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S U M M A R Y
Two-phase flow equations that couple solid deformation and fluid migration have opened new
research trends in geodynamic simulations and modelling of subsurface engineering. Physical
non-linearity of fluid-rock systems and strong coupling between flow and deformation in such
equations lead to interesting predictions such as spontaneous formation of focused fluid flow
in ductile/plastic rocks. However, numerical implementation of two-phase flow equations and
their application to realistic geological environments with complex geometries and multiple
stratigraphic layers is challenging. This study documents an efficient pseudo-transient solver
for two-phase flow equations and describes the numerical theory and physical rationale. We
provide a simple explanation for all steps involved in the development of a pseudo-transient
numerical scheme for various types of equations. Two different constitutive models are used in
our formulations: a bilinear viscous model with decompaction weakening and a viscoplastic
model that allows decompaction weakening at positive effective pressures. The resulting
numerical models are used to study fluid leakage from high porosity reservoirs into less porous
overlying rocks. The interplay between time-dependent rock deformation and the buoyancy of
ascending fluids leads to the formation of localized channels. The role of material parameters,
reservoir topology, geological heterogeneity and porosity is investigated. Our results show
that material parameters control the propagation speed of channels while the geometry of the
reservoir controls their locations. Geological layers present in the overburden do not stop the
propagation of the localized channels but rather modify their width, permeability, and growth
speed.

Key words: Permeability and porosity; geomenchanics; numerical modelling; Pseudo-
transient; viscoplastic rheology; creep and deformation.

1 I N T RO D U C T I O N

1.1 Fluid flow in solid earth

Many geological processes involve fluid flow coupled with solid
rock deformation. Mantle convection models that consider only
solid deformation have achieved great success in approaching geo-
dynamic problems. However, demand has increased for resolving
fluid flow and solid–fluid interaction in the last decade, as pro-
cesses such as melt segregation, magma transport and/or fluid mi-
gration in subduction zones have come into attention (Mckenzie
1984; Cai & Bercovici 2013; Jordan et al. 2018; Petrini et al.
2020). Similarly, crustal processes, such as episodic tremor and
slow slip on the faults, formation of focused fluid flow systems and
pore fluid migration in sedimentary basins, also present an explicit

requirement for solving coupled deformation of solids and fluids
(Audet & Fowler 1992; Rice 1992; Räss et al. 2018). Even en-
gineering processes such as hydraulic fracturing, CO2 storage in
geological formations and geothermal energy extraction require
consideration of porous flow in deforming rocks (Ji et al. 2009;
Wangen 2011; Yarushina et al. 2013; Elenius et al. 2018; Tarokh et
al. 2020).

The same physical process has been described to using several
different terminologies in various fields, including two-phase flow
(Bercovici et al. 2001; Katz et al. 2006; Schmeling & Wallner
2012; Keller et al. 2013; Zheng et al. 2016; Wang et al. 2019)
or compaction-driven fluid flow (Connolly & Podladchikov 1998;
Vasilyev et al. 1998; Yarushina & Podladchikov 2015; Omlin et
al. 2018) in geodynamics; and coupled fluid flow or geomechanics
in petroleum engineering (Morency et al. 2007; Ji et al. 2009).
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The mathematical formulations of these approaches, though written
differently, are based on the same physics and differ mostly in
assumed rheological laws.

The formation of channel-like focused fluid flow is one of the
most interesting findings of two-phase flow models. It has been
discussed in the context of melt segregation in the asthenosphere
(Connolly & Podladchikov 2007), petroleum migration (Appold &
Nunn 2002), the genesis of mud volcanoes (Revil 2002), and for-
mation of seismic chimneys (Räss et al. 2014). One important con-
clusion of these studies is that the asymmetry of the bulk viscosity
for compaction and decompaction drives the formation of elongated
fluid channels. The channel size and evolution depend on material
parameters such as permeability, bulk, and shear viscosities. How-
ever, existing models consider simplified setups that are far from
real-world applications. The effects of geological heterogeneity or
geometry have not yet been studied. However, these factors have
a profound influence on the formation of fluid channels. Here, we
address these questions and show how other factors such as the host
rock’s porosity, rock properties, various geological layers and their
geometries affect the formation and propagation of channels.

1.2 Numerical methods in geosciences

Conventional numerical methods, such as matrix-based finite el-
ement (FE), finite volume (FV) and finite difference (FD), face
several challenges in solving multiphysics non-linear problems in
geosciences. First, high-resolution 3-D modelling requires assem-
bling large matrices that are challenging to solve even with the
sparse matrix format (Burov et al. 2014; May et al. 2014; Morra
2020). As a result, the maximum degree of freedom is usually lim-
ited to <109 in published 3-D models (Zhong et al. 2000; Settari
& Walters 2001; Tackley 2008; May et al. 2014; Moresi et al.
2014; Dannberg & Heister 2016; Spitz et al. 2020; Rinaldi et al.
2021). Secondly, existing porous flow models in deformable rocks
commonly use simplified equations that might give inaccurate re-
sults (Settari & Walters 2001; Prevost 2014). Thirdly, non-linear
physics, such as plastic deformation of the rock or stress-dependent
permeability for the fluid flow, may lead to convergence problems
(Yarushina et al. 2010; Duretz et al. 2018).

Matrix-free numerical methods that solve systems of partial dif-
ferential equations (PDE) without assembling and storing the co-
efficient matrix have been used to model rock deformation since
the pioneering works of Cundall (1989); Poliakov et al. (1993) and
Burov et al. (2001). With the development of High-performance
computing, matrix-free methods have shown a significant advan-
tage over matrix-based methods in terms of both memory use and
parallel efficiency (May et al. 2015; Bauer et al. 2019; Clevenger &
Heister 2019; Duretz et al. 2019; Räss et al. 2019). Recent studies
with matrix-free methods have demonstrated the ability to solve up
to 1012 degrees of freedom with a parallel efficiency of >90 per
cent (Bauer et al. 2019), which is far beyond what matrix-based
methods can reach. At the same time, the iterative procedure of
Pseudo-transient continuation, inspired by physical processes, has
been proven to solve multiphysics problems efficiently (Frankel
1950; Calder & Yezzi 2019; Räss et al. 2019; Benyamin et al.
2020). With matrix-free implementation, Rass et al. 2019 applied
a pseudo-transient solver to simulate the long-term evolution of
large-scale 3-D problems (10003) and showed its ability to han-
dle the non-linearity of Kozeny-Carman permeability and decom-
paction weakening. These studies confirmed that the matrix-free

pseudo-transient method can solve large-scale problems and han-
dle the significant non-linearity of physical problems. Given the
potential of this state-of-the-art approach, more studies are needed
to explain the mathematical and physical foundation and demon-
strate its flexibility and robustness with different physics and model
setups.

Here, we report a matrix-free pseudo transient method to solve
the non-linear physics of two-phase flow systems and explain it
such that geoscience modellers could easily understand and use.
Using Fourier analysis theory, we analyse the time evolution of
general damped waves with different parameters and derive the
fastest damping parameters leading to the steady-state solution. We
then transform the two-phase flow equations into damped waves
equations by adding pseudo-transient time derivatives and derive
the best damping parameters. The robustness and flexibility of the
resulting numerical schemes are tested on 1-D and 2-D numerical
examples. This scheme is used to simulate the development of
focused fluid flow in various setups with geological complexity.

2 M O D E L F O R M U L AT I O N

We use a set of two-phase flow equations that describe fluid migra-
tion through the compaction and decompaction of the solid matrix
with viscous rheology. Each phase (solid + fluid) is assumed to
be incompressible. Thus, the momentum balance equations for the
composite material and pore-fluid are given below (Yarushina &
Podladchikov 2015) :

∇ j

(
τ̄i j − P̄δi j

) − gi ρ̄ = 0 (1)

∇i q
D
i = ∇i

(
k

η f

(∇i Pe − ∇i P̄ − giρ f

))
. (2)

Here P̄ and ρ̄ are the total pressure and density ( X̄ = (1 − φ)Xs +
φX f ), δi j is the Kronecker delta ( δi j = [i = j]), gi is component
of gravity acceleration vector, η f is the fluid viscosity and Pe is the
effective pressure ( Pe = P̄ − Pf ). Porosity-dependent permeabil-
ity, k = k0 ( φ

φ0
)n , accounts for non-linear coupling of flow and rock

deformation (Costa 2006). Here, k0 is the reference permeability at
reference porosity φ0. All symbols and their descriptions are listed
in Table 1.

This study considers two different types of rock rheology: viscous
bi-linear and viscoplastic. The influence of elastic strains is ignored.
In both viscous and viscoplastic rocks, the deviatoric total stress
tensor τ̄i j is related to the strain rate tensor:

τ̄i j = 2μs

(
1

2
(∇i Vj + ∇ j Vi ) − 1

3
δi j∇i Vi

)
, (3)

where μs is the solid shear viscosity, which is much larger than fluid
shear viscosity η f . The (de)compaction of the solid depends on the
pressure field and bulk viscosity, which can be written: (Yarushina
et al. 2020):

∇i Vi = − Pe − Pd

(1 − φ) ηφ

, (4)

where ηφ is the bulk viscosity and Pd is the dilation pressure. For
pure viscous deformation, dilation pressure in eq. (4) equals 0 (Pd=
0) (Yarushina & Podladchikov 2015; Räss et al. 2019). For vis-
coplastic deformation, dilation pressure is closely related to the
plastic failure in rocks and corresponds to the peak on the failure
envelope separating compaction cap surface from shear failure line
(Yarushina et al. 2020). The formulations of Pd and ηφ are given in
Appendix A, which depend on porosity, effective pressure and shear
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Table 1. Symbols and parameter values.

Variable name Symbol Value

Porosity φ

Background porositya φ0 0.001,0.01,0.1
Solid density ρs 2
Fluid density ρf 1
Average density ρ̄

Gravitational acceleration g 0,1
Solid velocity Vi

Darcy velocity q D
i

Fluid shear viscosity η f 1
Reference permeability k0 1
Reference bulk viscosity ηφ0 orηc 1
Bulk viscosity ηφ

Solid shear viscosity μs

Deviatoric stress tensor τ ij

Total pressure P̄
Fluid pressure Pf

Dilation pressure Pd

Effective pressure transition zonea λP

Decompaction weakening factora R 100 (1–1000)
Viscosity ratio factora C = ηc

φ0
μs

Permeability exponent np 2–20
Porosity contrast φA 0.5–9
Compaction length δc 1
Characteristic time δt

Characteristic pressure pc

Effective pressure Pe = P̄—Pf

Rheological parameterb Y 2, 1, 0.6
Rheological parameterb p0 2.7,1.35, 0.81
aThese default values are used if not otherwise stated: φ0 = 0.01, R = 100, np = 3, C = 1,
λP= 0.2ρsg�z.
bThese rheological parameters for viscoplastic rheology are described in Appendix A and
used in models for Fig. 9.

stress. With the item Pd in eq. (4), decompaction can occur at pos-
itive effective pressures (Pe > 0) for viscoplastic rocks. Hereafter
we call it ‘viscoplastic rheology’.

For the simple asymmetric rheology that ignores the effects of
shear stresses on the bulk viscosity, we adopt a hyperbolic tangent
formulation of bulk viscosity (Connolly & Podladchikov 1998):

ηφ = ηc
φ0

φ

[
1 + 1

2

(
1

R
− 1

)(
1 + tan h

(
− Pe

λP

))]
, (5)

where ηc (or ηφ0) represents the background/reference bulk viscos-
ity (at φ = φ0 ) at compaction regime, λP defines the transition
zone between the compaction and decompaction and R represents
the factor of bulk viscosity weakening from compaction to decom-
paction. Eq. (5) describes the so-called ‘viscous bilinear rheology.’

To study the effect of different ratios between bulk and shear vis-
cosities, we introduce parameter C (C = ηc

φ0
μs

), which is a property
of the rock that depends on the geometry of the pore network, miner-
alogical composition and grain size (Takei & Katz 2013, Yarushina
et al. 2020). Recent experiments by Sabitova et al. (2021) show that
this parameter lies between 1 and 10 for sedimentary rocks such as
sandstone and limestone. In our models, we assume C = 1 if not
stated otherwise. We can vary C to obtain suitable viscosity ratios
in our models.

For the time evolution of porosity field, we use the mass conser-
vation equation of the form:

∂φ

∂t
= (1 − φ) ∇i Vi (6)

Eqs (1), (3) and (4) represent the Stokes equations for a viscous
fluid. In two-phase models, they are coupled with Darcy law (2) for
porous fluid flow and the mass conservation eq. (6).

Dimension analysis of the equations show that there are three
independent scales:

δc =
√

k0ηc

η f

δt = δcη f

k0�ρg
φ0

pc = �ρgδc (7)

These are known as the compaction length (δc), the compaction
time (δt ) and characteristic compaction pressure (pc). Note that we
include the background porosity φ0 in the timescale, allowing us to
compare the non-dimensional time of wave propagation for models
with different background porosities. The characteristic velocity
scale can be calculated as vc = δc

δt
= k0�ρg

μ f φ0
. These scales help us to

understand the two-phase system and its applications.

3 P S E U D O - T R A N S I E N T
C O N T I N UAT I O N M E T H O D

Pseudo-transient (PT) continuation is a physics-inspired iterative
method that solves the steady-state problem by adding pseudo-
time derivative, through which the steady-state solution is progres-
sively achieved via a pseudo-time stepping. This method is also
widely known as the 2nd Richardson or relaxation method (Frankel
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1950), dynamic relaxation method (Otter et al. 1966; Zhang & Yu
1989) and inertial method (Poliakov et al. 1993). Recently, a general
framework for this type of numerical methods has been developed,
known as ‘PDE acceleration’, which shows great potentials both for
the forward and inverse modeling problems (Calder & Yezzi 2018;
Benyamin et al. 2020). As demonstrated by previous studies, fast
PT solvers usually involve 2nd time-derivatives or ‘damping fac-
tors’ (Frankel 1950; Zhang & Yu 1989; Chen 2009; Benyamin et al.
2020) that enable the iteration number to be linearly scaled with grid
number in one direction. The iteration process mimics the damping
process of the wave equations (dt ∼ dx) instead of the diffusion
process (dt ∼ dx2). With numerical damping and matrix-free imple-
mentation, the PT method can efficiently solve large 3-D non-linear
geoscience problems (Duretz et al. 2019; Räss et al. 2019).

Here in this section, we will describe how the PT solver can be
developed based on physical intuition. We first analyse the general
linear damped wave and identified the best damping parameter for
both single and double damped wave equations. These two sets of
equations involve the field evolution through physical time. We then
demonstrate how to derive the PT solver with a damping scheme
for a simplified system of the two-phase flow equations that ignores
the shear stress, by using the physics of damped waves. This set of
equation involves no physical time evolution, but pseudo-time evo-
lution is added to solve the system. We finally couple our damping
scheme with the existing damping method for the Stokes equation
and form an efficient PT method for the full equations.

3.1 Single damped wave equation

For simplicity, we first consider the propagation of the 1-D damped
linear wave described by the following first-order hyperbolic sys-
tem:⎧⎪⎪⎨
⎪⎪⎩

β
∂ P

∂t
= ∂V

∂x
∂V

∂t
= 1

ρ

∂ P

∂x
− V

τd
,

(8)

where P is the pressure, V is the velocity, β is the compressibility
(the bulk modulus is K = 1/β), ρ is the density and τd is the damping
parameter. Note that elastic deformation is considered here for wave
propagation. This system of equations can be reduced to a single
second-order wave equation:

∂2V

∂t2
= 1

ρβ

∂2V

∂x2
− 1

τd

∂V

∂t
. (9)

From which it becomes clear that the solution of eq. (8) corre-
sponds to waves propagation if τd � 1 and to the diffusion process
for τd � 1. Let us find the optimal parameter τd that leads to the
fastest decay of the velocity field V. The discrete version of the
equation system (8) can be written as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β
Pl+1/2

i − Pl−1/2
i

�t
= V l

i+1/2 − V l
i−1/2

�x

V l+1
i+1/2 − V l

i+1/2

�t
= 1

ρ

Pl+1/2
i+1 − Pl+1/2

i

�x
− 1

τd
V l+1

i+1/2.

(10)

Here we use a conservative staggered space-time grid discretization.
The pressure P is defined at the centre of a grid cell i, and the
velocity V is defined at the side of a grid cell (i ± 1/2), which
can be considered as a ‘flux’ through the grid cell. The temporal
discretization of P corresponds to the half-integer nodes (l + 1/2),
and the temporal discretization of V corresponds to the node integer

l. The von Neumann stability analysis for this scheme suggests
(Alkhimenkov et al. 2021) :

�t ≤ �x
ρβ�x +

√
(ρβ�x)2 + 16ρβτd

2

4τd
. (11)

A more restrictive condition is: �t ≤ �x/Vp , where Vp =
√

1
ρβ

.

According to Fourier analysis, the solution of eq. (9) can be repre-
sented in the form:

W (x, t) =
∞∑

k=1

Qke−λk t sin

(
kπx

L

)
, (12)

where t is time, x is the spatial coordinate, k is the wavenumber,
Qk is the initial amplitude of the waves at wave number k and
λk is the eigenvalue or decay constant. Term L is the 1-D domain
length. The solution of eq. (9) is thus represented by an assembly
of exponentially decaying sine waves with different wavelengths.
Continuous dispersion analysis of a system with the solution in the
form of eq. (12) leads to:

λ2
k + 1

τd
λk + k2π 2

ρβL2
= 0. (13)

This shows that the decay constant λk for anomalies with different
wavelengths depends on the choice of damping parameter τd . Using
the standard formula for the general quadratic equation (aλ2 + bλ +
c = 0) gives the root of eq. (13):

λ1,2 = −b ± √
b2 − 4ac

2a
, a = 1, b = 1

τd
, c = k2π 2

ρβL2
. (14)

With the solution of decay constant λ, we can next plot the decay
rate for each iteration (e−λ�t ) as a function of wavenumbers (k) and
damping parameters �t/τd (Fig. 1a). Fig. 1(a) shows that k = 1
has the worst decay rate among all wavenumbers, suggesting the
optimal damping parameter should be chosen based on k = 1. A
comparison of the numerical solution of eq. (10) with the analytical
solution at k = 1 for different damping parameters shows that the
necessary iteration times to achieve an accuracy of 10–12 perfectly
matches with the analytical solution of the exponential decay pro-
cess (Fig. 1b). The fastest decay rate is achieved when two roots
of eq. (13) are equal (i.e. b2 − 4ac = 0), leading to optimal damp-
ing parameters: τd = L

2πkVp
or d = �t/τd = 2πk

nx
, where nx is

the number of cells in the x-direction).

3.2 The double damped wave equation

We next consider a 1-D scalar double damped linear wave propaga-
tion described by the following first-order hyperbolic system:⎧⎪⎪⎨
⎪⎪⎩

β
∂ P

∂t
= ∂V

∂x
− 1

η
P

ρ
∂V

∂t
= ∂ P

∂x
− V

kη f

.

(15)

This corresponds to the 2nd order partial differential equation for
a damped wave of the form:

ρβ
∂2 P

∂t2
= ∂2 P

∂x2
−

(
β

kη f

+ ρ

η

)
∂ P

∂t
− 1

ηkη f

P. (16)

Versus a simple acoustic wave equation, this system has two
damping terms ( 1

η
P and V

kη f
) that can have physical meaning in

two-phase flow equations. Thus, the task is to choose an optimal
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Figure 1. (a and b) The decay rate for residuals with different wavenumbers corresponding to different damping parameters for single (a) and double (b)
damped wave equations. A total cell number of 100 is used for both cases. A larger absolute value of the decay rate (λ�t)implies a faster the convergence
process. (c and d). A comparison of the numerical and analytical processes via different damping parameters for single (c) and double (d) damped wave
equations. An accuracy of 10–12 is used for both cases in terms of convergence criteria.

ρ and β to have the fastest decay rate, instead of η and kη f . The
discrete version of this system can be written as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β
Pl+1/2

i − Pl−1/2
i

�t
= V l

i+1/2 − V l
i−1/2

�x
− 1

η
Pl+1/2

i

ρ
V l+1

i+1/2 − V l
i+1/2

�t
= Pl+1/2

i+1 − Pl+1/2
i

�x
− 1

kη f

V l+1
i+1/2.

(17)

The continuous dispersion analysis of eq. (15) leads to:

ρβλ2 +
(

β

kη f

+ ρ

η

)
λ + π 2k2

L2
+ 1

ηkη f

= 0. (18)

With ρ = ρdβη/kη f , δc = √
ηkη f and L = Lδ δc, eq. (18) can

be further simplified to:

ρdη
2β2λ2 + (1 + ρd ) ηβλ + π 2k2

Lδ
2

+ 1 = 0. (19)

Again, by using the standard formula for the general quadratic
equation (aλ2 + bλ + c = 0), the roots of eq. (19) are:

λ1,2 = −b ± √
b2 − 4ac

2a
, a = ρdη

2β2, b = (1 + ρd )ηβ,

c = π 2k2

L2
δ

+ 1. (20)

Similar to the case for the single damped wave, the system eq.
(15) has the fastest decay rate (e−λ�t ) when two roots of eq. (19) are
equal (i.e. b2 − 4ac = 0). Thus, the optimal damping parameters
are as follows:

ρ = ρdβη/kη f ; ρd = 2 + d ± √
d2 + 4d

2
; d = 4π 2k2

Lδ
2

. (21)

Notice that δc = √
ηkη f corresponds to the compaction length in eq.

(7) and Lδ is the non-dimensional length of the system. Thus, the
optimal damping parameters depend on both the size of the domain
and material properties.
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3.3 Simple compaction-driven fluid flow equations

To illustrate the application of the PT method to two-phase models,
we begin with a simplified set of equations that includes a hydraulic
equation and a viscous bulk rheology in the following form:

∇i

(
k

η f
(∇i Pe + gi�ρ (1 − φ))

)
= Pe − Pd

(1 − φ) ηφ

∇i q
D
i = Pe − Pd

(1 − φ) ηφ

, (22)

where �ρ = ρs − ρ f . These equations follow from the general
model eqs (1)–(4) (Connolly & Podladchikov 2000, 2007; Yarushina
& Podladchikov 2015) under the assumption that the effect of shear
stresses on compaction and fluid flow is negligible and ∇i P̄ =
−ρt gi = −gi (ρs(1 − φ)+ ρ f φ). In fact, the first equation in (22)
has one unknown (Pe) and can be solved independently, based on
known porosity and permeability fields. The simplest porosity wave
evolution equations are given by combining eq. (22) with eq. (6).

To apply the PT method, we rewrite eq. (22) into another form
that resembles the double damped wave equation (eq. 15), which
leads to:

0 = ∇i q
D
i − Pe − Pd

(1 − ϕ) ηφ

0 =
( k

η f
(∇i Pe + gi�ρ (1 − φ)) − q D

i , (23)

where the unknown Pe and qi
D are coupled together. We can recover

the double damped wave equation (eq. 15) from eq. (23) by adding
pseudo time derivatives in the left-hand sides. This means that the
damping scheme in eq. (17) can be applied directly to solve eq. (23)
by updating Pe and qi

D through pseudo time.
There is more than one damping scheme for every set of equa-

tions. Here we derive another numerical damping formulation to
show the PT method’s diversity and variability. We rewrite eq. (23)
as follows:

fPe = βn
∂ Pe

∂τ
= ∇i q

D
i − d1 (Pe − Pd )

(1 − ϕ) ηφ

fqi = ρn
∂q D

i

∂τ
=

( k

η f
(∇i Pe + gi�ρ (1 − φ)) − d2q D

i . (24)

This step adds a transient time derivative to the left-hand side
and damping factors d1 and d2 to the right-hand side. Here, ρn and
βn are numerical density and compressibility, respectively. Simi-
lar to pseudo time (τ ), these parameters exist only for numerical
reasons and have no physical meaning for the two-phase system.
Understanding pseudo physical space is essential for using the nu-
merical damping scheme and developing specific techniques for
it. The goal is to solve the equation for effective pressure Pe us-
ing pseudo time-stepping, so that both Pe and qi

D become stable
when τ → ∞. The damping parameters are added to attenuate the
wave energy during propagation, which significantly speeds up the
convergence (e.g. Frankel 1950; Räss et al. 2019). Eq. (24) can be
written as one equation for Pe, which has the format of a non-linear
damped wave (see Appendix B). The condition that eq. (24) has the
same Pe solution with eq. (23) is: d1 d2 = 1. However, adding d1

and d2 changed the qi
D solution during the pseudo time-stepping

when d1 �= 1, which needs to be corrected as q D
i = q D

i /d1 for the
true Darcy flux. Similar analysis with the single and double damped
wave equation (Appendix B) indicates that the applicable damping

parameters are:

βn = 1

(1 − φ0) ηc

ρn = η f (1 − φ0)

k0

d1 = −1

2
ρn +

√
1 + 4ρn

2ρn

d2 = 1

d1
. (25)

These values are calculated with the background values of φ0 and
ηc. According to the theory of the acoustic wave, the wave speed
is:

Vp =
√

1

βnρn
=

√
k0ηc

η f
. (26)

This has a similar format of the compaction length (eq. 6), sug-
gesting that the speed of the damped wave in pseudo physical space
equals the compaction length that depends on the permeability, bulk
viscosity and fluid viscosity. As the permeability and bulk viscos-
ity vary in space, the wave speed of the damped wave varies in
space accordingly. As we find, applying a local value of Vp for each
node in the pseudo-time stepping significantly accelerate the con-
vergence. Its effect is analogous to a diagonal pre-conditioner for
matrix-based solvers (Duretz et al. 2019; Räss et al. 2019). Thus,
the pseudo-time stepping is:

�τpe = 1

Xd

min (�xi )

ndimVp

qi
k = qi

k−1 + �τPe fqi
k/ρn

Pe
k = Pe

k−1 + �τPe fPe
k/βn, (27)

where �xi is the cell size in the i directions (i = z in 1-D, x, z in 2-D,
x, y, z in 3-D), and ndim is the spatial dimension (1, 2, 3). We replace
qi

D with qi. Local values of ρn , βn and Vp are applied in eq. (24)
to speed up the convergence. Applying these techniques based on
physical intuition leads to a robust algorithm of the pseudo-transient
solver. The required iteration number scales linearly with numerical
resolution in one direction (e.g. nz node number in the z-direction).

3.4 Full two-phase flow equations

Now we will apply the same technique to derive the pseudo-transient
solver for the full set of governing equations. By adding a transient
time derivative to the force balance eq. (1) and the constitutive eq.
(4), the full equations of the two-phase flow can be written as:

fvi = ∂vi

∂τvi

= ∇ j

(
τ̄i j − P̄δi j

) − gi ρ̄

f P̄ = ∂ P̄

∂τP̄

= − ∇k Vk − Pe − Pd

(1 − ϕ) ηφ

f(Pe) = βn
∂ Pe

∂τ(Pe )
= ∇i q

D
i − d1(Pe − Pd )

(1 − ϕ)ηφ

fqi = ρn
∂q D

i

∂τPe

= k

η f

(∇i Pe − ∇i P̄ − gi ρ f

) − d2q D
i . (28)

For the shear stress, we introduce a numerical bulk viscosity (ηb)
to update it with the pseudo-transient stepping:

τ̄i j = 2μs

(
1

2
(∇iv j + ∇ jvi ) − δi j (

1

3
∇ivi + ηb f P̄ )

)
, (29)
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Physics-inspired pseudo-transient method 7

where fvi , f P̄ , fPe , fqi are the residuals, which will approach zero
during pseudo-transient time-stepping. Note that eq. (29) introduces
a numerical term (ηb f P̄ ) in the shear stress update, but its effect on
shear stress disappears when f P̄ approaches zero. As we find, it
is useful to adjust ηb when the ratio of shear viscosity and bulk
viscosity changes.

The pseudo-time steps for velocity Vi and pressure P̄ are (Duretz
et al. 2019; Räss et al. 2019):

�τv i = 1

Xv

min (�xi )
2

2.1ndimμs (1 + ηb)

�τP̄ = 1

X p

2.1ndimμs (1 + ηb)

max (ni )
, (30)

where �xi and ni are the cell size and number of cells in the i
direction (i = z in 1-D, x, z in 2-D, x, y, z in 3-D); ηb is a constant
for an analogy of numerical bulk viscosity. Similar to Vp, the local
value of μs can be applied in eq. (30) when the shear viscosity varies
in space, as shown in Section 4.2.3, where we consider models with
multiple layers of different physical properties.

The pseudo time-stepping that approach the solution through
iteration for the momentum and mass equations (including stress
update) are:

vi
k = vi

k−1 + �τvi gvi
k

gvi
k = fvi

k +
(

1 − Vn

ni

)
gvi

k−1

P̄k = P̄k−1 + �τP̄ f P̄
k

τ̄ k
i j = 2μs

(
1

2
(∇iv j

k + ∇ jvi
k) − δi j (

1

3
∇ivi

k + ηb f P̄
k )

)
. (31)

Note that damping is applied to the residual of the momentum
equation (fv), for which a fraction of the previous update (gk-1) is
added to the current residual (fk) for the velocity update. This is
different from the direct damping of the effective pressure field (Pe)
in eq. (27), and it can also speed up the convergence. We found
that Vn = π leads to optimal convergence and that there is no need
to apply damping for the total pressure when damping is already
applied to the field of effective pressure and velocity.

Thus, the pseudo-transient continuation with damping schemes
for the full equations are given through a combination of eqs (28–
31). PT stepping is performed until the residual for each equation
( fvi

k, f P̄
k, fPe

k, fqi
k) becomes small enough, that is ‖ f ‖< ε. Just

as the equations couple each other to form full equations for the two-
phase system, the pseudo-transient formulations can also couple
together and form numerical schemes for the full equations. As we
found, the residual of every equation decays exponentially similar
to when they are solved independently. That is, just as the equations
can be coupled physically, the numerical damping schemes can also
be coupled to solve them.

4 N U M E R I C A L E X A M P L E S

This section shows numerical examples and the convergence re-
sults of our PT solver for models with different rock properties. We
consider two different model setups corresponding to either a fluid-
filled reservoir overlain by rock layers with lower porosity (Figs 2a
and b) or a higher-porosity inclusion-like domain in the otherwise
homogeneous rock (Fig. 2c). The porosity of the reservoir is ini-
tialized as φr = φ0(1+ φA), where φ0 is the background porosity,
and φA is the porosity contrast. The porosity contrast φA = 3 in
Figs 2(a) and (b) and is φA = 2 in Fig. 2(c). The corresponding

numerical results for Fig. 2 are presented in Figs 3, 5 and 9. Initial
conditions for our other models are similar to Fig. 2 and are plot-
ted with the models’ results. The boundary conditions indicated in
Fig. 2(c) apply to all 2-D models.

To study fluid flow in different geological environments, we ex-
plore a wide range of parameters in our 1-D and 2-D models. We
first solve the simplified equations that ignore the influence of shear
stresses for 1-D and 2-D models. The effects of background porosity
(φ0), decompaction weakening factor (R), porosity contrast (φA),
permeability exponent (np) and the topography of the initial reser-
voir are explored. These simplified models help explain fluid flow
in deformable porous rocks. We then solve the full equations that
include shear stresses. In addition to previous parameters, we in-
vestigate the role of the ratio between bulk and shear viscosities,
rheology (bi-linear versus viscoplastic), the geometry of the system,
and rock heterogeneity presented via a layered structure for perme-
ability and bulk viscosity. These models can be applied to more
realistic situations where stratified geological layers exist. Finally,
we show the numerical convergence of our PT solver for models
with different parameters.

4.1 Simple compaction-driven fluid flow

4.1.1 1-D porosity wave

In 1-D simulations, we first study how the elongated fluid channels
develop from a high porosity reservoir in rocks with decompaction
weakening using viscous bilinear rheology. The porosity in the reser-
voir is three times higher than the background value (i.e. φA = 3).
The simulation results for three different background porosities
(φ0 = 0.001, φ0 = 0.01, φ0 = 0.1) are presented in Figs 3(a)–
(c). They show that the porosity within the reservoir decreases to
the background value φ0 over time. Porosity distribution within
the entire domain acquires a sharp Gaussian gradient. The porosity
profiles elongate in the propagation direction (vertically upward) in
all three models, leaving a slightly higher porosity when the wave
peaks pass. The maximum porosity in each model is maintained
through time. The two models with small background porosities
(φ0 = 0.001, φ0 = 0.01) show quite similar evolutions as the wave
fronts propagate from z = 5 to 15 after one compaction time, δt,
(orange lines in Figs 3a and b). The propagation in model with
φ0 = 0.1 is noticeably slower (Fig. 3c).

We then vary the decompaction weakening factor R, porosity
contrast (φA) and permeability exponent (np) independently, based
on the model with a background porosity φ0 = 0.01. Figs 3d–e)
shows the porosity profiles at t = δt for models with different R and
φA. Fig. 3(f) shows profiles at t = 0.5 δtfor models with different np.
Without decompaction weakening (R = 1), the fluid accumulates
and forms a localized domain with much higher porosity (up to
φmax = 0.07) than incases with R >> 1. However, upward migra-
tion of this high porosity domain is very slow. With decompaction
weakening (R = 10–1000), fluid accumulation is significantly re-
duced and the porosity profile elongates (Fig. 3d). The wavefront
moves faster and becomes shaper with increasing R. The effects of
porosity contrast (φA) is shown in Fig. 3e). With increasing φA, the
maximum porosity developed by the porosity wave increases and
the wave fronts propagate faster. Large contrasts in porosity gener-
ally lead to much faster and larger porosity waves. Fig. 3(f) shows
the effects of the permeability exponent np on the porosity wave:
The wavefront propagates faster at higher values of np. The speed
of propagation for np = 5 is about three times the speed for np = 3
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8 L.H. Wang et al.

Figure 2. (a) Initial porosity profile for 1-D models with background porosity φ0 = 0.01; (b) initial porosity field for 2-D models with a high-porosity reservoir
(i.e. Section 4.2.1) and (c) initial porosity field and boundary conditions for models with an elliptical inclusion of higher porosity (i.e. Section 4.2.4). A
Gaussian gradient is applied to the porosity profiles for both 1-D models (a) and 2-D models with a flat topography of reservoir (b).

in Fig. 3(f). Meanwhile, the maximum porosity within the porosity
wave decreases slightly with increasing np.

4.1.1 2-D porosity wave

To study the effect of reservoir topography on the develop-
ment/initiation of localized fluid channels, we test the effects of
different curvatures of the reservoir top in 2-D models. The follow-
ing ellipse defines the reservoir curvature:(

x − 5

xa

)2

+ (y − 2)2

16
= 1.

Three different values of xa(8, 16, 32) are used in our simulations
(Figs 4a–c). Higher values of xa lead to a flatter reservoir topog-
raphy. Another model with a completely flat reservoir boundary is
presented for comparison in Fig. 4(d). For xa = 8, all fluids feed into
one main channel in the middle. For xa = 16, two large channels
form in the middle and two small channels form at the sides. For
xa = 32, two large channels form at the sides and one small channel
forms in the middle. With a completely flat topography, channel for-
mation is significantly delayed with no localized channels observed
at t = 0.5 δt; two channels start to form at t = 0.9 δt. These results
suggest that the localized fluid channels, ignited by the topographic
variations in the reservoir, are the natural outcome of flow instability
in the system.

4.2 Full two-phase flow

4.2.1 Conditions for developing fluid channels/flow instability

We next present numerical solutions for the full set of equations
described in Section 2.1, accounting for shear stresses as well as the

pressure load. Previous studies have shown that the flow instability
that forms flow channels develops only under special conditions.
These might be met in situations when the fluid flux is too high to
be accommodated by a pore space without deformation, or when
sedimentation is too rapid versus background Darcy’s flow rate
(Audet et al. 2009; Yarushina & Podladchikov 2015). The results
from the previous section also show that slow upward propagation
of a stable fluid front is an alternative to the fluid flow focusing into
separate channels (Fig. 4d). Here, we investigate the conditions at
which the fluid channels develop from a stable/flat front. For that,
we calculated models with different background porosities φ0 and
shear viscosity (by varying C), assuming a flat reservoir topology
(Fig. 5). By varying C, we also change the ratio between shear
viscosity and bulk viscosity ( μs

ηc
= φ0

C ), which is an important
indicator.

For models with C = 1 (Figs 5a–c), only model with φ0 = 0.001
develops localized fluid channels before the stable flat fluid front
reaches the top. Upon comparing the models in Fig. 5(d) (C = 0.1)
and Fig. 5(a) (C = 1), we can see that localized fluid channels
do not form when the shear viscosity is increased by 10 times for
models with background porosity φ0 = 0.001. Upon comparing
the models in Fig. 5e (C = 10) and Fig. 5b (C = 1), we see that
fluid channels start to form when the shear viscosity is reduced by
10-fold for models with background porosity φ0 = 0.01. Similarly,
fluid channels forms when the shear viscosity is low (C = 100 in
Fig. 5f) but do not form when the shear viscosity is high (C = 1 in
Fig. 5c) for models with φ0 = 0.1. While both background porosity
φ0 and C matter, it is the viscosity ratio μs

ηc
= φ0

C that ultimately
determines whether the fluid channels form or not in these models.
In general, low viscosity ratios promote channel formation, while
large viscosity ratios inhibit the formation of channels. A viscosity
ratio of 10–3 is required for the fast development of localized fluid
channels with np = 3 from a flat reservoir.
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Physics-inspired pseudo-transient method 9

Figure 3. 1-D porosity wave in the simple compaction-driven flow system. (a–c) Time evolution of porosity wave at different background porosity φ0 = 0.001
(a); φ0 = 0.01 (b); φ0 = 0.1 (c). (e–f) Influence of the decompaction weakening factor R (d), porosity contrast φA (e), and permeability exponent np (f) on
the propagation of porosity wave. The decompaction weakening elongates the wave in the propagation direction. The porosity contrast φA and permeability
exponent np control the amplitude and speed of the waves.

4.2.2 Reservoir with surface relief

In Section 4.1.2, we saw that the curvature of the reservoir top affects
the formation and location of fluid channels. Here we investigate
how small scale reliefs of the reservoir top affects the development
of localized fluid channels. These models are run with φ0 = 0.1,
np = 5, φA = 2, and C = 100. First, we consider models with a
single bump of different widths on the otherwise flat surface and
test the influence of the width (Figs 6a, c and e). These results show
that when a single but wide bump is present at the reservoir top,
two separate channels form in the middle of the domain flanked by
two smaller channels that develop slightly later (Fig. 6a). Only one
channel originates from the bump when the width of the bump is
reduced by three (Fig. 6c) or six (Fig. 6e) times. This central channel
is also flanked by two symmetrical channels that develop outside
the bump area. We then consider models with two smaller bumps
that are located at varying distances from each other (Figs 6b, d and

f). Two separate channels start to form at the two bumps that are
present at the top of the reservoir. As the channels develop, however,
they can merge into a single wider channel if the distance between
the bumps is too small to support two channels (Fig. 6b). A bigger
distance between bumps leads to larger drainage area for each of the
channels to grow. Thus, two separate fluid channels develop and do
not merge into one channel in the case with larger distance between
the bumps (Figs 6d and f).

4.2.3 Reservoir with sinusoidal geometry

This section considers the reservoir of the same thickness but with
sinusoidal topography of varying wavelengths (Fig. 7). These mod-
els are calculated with np = 3, R = 100, and φ0 = 0.1. Figs 7(a)–(c)
show how multiple channels develop through time, starting from the
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10 L.H. Wang et al.

Figure 4. Formation of localized channels from reservoirs with different topography. The upper boundary of the reservoir is defined by ellipses with different
curvatures: xa = 8 (a), xa = 16 (b), xa = 32 (c) and flat (xa = inf) (d). The fluid channels develop through the vertical elongation first and then horizontally
focusing/narrowing. The curvature of the reservoir boundary determines where the channel forms through the flow instability in the system. Initial background
porosity is: φ0 = 0.01; porosity contrast is: φA = 1.

sinusoidal crest points (see evolution movie in the Supporting In-
formation). The channels become wider, more diffuse and slower as
the wavelength of a sine curve increases and the curvature of its el-
evated parts decreases (Fig. 7d). Further increase in the wavelength
of sinusoidal reservoir leads to the formation of multiple smaller
channels within a wavelength (Figs 7e and f). Their spacing and size
are mostly controlled by the compaction length, while the location
is somewhat influenced by the discretization. This can be seen from
that channels tend to form in places with sharp topographic gradi-
ents, that is at the flanks of individual horizontal plateaus forming
the sinus. The shear viscosity in the model in Fig. 7(f) is reduced
by ten times, leading to more focused fluid channels with higher
porosity than in Fig. 7(e).

To quantify how the presence of geological layers with differ-
ent material properties influences fluid channel formation, we next
consider a setup where a layer with different viscosities or perme-
abilities is placed in the overburden (Fig. 8). Variations of rock vis-
cosity and permeability lead to changes in the compaction length
and compaction time from layer to layer. Given that the channel
widths are strongly affected by compaction length and the propa-
gation time is scaled to the compaction time, one might expect that
the width of the channels and the speed of propagation would also
change from one layer to another. Indeed, by placing an additional
layer with viscosities (both shear viscosity and bulk viscosity) that

are 10-fold the background viscosity (strong layer), we see that the
channel becomes wider in the strong layer but then resumes its ini-
tial width once it reaches the rock with the background viscosity
(Fig. 8a). Interestingly, some of the fluid ponders underneath the
strong layer (Fig. 8a). On the contrary, the channels become nar-
rower within the weaker layer that has 10-fold smaller viscosities.
However, when the channel finally leaves the weak layer, it gains
much higher porosity than the lower parts of the channel (Fig. 8b).
The overall distances reached by the channels with weak and strong
layers are slightly different from the models in Fig. 7(c). A strong
layer delays fluid propagation, while a weak layer leads to faster fluid
propagation.

Figs 8(c) and (d) show the influence of a layer with lower or
higher permeability than in the background. The permeability of
this layer is reduced by 10-fold and the viscosities do not change in
Fig. 8(c). Thus, fluid channel growth is first arrested, and porosity
within this layer starts to grow through a fluid supply from be-
neath. The porosity above the low-permeable layer is concurrently
reduced. Fluid has enough porosity to enter the low permeability
layer but does not have enough time to move through it as efficiently
as before. Yet, we see that new channels start to grow within the
low-permeable layer getting ready to propagate further. Note that
we consider here a simplified situation when porosity and viscos-
ity of the low-permeable layer are the same as of the surrounding
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Physics-inspired pseudo-transient method 11

Figure 5. Localized versus pervasive fluid flow patterns that develop from a flat reservoir in two-phase models with different combinations of background
porosity and parameter C. (a–c). The evolution of porosity field for models with φ0 = 0.001 (a), φ0 = 0.01 (b) and φ0 = 0.1 (c) with C = 1. (d–f). The
evolution of porosity field for models with different background porosities and C: φ0 = 0.001, C = 0.1 (d), φ0 = 0.01, C = 10 (e), φ0 = 0.1, C = 100 (f). By
varying parameter C, we change the shear viscosity and viscosity ratio μs

ηc
= φ0

C in models with the same background porosity. Effective bulk viscosity ηφ

is defined by eq. (5) with R = 100. No initial bump structure of the reservoir is applied to initiate the channels. Like the simplified equation experiments, the
fluid channels develop through the vertical elongation first and then horizontally focusing.
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12 L.H. Wang et al.

Figure 6. Development of fluid channels from reservoirs with different top surface relief (a) Single square elevation with different widths (3δc, δc, 0.5δc) is
imposed in the middle of the reservoir top; (b) two square elevation/bumps with width of 0.5 are imposed at the top of the reservoir at different distances (0.5δc,
1δc, 2δc) and (c) a single square elevation of different sizes (6δc, 0.5δc) is imposed at the top of the reservoir. Simulations are performed for φ0 = 0.1, np = 5,
φA = 2, C = 0.01.

Figure 7. Fluid channels formed from sinusoidal reservoirs with different wavelengths: (a) short wavelength with a peak number of kw = 4; (b) intermediate
wavelength with a peak number of kw = 4; (c, d) long wavelength with a peak number of kw = 2. Models in (a–c) have the same shear viscosity. Model in (d)
has 10-fold lower shear viscosity than other models. The background porosity is φ0 = 0.1.

rock. When modelling real geological environments, both perme-
ability and viscosity need to be varied alongside with porosity. On
the other hand, the porosity in this layer is significantly decreased
when the permeability of this layer is ten times higher than the
background value (Fig. 8d), including the porosity in the channels.
When the channels pass through this layer and enter the layer above,
the porosity increase significantly and show a higher contrast with
surrounding rocks (Fig. 8d). Note that changing permeability of this
layer also has a significant effect on the porosity evolution in the
layer above. A less permeable layer reduces the fluid supply for the

above layer, resulting in low porosity (Fig. 8c). In contrast, a more
permeable layer increases porosity in the above layer by supplying
more fluid flow to it (Fig. 8d).

4.2.4 Small elliptical fluid-filled inclusion

In this section, we document the results for porosity waves that
originate from a higher-porosity inclusion-like domain in the oth-
erwise homogeneous rock (Fig. 2c). We use two types of rheology
in this section: Two models have the viscous bilinear rheology with
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Figure 8. Development of fluid channel through four different stratified rocks. In these four models, a layer of material has been made ten times stronger
(a); weaker (b); less permeable (c) and more permeable (d). This layer is present in the overburden. The reference bulk viscosity (ηc) or permeability (k0) is
changed by ten times in this layer. The model resolution is 512×128 for this set of models. A higher resolution (1024×256) is used in the model with a weaker
layer for better convergence. Movies that show full evolution of these models can be found in the supplementary material.

Figure 9. Effect of rock rheology on the development of fluid channels. (a) The evolution of porosity field at t = 1 δt, 1.5 δt, 2.6 δt and effective pressure at
t = 2.6 δt (column 4) for a model with viscous bilinear rheology (R = 500). (b) The porosity field evolution at t = 1 δt, 1.5 δt, 2.6 δt and effective pressure at
t = 2.6 δt (column 4) for models with viscoplastic rheology Y = 2. (c and d) Evolution of maximum porosity (c) and depth of max porosity (d) in five models
with two types of rheology. The circle and star lines are for models with viscous bilinear rheology with R factors, while the solid lines are for models with
viscoplastic rheology. In this set of models, the viscosity ratio (μs/ηc) is 0.001 (C = 0.1, φ0 = 0.01), while the effective pressure transition zones (λP ) is 0.01.
(Rass et al. 2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/1/6409131 by U

niversité de Lausanne user on 18 January 2022



14 L.H. Wang et al.

decompaction weakening factor R (100 and 500); The Other three
models have the viscoplastic rheology (Y = 2, 1, 0.6) (Appendix
A). Fig. 9(a) shows fluid channels development in rocks with vis-
cous bilinear rheology at R = 500, which is a reproduction of the
model with the resolution of 128×256 in fig. 5 in Rass et al. 2019.
Fig. 9(b) shows the development of fluid channels in rocks with
the viscoplastic rheology (Y = 2). Fluid channels produced using
these two different types of rheology are very similar. However, the
advantage of the viscoplastic model is that it gives more realistic
predictions for the effective pressure, which is positive everywhere
(Fig. 9b), compared to the negative effective pressure at the channel
fronts in viscous bilinear models (Fig. 9a). It is also clear that the
maximum porosity is generally larger with viscoplastic rheology
than with viscous bilinear rheology (Fig. 9c). The speeds of chan-
nel development in models with the viscoplastic rheology, however,
are between the speeds of the two models with decompaction weak-
ening factor R = 100 and R = 500, as shown in Fig. 9(d).

4.2.5 Effects of different rock properties

To study the development of fluid channels with materials that have
different properties, we next test the effects of permeability ex-
ponents (np), porosity contrast (φA) and decompaction weakening
factor (R). All models consider a flat reservoir with a small bump
(size of 0.5×0.5) to initiate the channel in the middle. The modelling
domain is 10 × 30. Fig. 10(a) shows the initial condition and evo-
lution of porosity waves: A strong fluid channel quickly develops
from the bump, and two small channels develop at its sides later. By
varying the porosity contrast (φA), we can see that the main channels
become stronger and wider with increasing φA. These also develop
slightly faster, as shown in Fig. 10(b). With np = 3, a similar main
channel develops but has a narrower width, while the widths of the
channels increase significantly for models with np = 10 and np = 15,
as shown in Fig. 10(c). As a matter of fact, the channel width in
the model with np = 15 becomes too wide for the side channels
to develop within the model domain (Fig. 10c). Another important
effect of increasing np is that the channel propagates much faster,
as indicated by each model’s time label. It takes t = 5.1δt, 1.7δt,
0.4δt and 0.2δt for models with np = 3, 5, 10 and 15 to reach nearly
the top of the model domain (Figs 10a and c), respectively. The
decompaction weakening R factor also plays an important role in
channel development (Fig. 10d). Without decompaction weakening
(R = 1), no channel develops even with an initial bump. A weak
(low porosity) but wider fluid channel develops with R = 10. With
R = 1000, the fluid channels are faster and stronger than models
with R = 10 and R = 100.

The effects of different parameters can be clearly shown by plot-
ting the evolution of statistical data, such as the maximum porosity
and its locations (Fig. 11). The maximum porosity increases quickly
at the beginning of all models—this growth then, the growth slows
down as indicated by the slope of the line plotted in Fig. 11(a). High
porosity contrast (φA) between the reservoir and the background
leads to much higher maximum porosity, as shown by the dashed
line (Fig. 11a). From the evolution of the location of the maximum
porosity in Fig. 11(b), it is clear that the permeability exponent
(np) plays a dominant role in the speed of channel development.
The speed increases ∼10 times from np = 5 to np = 15. A higher
porosity contrast (φA) increases the speed when the permeability ex-
ponent (np) is fixed. The decompaction factor R also has an effect.
The speed is much lower in the model with R = 10 than in models

with R = 100 and R = 1000. However, little change is observed
when we increase R from 100 to 1000.

4.3 Numerical convergence

In this section, we demonstrate the numerical convergence of our
numerical schemes with different permeability contrasts for both
the simplified decoupled equations and full equations. Extra itera-
tions are always needed for the 1st step, and thus we chose the 2nd
step to show the convergence for each model with different param-
eters. The evolution of the minimum L2 norm among the residuals
( fvi

k, f P̄
k, fPe

k, fqi
k) are plotted in Fig. 12. We run two sets of mod-

els for 1-D simplified equations: (1) np = 5 and 0.5≤ φA ≤ 8; (2)
φA = 0.5 and 3 ≤ np ≤ 20. These models are run until the residuals
reach the machine limits. The residuals converge exponentially in
all models, and the convergence speed is related to the value of np

and φA: A smaller φA or np leads to faster convergence (Figs 12a
and b). It takes approximately nz or 2nz iterations (nz is the cell
number in the vertical direction) to converge to 10–5 for the com-
monly used np (e.g. 3) and φA (e.g. 0.5 or 1). The models with low
and intermediate values of φA(<3) and np (<15) converge to ∼10–5

within 5nz iterations. In fact, these calculations nearly converge to
the machine precision (10–16) within 15nz iterations. For the full
equations, the residuals also have exponential decay trends but with
periodic disturbances, as shown in Figs 12(c) and (d). Versus the
simplified equations, it takes more iterations for low and interme-
diate values of φA and np to converge to the same level (i.e. 10–6).
However, increasing φA or np does not require a significant increase
of the iterations in Figs 12(c) and (d) in contrast to the simplified
equations. This suggests that the iteration solving the coupling of
two sets of equations also help to improve the convergence of the
non-linearity in our PT method.

5 D I S C U S S I O N

5.1 The genesis of fluid channels

Our numerical models allow us to explore the fundamental rea-
sons for generating fluid channels in the two-phase system, from
simplified equations to full equations. First, our 1-D simplified mod-
els confirm that decompaction weakening is essential (Connolly &
Podladchikov 2007; Räss et al. 2019) because it produces verti-
cally elongated porosity profiles (Fig. 3). Fluid can only slowly
penetrate through the background material without decompaction
weakening (R = 1) (Figs 3d and 10d) as reported in previous studies
(e.g. Dohmen et al. 2019). The 2-D simplified models with differ-
ent reservoir topographies show that the geometry of the reservoir
plays an important role in channel initiation. However, fluid chan-
nels can develop without any initial topographic features, mani-
festing the two-phase system’s flow instability. We further explore
this flow instability with the full equations that include the effects
of shear stress (Fig. 5). By comparing models with three different
background porosities, we find flow instability and fluid channels
develop faster and easier with low shear stress in general, although
a high background porosity (φ0 = 0.1) also makes a difference (i.e.
Fig. 5f). In fact, the full equations reduce to the simplified equations
when the shear viscosity approaches zeros. These models help us
also clarify that it the actual ratio between the shear viscosity and
bulk viscosity ( φ0

C ) that matters for the development of flow insta-
bility and fluid channels. A smaller viscosity ratio leads to easier
and faster flow instability development. Therefore, we understand
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Figure 10. Fluid channel development with different permeability exponents (np), porosity contrast (φA) and R factors. (a) The porosity evolution of the model
with np = 5, φA = 0.5 and R = 100. (b) The porosity fields for models with different φA when the porosity wave reaches z = 26. (c) The porosity field for
models with different np that controls the width of the channels and the speed of channel development. (d) The porosity field for models with different R values
that impact whether the localized fluid channels form or not. The model in Fig. 10(a) serves as a reference model; we then varies φA, np and R in the model
sets in Figs 10(b)–(d).

the reason for the locations where fluid channels are initiated: The
flow instability is triggered by the initial topographic features and
forms fluid channels, that are quickened by low shear viscosity. We
further note that models with background porosity φ0 = 0.01 and
φ0 = 0.001 show similar porosity patterns when the same ratio
μs/ηф is applied; while models with φ0 = 0.1 show rather differ-
ent patterns in Fig. 5. This comparison is based on the compaction
timescales scaled with background porosity (eq. 7), thus making
the model time comparable. A similar observation is also found for
1-D models in Fig. 3, suggesting that model results for low porosity
(i.e. φ0 < 0.01) could not mimic the dynamics of fluid flow with
large porosity (i.e. φ0 > = 0.1).

Besides the viscous bilinear rheology, the viscoplastic rheology
that includes a dilation pressure can also produce fluid channels. Us-
ing this rheology, the dilation pressure helps open the pore-space,

requiring less weakening of the bulk viscosity (Yarushina et al.
2020). Figs 9(e) and (d) show that the viscoplastic rheology pro-
duces slightly higher porosity, while channel propagations can be as
fast as the viscous bilinear models with R = 100 or 500. The advan-
tage of viscoplastic rheology is that the negative effective pressure
required for viscous bilinear rheology is no longer inevitable. This
is consistent with the fact that plastic failure occurs when the fluid
pressure is smaller than solid pressure in many situations (Jaeger
et al. 2009). Thus, fluid channel development under a two-phase
flow theory can be applied to many phenomena without negative ef-
fective pressure. Notice this viscoplastic rheology can also produce
negative effective pressure when the rheological parameters are ad-
justed, as might be expected in hot magmatic rocks. Therefore, this
rheology can include the applications of viscous bilinear rheology
and more.
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Figure 11. Evolution of maximum porosity (a) and its vertical location (b) for models with different permeability exponents np, porosity contrasts(φA) and R
factors. These results are for the same sets of models as in Fig. 10.

5.2 Channel width and propagation speed

A wide range of initial conditions and parameters are tested in our
models, which allows us to clarify the factors that control the size
and speed of the channel propagation. First of all, our model do-
main is scaled with the background compaction length that depends
on the background bulk viscosity, permeability and fluid viscosity
(eq. 7). This means that the channel widths and spacing between
channels depend on the background compaction length (Rass et al.
2019). The compaction length might change due to the existence
of a new geological layer, which can be more viscous and less per-
meable. Figs 8(a) and (b) shows that the channels become wider in
a strong layer (high bulk viscosity) and narrower in a weak layer,
suggesting that local variation of bulk viscosity affects the widths
of the local channels. In other words, channel widths change when
the channel penetrates a geological layer with different viscosity.
Figs 8(c) and (d) shows that a geological layer with different perme-
ability can significantly change the channel widths and propagation
speed. The development of the fluid channels is largely restrained
by the low permeability layer but did not completely stop (see sup-
plementary material). Our models find interesting dynamics when
fluid channels meet a different geological layer, including changes in
the channel width and propagation speed. This finding is important
for modelling channel development in a real geological setting that
involves reservoir rock, intraformational rock and caprock (Elenius
et al. 2018).

Based on the length unit defined by background compaction
length, we can evaluate how the rock properties affect the width
and propagation speed of the channels. Shear viscosity alone can
also play a role without changing compaction length, as shown by

the model comparison in Fig. 5. Models with a high shear viscos-
ity (Figs 5d, b and c) have no clear localized channel, indicating
potentially wider channels than the model domain. The fluid chan-
nels narrow down into 2–4 in models with a 10-fold lower shear
viscosity (Figs 5a, e and f). We also noticed that the effects on the
propagation speed are minor. Nevertheless, both the channel width
and propagation speed increase significantly when the permeability
exponent increases from 3 to 15. The channel width increases from
∼ 2 for np = 3 to ∼ 4 for np = 15, while the speed of the channel
propagation increases by ∼25 times (Fig. 10c). This change in the
speed is dominant over other parameters such as φA, R, and initial
anomaly. This finding has important implications for fluid leakage
from the caprock.

Besides the rock properties, our models also show that the widths
of the fluid channels vary due to the initial geometry of the reservoir.
Fig. 4 shows that the initial curvature affects not only the location of
the channels but also the width, strength and propagation speed. The
reservoir feeds into one single strong channel with Xa = 8, while
only two narrow and weak channels are observed for the model
with a flat surface, as shown in Figs 4a) and d). Such variations in
the channel widths are also observed for models with full equations
in Figs 6(a) and (b). These models also show that the dynamics of
one wide topographic feature develop into two separate channels
(Fig. 6a) and two close features develop into one single channel
(Fig. 6b). Models with a sinusoidal reservoir show that reservoir
geometry and discretization play important roles in the channel
widths. Due to the limited resolution, the initial reservoir geometry
is defined by the wavenumber of the sinusoidal function and the
jagged structures from the discretization. A large and intermediate
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Figure 12. The numerical convergence of the proposed pseudo-transient method for 1-D simplified equations (a, c) and 2-D full equations (b, d). We choose
the 2nd step calculation to show the convergence through iterations. The background porosity is 0.01. (a) The convergence for 1-D simplified equations with
different porosity contrasts from φA = 0.5 to φA = 8 times with np = 5. (b) The convergence for a 1-D simplified equations with different permeability
exponents from np = 3 to 20 with φA = 0.5. (c) The convergence for 2-D full equations with different φA values (from 0.5 to 2.5) with np = 5. (d) The
convergence for 2-D full equations with different np (from 3 to 15) with φA = 0.5.

wavenumber (kw = 8 and 4) causes many small topographical fea-
tures to be created close to each other, leading to the merging of the
fluid channels at the peaks of the initial geometry (Figs 7a–c, d).
The model with kw = 4 has much wider but weaker channels than
models with kw = 8. At a small wavenumber (kw = 2), the initial
geometry’s jagged structure is wide enough to develop one or two
channels by itself but does not merge with each other (Figs 7e and f),
thus leading to weak channels. Therefore, one single channel would
be formed when the width of the bump structure in the reservoir

is comparable to or smaller than compaction length, while several
channels might be formed when the bump width is much larger than
the compaction length.

5.3 Physics-inspired numerical techniques

With numerical techniques developed from physical intuition, our
numerical method pushes the performance limits in terms of the
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necessary iteration number. For the simplified equations, we aim to
use as large pseudo step (�τpe) as possible in eq. (27) (i.e. Xd close
to 1) while maintaining stabilization of the iterations (pseudo time-
stepping). By applying local Vp and ρn for every node, we were able
to use Xd close to 1 (e.g. Xd = 1.1) for some calculations. However,
the pseudo time-stepping would still diverge quickly when the per-
meability contrast is large (e.g. high np and φA). This phenomenon
motivates us to apply the minimum �τpe from the neighbourhood
of every node. We found that it is tremendously helpful for the sta-
bilization, as it enables us to use Xd = 1.1 for high permeability
contrast ((1+ φA)np) up to 105. Nevertheless, it is still useful to
use slightly larger Xd values when the resolution is comparably low
for the local permeability contrast. Figs 12(a) and (b) shows the
convergences for np up to 20 when φA = 0.5 and φA up to 8 when
np = 5 under the current resolution. We can use similar techniques
in eq. (30) for the full equations, for example applying local values
for shear viscosity μs . As shear viscosity is constant through time in
our models, this is unnecessary for most of our models, except for
the models with weaker or strong layers in Fig. 8. More numerical
techniques can be developed from the physical intuition of wave
propagation.

For the full equations, we found that the numerical processes
of the two damping schemes couple well with each other to form
a pseudo-transient solver for the two-phase flow system. No sig-
nificant change is required when the two damping schemes are
applied together for the full equations. The simplified equations
help us understand the physics of porosity waves; similarly, the
experience of solving the simplified equations is also useful for
solving the full equations. The same techniques obtained from the
simplified equations can be used directly. Nevertheless, tuning the
parameters (i.e. Xd, Xp, Xv) for better convergence is necessary. For
example, we find it converges much faster when Xd = 2 is used
than Xd = 1.1 sometimes, indicating that Xd = 1.1 is no longer
necessarily optimal for the full equations. Comparing the conver-
gence of simplified and full equations in Fig. 12, it is not surprising
that solving the full equations requires more iterations. However,
we also find that the required iterations for the full equations do
not increase as much as the simplified equations when the per-
meability contrast increases. This is an encouraging finding for
solving the full coupling equations with high non-linearity. There
is still plenty of room to improve since we did not aim to find the
best parameters for each model in Figs 12(c) and (d). Rather, we
show that our method can handle large contrasts and non-linearity.
For example, changing Xp through iterations can gradually acceler-
ate the convergence (see the code for implementation). Adjusting
ηbbased on the magnitude of shear viscosity μs is also helpful
when different shear viscosity values are applied. It requires expe-
rience to find good combinations of parameters and develop spe-
cific techniques, which is inevitable for solving complex non-linear
problems.

The accuracy and performance of the pseudo-transient method
on solving the 2-D/3-D two-phase system have been well demon-
strated upon comparison with a direct method (Rass et al. 2019).
The pseudo-transient solver can solve the equations as accurately as
the direct-iterative solver. It can also scale much better when the to-
tal number of nodes increases, especially for the 3-D problem. Our
study further confirms that the necessary iteration can be reduced to
O(ni) with proper damping schemes, while ni is the number of cells
in the i direction. Therefore, if N is the total number of the nodes,
then the required iterations are O(N), O(N1/2), and O(N1/3) for 1D,
2D, and 3D problems, respectively. The total computation com-
plexity of one time-stepping for 1-D, 2-D and 3-D problems are ∼

O(N2), O(N3/2) and N4/3, respectively. This is especially meaningful
for large 3-D numerical problems.

5.4 Implications for future work

Geological applications of porosity waves usually involve different
material properties for different layers as well as non-linear shear
viscosity. Models with a special layer (a contrast of 10 for perme-
ability and viscosities) show that our method can handle the high
permeability contrast caused by non-linearity as well as the mate-
rial difference by using local values of permeability, bulk viscosity,
and shear viscosity in the pseudo-transient stepping. However, more
work is required to deal with even larger contrast (e.g. permeabil-
ity contrast values of more than 100 or 1000). These would likely
require increasing resolutions according to the local compaction
length and would be useful for studies of the storage and leakage
of the reservoir under the caprock that involves a few orders of
permeability difference. This new viscoplastic rheology allows us
to apply our models directly to geological applications by provid-
ing rheological formulations and parameters based on experimental
data (Yarushina et al. 2020). We expect that modelling results can
match observations better than before, including not only the poros-
ity and permeability fields but also the stress and pressure fields.
Thus, more efforts are needed to study porosity wave behaviour
with the viscoplastic rheology for different geological applications.

Our study shows that PT continuation for the complex coupled
system can be built up from numerical techniques for the simplified
systems. Similar to how the physical equations can couple each
other, the damping schemes can also couple to solve the equations,
as shown in our approach. That is, by developing numerical tech-
niques separately for simple equations, we can further solve the
coupled system with relatively limited modifications. Therefore,
we expect this type of PT method inspired by physics to be applied
to more research fields that require the complex coupled system to
be solved.

6 C O N C LU S I O N

Through numerical theory and examples, this study provides a so-
lution to the two-phase flow problem for both simplified decou-
pled equations and full two-phase flow equations via a matrix-free
pseudo-transient method. With the simplified equation that ignores
shear stress, we explore the effects of background porosity, de-
compaction weakening factors, porosity contrast and permeability
exponents. We found that the decompaction weakening is necessary
to elongate the porosity profile, and permeability exponents play the
dominant role in the speed of wave propagation. With 2-D models
for both simplified equations and full equations, we clarify that lo-
calized fluid channels are the natural outcome of the flow instability
of the two-phase system that has a low ratio (<0.1) between shear
viscosity and bulk viscosity. This is independent of the initial reser-
voir geometry. However, the reservoir’s initial geometry affects the
location of the channels by providing initial structure/irregularity on
which the flow instability can be built. 2-D models for full two-phase
flow equations also confirm the effects of decompaction weaken-
ing and permeability exponents found by simplified models. Scaled
with compaction length, the sizes of the channels are found to de-
pend on other many factors in our models, such as shear viscosity,
permeability exponents and channels numbers. We further test the
effects of a layer with different viscosities and permeabilities and
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find that the sizes and propagation speeds of the channels are ad-
justed accordingly in the layer. We perform numerical models with
the new viscoplatic rheology and show that the negative effective
pressure is not necessary for the porosity waves. These findings
further certify the porosity wave of the two-phase (solid + fluid)
flow system as a promising way to study fluid flow in real geological
settings, such as subsurface reservoirs and caprock.

The physics of damped wave were used to provide a simple
explanation of all the steps involved in the development of a pseudo-
transient method for various types of equations. We show that the
numerical scheme for complex coupled systems can be assembled
by damping schemes for each simple system with little modification.
By performing simulation using different equations, model setups,
and parameters, we also demonstrate the capacity and efficiency of
our pseudo-transient method. Applying local values for the variables
such as permeability, bulk viscosity, shear viscosity in the iteration
processes enable us to speed up the convergence. As we show,
many numerical techniques can be developed and applied based
on the physical intuitions of the wave damping process due to the
simplicity and readability of the code. We encourage the reader to
explore these numerical techniques by using the provided Matlab
codes (https://doi.org/10.5281/zenodo.4790635)
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