
Appendix A. Fastening the insertion heuristic

Masson et al. (2013) proposed a fast feasibility check (FFC) procedure for interdependent routes.

It extends the forward slack time procedure introduced by Savelsbergh (1992). In the VRPTR

case, an additional modeling e↵ort is required to take into account that all WRs depend on each

other (as the same worker can be transported through multiple WRs).

Appendix A.1. Modeling: aggregated nodes

For the vehicle routes, only the entry and exit points of a WR are relevant (as all intermediate

nodes are not visited by the vehicles). Accordingly, we introduce two aggregated nodes for a WR:

one for the drop-o↵ (at the beginning of the WR) and one for the pick-up (at the end of the WR).

These nodes are visited by the vehicles and gather consolidated information about the WR (total

duration and resulting time window).

Let ⌦ =

S

w2W ⌦w be the set of all WRs, where ⌦w represents the ordered set of WRs performed

by worker w 2 W in her/his schedule (i+1 2 ⌦w is directly performed after WR i in the schedule

of worker w, 8i < |⌦w|). w() is the worker associated with , and i() is the position of WR in

the worker’s planning. Furthermore, ⇢() (resp. �()) represents the predecessor (resp. successor)

of in the corresponding worker planning. ⇢() (resp. �()) is ; if is the first (resp. the last)

WR done. [e, l] and p denotes the time window of (to serve all jobs of on time) and the

total processing time (i.e., all processing times, walking times, and waiting times along).

D (resp. P) is the set of all drop-o↵ (resp. pick-up) points. D 2 D (resp. P 2 P) is the drop-o↵

(resp. pick-up) point of . OW ⇢ P (resp. O0
W ⇢ D) represents the set of worker pick-up (resp.

drop-o↵) points at the depot. Moreover, OK (resp. O0
K) denotes the set of the first (resp. the last)

nodes visited by the vehicles. Finally, M = P [D [OK [O0
K denotes the set of all aggregated

nodes for a given solution.

A transportation request arises between the end of a WR and the beginning of the next WR

�(), denoted by (P, D�()). Furthermore, transportation requests are required between the pick-

up at the depot and the drop-o↵ at the beginning of the first WR as well as between the pick-up

in the last WR (of any worker’s planning) and the final drop-o↵ at the depot: (POw , D1) (resp.

(P|!w| , D00w)) for the transportation between the depot (resp. last WR |!w|) and the first WR 1

(resp. the depot).

37

For each v 2 M, k(v) is the route that visits v, and i(v) is the position of v in the route. ⇢(v)

(resp. �(v)) denotes the predecessor (resp. successor) of v in the route. Finally, for each v 2 D[P,

(v) denotes the WR that contains v. Workers’ pick-up and drop-o↵ times are set to be null. Each

v 2 M can be characterized by an associated time window [ev, lv], which corresponds to the time a

car must drop o↵ a worker to have an on-time arrival for the jobs composing (v). For each v 2 D,

we have ev = e(v) and lv = l(v), whereas for each v 2 P, we have lv = 1, and ev depends on the

drop-o↵ time at D(v).

Appendix A.2. Vehicle constraints

A vehicle route is an ordered set of aggregated nodes that must satisfy the following constraints,

where D(v)v2P[OW
(resp. P (v)v2D[00W) designates the drop-o↵ (resp. pick-up) in the pick-up and

drop-o↵ couple. More precisely,D(v) = P⇢((v)), 8v 2 P, andD(v) = P0,w((v)), 8v 2 OW . i=P = 1

(resp. i=D = 1) if i is a pick-up (resp. drop-o↵) aggregated node, and 0 otherwise. Constraints

(A.1) ensure that the nodes of a pick-up and drop-o↵ couple are managed by the same vehicle, and

the pick-up must occur before the drop-o↵. Constraints (A.2) ensure that a vehicle cannot move

without its associated driver by scheduling the driver’s pick-up directly after her/his drop-o↵ in

the vehicle route. Constraints (A.3) ensure that the vehicle capacity q is never exceeded. A set of

routes is feasible if the above constraints are satisfied and if it fulfills the temporal constraints that

are detailed in the next subsection.

k(v) = k(D(v)) and i(v) < i(D(v)), 8v 2 OW [P (A.1)

k(D(v)) = k(P(v)) and i(P(v)) = i(D(v)) + 1, 8v 2 D/ w((v)) is a driver (A.2)

X

v2k
(v=P � v=D) q, 8k 2 K (A.3)

Appendix A.3. Temporal constraints

A solution to the VRPTW is feasible if and only if each of its routes satisfies temporal feasibility.

The temporal constraints are modeled using a Simple Temporal Problem (as described by Dechter

et al. (1991)), for which e�cient algorithms and representations exist in the literature. Temporal

constraints are expressed as follows in Equations (A.4)–(A.6), where hv represents the service time

38

at the aggregated node v 2 M:

h�(v) � hv + ⌧dv,�(v), 8v 2 M\O0
K (A.4)

hP � max{hD , eD}+ p, 8 2 ⌦ (A.5)

hv lv, 8v 2 M (A.6)

Equations (A.4) set the temporal constraints in a route, for which the arrival time at a node depends

on the departure time at the previous node. Equations (A.5) specify the time at which a worker

is available to be picked up after completing a WR. The time at which a worker starts working on

a WR depends on both the drop-o↵ time hD and on the time window eD of the WR. Finally,

Equations (A.6) state that the service time cannot start after the end of the corresponding time

window.

This set of equations can be modeled with a precedence graph, called Gp
, where constraints of type

hu � hv � auv (auv is a real number) represent an arc from u to v with a cost of auv. Node o is

introduced to represent the beginning of the planning horizon, and, for every drop-o↵ point D 2 D,

a virtual node D(dup)
is introduced to get rid of the max function in Equations (A.5). D(dup)

is the

set of duplicated nodes. Equations (A.4) to (A.6) can therefore be rewritten as follows:

h�(v) � hv � ⌧dv,�(v), 8v 2 M\O0
K (A.7)

hP � h
D

(dup)

� p, 8 2 ⌦ (A.8)

h
D

(dup)

� hD � 0, 8 2 ⌦ (A.9)

h
D

(dup)

� ho � ev, 8 2 ⌦ (A.10)

ho � hv � �lv, 8v 2 M (A.11)

hv � 0, 8 2 ⌦ (A.12)

ho = 0 (A.13)

Checking the feasibility of the VRPTR set of temporal constraints is equivalent to showing that

there is no cycle of negative length in the precedence graph. This can be done using the so-called

BFCT algorithm, which has a complexity of O(|M| ⇥ |A0|) (Cherkassky et al. 2009). For any

solution satisfying the temporal constraints, the precedence graph is a direct acyclic graph.

Figure A.8 presents the precedence graph associated with Figure 1 using the above-introduced

notation. In Figure 1, the solution with carpooling and walking contains three WRs, which can be

39

denoted as ⌦ = {1 = {j1},2 = {j2, j3},3 = {j4}}. It involves six pick-up and drop-o↵ couples

denoted as (POw1
, D1), (P1 , D00w1

), (POw2
, D2), (P2 , D00w2

), (POw3
, D3), and (P3 , D00w3

).

o

O1

001

POw1
POw2

D2

D
dup
0

D1P1

Ddup
1

D00w1

002

O2 POw3
D3

Ddup
3

P3

P2
D00w2

D00w3

eO1

e2

�l2

�l001

eO2

�l002

0
⌧d
POw1

,POw2
⌧d
POw2

,D2

⌧d
D2 ,D1

0

⌧d
P1 ,D00w10

0 ⌧d
POw3

,D3

0

⌧d
P3 ,P2

⌧d
P2 ,D00w2

⌧d
D00w2

,D00w30

0p1

0

p2

0 p3

e3

e1

Figure A.8: Precedence graph representing the VRPTR solution of Figure 1. Dotted arcs represent time window
constraints (for the sake of clarity, not all time window constraints are drawn), dashed arcs represent precedence
constraints due to WRs, and both double and normal arcs represent precedence constraints due to the routes. The
order of the nodes in the route must satisfy the constraints in Equations (A.1)–(A.3).

The FFC procedure pre-computes, for each aggregated node v 2 M, the earliest service time

(hv), the latest departure time (�v), and the matrix of waiting times between all aggregated nodes

((�uv)u,v2M). As the precedence graph Gp
represents a feasible solution, it does not contain any

cycle of positive weight; therefore, the longest path is the shortest path in �Gp
, where the arcs of

�Gp
have the opposite weight of the arcs in Gp

. The precedence graph is a direct acyclic graph,

where the shortest paths can be computed in linear time. (�uv)u,v2M is computed as the shortest

paths in the precedence graph, where the arcs are weighted with the waiting time in the solution

at the terminal node of the arc (i.e., the waiting time at node v is equal to max{0, ev � hv}), and
it can be computed in O(n2

). All these shortest paths are computed once, and then the O(n4
)

insertion positions are tested in constant time.

40

