/ log Tβ)

= O(1).

Next, following the argument of the proof of Lemma 6.4.1 in [20] we have

JT,4 ≤ C
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

Tβ<|lq−kq|<T

|r(kq, lq)− %(kq, lq)| exp
(
− u2

1 +$(kq, lq)

)

≤ C
∑

kq∈Ii, lq∈Ij,i 6=j∈{1,2,··· ,[T ]}

Tβ<|lq−kq|<T

|r(kq, lq)− ρ(T )| exp
(
− u2

1 + ϑ(T β)

)

≤ CT
q
exp

(
− u2

1 + ϑ(T β)

) ∑
Tβ<kq≤T

|r(kq)− ρ(T )|

≤ C T 2

q2 log T
exp

(
− u2

1 +K/ log T β

)
× q log T

T

∑
Tβ<kq≤T

|r(kq)− ρ(T )|

≤ C q log T
T

∑
Tβ<kq≤T

|r(kq)− ρ(T )|

≤ C q

βT

∑
Tβ<kq≤T

|r(kq) log kq − r|+ Cr q
T

∑
Tβ<kq≤T

|1− log T

log kq
|. (3.8)
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Using again Assumption (A3) it follows that the first term of (3.8) tends to 0 as T → ∞. Furthermore,
the second term of (3.8) also tends to 0 by an estimate as in the proof of Lemma 6.4.1 in [20]. The proof
follows now from (3.2)-(3.8). 2

The next lemma is consequence of Lemma 12.2.11 in [20].
Lemma 3.2. Let h > 0 be a fixed constant such that supε≤t≤h r(t) < 1 for each ε > 0, and set

q(u) = au2/α. If Assumption (A1) holds, then for each interval I of length h we have

0 ≤ P
(
max
kq∈I

X(kq) ≤ u
)
− P

(
sup
s∈I

X(s) ≤ u
)
≤ hρ(a) 1

m(u)
+ o(

1

m(u)
),

where ρ(a)→ 0 as a ↓ 0.
Lemma 3.3. Let {X(t), t ≥ 0} be a centered stationary Gaussian processes with covariance function r(t)

satisfying (A1) and (A3). Then for any 0 < A0 < A∞ <∞

P

(
sup

s∈[0,xm(u)]
X(s) ≤ u

)
→ E

(
exp

(
−x exp(−r +

√
2rW)

))
∈ (0,∞)

is valid as u→∞ uniformly for x ∈ [A0, A∞], withW a standard Gaussian random variable.
Proof: Let nx := [xm(u)], and fix some ε > 0. Divide the interval [0, nx] onto intervals of length 1,

and split each of them into subintervals Iεj , Ij of length ε and 1 − ε, respectively. In the first step, we
show that

P

(
sup

s∈[0,xm(u)]
X(s) ≤ u

)
− P

(
sup
s∈∪Ij

X(s) ≤ u

)
→ 0 (3.9)

and

P

(
sup
s∈[0,1]

X(s) ≤ u

)
− P

(
sup
s∈I1

X(s) ≤ u
)
→ 0 (3.10)

as u → ∞ and ε ↓ 0, where for (3.9) the convergence holds uniformly for x ∈ [A0, A∞]. Making use of
the stationarity of {X(t), t ≥ 0} and the Pickands exact asymptotics, we obtain∣∣∣∣∣P

(
sup

s∈[0,xm(u)]
X(s) ≤ u

)
− P

(
sup
s∈∪Ij

X(s) ≤ u

)∣∣∣∣∣ ≤
nx∑
j=1

P

(
sup
s∈Iεj

X(s) > u

)
= nxεC

1/α
∗ Hαu

1/αΨ(u)(1 + o(1))

= xε(1 + o(1))

≤ A∞ε(1 + o(1))→ 0

as u → ∞ and ε ↓ 0, hence (3.9) follows. Since the proof of (3.10) follows with similar arguments, we
omit it.

In the second step, we prove that

P

(
sup
s∈∪Ij

X(s) ≤ u

)
− P

(
max
kq∈∪Ij

X(kq) ≤ u
)
→ 0 (3.11)

Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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and

P

(
sup
s∈I1

X(s) ≤ u
)
− P

(
max
kq∈I1

X(kq) ≤ u
)
→ 0 (3.12)

as u→∞ and a ↓ 0, uniformly for x ∈ [A0, A∞]. Next, by Lemma 3.2∣∣∣∣∣P
(

sup
s∈∪Ij

X(s) ≤ u

)
− P

(
max
kq∈∪Ij

X(kq) ≤ u
)∣∣∣∣∣ ≤ nxmax

j

(
P

(
max
kq∈Ij

X(kq) ≤ u
)
− P

(
sup
s∈Ij

X(s) ≤ u

))

≤ (1− ε) nx
m(u)

ρ(a) + nxo

(
1

m(u)

)
≤ (1− ε)A∞ρ(a) +A∞m(u)o

(
1

m(u)

)
→ 0

as u → ∞ and a ↓ 0, which completes the proof of (3.11). We omit the proof of (3.12) since it is
similar to that of (3.11).

In the third step we show that

P

(
max
kq∈∪Ij

X(kq) ≤ u
)
− P

(
max
kq∈∪Ij

ξnx(kq) ≤ u
)
→ 0 (3.13)

as u→∞, uniformly for x ∈ [A0, A∞]. Applying Theorem 4.2.1 in [20], along similar lines to the proof
of Theorem 8.2.4 therein we obtain∣∣∣∣P ( max

kq∈∪Ij
X(kq) ≤ u

)
− P

(
max
kq∈∪Ij

ξnx(kq) ≤ u
)∣∣∣∣

≤
∑

kq∈Ii,lq∈Ij
i,j∈{1,2,··· ,nx}

|r(kq, lq)− %(kq, lq)|
∫ 1

0

1√
1− r(h)(kq, lq)

exp

(
− u2

1 + r(h)(kq, lq)

)
dh,

where r(h)(kq, lq) = hr(kq, lq) + (1 − h)%(kq, lq). Note that nx/m(u) ∼ x ∈ (A0, A∞), hence (3.13)
follows applying Lemma 3.1. Next, in view of the definition of {ξnx(t), 0 ≤ t ≤ nx}, we have

P

(
max
kq∈∪Ij

ξnx(kq) ≤ u
)

= P

(
max
kq∈∪Ij

(
(1− ρ(nx))1/2η(kq) + ρ1/2(nx)W

)
≤ u

)
= P

(
(1− ρ(nx))1/2

(
max
kq∈∪Ij

η(kq)
)
+ ρ1/2(nx)W ≤ u

)
=

∫ ∞
−∞

P

(
max
kq∈∪Ij

η(kq) ≤ u− ρ1/2(nx)z
(1− ρ(nx))1/2

)
dΦ(z), (3.14)

with Φ the standard Gaussian distribution function on IR. As u→∞ we have

uz :=
u− ρ1/2(nx)z
(1− ρ(nx))1/2

= u+
−
√
2rz + r

u
+ o

(
1

u

)
,

1

m(uz)
=
e−r+

√
2rz

m(u)
(1 + o(1)).



Supremum Over a Random Interval 9

Hence, the definition of {η(t), t ≥ 0} and (3.10),(3.12) imply

P

(
max
kq∈∪Ij

η(kq) ≤ uz
)

=

nx∏
j=1

P

(
max
kq∈Ij

Xj(kq) ≤ uz
)
(1 + o(1))

=

(
P (max

kq∈I1
X(kq) ≤ uz)

)nx
(1 + o(1))

=

(
P (sup

t∈I1
X(t) ≤ uz)

)nx
(1 + o(1))

=

(
P ( sup

t∈[0,1]
X(t) ≤ uz)

)nx
(1 + o(1))

=

(
1− 1

m(uz)
+ o

(
1

m(uz)

))xm(u)

(1 + o(1))

=

(
1− e−r+

√
2rz

m(u)
+ o

(
1

m(u)

))xm(u)

(1 + o(1))

= exp
(
−e−r+

√
2rzx

)
(1 + o(1)) (3.15)

uniformly for x ∈ [A0, A∞], as u → ∞. Combining the last result with (3.9),(3.11),(3.13),(3.14) and
applying the dominated convergence theorem completes the proof. 2

PROOF OF THEOREM 2.1. Consider first the case λ > 0. For any two positive constants A0 < A∞
we may write

P

(
sup

s∈[0,T ]
X(s) > u

)
=

∫ A0m(u)

0
P

(
sup
s∈[0,t]

X(s) > u

)
dH(t) +

∫ A∞m(u)

A0m(u)
P

(
sup
s∈[0,t]

X(s) > u

)
dH(t)

+

∫ ∞
A∞m(u)

P

(
sup
s∈[0,t]

X(s) > u

)
dH(t) =: S1 + S2 + S3,

with H the distribution function of T . From the proof of Theorem 3.2 in [4] for all u large we have

S1 ≤
λ

1− λ
A1−λ

0 P (T > m(u)) (1 + o(1))

and

S3 ≤ P (T > A∞m(u)) = A−λ∞ P (T > m(u)) (1 + o(1)).

For ε > 0 and u sufficiently large Lemma 3.3 implies the following (write φ for the density function of
Φ) upper bound

S2
1 + ε

=
1

1 + ε

∫ A∞

A0

P

(
sup

s∈[0,xm(u)]
X(s) > u

)
dH(xm(u))

≤
∫ A∞

A0

(
1−

∫ ∞
−∞

exp(−e−r+
√
2rzx)φ(z)dz

)
dH(xm(u))

= CA0,A∞ − (1−A(r)
∞ )P (T > A∞m(u)) + (1−A(r)

0 )P (T > A0m(u)),

Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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where

CA0,A∞ =

∫ A∞

A0

∫ ∞
−∞

exp(−e−r+
√
2rzx)φ(z)P (T > xm(u))dxdz, A(r) = eexp(−e−r+

√
2rWA).

In an analogous way for all u large

S2
1− ε

≥ CA0,A∞ − (1−A(r)
∞ )P (T > A∞m(u)) + (1−A(r)

0 )P (T > A0m(u)).

In view of Assumption (B) and Theorem 1.5.2 in [6]

CA0,A∞ = P (T > m(u))

∫ A∞

A0

∫ ∞
−∞

exp(−e−r+
√
2rzx)x−λφ(z)dxdz(1 + o(1)), u→∞.

Consequently, letting A0 → 0, A∞ → ∞ and ε → 0, we conclude that both S1 and S3 are negligible
compared to S2, and furthermore

S2 =

∫ ∞
0

∫ ∞
−∞

exp(−e−r+
√
2rzx)x−λφ(z)dxdzP (T > m(u))(1 + o(1))

as u→∞. Consequently Assumption (B), the definition of m(u) and (2.2) complete the proof.
Next we consider the case λ = 0. As in the proof of Theorem 3.3 in [4] for given A∞ > 0 Lemma 3.3
implies

P

(
sup

s∈[0,T ]
X(s) > u

)
≥

∫ ∞
A∞m(u)

P

(
sup
s∈[0,t]

X(s) > u

)
dH(t)

≥ P

(
sup

s∈[0,A∞m(u)]
X(s) > u

)
P (T > A∞m(u))(1 + o(1))

= (1−A(r)
∞ )P (T > m(u))(1 + o(1))

as u→∞. Thus, letting A∞ →∞, we get that

P

(
sup

s∈[0,T ]
X(s) > u

)
≥ P (T > m(u))(1 + o(1))

as u→∞. Furthermore,

P

(
sup

s∈[0,T ]
X(s) > u

)
≤

∫ A0m(u)

0
P

(
sup
s∈[0,t]

X(s) > u

)
dH(t) + P (T > A0m(u))

≤ P

(
sup
s∈[0,1]

X(s) > u

)[∫ A0m(u)

0
P (T > t)dt+ 1

]
+ P (T > A0m(u)).(3.16)

Applying Karamata’s theorem (see, e.g., Proposition 1.5.8 in [6]) we have, as u→∞∫ A0m(u)

0
P (T > t)dt = A0m(u)P (T > A0m(u))(1 + o(1)),
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which combined with (3.16) and Theorem D.2 in [28] yields

P

(
sup

s∈[0,T ]
X(s) > u

)
≤ (1 +A0)P (T > m(u))(1 + o(1))

as u→∞. The claim follows now letting A0 → 0. 2
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