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Abstract. We consider a capital-exchange agreement, where two insurers recapital-
ize each other in certain situations with funds they would otherwise use for dividend
payments. We derive equations characterizing the expected time of ruin and the ex-
pected value of the respective discounted dividends until ruin, if dividends are paid
according to a barrier strategy. In a Monte Carlo simulation study we illustrate the
potential advantages of this type of collaboration.

1 Introduction

The identification of dividend payout strategies that balance safety and profitability is a classical

topic of insurance risk theory. Whereas ruin theory focuses on the safety aspects (see e.g. As-

mussen and Albrecher [2] for a survey), the de Finetti problem of maximizing expected discounted

dividends over the lifetime of an insurance portfolio concentrates exclusively on the profitability

aspect (see e.g. Azcue and Muler [4] for a recent overview of control problems arising from that).

For control problems that address a balancing of the time of ruin against early dividend pay-outs,

see e.g. [12, 13] and, in the form of a constraint on the ruin time, [11]. At the same time, there

have recently been some research efforts to address the analysis of several surplus processes si-

multaneously, see e.g Chan et al. [7], Cai and Li [6], Gong et al. [10] and Avram et al. [3] on

ruin-related measures and Badescu et al. [5] for a capital allocation problem. It is a natural
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question in this context whether certain forms of collaboration between two different companies

can lead to a better overall profit and safety compromise than what the two can optimally achieve

stand-alone. Gerber and Shiu [9] discuss the effects of merging two portfolios on optimal divi-

dends according to barrier strategies, and Albrecher, Azcue and Muler [1] recently identified the

optimal dividend strategy when two companies pay each other’s deficit as long as it can be afforded.

In this paper we look at a different type of collaboration between two companies: whenever a com-

pany is in a sufficiently comfortable position to pay out capital, it first helps the other company

to reach a well-capitalized position before it starts to pay out dividends to shareholders. Such

a collaboration strategy clearly has a smoothing effect on the survival of both companies, while

dividends are still paid out if the overall situation is sufficiently favorable. Within the family of

barrier dividend strategies we look at the effects of such a type of collaboration on the expected

ruin time and the resulting expected discounted dividend payments.

Section 2 introduces the model assumptions in detail. In Sections 3 and 4, we derive equations

which are satisfied by the insurer’s expected time of ruin and the expectation of the discounted

dividends, respectively, under the capital-exchange agreement. In Section 5, we provide an efficient

Monte Carlo algorithm which we apply in a simulation study. Finally, we aim to illustrate some

decision criteria for when to enter such a capital-exchange agreement.

2 The Model

Let I1 and I2 be two insurers, and initially consider the situation where their surplus processes

Ci(t), i = 1, 2, are independent and each surplus follows a Cramér-Lundberg process,

Ci(t) = xi + cit− Si(t), (1)
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where xi is the insurer’s initial surplus, ci is the premium (income) rate, and Si(t) is a compound

Poisson process, representing the aggregate claims of Ii up to time t, with rate λi and individual

claim size distribution function FYi(y) (density function fYi(y), respectively).

We now adjust this framework as follows. The two insurers enter into a capital exchange agreement,

and each insurer sets a respective barrier bi. Like under a classical dividend barrier strategy, Ii

fully pays out its income as long as its current surplus is at barrier bi (i.e. the surplus process of Ii

is reflected at bi). The capital-exchange agreement now defines that these pay-outs go to the other

insurer if the surplus of that one is below its barrier level, and otherwise to the own shareholders

in the form of dividends. Note that such a capital-exchange agreement introduces dependence on

the adjusted surplus processes of the two insurers.

Let Di(t) be the aggregate dividend payments at time t of insurer i, and Ai(t) are the aggregate

payments insurer Ii has paid to the partner company under the agreement by time t. The adjusted

surplus Ui(t) of insurer i is then given by

U1(t) = C1(t)− (D1(t) +A1(t)) +A2(t),

U2(t) = C2(t)− (D2(t) +A2(t)) +A1(t)

and we can write the dynamics as

dU1(t) = c1dt− dS1 − dD1 − dA1 + dA2,

dU2(t) = c2dt− dS2 − dD2 − dA2 + dA1.

The time of ruin of insurer i in this framework can then be defined as a function of the two initial

surplus levels and the barrier heights, and we write

τi(x1, x2, b1, b2) = inf{t|Ui(t) < 0; U1(0) = x1, U2(0) = x2, b1, b2}. (2)
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We define that the capital-exchange agreement ceases to exist once one of the two insurers is ru-

ined, and the surviving insurer keeps operating its dividend barrier strategy with barrier bi on a

stand-alone basis.

Figure 1: Sample path of (U1,U2).

Figure 1 depicts a sample path of U1, U2. Up to time t3, both adjusted surplus processes run below

their respective pay-out barriers b1 and b2, and the slope is c1 and c2, respectively. At time t3,

U2 reaches its pay-out barrier b2. Income at rate c2 is from now on paid to the partner insurer

(who now has an income rate of c1 + c2) up to time t4 where also I1 reaches its pay-out barrier b1.

Between times t4 and t5, any income is paid to the respective shareholders as dividends, because

both adjusted surpluses now run at their pay-out barriers. At time t5, a claim pulls the adjusted

surplus of I2 below b2, so that it is now supported by I1 up to time t7 (during this period I2

has an income rate of c1 + c2). Finally, at time t8, I2 suffers a large claim and is ruined. The

capital-exchange agreement ceases to exist, and I1 continues on its own. It now pays dividends

whenever its adjusted surplus is at b1 (between times t9 and t10) and is ruined once its adjusted

surplus drops negative (at time t10).
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One observes that money is now generally kept longer in the system of the two insurers, as it is

only released to shareholders once the adjusted surpluses of both insurers run at their respective

barriers. Intuitively one expects this to have a positive impact on the lifetime, while the impact on

expected dividends is not so obvious. In particular, a weak capital-exchange partner would most

likely have a negative impact on dividend payments, while a strong partner might help to lift one’s

adjusted surplus faster so that dividend payments might (re-)start at an earlier time.

While the setup of the dependence structure is fairly straightforward to introduce, the implied

mathematics are found to be challenging. Practically, the capital-exchange feature of the presented

model can be extended to the case of n insurers, having in mind a holding company (HoldCo -

for example, a financial investor) that owns a number of separate insurance undertakings, where

well-performing entities support underperforming ones. Dividend payments at the HoldCo level are

then only made if all entities are sufficiently well capitalised (as defined by their respective barriers

bi). The HoldCo could then assess such a capital exchange strategy by balancing the effects on

the default risk and the dividend income, depending on the risk willingness of its shareholders.

Note that within a classical insurance group, dividend clawback rules and financial assistance

requirements might restrict the choice of implementable capital-exchange mechanisms as outlined

here.

3 The Expected Time of Ruin

We observe that the surplus process Ui is bounded from above by the otherwise identical surplus

process with income rate c1 + c2, adjusted by a dividend barrier strategy with barrier bi, and

conclude from the fact that Cramér-Lundberg-type surplus processes under a barrier strategy with

finite barrier b have ruin probability one, that also P[τi(x1, x2; b1, b2) <∞] = 1 for i = 1, 2. Hence,

we turn to an alternative measure of risk. We assume the pay-out barriers b1 and b2 as fixed and

5



define the expected time of ruin of insurer i as a function of the initial surplus levels

γi(x1, x2) = E[τi(x1, x2)]. (3)

We restrict the support of γi(x1, x2) to 0 ≤ xi ≤ bi, i = 1, 2 (the situations x1 > b1 or x2 > b2 can

be related to the considered case by defining how initial immediate lump sum payments are made

to capital exchange partners and shareholders). Let us focus on the expected time of ruin for I1

(by symmetry the situation of I2 follows analogously).

Conditioning on the first arrival of a claim from either S1 or S2 within h time units (for h sufficiently

small) and exploiting the Markov property of the bivariate process (U1, U2) gives the following

equations for xi, bi ≥ 0. In particular, for the interior points, x1 < b1, x2 < b2:

γ1(x1, x2) = e−(λ1+λ2)h(h+ γ1(x1 + c1h, x2 + c2h))

+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ x1+c1t

0
(t+ γ1(x1 + c1t− z, x2 + c2t))fY1(z)dz

+ t · (1− FY1(x1 + c1t))) dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ x2+c2t

0
(t+ γ1(x1 + c1t, x2 + c2t− z))fY2(z)dz

+(t+ γ
(0)
1 (x1 + c1t)) · (1− FY2(x2 + c2t))

)
dt, (4)

where γ(0)1 (x) is the expected time of ruin of I1 in the (classical) stand-alone case with initial

surplus x.

Remark 1. In the case of exponential jump sizes with mean E[Y1] = 1/ν1, the expected time of

ruin γ(0)1 (x) in the classical case is known explicitly (cf. Gerber (1979), p. 150) as

(
c1 −

λ1
ν1

)
· γ(0)1 (x) =

eRb1

R

(
ν1

ν1 −R
− e−Rx

)
− 1

ν1
− x, (5)
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where R = ν1 − λ1
c1

is the adjustment coefficient. �

Furthermore, we find for the boundary x1 = b1, x2 < b2:

γ1(b1, x2) = e−(λ1+λ2)h(h+ γ1(b1, x2 + (c1 + c2)h))

+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ b1

0
(t+ γ1(b1 − z, x2 + (c1 + c2)t))fY1(z)dz

+t · (1− FY1(b1))) dt

+

∫ h

0
e−λ1tλ2e

−λ2t

(∫ x2+(c1+c2)t

0
(t+ γ1(b1, x2 + (c1 + c2)t− z))fY2(z)dz

+(t+ γ
(0)
1 (b1)) · (1− FY2(x2 + (c1 + c2)t))

)
dt, (6)

for the boundary x1 < b1, x2 = b2:

γ1(x1, b2) = e−(λ1+λ2)h(h+ γ1(x1 + (c1 + c2)h, b2))

+

∫ h

0
e−λ2tλ1e

−λ1t

(∫ b1+(c1+c2)t

0
(t+ γ1(x1 + (c1 + c2)t− z, b2))fY1(z)dz

+ t · (1− FY1(x1 + (c1 + c2)t))) dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ b2

0
(t+ γ1(x1 + (c1 + c2)t, b2 − z))fY2(z)dz

+(t+ γ
(0)
1 (x1 + (c1 + c2)t)) · (1− FY2(b2))

)
dt, (7)

and in the corner point x1 = b1, x2 = b2:

γ1(b1, b2) = e−(λ1+λ2)h(h+ γ1(b1, b2))

+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ b1

0
(t+ γ1(b1 − z, b2))fY1(z)dz + t · (1− FY1(b1))

)
dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ b2

0
(t+ γ1(b1, b2 − z))fY2(z)dz

+(t+ γ
(0)
1 (b1)) · (1− FY2(b2))

)
dt.
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The function γ1 is continuous in the interior of [0, b1] × [0, b2], which can be seen by approaching

x1, x2 from arbitrary directions by taking x1 = x1 + j · h and x2 = x2 + k · h, with j, k ∈ R, and

letting h→ 0 in (4) in each case. Comparison of (6) and (7) with (4) furthermore shows continuity

at the boundaries x1 = b1 and x2 = b2.

Differentiating (4) w.r.t. h, we observe by symmetry that γ1 is also differentiable w.r.t. x1, x2 in

the interior. Applying the operator d
dh to all of the above conditions and taking the limit h → 0,

we obtain a system of integro-differential equations,

x1 < b1, x2 < b2 : 0 = −(λ1 + λ2)γ1(x1, x2) + 1 + c1
∂γ1
∂x1

(x1, x2) + c2
∂γ1
∂x2

(x1, x2)

+λ1

∫ x1

0
γ1(x1 − z, x2)fY1(z)dz

+λ2

(∫ x2

0
γ1(x1, x2 − z)fY (z)dz + γ

(0)
1 (x1) · (1− FY2(x2))

)
, (8)

x1 = b1, x2 < b2 : 0 = −(λ1 + λ2)γ1(b1, x2) + 1 + (c1 + c2) ·
∂γ1
∂x2

(b1, x2)

+λ1 ·
∫ b1

0
γ1(b1 − z, x2)fY1(z)dz

+λ2

(∫ x2

0
γ1(b1, x2 − z)fY2(z)dz + γ

(0)
1 (b1) · (1− FY2(x2))

)
, (9)

x1 < b1, x2 = b2 : 0 = −(λ1 + λ2)γ1(x1, b2) + 1 + (c1 + c2) ·
∂γ1
∂x1

(x1, b2)

+λ1

∫ x1

0
γ1(x1 − z, b2)fY1(z)dz

+λ2

(∫ b2

0
γ1(x1, b2 − z)fY2(z)dz + γ

(0)
1 (x1) · (1− FY2(b2))

)
, (10)

and again an equation in the corner point (b1, b2),

0 = −(λ1 + λ2)γ1(b1, b2) + 1

+ λ1 ·
∫ b1

0
γ1(b1 − z, b2)fY1(z)dz

+ λ2 ·
(∫ b2

0
γ1(b1, b2 − z)fY2(z)dz + γ

(0)
1 (b1) · (1− FY2(b2))

)
. (11)
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Continuity of γ1(x1, x2) on the boundaries x1 = b1 or x2 = b2 and comparing (8) to (9) and (10),

gives the boundary conditions

∂γ1
∂x1

(b1, x2) =
∂γ1
∂x2

(b1, x2) ∀0 ≤ x2 < b2, (12)

∂γ1
∂x1

(x1, b2) =
∂γ1
∂x2

(x1, b2) ∀0 ≤ x1 < b1. (13)

Similarly, approaching (b1, b2) from interior points gives

c1
∂γ1
∂x1

(b1, b2) + c2
∂γ1
∂x2

(b1, b2) = 0, so that we have ∂γ1
∂x1

(b1, b2) =
∂γ1
∂x2

(b1, b2) = 0.

Altogether γ1(x1, x2) is characterised as the solution to the equation system (8) with boundary

conditions (12) and (13).

Exponential claims. Assume that the claim sizes of I1 are i.i.d. Exp(ν1) distributed, and the

claim sizes of I2 are Exp(ν2) distributed. Applying the operator
(

d
dx1

+ ν1

)
followed by the operator(

d
dx2

+ ν2

)
to (8) yields a third-order PDE with constant coefficients,

0 = ν1ν2 + ν2c1ν1

(
1− λ1

c1ν1

)
∂γ1
∂x1

(x1, x2) + ν1c2ν2

(
1− λ2

c2ν2

)
∂γ1
∂x2

(x1, x2)

+

[
c1ν1

(
1− λ1

c1ν1

)
+ c2ν2

(
1− λ2

c2ν2

)]
∂2γ1
∂x1∂x2

(x1, x2)

+ c1ν2
∂2γ1
∂x21

(x1, x2) + c2ν1
∂2γ1
∂x22

(x1, x2)

+ c1
∂3γ1
∂x21∂x2

(x1, x2) + c2
∂3γ1
∂x1∂x22

(x1, x2), (14)

so that the dynamics in the interior are now described locally. One observes that γp(x1, x2) =

A1x1 + A2x2 with the condition 1 =
(
λ1
ν1
− c1

)
A1 +

(
λ2
ν2
− c2

)
A2 is a particular solution to this

inhomogeneous PDE. Terms of the form e−rx1e−sx2 can appear in the solution to the homogeneous
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problem if they fulfil the characteristic equation

0 = −ν2c1ν1
(
1− λ1

c1ν1

)
r − ν1c2ν2

(
1− λ2

c2ν2

)
s

+

[
c1ν1

(
1− λ1

c1ν1

)
+ c2ν2

(
1− λ2

c2ν2

)]
rs

+c1ν2r
2 + c2ν1s

2 − c1r2s− c2rs2. (15)

A plot of (15) for a particular choice of parameters is shown in Figure 2.

Figure 2: Plot of the implicit equation (15), with c1 = c2 = 6, λ1 = λ2 = 5 and ν1 = ν2 = 1.

While it turns out to be mathematically intricate to obtain an explicit solution for γ1(x1, x2)

(which must also match the original IDE (8) - note that some terms cancelled when applying the

differential operator, which now need to be recalibrated by a suitable combination of homogeneous

solutions - and the boundary conditions), the above characterisation may be useful for setting up a

numerical solution procedure or also a hybrid numerical procedure, where finite-difference methods

are applied after simulating the boundaries, with the aim of achieving an improvement in run time

over crude Monte Carlo simulation.
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4 The Expected Sum of Discounted Dividends

Apart from the prolonging effect of the capital-exchange agreement on the expected time until

ruin, we are interested in how the expected sum of discounted dividends until ruin is affected. We

hence define

Vi(x1, x2; b1, b2) (16)

as the expectation of the sum of discounted dividends until ruin paid to the shareholders of Ii, where

we use a constant force of interest δ > 0 for discounting. In the following we will assume that the

pay-out barriers have been set and, thus, use the shortened notation V1(x1, x2) = V1(x1, x2; b1, b2).

Proceeding as in Section 3, one can again condition on the occurrence of a jump event within h

time units, h sufficiently small, to find that for the interior points x1 < b1, x2 < b2:

V1(x1, x2) = e−(λ1+λ2)he−δhV1(x1 + c1h, x2 + c2h)

+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ x1+c1t

0
e−δtV1(x1 + c1t− z, x2 + c2t)fY1(z)dz

)
dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ x2+c2t

0
e−δtV1(x1 + c1t, x2 + c2t− z)fY2(z)dz

+e−δtV
(0)
1 (x1 + c1t)) · (1− FY2(x2 + c2t)

)
dt, (17)

where V (0)
1 (x1) is the stand-alone expectation of the sum of discounted dividends.

Remark 2. In the exponential claim size case with E[Y1] = 1/ν1, the expectation of the sum of

discounted dividends in the classical case has an explicit form (cf. [8], p. 183),

V
(0)
1 (x1, b1) =

(ν1 + r1)e
r1x1 − (ν1 + r2)e

r2x1

r1(ν1 + r1)er1b − r2(ν1 + r2)er2b
, (18)
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where r1 and r2 are the solutions to the equation

ξ2 +

(
ν1 −

λ1 + δ

c1

)
ξ − ν1δ

c1
= 0. (19)

�

Similarly it follows for the boundary x = b1, x2 < b2:

V1(b1, x2) = e−(λ1+λ2)he−δhV1(b1, x2 + (c1 + c2)h)

+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ b1

0
e−δtV1(b1 − z, x2 + (c1 + c2)t)fY1(z)dz

)
dt

+

∫ h

0
e−λ1tλ2e

−λ2t

(∫ x2+(c1+c2)t

0
e−δtV1(b1, x2 + (c1 + c2)t− z)fY2(z)dz

+e−δtV
(0)
1 (b1) · (1− FY2(x2 + (c1 + c2)t))

)
dt, (20)

for the boundary x1 < b1, x2 = b2:

V1(x1, b2) = e−(λ1+λ2)he−δhV1(x1 + (c1 + c2)h, b2)

+

∫ h

0
e−λ2tλ1e

−λ1t

(∫ b1+(c1+c2)t

0
e−δtV1(x1 + (c1 + c2)t− z, b2)fY1(z)dz

)
dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ b2

0
e−δtV

(0)
1 (x1 + (c1 + c2)t, b2 − z)fY2(z)dz

+e−δtV
(0)
1 (x1 + (c1 + c2)t)) · (1− FY2(b2)

)
dt (21)
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and in the corner point we obtain

V1(b1, b2) = e−(λ1+λ2)h
(
v1(h) + e−δhV1(b1, b2)

)
+

∫ h

0
e−λ2tλ1e

−λ1t
(∫ b1

0

(
v1(t) + e−δtV1(b1 − z, b2)

)
fY1(z)dz + v1(t) · (1− FY1(b1))

)
dt

+

∫ h

0
e−λ1tλ2e

−λ2t
(∫ b2

0

(
v1(t) + e−δtV1(b1 − z, b2)

)
fY2(z)dz

+
(
v1(t) + e−δtV

(0)
1 (b1)

)
· (1− FY2(b2))

)
dt, (22)

where v1(t) =
∫ t
0 c1e

−δsds = c1
δ (1 − e

−δt) is the present value of the discounted dividends paid at

rate c1 over [0, t).

By the same line of argument as in Section 3, one sees that V1(x1, x2) is continuous for all (x1, x2) ∈

[0, b1]× [0, b2]. Given differentiability w.r.t. h, by symmetry we can establish differentiability of V1

w.r.t x1, x2. Applying again the operator d
dh to each equation and letting h→ 0 yields,

x1 < b1, x2 < b2 : 0 = −(λ1 + λ2 + δ)V1(x1, x2) + c1
∂V1
∂x1

(x1, x2) + c2
∂V1
∂x2

(x1, x2)

+λ1

∫ x1

0
V1(x1 − z, x2)fY1(z)dz

+λ2

(∫ x2

0
V1(x1, x2 − z)fY2(z)dz + V (x1) · (1− FY2(x2))

)
, (23)

x1 = b1, x2 < b2 : 0 = −(λ1 + λ2 + δ)V1(b1, x2) + (c1 + c2) ·
∂V1
∂x2

(b1, x2)

+λ1 ·
∫ b1

0
V1(b1 − z, x2)fY1(z)dz

+λ2

(∫ x2

0
V1(b1, x2 − z)fY2(z)dz + V (b1) · (1− FY2(x2))

)
, (24)

x1 < b1, x2 = b2 : 0 = −(λ1 + λ2 + δ)V1(x1, b2) + (c1 + c2) ·
∂V1
∂x1

(x1, b2)

+λ1

∫ x1

0
V1(x1 − z, b2)fY1(z)dz

+λ2

(∫ b2

0
V1(x1, b2 − z)fY2(z)dz + V (x1) · (1− FY2(b2))

)
, (25)
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and we obtain an equation in the corner point x1 = b1, x2 = b2,

0 = −(λ1 + λ2 + δ)V1(b1, b2) + c1

+ λ1 ·
∫ b1

0
V1(b1 − z, b2)fY1(z)dz

+ λ2 ·
(∫ b2

0
V1(b1, b2 − z)fY2(z)dz + V (b1) · (1− FY2(b2))

)
. (26)

As in Section 3, one can compare (23) to (24) and (25) to produce the following boundary conditions

using the continuity of V1(x1, x2),

∂V1
∂x1

(b1, x2) =
∂V1
∂x2

(b1, x2) ∀ 0 ≤ x2 < b2, (27)

∂V1
∂x1

(x1, b2) =
∂V1
∂x2

(x1, b2) ∀ 0 ≤ x1 < b1, (28)

and comparing (23) to (26) finally yields in (b1, b2) : c1
∂V1
∂x1

(b1, b2)+ c2
∂V1
∂x2

(b1, b2) = c1. The system

of equations (23), (27) and (28) is solved by V1(x1, x2).

Exponential claims. Again we consider the exponential claim size case with Y1 ∼Exp(ν1) and

Y2 ∼Exp(ν2), and applying
(

d
dx1

+ ν1

)
, followed by the operator

(
d
dx2

+ ν2

)
, transforms (23) into

the PDE

0 = −δν1ν2V1(x1, x2) + (c1ν1ν2 − ν2(δ + λ1))
∂V1
∂x1

(x1, x2)

+ (c2ν1ν2 − ν1(δ + λ2))
∂V1
∂x2

(x1, x2)

+ (c1ν1 + c2ν2 − δ − λ1 − λ2)
∂2V1
∂x1∂x2

(x1, x2)

+ c1ν2
∂2V1
∂x21

(x1, x2) + c2ν1
∂2V1
∂x22

(x1, x2)

+ c1
∂3V1
∂x21∂x2

(x1, x2) + c2
∂3V1
∂x1∂x22

(x1, x2). (29)
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In analogy to the expected time of ruin case, the dynamics of the function V1(x1, x2) are now

defined locally in the interior of [0, b1] × [0, b2]. The explicit solution of (29) together with the

corresponding IDE and boundary conditions is of similar complexity as for γ1.

5 A Simulation Study

In the following we suggest an efficient Monte Carlo algorithm to numerically compute γ1(x1, x2)

and V1(x1, x2). We will then compare the results with the ones for the stand-alone case, for

which explicit formulas are available for exponential claim sizes (cf. Remarks 1 and 2). The aim

is to identify decision-theoretical aspects for the justification of a capital-exchange agreement, as

compared to the performance in the stand-alone situation.

5.1 A Monte Carlo Algorithm

To set up an efficient algorithm for producing MC estimates of γ1(x1, x2) and V1(x1, x2), we observe

the following:

• U1 can only drop negative at a jump time of S1(t), hence we only have to check the surplus

at jump times to see when to stop the process.

• In between any two claim arrivals (from either S1 or S2), the surplus processes grow at

constant rates c̃1 ∈ {0, c1, c1 + c2} and c̃2 ∈ {0, c2, c1 + c2}, respectively.

The Expected Time of Ruin. The two aggregate claim processes can be combined into one

compound Poisson process with intensity λ1 + λ2 and a claim Ỹi comes with probability λ1/(λ1 +

λ2) from I1 with distribution function FY1(y) and with probability λ2/(λ1 + λ2) from I2 with

distribution function FY2(y). In the implementation, we hence generate jump times and jump

sizes for this combined process. The triples Zj = (tj , ηj , Ỹj) reflect the claim arrival times tj , a

marker ηj = 1 if the claim is from I1 and ηj = 0 otherwise, and the corresponding claim sizes Ỹj .

15



Conditioning on {Zj}j≥1 we can write

γ1(x1, x2) = E [ inf{tj |U1(tj) < 0, {Zj}j≥1}] , (30)

with U1(0) = x1, U2(0) = x2 and the recursions conditional on no prior ruin of the respective

process can be written as

U1(tj+1) = min [b1, U1(tj) + c1(tj+1 − tj)

+1{τ2>tj} · c2
(
(tj+1 − tj)−min

(
tj+1 − tj ,

b2 − U2(tj)

c2

))]
− ηj+1 · Ỹj+1,

(31)

U2(tj+1) = min [b2, U2(tj) + c2(tj+1 − tj)

+1{τ1>tj} · c1
(
(tj+1 − tj)−min

(
tj+1 − tj ,

b1 − U1(tj)

c1

))]
− (1− ηj+1) · Ỹj+1.

(32)

For a set of samples {z(k)j }j≥1, 1 ≤ j ≤ N , of {Zj}j≥1, we then simply compute the MC estimate

of γ1(x1, x2) as

γ̂1(x1, x2) =
1

N

N∑
k=1

[
inf{tj |U1(tj) < 0, {Zj}j≥1 = {z(k)j }j≥1}

]
, (33)

using the recursions (31) and (32).

The Expected Discounted Dividends. We realise that no dividends are paid immediately

after any claim arrival at tj , since either the first or the second surplus process will drop below

its pay-out barrier due to the claim. Hence, over the time interval (tj , tj+1] in between two claim

arrivals, either no dividends are paid or dividends are paid from a certain time tinj over the rest of

that interval. Furthermore, we note that for tinj < tj+1, one can write that

16



∫ tj+1

tinj

c1e
−δsds =

c1
δ

(
e−δt

in
j − e−δtj+1

)
. (34)

Conditioning on the claim arrivals and sizes leads to

V1(x1, x2) = E
[∫ τ1

0
c1 · 1{A} · e−δsds

∣∣∣∣U1(0) = x1, U2(0) = x2

]

= E

n−1∑
j=1

c1
δ

(
e−δt

in
j − e−δtj+1

)∣∣∣∣∣∣ t0 = 0, tn = τ1, {Zj}j≤1

 (35)

with the event A = {[U1(s) = b1, U2(s) = b2, τ2 > s] ∪ [U1(s) = b1, τ2 < s]}, the payment start

times

tinj =

 min(tj +max((b1 − U1(tj))/c1, (b2 − U2(tj))/c2), tj+1) if τ2 > tj

min(tj + (b1 − U1(tj))/c1, tj+1) if τ2 ≤ tj
,

and U1(tj) and U2(tj) are defined as in (31) and (32). For a set of samples {z(k)j }k≥1 of {Zj}j≥1,

1 ≤ j ≤ N , we compute the MC estimate of V1(x1, x2) as

V̂1(x1, x2) =
1

N

N∑
k=1

n−1∑
j=1

c1
δ

(
e−δt

in
j − e−δtj+1

)∣∣∣∣∣∣ {Zj}j≥1 = {z(k)j }j≥1

 . (36)

5.2 Specification and Results of the Simulation Study

We now consider the example where I1 and I2 have a similar insurance portfolio. We choose the

income rate c1 = c2 = 6 and claims are produced according to λ1 = λ2 = 5 and ν1 = ν2 = 1. For

I1 we specify the barrier level b1 = 5, while for I2 we will test the behavior under a low, medium

or high barrier, i.e. b2 = 1, 5 or 20. Initially we consider the functions γ1(x1, x2) and V1(x1, x2),

with 0 ≤ x1 ≤ b1 and 0 ≤ x2 ≤ b2. Due the symmetry reason, we only present the plots for I1.

First, consider Figure 3 for the expected time of ruin of I1. We observe that γ1(x1, x2) is monoton-

ically increasing in both x1 and x2. This is as expected, since possible recapitalisation payments
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Figure 3: The γ1(x1, x2) surface for b1 = 5, and b2 = 1, 5, 20 (for N = 50,000 simulation runs).

from the partner increase the likelihood of survival, and a higher initial surplus of the partner leads

to a higher probability of such payments being made in the future. In the case of the expectation

of the sum of discounted dividends, as depicted in Figure 4, the plots are of a different shape. As

b2 increases, the expected discounted dividends become large as x2 is either small or large. This

reflects that dividend payments are blocked as long as U2 moves within [0, b2). Early ruin of the

partner brings a relative improvement as own profits lead to immediate dividend payments, and

the other favorable situation is where I2 has high surplus and reaches its barrier b2 early. Otherwise

we note that upon fixing x2, V1 is naturally an increasing function in x1. Altogether, V1 appears

to generally decrease as b2 grows.
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Figure 4: The V1(x1, x2) surface for b1 = 5 and b2 = 1, 5, 20, and δ = 0.1 (for N = 50,000
simulation runs).

Comparison to the stand-alone case. We now compare the above results to the stand-alone

case by considering the plots γ1(x1, x2)− γ(0)1 (x1) and V1(x1, x2)− V (0)
1 (x1), in order to reason in

what situations it would turn out profitable to enter into the capital-exchange agreement for the

given barrier combinations.

Figure 5 confirms that an increase in the expected time of ruin is achieved across all (x1, x2) com-

binations. In the top left graph where b2 is low, the effect is strongest when x1 is small and x2 is

relatively high. However, note that x2 ≤ 1 is low due to b2 = 1, so that the benefit from possible

recapitalisation payments decreases as x1 becomes larger relative to x2. This features becomes
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Figure 5: The γ1(x1, x2)− γ(0)1 (x1) surface for b1 = 5, and b2 = 1, 5, 20 (for N = 50,000 simulation
runs).

less and less pronounced as b2 increases., and we observe in those cases that the gain is naturally

largest when x2 is high. Figure 6 then shows the change in the expected discounted dividends. In

the case b2 = 1, the gain is highest where x1 is low and x2 is close to b2. This is justified, as I2

is more likely to recapitalise I1 so that it may reach its barrier faster. As x1 approaches its own

barrier b1, the change in expected discounted dividends from the agreement drops negative, as now

the risk of having to support I2 instead paying early dividends becomes more pronounced. This

notion of possibly having to support I2 rather than paying dividends becomes so strong for b2 = 5

and b2 = 20, that the effect on the expected discounted dividends is negative for almost all cases,

and large surplus levels x1 produce the worst outcomes.
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Figure 6: The V1(x1, x2)−V (0)
1 (x1) surface for b1 = 5 and b2 = 1, 5, 20, and δ = 0.1 (for N = 50,000

simulation runs).

Note that as b2 →∞, V1(x1, x2) will tend to zero as excess capital will only go to the partner. We

conclude that for low own surplus levels and low barriers b2 of the partner, the capital-exchange

agreement can appear attractive in certain situations, while for larger own surplus levels, the pos-

sibility of having to recapitalise the partner clearly outweighs the effect from possible incoming

support payments.

As the effects of the agreement on the expected time of ruin and the expectation of the discounted

dividends are in opposite directions across most of the here considered cases, one will generally
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Figure 7: Balancing dividends and ruin time: w = 0.2, 0.5 and 0.8, with b1 = 5 and b2 = 1, and
δ = 0.1 (for N = 50,000 simulation runs).

have to balance the wish for a long lifetime against the desire to receive early dividends. This is

illustrated in Figures 7 to 9, where low, medium or high weight is given to the expected time of

ruin. It is especially for high barriers b2 of the partner and high own surplus levels, that the prefer-

ence for an expected increase in lifetime must be strong in order to justify entering the agreement,

which becomes particularly clear from Figure 9.

Effect on the system of the two insurers. Finally, we investigate the effect of the capital-

exchange agreement on the system of the two insurers against the stand-alone case. Hereby,

we choose to compare the sums of the expected ruin times (one could also choose a different
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Figure 8: Balancing dividends and ruin time: w = 0.2, 0.5 and 0.8, with b1 = 5 and b2 = 5, and
δ = 0.1 (for N = 50,000 simulation runs).

criterion, such as the maximum time of ruin of the two) and the expected discounted divi-

dends, respectively. In particular, we evaluate γ1(x1, x2) + γ2(x1, x2) − γ
(0)
1 (x1) − γ

(0)
2 (x2) and

V1(x1, x2) + V2(x1, x2)− V (0)
1 (x1)− V (0)

2 (x2).

Regarding the system gains for the expected ruin times, as depicted in Figure 10, naturally all cases

return positive results. In the case where one barrier is larger than the other (i.e. b1 = 5, b2 = 1

and b1 = 5, b2 = 20) the positive effect appears to be largest in those cases where the process

with the lower barrier starts close to the barrier while the process with the larger barrier has little

initial surplus. For the expectation of the sum of the discounted dividends, as shown in Figure
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Figure 9: Balancing dividends and ruin time: w = 0.2, 0.5 and 0.8, with b1 = 5 and b2 = 20, and
δ = 0.1 (for N = 50,000 simulation runs).

11, a negative effect from the agreement is observed throughout, with the highest relative impact

when both initial surplus levels are high. Again, it seems that in view of the whole system of the

two insurers, putting a capital-exchange agreement in place must mostly be justified by a strong

preference of extending the expected lifetimes of the insurers.

6 Concluding Remarks

In this paper we investigated the impact of a capital-exchange agreement on the expected time

of ruin and the expected discounted dividends of insurers. Such an agreement could for example
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Figure 10: System gains in the expected ruin time for b1 = 5, and b2 = 1, 5, 20 (for N = 50,000
simulation runs).

exist among entities within an insurance group, as they recapitalise each other until the surplus

processes of all subsidiaries run at some satisfactory levels; only then dividends are released to the

shareholders. We have characterised the expected ruin time and the expected discounted dividends

in this setup by deriving a set of equations in each case. The results of a Monte Carlo simulation

study finally illustrated that the agreement naturally improves the expected time of ruin. This

is the case from the viewpoint of each insurer that has assumed the agreement, and hence, also

improves the expected ruin time across the system of the participating insurers. The effect on the

dividends is found to be twofold. For low barrier levels of the partner, a positive effect is observed if

one’s own initial surplus is low. As either the partner’s barrier increases, or the insurer own initial

25



0
1

2
3

4
5

0

0.5

1
−4

−3

−2

−1

0

1

Initial capital x
1

System gains: Dividends, b
1
=5, b

2
=1

Initial capital x
2

V
1
(x

1
,x

2
)+

V
2
(x

1
,x

2
)−

V
1(0

) (x
1
)−

V
2(0

) (x
2
)

0
1

2
3

4
5

0

1

2

3

4

5

−4

−3

−2

−1

0

1

Initial capital x
1

System gains: Dividends, b
1
=5, b

2
=5

Initial capital x
2

V
1
(x

1
,x

2
)+

V
2
(x

1
,x

2
)−

V
1(0

) (x
1
)−

V
2(0

) (x
2
)

0
1

2
3

4
5

0

5

10

15

20

−4

−3

−2

−1

0

1

Initial capital x
1

System gains: Dividends, b
1
=5, b

2
=20

Initial capital x
2

V
1
(x

1
,x

2
)+

V
2
(x

1
,x

2
)−

V
1(0

) (x
1
)−

V
2(0

) (x
2
)

Figure 11: System gains in the expectation of total dividends for b1 = 5 and b2 = 1, 5, 20, and
δ = 0.1 (for N = 50,000 simulation runs).

surplus is close to its barrier level, the effect on the expected discounted dividends appears negative.

Asymptotically for some bi →∞, the expected discounted dividends of all participating companies

tends to zero, as dividend payments are blocked due to their recapitalisation obligation for insurer

i. We conclude that in many situations a strong preference for an increase in the expected lifetime

is required to justify entering the capital-exchange agreement. This effect is observed for single

insurers, as well as from a systemic point of view.
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