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a b s t r a c t 

Crowding, the impairment of target discrimination in clutter, is the standard situation in vision. Traditionally, 
crowding is explained with (feedforward) models, in which only neighboring elements interact, leading to a 
“bottleneck ” at the earliest stages of vision. It is with this implicit prior that most functional magnetic resonance 
imaging (fMRI) studies approach the identification of the “neural locus ” of crowding, searching for the earliest vi- 
sual area in which the blood-oxygenation-level-dependent (BOLD) signal is suppressed under crowded conditions. 
Using this classic approach, we replicated previous findings of crowding-related BOLD suppression starting in V2 
and increasing up the visual hierarchy. Surprisingly, under conditions of un crowding, in which adding flankers 
improves performance, the BOLD signal was further suppressed. This suggests an important role for top-down 
connections, which is in line with global models of crowding. To discriminate between various possible models, 
we used dynamic causal modeling (DCM). We show that recurrent interactions between all visual areas, includ- 
ing higher-level areas like V4 and the lateral occipital complex (LOC), are crucial in crowding and uncrowding. 
Our results explain the discrepancies in previous findings: in a recurrent visual hierarchy, the crowding effect 
can theoretically be detected at any stage. Beyond crowding, we demonstrate the need for models like DCM to 
understand the complex recurrent processing which most likely underlies human perception in general. 
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. Introduction 

Crowding, the degradation of object discrimination due to the pres-
nce of flanking objects, has traditionally been explained by pool-
ng models, where features of the target and flankers are averaged
r otherwise combined ( Pelli et al., 2004 ; Pelli and Tillman, 2008 ;
reenwood et al., 2009 ). Pooling is often thought to occur at the
arliest stages of vision, i.e., in primary visual cortices, and the loss
f feature discriminability is considered to be irrecoverable (e.g.,
trasburger et al., 1991 ; Strasburger, 2005 ; Levi and Carney, 2009 ;
elli and Tillman, 2008 ; Balas et al., 2009 ; Rosenholtz et al., 2019 ).
hile neuroimaging studies of crowding have yielded equivocal results

egarding the neural locus of crowding, they have all pointed to an early
ocus, i.e., either V1 ( Anderson et al., 2012 ; Millin et al., 2014 ) or V2
Abbreviations: AIC, Akaike’s information criterion; ANOVA, analysis of variance; 
evel-dependent; CW/CCW, clockwise/counterclockwise; DCM, dynamic causal mod
lectroencephalography; EPI, echo-planar imaging; fMRI, functional magnetic reson
odel; LOC, lateral occipital complex; PEB, parametric empirical Bayes; Pp, posterior
F, radio-frequency; ROI, region of interest; SEM, standard error of the mean; SOA, stim
RI; TE, echo time; TR, repetition time; VOI, volume of interest. 
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 Fang and He, 2008 ; Bi et al., 2009 ; He et al., 2019 ), which is consis-
ent with the view of crowding as a “bottleneck ” at the earliest stages of
ision ( Levi, 2008 ; Whitney and Levi, 2011 ). However, most models of
rowding cannot explain un crowding since they are insensitive to global
spects of the stimulus, which is more determinant of crowding than any
ther aspect ( Banks et al., 1979 ; Malania et al., 2007 ; Manassi et al.,
012 , 2013 , 2015 ; Herzog and Manassi, 2015a ; Herzog et al., 2015b ,
016a , 2016b ). For example, performance of a Vernier discrimination
ask deteriorates when the Vernier is surrounded by a square, but this
eterioration can be undone by adding further squares, a fact which can-
ot be explained by most models of crowding in which more flankers
an only deteriorate performance ( Manassi et al., 2013 ). Moreover, the
xact configuration of the flankers matters ( Manassi et al., 2016 ), which
uggests that perceptual grouping plays an important role in crowding
BMA, Bayesian model averaging; BF, Bayes factor; BOLD, blood-oxygenation- 
eling; DDM, drift diffusion model; DIC, deviance information criterion; EEG, 
ance imaging; GLM, general linear model; HDDM, hierarchical drift diffusion 
 probability; pRF, population receptive field; PSC, percent BOLD signal change; 
ulus onset asynchrony; SPM, statistical parametric mapping; T1w, T1-weighted 
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 Manassi et al., 2012 ; Hermens and Bell, 2014 ; Herzog et al., 2015b ;
anassi et al., 2015 ). Similar results have been obtained with Gabors

 Livne and Sagi, 2007 ; Levi and Carney, 2009 ; Saarela et al., 2009 ;
ivne and Sagi, 2010 ; Chakravarthi and Pelli, 2011 ; Yeotikar et al.,
011 ; Joo et al., 2012 ; Robol et al., 2012 ) and other visual stimuli
 Wolford and Chambers, 1983 ; Banks and White, 1984 ; Põder, 2006 ;
ouie et al., 2007 ), as well as in other perceptual modalities, includ-
ng haptics ( Overvliet and Sayim, 2016 ) and audition ( Oberfeld et al.,
014 ). 

Uncrowding demonstrates the inadequacy of local and feedforward
odels. However, rejecting purely feedforward models puts the problem

n the much more complex universe of feedback models ( Clarke et al.,
014 ; e.g., Wilson and Cowan, 1973 ; Zhaoping, 2003 ; Cao and Gross-
erg, 2005 ; Chaney et al., 2014 ; Francis et al., 2017 ; Doerig et al., 2020 ).
hese models range from lateral interaction models within one area,
.g., Zhaoping’s V1 recurrent model ( Zhaoping, 2003 ), through more
omplex models such as the LAMINART, a two-stage model which in-
ludes a basic grouping mechanism but no explicit object recognition
 Francis et al., 2017 ), to even more complex models, e.g., Capsule Neural
etworks, which require full object representations and recurrent con-
ections from object-related areas to lower visual areas ( Doerig et al.,
020 ). While some models perform better than others in their ability
o replicate behavioral results of (un)crowding ( Doerig et al., 2019 ), we
annot definitively discriminate between them using only behavior. This
s where the need for neuroimaging comes in. 

The methodology adopted by the majority of imaging studies of
rowding consists in estimating the percent blood-oxygenation-level-
ependent (BOLD) signal change (PSC) within different visual areas and
dentifying the regions in which the PSC is significantly suppressed in
rowded conditions as compared to conditions without crowding. Re-
ent advances in the modeling of the interactions between brain regions
 Granger, 1980 ; Geweke, 1982 ; McIntosh and Gonzalez-Lima, 1994 ;
riston et al., 2003 ; Ding et al., 2006 ) now enable a comprehensive
pproach, which goes beyond the localization of within-region BOLD
evel attenuation. For example, dynamic causal modeling (DCM) allows
s to unearth the complex interplay between brain areas underlying the
unctional magnetic resonance imaging (fMRI) signal observed during
he performance of an experimental task, i.e., the effective connectivity.
ere, we used DCM to probe the global vs. local and the feedforward vs.

eedback nature of visual processing in (un)crowding. Besides identify-
ng the specific architecture of connectivity in crowding, DCM also made
t possible for us to examine the excitatory versus inhibitory nature of
he connectivity. 

. Methods 

.1. Participants 

We recruited 12 participants (six females, 11 right-handed, age
ange: 18 to 30 years) to take part in the experiment. All participants
ad normal or corrected-to-normal vision as assessed with the Freiburg
isual Acuity test, i.e., acuity values above 1.0 ( Bach, 1996 ). Partici-
ants gave written informed consent and were informed that they could
iscontinue the experiment at any time. All experimental procedures
omplied with the Declaration of Helsinki except for pre-registration
§35) and were approved by the local ethics committee. 

.2. Stimuli and apparatus 

The experiment was conducted at the MRI-scanning facilities of the
entre Hospitalier Universitaire Vaudois in Lausanne. Participants lay

n the MRI scanner and looked at a screen, placed inside the 60 cm scan-
er bore, through a mirror (viewing distance: 70 cm). A Sony VPL-FH31
rojector (size of projected image: 53 × 30 cm, chosen pixel resolution:
2 
920 × 1080 pixels, refresh rate: 60 Hz) was used to back-project im-
ges on the screen. The mean background luminance of the screen was
0 cd/m 

2 , achieved through an adjustable neutral density filter (reduc-
ion approximately 10:1) made of a pair of polarization filters that were
ut on the far end of the waveguide. Participants held a button box and
sed the index and middle fingers of their right hands to push one of
wo buttons to respond to the stimuli. Stimulus generation and response
ollection were done in MATLAB 9.1 (The MathWorks, Inc., Natick, MA)
sing the Psychtoolbox (ver. 3.0; Brainard, 1997 ). 

Subjects were asked to look at a black central fixation dot at all times.
ight circular sine-wave target gratings (spatial frequency: 2.5 cpd, di-
meter: 1.4 deg, contrast: 50%; mean luminance: 50 cd/m 

2 ) were pre-
ented at an eccentricity of 4° from the dot (radian angle locations from
2.5° to 337.5° with regular intervals of 45°). The gratings were identical
o each other and were rotated either counterclockwise (CCW) or clock-
ise (CW) from the vertical. We used eight identical target gratings in
rder to elicit a spatially extended fMRI response. Participants were in-
tructed to push the first button (index finger) for CCW gratings and the
econd button (middle finger) for CW gratings. We conducted a practice
ession before the experiment proper, during which the tilt magnitude of
he target gratings was adjusted for each observer individually so as to
chieve intermediate task difficulty. This observer-specific tilt was used
n the fMRI experiment. The spatial phase of the gratings was either 0 or
. All combinations of orientations and phases were counter-balanced
nd randomized. 

The experiment comprised seven experimental conditions ( Fig. 1 A),
ncluding four target conditions and three corresponding control condi-
ions, which differed between each other in terms of the configuration
f gratings. In the single-target condition (1), only the eight circular
arget gratings were presented. In the 2-flanker condition (2), two ad-
itional vertically oriented circular gratings were presented radially on
ither side of each target ( “inner ” and “outer ” flanker: diameter 1.4 and
.3 deg, eccentricity 2.3 deg and 5.7 deg, respectively; the same spa-
ial frequency and contrast as the targets). In the 4-flanker condition
3), in addition to the “inner ” and “outer ” flankers, two vertically ori-
nted circular gratings were presented on either side of each “outer ”
anker in such a way that the “outer ” flankers of all eight target grat-

ngs formed a circle. In the annulus-flanker condition (4), “inner ” and
outer ” flankers were connected into annuli of the same widths as the
iameters of flankers in condition (2) and located at the same eccen-
ricities. In addition, three control conditions (5–7) were presented that
ontained the same flankers as in the target conditions (2–4) but did not
ontain the target gratings. Participants were asked to push a randomly
hosen button when they saw one of the control conditions. 

We assumed that in cortical regions corresponding to the target loca-
ions the PSC in a given crowded target condition would correspond to
he PSC in the single target condition plus the PSC in the corresponding
ontrol condition plus the crowding effect: 

S C crowded target = PS C single target + PS C control + crowding effect (1)

Thus, the purpose behind the control conditions was to isolate the
omponent of the BOLD response corresponding to the crowding effect,
ndependent of the configuration of the flankers. Our assumption of ad-
itive target-flanker BOLD effects was in keeping with the standard ap-
roach of previous fMRI studies of crowding ( Anderson et al., 2012 ;
illin et al., 2014 ; Bi et al., 2009 ). 

Each participant completed five sets of 88 trials (20 trials/
ondition/orientation/spatial phase in the target conditions and 20 tri-
ls/condition/spatial phase in the control conditions). In each trial, the
timulus appeared for 150 ms. The instructions to the participants were
o respond as accurately as possible but within 1.5 s after stimulus on-
et. The next stimulus appeared at a random stimulus onset asynchrony
SOA) 3 ± 1 s. If no response was made within 1.5 s after stimulus onset,
he trial was considered invalid and repeated later in the set. 
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Fig. 1. (A) The four target conditions (single target, 2-flanker target, 4-flanker target, annulus-flanker target) and three corresponding control conditions with targets 
absent. (B) Accuracy of responses in each of the 4 target conditions. (C) Reaction times in correct trials (left) and all trials (right) in each of the 4 target conditions. 
Error bars correspond to the standard error of the mean ( SEM ). Post hoc comparisons between conditions: ‘.’ BF 10 ∈ [1,3) – anecdotal evidence in favor of the 
alternative hypothesis, ‘ ∗ ’ BF 10 ∈ [3,10) – substantial evidence, ‘ ∗ ∗ ’ BF 10 ∈ [10,30) – strong evidence, ‘ ∗ ∗ ∗ ’ BF 10 > 30 – very strong evidence ( Jeffreys, 1961 ; Lee and 
Wagenmakers, 2014 ). (D) Posterior distributions of the drift rate v . Bayesian hypothesis testing shows that all conditions differ strongly from each other (p[ v 2-flanker 

< v 4-flanker ] = 1.00; p[ v 4-flanker < v annulus-flanker ] = 0.98; p[ v annulus-flanker < v single ] = 0.90). The color coding in all panels is the same (see frames around stimulus displays 
in panel A and legend in panel D). 
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.3. MRI data acquisition 

MRI data were acquired using a 3 T whole-body MRI system (Mag-
etom Prisma, Siemens Medical Systems, Germany), using a 64-channel
adio-frequency (RF) receive head coil and RF body coil for trans-
ission. fMRI data for the main experiment and functional localizers

onsisted of partial 2D multi-echo echo-planar imaging (EPI) volumes
3.0 × 3.0 × 2.5 mm; 20% distance factor; 1.98 s repetition time (TR);
0 ms echo time (TE); 90° flip angle). A 64 × 64 base resolution was
sed, with 30 axial slices approximately parallel to the AC/PC line cov-
ring the occipital and parietal cortices, with a 192 mm field of view.
 whole-brain EPI volume was also acquired and used in an intermedi-
te step in the spatial registration of the partial functional image with
he anatomical image. Slices for all functional images were acquired
n ascending order. A standard 1.0 mm isotropic T1-weighted (T1w)
3 
PRAGE sequence image was acquired and used as high-resolution
natomical data for fMRI data pre-processing. 

.3.1. LOC localizer 
To localize the object-sensitive lateral occipital complex (LOC), we

howed participants intact and scrambled images of objects. A subset of
20 images of objects (280 × 200 pixels) was selected from the SVLO
atabase ( Rossion and Pourtois, 2004 ) and converted to grayscale. We
hen scrambled these images by randomly shuffling square pieces of
0 × 20 pixels (only those that contained parts of an object). On top of
he intact and scrambled images, we superimposed a black grid (1 px
ide). 

Six blocks of each type of images were presented in succession (in-
act, scrambled, intact, etc.). In each 16 s block, a series of 20 images
ppeared separated by an empty screen with a fixation dot (200 ms stim-
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lus and 600 ms fixation per image). Participants were asked to look at
he fixation dot. 

.3.2. Target ROI localizer 
Ultimately, we sought to carry out analyses on voxels corresponding

o the target grating locations. To localize the target regions of inter-
st (ROIs), eight contrast-reversing flickering checkerboards were pre-
ented at the same locations as the target gratings in the main exper-
ment (contrast 100%, spatial frequency 2.5 cpd, temporal frequency
 Hz). Six blocks with flickering checkerboards (16 s) were interleaved
ith six blocks of empty screen (16 s). 

Participants performed a fixation task. A small digit ‘9’ appeared at
he fixation. Sometimes it turned to ‘6’ for 170 ms and turned back to
9’ (SOA 5 ± 3 s). Participants were asked to push the button with their
ndex finger within 1.5 s after digit ‘6’ onset. The task was designed to
eep the participants’ gaze at the fixation point. 

.3.3. Retinotopic mapping stimulus 
We used retinotopic mapping to localize areas V1, V2, V3 and V4. A

ontrast-reversing flickering checkerboard wedge rotated counterclock-
ise eight times with a cycle time of 30 s (contrast 100%, temporal

requency of flicker 6 Hz). The wedge spanned 22.5 deg of radial angle
nd was restricted to eccentricities [0.5 ÷ 12] deg. Checks had approx-
mately equal dimensions in the radial and tangential directions and
ere scaled with eccentricity. In the initial position, the wedge pointed
pwards (12 o’clock position). The task was the same as in the target
OI localizer experiment. 

.4. Behavioral data analysis 

.4.1. Accuracy and reaction times 
We first analyzed the behavioral data from the task that partici-

ants performed while in the scanner, to corroborate that our experi-
ental conditions were successful in inducing (un)crowding. We used

he open-source JASP software (Jeffreys’s Amazing Statistics Program;
ersion 0.13.1; https://jasp-stats.org ; Love et al., 2019 ) for a Bayesian
epeated-measures analysis of variance (ANOVA) of the percent correct
PC), reaction times in all trials (RT all) and reaction times in correct
rials (RT correct) in three separate ANOVAs. For each of the ANOVAs,
e compared a model which included a condition factor of four levels
corresponding to the single, 2-flanker, 4-flanker and annulus-flanker

onditions – to a null model which only included a subject factor. We
ompared models using the Bayes factor (BF 10 ), i.e., the evidence for the
lternative hypothesis relative to the null hypothesis. Model comparison
howed that the model which included the condition factor was far su-
erior to the null model in all three behavioral measure models (PC:
F 10 = 8189.29; RT all: BF 10 = 1.59e + 6; RT correct: BF 10 = 6.61e + 6).
e then conducted post hoc tests on the winning model, comparing the

ehavioral measures between conditions pairwise ( Fig. 1 B and C). 

.4.2. Drift-diffusion model 
In order to obtain a single measure of stimulus difficulty that would

ombine accuracy and reaction times, we estimated a drift-diffusion
odel (DDM). In the DDM, decision-making is seen as a noisy process,
ith information accumulating over time from a given starting point z ,

orresponding to decision bias, towards one of two response boundaries,
 and a . The distance a between the two boundaries is referred to as the
hreshold and corresponds to the speed/accuracy trade-off. Information
ccumulates at a drift rate v , a proxy for stimulus difficulty or the quality
f evidence present in the stimulus. The model also includes a variable
orresponding to the non-decision time t , i.e., the time before informa-
ion starts accumulating, related to perception and movement initiation
nd execution. Please see [Ratcliff and McKoon, 2008] for details. 

We used the Python-based HDDM (hierarchical drift diffusion model)
oolbox for a hierarchical Bayesian estimation of the joint posterior dis-
ribution of model parameters ( Wiecki et al., 2013 ). HDDM allows for a
4 
ierarchical Bayesian estimation of the posterior distributions of model
arameters based on the observed single-trial behavior, i.e., reaction
imes and responses (correct vs. incorrect). The hierarchical nature of
his approach rests in the simultaneous estimation of group and sub-
ect parameters, with subject parameters assumed to be drawn from the
roup distribution. Such an approach necessitates a smaller number of
rials per subject and condition than do non-hierarchical methods. The
se of a Bayesian framework naturally lends itself to hierarchical model-
ng. Moreover, the Bayesian approach enables the estimation of the full
osterior, giving information about the uncertainty of parameter esti-
ates in addition to their most likely values. HDDM approximates the
osterior distributions of DDM parameters using Markov Chain Monte
arlo sampling. We generated 10,000 samples and discarded 1,000 sam-
les as burn-in. In order to verify that the models had converged, we
nspected the traces of model parameters, their autocorrelation and cal-
ulated the R-hat (Gelman-Rubin) statistics. 

We first assessed the validity of our model’s assumptions (drift rate
nd threshold both modulated by the crowding condition – model va ),
omparing it against two nested models: one in which only drift rate was
odulated by the experimental condition – model v – and the other,

n which only threshold was modulated by condition – model a . We
onducted model comparison of these three models using the deviance
nformation criterion (DIC). The DIC is a measure which is used to com-
are complex hierarchical Bayesian models ( Spiegelhalter et al., 2002 ).
ike in the case of Akaike’s information criterion (AIC), the lower the
IC the better the model, taking into account both model fit and com-
lexity. Generally, a difference in DIC values between 5 and 10 corre-
ponds to a substantial difference between two models, while a differ-
nce of more than 10 is decisive evidence in the favor of the model with
he lower DIC. 

The DIC values for models va, v and a were − 414.97, − 371.34 and
 164.84, respectively. Thus, the model containing condition-dependent
odulation of both drift rate and threshold was found to be the win-
ing model. In order to ascertain whether DDM parameter estimates
iffered between conditions, we compared the posterior distributions
orresponding to each pair of conditions using Bayesian hypothesis test-
ng. Given that condition-specific estimates can only be interpreted in
onjunction with the estimates of the intercept, we compared the param-
ter’s overall intercept ( a single /v single ) to the sums of a single / v single and the
orresponding condition’s intercept ( a 2-flanker / v 2-flanker , a 4-flanker / v 4-flanker 
nd a annulus-flanker / v annulus-flanker for the 2-flanker, 4-flanker and annulus-
anker target conditions, respectively). Since we were interested in the
arameter representing stimulus difficulty, we only show the drift rate
esults in the main text ( Fig. 1 D). The threshold results can be found in
he Supplemental Information ( Supplemental Fig. S1 ). 

.5. MRI data analysis 

.5.1. Pre-processing and univariate analysis 
Imaging data pre-processing, statistical analysis and dynamic causal

odeling were done using the statistical parametric mapping (SPM)
oftware package (SPM12, Wellcome Trust Centre for Neuroimaging,
ondon, UK, http://www.fil.ion.ucl.ac.uk ) in MATLAB 9.1 (The Math-
orks, Inc., Natick, MA). The fMRI data consisted of eight experimental

essions, i.e., (1–5) the five sessions of the main experiment, (6) the LOC
ocalizer session, (7) the target ROI localizer session and (8) the retino-
opic mapping session. The first five volumes of each of the experimental
essions were discarded to control for magnetic saturation effects. The
emaining functional images were spatially realigned to the mean of the
hole time-series using rigid-body transformations to correct for head
otion. A B0 field map image, acquired during the session, was used

o correct for EPI geometric distortions. We then performed slice timing
orrection, using the first acquired slice as the reference, and intensity
ias correction. The anatomical (T1w) image was co-registered first to
he whole-brain fMRI in an intermediary step and then to the mean fMRI
olume using mutual information. Finally, the images from the LOC and

https://jasp-stats.org
http://www.fil.ion.ucl.ac.uk
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arget localizer sessions were smoothed with a 4 mm full-width-at-half-
aximum Gaussian kernel. We did not normalize the images to standard
NI space, but instead kept the images in each subject’s native space. 

First-level analysis consisted of three separate general linear models
GLMs), corresponding to (1) the main experiment, (2) the LOC localizer
nd (3) the target localizer. In the main experiment GLM, we included a
eparate regressor for each of the four target conditions – single target, 2-
anker target, annulus-flanker target, 4-flanker target – and each of the
hree control conditions – 2-flanker control, annulus-flanker control, 4-
anker control. The corresponding seven regressors modelled conditions
s events (0 s duration) and timed them according to the presentation
f visual cues. We specified a separate T-contrast for each of the seven
xperimental conditions, as well as two F-contrasts – one for the four
arget conditions and another for the three control conditions. 

In the LOC localizer GLM, we included two regressors – one for in-
act and one for scrambled images. The regressors modelled the two
onditions as 200 ms duration blocks, timed according to the image pre-
entation. We specified a T-contrast for intact compared to scrambled
mages. 

Finally, in the target localizer GLM, we included a single regressor
hich modelled the time of presentation of the eight flickering checker-
oard target gratings. The regressor consisted of six blocks of 16 s dura-
ion. We specified a T-contrast for the presence of target gratings. 

In each of the three GLMs, the time-series in each voxel was high-
ass filtered at 1/128 Hz to remove low-frequency drifts, and regressors
ere convolved with a canonical hemodynamic response function. The
LM parameters were estimated using the classic SPM approach of Re-

tricted Maximum Likelihood. The main experiment GLM results were
urther used for the percent signal change analysis and dynamic causal
odeling. The LOC and target localizer GLM results were used in the

olume of interest (VOI) definition procedure. 

.5.2. Retinotopic mapping 
Cortical reconstruction was performed on the co-registered T1w im-

ge using FreeSurfer’s recon-all function (FreeSurfer software package
ersion 6.0, http://surfer.nmr.mgh.harvard.edu/ , Dale et al., 1999 ).
etinotopic mapping was done using the SamSrf 6 toolbox for popu-

ation receptive field (pRF) modeling ( Schwarzkopf et al., 2019 ). The
rocedure included projecting the pre-processed retinotopic mapping
MRI data onto the cortical surface and then fitting a standard Gaussian
d pRF model to the data. While our wedge-only stimulus did not allow
or an estimation of eccentricities or pRF size, we were only interested
n the polar angle maps. Based on reversals in the polar angle map, we
anually delineated our ROIs: V1, ventral and dorsal V2 (V2v/d, re-

pectively), V3v/d and V4. ROI labels, defined on the cortical surface,
ere then converted back to volume space as binary masks. Masks from

ight and left hemispheres as well as from ventral and dorsal regions
ere combined. This is the only part of the analysis which was carried
ut in Linux (all other analyses were done in Windows). 

.5.3. VOI definition procedure 
We created the target ROIs by applying a statistical threshold to the

PM at the output of the contrast defined on the target localizer GLM.
tatistical values in SPMs can vary considerably between subjects – due
o different levels of noise, different values of BOLD signal amplitudes,
tc. – and we wanted to ensure specificity in our identification of target-
esponsive voxels. Thus, we used a subject-specific statistical threshold-
ng procedure, basing the thresholds on the expected size of the targets’
ortical representations. 

For visual ROIs V1 to V4, we defined target-location ROIs based
n the target localizer GLM. Instead of setting a standard statistical
hreshold for all participants, we instead ranked the voxels according
o the corresponding T-statistic and retained a set number. We set this
oxel cutoff number according to the expected size of the cortical rep-
esentation of the eight target gratings in V1. At the target eccentric-
ty of 4°, the cortical magnification factor is expected to be between
5 
 and 4 mm/degree ( Duncan and Boynton, 2003 ). Given the stimu-
us diameter of 1.4°, an average cortical thickness of 2.5 mm and the
.0 × 3.0 × 2.5 mm voxel resolution of the fMRI images, the cortical
epresentation of the eight target gratings should amount to between ap-
roximately 10 and 20 voxels. Since the striate cortex can vary in size by
s much as a factor of two between individuals ( Dougherty et al., 2003 ),
e set the voxel cutoff number to between 10 and 50. Thus, for each sub-

ect, the procedure consisted of the following: (1) start with a statistical
hreshold of p = 0.001, (2) find the intersection between the thresh-
lded target localizer SPM, the V1 binary mask found through retino-
opic mapping and the negation of the thresholded main experiment
PM corresponding to the F-contrast over control conditions ( p = 0.01
ncorrected, cluster extent-based threshold = 10), (3) count the num-
er of voxels at the intersection described in (2); if less than 10, increase
he p -value threshold; if greater than 50, decrease the p -value threshold.
he final p -value threshold identified on V1 was then used for the given
ubject’s remaining ROIs (V2 – V4). For two participants, this procedure
ielded an empty target V4 ROI. In order not to exclude them from the
nalysis, we set the threshold to p = 0.05 in these two instances. Across
ll participants, this resulted in 44.08 ± 3.21 (mean ± standard error of
he mean [ SEM ]) voxels in V1, 74.67 ± 8.91 voxels in V2, 82.08 ± 12.51
oxels in V3 and 44.33 ± 7.39 voxels in V4, with p -values ∈ [2.00e-14,
.00e-2]. 

In the case of the LOC, our VOI was based solely on the LOC localizer
escribed in the MRI data acquisition section above. We did not refine
he VOI further to target-specific voxels because the LOC is known to
e a largely non-retinotopic area ( Grill-Spector et al., 2001 ). In order to
reate the LOC VOI, we applied a subject-specific statistical threshold to
he SPM at the output of the LOC localizer GLM so that the number of
oxels surviving the threshold lay between 50 and 200 (mean ± SEM :
57.33 ± 17.90, p ∈ [2.00e-12, 4.20e-3]). 

.6. Percent signal change analysis 

We first sought to replicate findings from previous studies as a point
f reference. Previous fMRI studies of crowding have shown that crowd-
ng attenuates the BOLD response (see Eq. (1) ; Anderson et al., 2012 ;
illin et al., 2014 ; Bi et al., 2009 ). Thus, we extracted the percent sig-

al change (PSC) in the seven experimental conditions from ROIs cor-
esponding to the locations of the target gratings in the retinotopically-
dentified visual regions V1, V2, V3 and V4 and from the non-retinotopic
OC. 

.6.1. Group average analysis 
We used the main experiment GLM to quantify activation magni-

udes in PSC in each experimental condition using the Marsbar toolbox
http://marsbar.sourceforge.net; Brett et al., 2002 ). 

For each subject, each ROI and each experimental condition, we es-
imated the maximum of the absolute value of the first eigenvariate of
he BOLD response (‘abs max’ option in Marsbar). The raw PSC results
an be found in the Supplemental Information ( Supplemental Fig. S2 ).
e then subtracted the PSC in the control conditions from the corre-

ponding target conditions, in accordance with Eq. (1) ( Fig. 2 A). 
We analyzed the PSC in the conditions of interest using a Bayesian

epeated-measures ANOVA with two factors, condition and ROI, in
ASP. The condition factor had four levels, one for each experimental
ondition, and the ROI factor had five levels, one for each ROI (V1 to
4 and LOC). We compared a series of four models with different com-
inations of main effects and interaction of the two factors to a null
odel which only included a subject factor. Model comparison showed

hat the model which included main effects of condition and ROI was
he winning model and was far superior to the null model in all three
ehavioral measure models (BF 10 = 1.355e + 24). 

In order to determine the between-condition differences between
onditions within each ROI, we followed up the above analysis with
eparate repeated-measures ANOVAs for each ROI separately. Here, we

http://surfer.nmr.mgh.harvard.edu/
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Fig. 2. (A) PSC estimates in the conditions-of-interest, i.e., the single target condition and the differences in PSC between the 2-flanker, 4-flanker and annulus-flanker 
target conditions and their respective control conditions. Post hoc comparisons between conditions: ‘.’ BF 10 ∈ [1,3), ‘ ∗ ’ BF 10 ∈ [3,10), ‘ ∗ ∗ ’ BF 10 ∈ [10,30), ‘ ∗ ∗ ∗ ’ BF 10 

> 30. (B) Pairwise differences in PSC between conditions of interest from panel (A). The first comparison (single vs. 2-flanker) corresponds to the effect of crowding 
w.r.t. no crowding. The second and third comparisons (single vs. 4-flanker and single vs. annulus-flanker) correspond to the effect of uncrowding w.r.t. no crowding. 
The fourth comparison (annulus-flanker vs. 4-flanker) corresponds to the effect of the connecting flankers into annuli. The final two comparisons (2-flanker vs. 
4-flanker and 2-flanker vs. annulus-flanker) correspond to the effect of uncrowding w.r.t. crowding. We observe a clear hierarchical pattern, with increasing pairwise 
differences between conditions in the first four comparisons and decreasing pairwise differences in the last two comparisons, as one ascends the visual hierarchy. 
(C) The pairwise between-condition PSC differences from the different ROIs were used to predict the drift rate. We compared the ROI-based models against a null 
model, which only included a group intercept, using the Bayes factor (BF). Across almost all pairwise comparisons, either the V4 or LOC model performs best and 
substantially better than the null model. Error bars correspond to the SEM . The color coding in panels B and C is the same (see legend in panel B). 
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ncluded a single between-subject factor: condition. For all five ROIs,
he model that included the condition factor was far superior to the
ull model which only included a subject effect. We conducted pairwise
etween-condition post hoc tests for each ROI model ( Fig. 2 A). 

In a complementary analysis, we subtracted the PSC in each of the
onditions of interest from that of every other condition, pairwise. Our
6 
oal with this analysis was to explore the patterns of BOLD attenuation
ue to (un)crowding across ROIs ( Fig. 2 B). 

.6.2. Within-subject analysis 
To draw a direct link between neural and behavioral measures, we

onducted a model comparison to determine which ROI’s PSC could
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Fig. 3. The two factors of the model space for the DCM analysis: ‘process- 
ing direction’ and ‘ROI involvement’, describing the possible architectures of 
condition-dependent modulation of connectivity (corresponding to the DCM.B 
matrix) between the five ROIs (V1 to V4 and LOC). The ‘processing direction’ 
factor consisted of 8 levels, defined by the directionality of connections. We con- 
sidered the following directionalities of connections: bottom-up, top-down and 
self-inhibitory (i.e., local connections), as well as different combinations of the 
three. The ‘ROI involvement’ factor consisted of 10 levels, defined by the pres- 
ence and absence of specified ROIs from the input-dependent modulation. The 
‘processing direction’ and ‘ROI involvement’ factors were fully crossed, giving a 
total of 82 models (see Supplemental Fig. S3 for a complete illustration). 
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est predict the DDM parameter of drift rate. In JASP, we estimated a
eries of Bayesian linear regression models ( Castillo et al., 2015 ), one
or each pair of conditions and each ROI separately using local empirical
ayesian (EB-local) priors ( Hansen and Yu, 2001 ). The response variable
onsisted of each participant’s difference in drift rates between the two
onditions, while the dependent variable consisted of the differences in
SC between the two conditions for each participant in the given ROI.
or each of these models, we also tested a corresponding null model
hat did not contain any information about the PSC. We compared the
on-null models to the corresponding null model using the Bayes factor
 Fig. 2 C). 

.7. Dynamic causal modeling 

We used DCM to determine how the five visual ROIs – V1 to V4 and
OC – interact with each other during our (un)crowding task. Dynamic
ausal modeling estimates the effective connectivity between regions
n a brain network ( Friston et al., 2003 ). A generative Bayesian model
inks the hidden neural states within the nodes – i.e., regions – of the
etwork and their interactions with the signal observed with fMRI. In-
erting this model gives us the parameter estimates corresponding to
he connectivity between regions, including (1) the latent connectivity
etween the nodes of the network, i.e., the intrinsic connections among
egions in the absence of input (the DCM.A matrix); (2) task-dependent
odulation of connectivity between nodes (DCM.B); (3) the driving in-
ut (DCM.C). We constructed a series of DCMs including our five vi-
ual ROIs. We defined the latent connectivity between the ROIs to be a
ully connected network, based on the known anatomical connectivity
n macaques ( Felleman and Van Essen, 1991 ). The direct driving effects
f the input were set to target V1. 

As in most DCM studies, our hypothesis pertained to the architec-
ure of the task-dependent modulation of connectivity (DCM.B). For
ach of the four experimental conditions, we sought to distinguish be-
ween models with architectures that could be characterized as exhibit-
ng local (within ROI) versus global (across ROI) processing and only
ottom-up (feedforward) versus only top-down (feedback) versus recur-
ent (both feedforward and feedback) connectivity. Notably, within-ROI
r self-inhibitory connections determine the excitatory/inhibitory bal-
nce within brain areas and provide a biologically plausible mechanism
or changes in a region’s activity, through the interplay of pyramidal
ells and interneurons ( Bastos et al., 2012 ). We also wanted to deter-
ine which ROIs were most important in each condition. Thus, we de-
ned a model space consisting of 82 models, whose architectures varied
ccording to two factors: processing direction – with 8 levels – and ROI
nvolvement – with 10 levels (see Fig. 3 for an illustration of the two
actors). The levels of the ‘processing direction’ and ‘ROI involvement’
actors were fully crossed (see Supplemental Fig. S3 for an illustration
f the full model space). Model 1 corresponds to the full model with all
ossible connections between the five ROIs and model 82 corresponds
o the null model, with no input-dependent modulation of connectivity
see the two panels in the lower right of Supplemental Fig. S3 ). 

We used the parametric empirical Bayes (PEB) framework for DCM,
hich consists of a hierarchical Bayesian linear model over connectivity
arameters ( Friston et al., 2015 ; Litvak et al., 2015 ; Friston et al., 2016 ).
e first estimated the full DCM model for all subjects, alternating be-

ween estimating individual DCMs and estimating group effects. The
roup effects are then used as (empirical) priors in the following itera-
ion to constrain subject’s connectivity estimates, thus drawing subject-
evel estimates out of local optima towards the group average. We then
pecified a GLM design matrix in order to estimate a group-level PEB
odel over connectivity parameter estimates. In this case, we were only

nterested in the group mean, so our design matrix consisted of an array
f ones. We fit the model to the DCM.B connectivity parameters. 

We then used Bayesian model reduction to estimate the remaining
odels (2–82) in our model space. To determine which models best ex-
7 
lain the data, we used Bayesian model selection (see Supplemental

ig. S4 ). Notably, Bayesian model comparison takes into account log
odel evidence, a trade-off between accuracy and complexity. Thus, in

ccordance with the principle of parsimony, the simplest model will be
avored. We also conducted Bayesian model family selection over fam-
lies of PEB models. More specifically, we conducted two model family
elections, one for the ‘processing direction’ factor ( Fig. 4 A) and the
ther for the ‘ROI involvement’ factor ( Fig. 4 B), comparing among the
EB models which corresponded to the different levels of these factors.
osterior probabilities (Pp) of the models or model families were used
o determine the winning model(s). Finally, we used Bayesian model av-
raging (BMA) to obtain the weighted average of parameter estimates
cross all 82 models. The weights correspond to the posterior probabil-
ties of the corresponding models ( Hoeting et al., 1999 ; Penny et al.,
006 ). 
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Fig. 4. DCM model selection results for each of the four conditions. (A) Posterior probabilities (Pp) of the 8 ‘processing direction’ model families. The recurrent 
model family was the winner in all conditions except the 4-flanker condition, where the top-down family was slightly superior. (B) Posterior probabilities of the 10 
‘ROI involvement’ model families. The winning model family in all but the single condition was the family which included all ROIs except for V1. In the single target 
condition, the winning family included all ROIs. (C) Condition-dependent modulations of connection strengths, as estimated through Bayesian model averaging 
(BMA) over the 82 models in the model space. BMA averages the parameters from the different models and weights them by the models’ posterior probabilities. 
Only those connections with a posterior probability greater than 0.95 are shown. The values of the coupling parameters correspond to connection strengths, i.e., 
how quickly and with what strength a response is elicited in the target region and are given in units of Hz ( Friston et al., 2003 ). Positive/negative connections can 
be interpreted as excitatory/inhibitory, respectively. 
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. Results 

.1. Behavioral results 

In the crowded condition (2-flanker target), the percentage of cor-
ect responses (PC) was much lower (mean ± SEM : 74.27% ± 2.36%)
nd reaction times (RT) were much higher (723.94 ms ± 40.68 ms) than
n the single target condition (PC: 89.27% ± 3.16%; RT: 618.96 ms
 31.23 ms). The presence of additional flanker gratings in the 4-
anker target condition lead to un crowding, i.e., increased PC (83.65%
 2.80%) and decreased RT (708.22 ms ± 38.80 ms). Connecting

he flankers into annuli further improved performance (PC: 86.98%
 3.87%; RT: 659.48 ms ± 31.02 ms). These results ( Fig. 1 B and C)
re consistent with previous findings that global aspects of a stimu-
us are crucial in determining crowding magnitude ( Malania et al.,
007 ; Manassi et al., 2012 , 2013 , 2015 ; Herzog and Manassi, 2015a ;
erzog et al., 2015b , 2016a , 2016b ). 

The above results show that response accuracies and reaction times
o together, i.e., when PC is higher, RT is lower. In order to obtain a sin-
le measure of stimulus difficulty, we estimated a drift diffusion model
DDM; Ratcliff and McKoon, 2008 ) using the Python-based HDDM tool-
ox ( Wiecki et al., 2013 ). We built a model which included condition-
ependent modulations of the threshold a – which accounts for the
P  

8 
peed-accuracy trade-off – and drift rate v – corresponding to stimulus
ifficulty. Since we were specifically interested in stimulus difficulty, we
ocus on the drift-rate parameter here (see Supplemental Information for
etails on the threshold parameter a ). Results are shown in Fig. 1 D. 

Similarly to the performance in terms of correct responses, we found
he highest drift rate in the single target condition (2.42 ± 0.32),
ollowed, in order, by the annulus-flanker (2.03 ± 0.29), 4-flanker
1.57 ± 0.24) and 2-flanker (1.05 ± 0.21) target conditions. All con-
itions differed strongly from each other. This finding was expected, as
rift rate is known to quantify difficulty and can likewise be interpreted
s an index for the signal-to-noise ratio of the information processing
ystem. 

.2. Neuroimaging results: crowding attenuates the BOLD response but 
ncrowding does more 

Before conducting the DCM analysis, we first sought to replicate find-
ngs from previous studies as a point of reference. We extracted the PSC
n the seven experimental conditions from ROIs corresponding to the
ocations of the target gratings in the retinotopically-identified visual
egions V1, V2, V3 and V4 and from the non-retinotopic LOC. 

In accordance with Eq. (1) , we subtracted the PSC in each of the con-
rol conditions from that of the corresponding crowded target condition.
revious studies have indicated that crowding attenuates the BOLD re-
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ponse, with the implicit expectation that low BOLD corresponds to low
erformance and high BOLD to good performance. Although we repli-
ated previous results of crowding-related PSC attenuation starting in
2 and following a positive gradient from early to late retinotopic visual
reas, we found that uncrowding attenuates PSC even more ( Fig. 2 A).
hus, it appears that the PSC is not (monotonically) related to the level
f crowding, contrary to assumptions. 

In order to investigate the patterns in crowding-related BOLD atten-
ation across ROIs, rather than simply comparing crowding and control
onditions within ROIs, we subtracted the PSC in one condition from the
ther for all pairs of conditions ( Fig. 2 B). The higher the difference in
SC, the greater the level of BOLD amplitude modulation by crowding
ith respect to no crowding and uncrowding with respect to crowding,

espectively ( Anderson et al., 2012 ). Interestingly, a hierarchical pattern
merged in each of the pairwise crowding level indices. Across the first
our comparisons (i.e., single vs. 2-flanker, single vs. 4-flanker, single
s. annulus-flanker and annulus-flanker vs. 4-flanker), V4 reflected the
rowded percept better than lower visual areas; for uncrowding (i.e.,
-flanker vs. 4-flanker and 2-flanker vs. annulus-flanker), this trend was
eversed. While the level of crowding-related attenuation in the LOC was
igher than that in V1 – indicating that the LOC reflects the crowded
ercept better – the level of attenuation was the same or lower than that
f the remaining ROIs. This is potentially due to the LOC being a largely
on-retinotopic area ( Grill-Spector et al., 2001 ) and, relatedly, the fact
hat we used the entire LOC for this analysis instead of just the target
ocations as in the other ROIs, making the PSC an average over target-
nd flanker-related areas. 

One of the weaknesses of the PSC analysis approach of most studies
which we replicated above – is that it only considers the group aver-

ged differences between the crowding conditions. Aiming to unearth
he causes behind this result and to draw a direct link between neural
nd behavioral measures, in a second analysis we used a within-subject
pproach. We conducted a model comparison to determine which ROI
ould best explain the behavioral performance estimated by the drift
ate. For each pair of conditions and each ROI, we estimated a regres-
ion model in which the difference in drift rates between the two condi-
ions was the dependent variable and the difference in PSC between the
wo conditions was the independent variable. We compared the models
or each ROI to a null model which did not include any PSC information
sing the Bayes factor, i.e., the evidence for the alternative hypothesis
elative to the null hypothesis. 

We found that across almost all pairwise between-condition com-
arisons, the model which best explained the drift rate data was the one
hat includes the PSC from one of the higher visual areas, i.e., V4 or
OC ( Fig. 2 C). The one exception was the single vs. 2-flanker compar-
son, in which the V3 model was the winning model, though the LOC
odel was the second best. In the two comparisons between the crowd-

ng condition and the uncrowding conditions, the BF of the winning
odels was below 3; thus, the winning models could not be considered

ubstantially better than the null model. Hence, early visual areas do not
ontain substantial discriminatory information regarding (un)crowding.
n fact, in all but one of the pairwise condition comparisons (i.e., sin-
le vs. 2-flanker), the V1 model performed at the same level as the null
odel. 

While this last analysis linking PSC to drift rate offers a more com-
lete picture than the standard group-level PSC approach, it is still lim-
ted by the fact that ROIs are considered independently. The visual hi-
rarchy is dynamic and interactive. In order to investigate the potential
ecurrent connections between visual areas, we used DCM, a state-of-
he-art technique for modeling the neural interactions underlying the
ignals observed through neuroimaging ( Friston et al., 2003 ). 

.3. (Un)crowding is mediated by global, recurrent processing 

Here, we used DCM to determine how the five visual ROIs – V1 to
4 and LOC – interact with each other during our (un)crowding task.
9 
e sought to distinguish between models that could be characterized
s exhibiting local (within ROI) versus global (across ROI) processing
nd only bottom-up (feedforward) versus only top-down (feedback) ver-
us recurrent (both feedforward and feedback) connectivity – which
e call the ‘processing direction’ factor. Moreover, we wanted to de-

ermine which ROIs were most important in each condition – which
e call the ‘ROI involvement’ factor. Our hypotheses were expressed

hrough a model space consisting of 82 models varying according to 8
evels of ‘processing direction’ and 10 levels of ‘ROI involvement’ (see
ig. 3 for an illustration of the two factors and Supplemental Fig. S3

or an illustration of all 82 models). As the final outcome measure of the
odel comparison, we computed the posterior probability (Pp) for the
odel families corresponding to the 8 levels of the ‘processing direction’

 Fig. 4 A) and the 10 levels of ‘ROI involvement’ ( Fig. 4 B). 
In all but the 4-flanker condition, the winning ‘processing direction’

odel family was either the recurrent processing family or the recur-
ent and self-inhibitory processing family. In the 4-flanker condition, the
inning family was the top-down processing family (Pp = 0.42), though

t was closely followed by the recurrent processing family (Pp = 0.37).
his finding is particularly interesting given the potential role of per-
eptual grouping in uncrowding. The fact that the top-down process-
ng family was not more prominent in the annulus-flanker condition
Pp = 0.03) could be related to the fact that the flankers in this condi-
ion are connected into annuli and are thus more readily separable from
he target even in lower regions without additional top-down processing
s compared to the no crowding condition (single target). In the single
arget condition, the winning ‘ROI involvement’ model family was the
amily that contains all ROIs (Pp = 0.77). In all three crowding condi-
ions, the winning model family was consistently the family that omits
1. The posterior probability of this model family increased successively
s uncrowding increased, i.e., it was lowest in the 2-flanker condition
Pp = 0.48), higher in the 4-flanker condition (Pp = 0.57) and highest
n the annulus-flanker condition (Pp = 0.85). While in the uncrowding
onditions, the model family that includes all ROIs was the runner-up
4-flanker: Pp = 0.41; annulus-flanker: Pp = 0.09), in the 2-flanker con-
ition, the runner-up was the model family that includes all regions but
he LOC (Pp = 0.29). For detailed model comparison results (winning
odels in each of the four conditions, as opposed to winning model

amilies ), please see Supplemental Fig. S4 . 
We averaged the parameters from the different models, weighting

hem by the models’ posterior probabilities, a procedure known as
ayesian model averaging ( Hoeting et al., 1999 ; Penny et al., 2006 ).
ig. 4 C shows the Bayesian model average of connectivity parameters,
t a threshold of Pp > 0.95. The connectivity parameters correspond to
he strength of connections between regions, i.e., how quickly and with
hat strength a response is elicited in the target region, given in units
f Hz ( Friston et al., 2003 ). The resulting networks reflect the Bayesian
odel family comparisons, with a full recurrent network in the single

ondition, a recurrent subnetwork including regions V2 to V4 in the
-flanker condition, a top-down network excluding V1 in the 4-flanker
ondition and a recurrent network excluding V1 in the annulus-flanker
ondition. The particular strength of DCM is that it not only allows
odel and model family comparisons, but it also provides us with esti-
ates of the effective connectivity parameters, representing the connec-

ion strengths between regions. Thus, we are able not only to identify
he system as local or global and feedforward or feedback, but also to
xamine the computational details of the excitatory or inhibitory nature
f its connections. 

. Discussion 

The mechanisms governing crowding have been an issue of con-
ention in vision research for more than half a century. Most studies of
rowding are theory-driven, attempting to match models – more or less
nspired by the visual cortical hierarchy – to behavioral data. The ma-
ority of the models proposed thus far have been feedforward and local,
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 model class which is mathematically tractable and relatively homoge-
ous. However, these models – and even the majority of global ones
fail when confronted with uncrowding ( Doerig et al., 2019 ). Clearly,

he rejection of local feedforward models is not sufficient in explaining
un)crowding, as the universe of recurrent models is vast. New, data-
riven techniques are needed to determine the computational details of
ortical processing in (un)crowding. Here, we took advantage of state-
f-the-art methods in neuroimaging analysis to investigate the complex
ortical interactions underlying crowding through dynamic causal mod-
ling. We provide unique empirical evidence of how exactly recurrent
rocessing operates in (un)crowding. Our results reveal the modulatory
ffect of context on recurrent connectivity across the visual cortical hi-
rarchy, from low-level to high-level visual areas. 

Previous neuroimaging studies of crowding have taken the approach
f comparing percent BOLD signal change in crowded and non-crowded
onditions and localizing the regions in the brain where the difference in
SC is greatest ( Fang and He, 2008 ; Bi et al., 2009 ; Anderson et al., 2012 ;
illin et al., 2014 ). While they disagree on the exact locus of crowding

V1 or V2), all aforementioned studies agree that crowding attenuates
he BOLD response. As a first analysis, we used this established method
nd replicated previous results, finding that crowding attenuates the
OLD response as early as V2 and that the attenuation persists through
3, V4 and LOC (see Fig. 2 A and B). 

While we were able to replicate previous findings regarding the “neu-
al locus ” of crowding, the standard approach failed when applied to
ncrowding. Following the logic that PSC reflects the magnitude of the
rowding effect, one would expect to see an increase of PSC in the
ncrowding conditions relative to the crowding condition. Instead, we
ound that uncrowding further suppressed the BOLD response. This find-
ng suggests an important role for top-down connections. Moreover, it
uggests that identifying the “neural correlates ” of crowding and un-
rowding is more complex than just looking for a reflection of behav-
oral patterns in BOLD attenuation at the group level. 

In a second analysis, we sought to link PSC with the DDM parame-
er of drift rate, a proxy for stimulus difficulty, at the participant level.
ur analysis revealed that the difference between the crowding and no
rowding conditions was best reflected by the signal in V3, followed
losely by the LOC. For all other pairwise condition comparisons, ei-
her V4 or the LOC reflected the stimulus difficulty best. This result
ecalls a recent electroencephalography (EEG) study of (un)crowding
 Chicherov et al., 2014 ), where in a Vernier discrimination task, the N1
omponent was suppressed in crowding with respect to uncrowding.
nterestingly and in accordance with our current findings, this suppres-
ion was found to occur in a high-level visual area such as the LOC, as
evealed through EEG source localization. These findings support the
otion that higher-level areas determine perceptual grouping and send
 suppressing or enhancing signal to lower-level ROIs depending on the
xtent to which the target groups with the flankers. 

Visual processing is dynamic, and so we posit that the standard ap-
roach – which relates behavioral performance to a static measure of
OLD activation – cannot provide the full picture. In our final analy-
is, we used dynamic causal modeling to explore the crowding-induced
hanges in inter-areal effective connectivity. Our results show that re-
urrence is critical, not only for crowding and uncrowding, but even in
he no crowding condition (see Fig. 4 ). Moreover, global (between-ROI)
rocessing is vastly more important than local (within-ROI) processing.
hese findings shed light on the possible reasons behind discrepancies

n previous PSC analyses of crowding: given that recurrent processing is
rucial, a neural signature of crowding can in theory be detected at any
oint throughout the visual hierarchy. 

Interestingly, we found that whereas the preferred model in the no
rowding condition includes modulation of connectivity between all
OIs, the preferred models in the (un)crowding conditions consistently
xclude area V1. This result is consistent with our finding of crowding-
elated BOLD signal suppression starting in V2 and persisting in areas
3, V4 and the LOC. V2 has been suggested to play a critical role in
10 
rowding ( Fang and He, 2008 ; Bi et al., 2009 ; He et al., 2019 ), which
s in accordance with the two-stage model of crowding ( Levi, 2008 ;
elli and Tillman, 2008 ), in which simple feature detection takes place
n V1 while feature integration takes place beyond V1 – perhaps in V2.

hile classical theories posit that this feature integration is a feedfor-
ard mechanism, it is completely feasible that feature integration is
ediated by top-down mechanisms. 

Our finding of recurrent connectivity modulation further strength-
ns our argument of the importance of perceptual grouping in
un)crowding, which originates from behavioral studies ( Manassi et al.,
012 ; Hermens and Bell, 2014 ; Herzog et al., 2015b ; Manassi et al.,
015 ) and is supported by our aforementioned results of V4/LOC as
he site of between-condition differences in performance. The role of re-
urrent connections in crowding can be seen through the lens of visual
rocessing as predictive coding ( Srinivasan et al., 1982 ; Mumford, 1992 ;
ao and Ballard, 1999 ). We speculate that feedback connections from
igher to lower visual areas convey predictions as to the notewor-
hiness of the target, i.e., either it is part of a group and thus pro-
ides only redundant information or it is unique among its surround-
ngs and thus provides important information. This top-down infor-
ation then enhances or suppresses the feedforward information, in

ur case, the tilt direction, leading to better or worse behavioral
erformance. 

It is also interesting to note here the omission of the LOC from the
inning model in the crowding condition, while the LOC is present in

he case of both uncrowding conditions. While V4 and the LOC both
espond preferentially to images of objects as opposed to scrambled im-
ges ( Grill-Spector et al., 1998 ), V4 is retinotopically organized, while
he LOC is largely non-retinotopic ( Grill-Spector et al., 2001 ). In the un-
rowding conditions, the stimuli are arranged in such a way that the
ankers form two circles ( Fig. 1 A). In the crowding condition, on the
ther hand, the global shape is not a good Gestalt. Thus, we speculate
hat the omission of the LOC from the winning model in crowding and
ot in uncrowding may be related to the complexity of the global shapes
n the corresponding stimulus configurations. However, we would like
o note that good Gestalt per se is not an indicator for uncrowding since
hen a target is part of a good Gestalt, it can be strongly crowded. Like-
ise, crowding occurs also when the target is embedded in scrambled

lements. 
Here, it is worth noting several possible criticisms of our study. First,

ur study is somewhat limited by the small number of participants
 n = 12). However, our use of Bayesian statistical methods – for the
ehavioral data and PSC data analyses, as well as throughout the DCM
nalysis – should alleviate any power concerns. A second limitations per-
ains to DCM itself. The main issues of DCM are well described elsewhere
 Roebroeck et al., 2011a , 2011b ; Valdes-Sosa et al., 2011 ; David, 2011 ;
riston, 2011 ; Lohmann et al., 2012 ), but we will mention a couple of the
ore relevant limitations here. In contrast to the other leading effective

onnectivity estimation technique – Granger causality, DCM analysis is
odel-based rather than data-driven. As such, DCM analysis typically

ntails testing a few chosen models, which express specific hypotheses.
n our study, this restriction is tempered by the use of Bayesian model
eduction, which enables the rapid estimation of nested models. Our use
f BMR allowed us to test a relatively large model space of 82 models.
nother noteworthy limitation of DCM is the fact of model parameters
eing conditional on the tested model ( Daunizeau et al., 2011 ). This
act needs to be kept in mind when interpreting the connectivity pa-
ameter estimates. A final possible criticism of our study is the perhaps
redictable outcome of the importance of both inter- and intra-regional
onnections in predicting the data. However, it is important to keep in
ind that Bayesian model selection follows the principle of parsimony

see Methods Section 2.7 ), making it nontrivial that a model that is not
he simplest would be chosen. The fact that, in all experimental condi-
ions, the winning model family includes top-down connections strongly
upports our initial hypothesis that top-down connections are crucial in
oth crowding and uncrowding. 
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. Conclusion 

While classifying a model as global vs. local and feedforward vs.
eedback is a first step, it is the computational details of the model –
.e., the specific combinations of excitatory and inhibitory connections
etween stages of processing – which determine its robustness in pre-
icting behavioral data ( Clarke et al., 2014 ). It is precisely for this rea-
on that methods such as DCM – and the Bayesian generative modeling
aradigm in general – are so valuable. The DCM framework allows us
ot only to compare models whose architectures are defined to match
pecific hypotheses but also to estimate the computational details of the
odel in the form of the connection strengths between regions. Our find-

ngs can be used as a basis for theoretical models of crowding, both in
erms of information representation (global rather than local) and func-
ion (feedback rather than feedforward). Moreover, our study paves the
ay for future DCM investigations of crowding, which would generalize
ur results to other stimulus classes and visual paradigms. 
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