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Abstract

In the classical Vehicle Routing Problem (VRP), it is assumed that each worker moves using an

individually assigned vehicle. Removing this core hypothesis opens the door for a brand new set of

solutions, where workers are seen as transportable resources that can also move without the help of

a vehicle. In this context, motivated by a major European energy provider, we consider a situation

where workers can either walk or drive to reach a job and where carpooling is enabled. In order to

quantify the potential benefits o↵ered by this new framework, a dedicated Variable Neighborhood

Search is proposed to e�ciently tackle the underlying synchronization and precedence constraints

that arise in this extension of the VRP. Considering a set of instances in an urban context, ex-

tensive computational experiments show that, despite conservative scenarios favoring car mobility,

significant savings are achieved when compared to the solutions currently obtained by the involved

company. This innovative formulation allows managers to reduce the size of the vehicle fleet while

keeping the number of workers stable and, surprisingly, decreasing the overall driving distance si-

multaneously.
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1. Introduction

1.1. Industrial context

Transportation in urban areas is increasingly facing new challenges. On the one hand, the system-

atic use of cars produces hazardous impacts on the environment, such as noise, toxic emissions, and

the e↵ects induced by greenhouse gases (Knörr 2008). On the other hand, as highlighted by Jabali

et al. (2012), city centers su↵er from congestion and limited parking space. These phenomena,

which are magnified by low vehicle occupancy rates, decrease the intrinsic e�ciency of car-based

transportation. Consequently, current legislation tends to constrain the use of cars within city

centers either by limiting the number of authorized vehicles or completely banning vehicles in spe-

cific areas, such as pedestrian zones, as highlighted by Parragh and Cordeau (2017). For all these

reasons, reducing the systematic use of cars in urban areas is becoming increasingly important.

Firms that provide on-site services or parcel deliveries are directly concerned by these issues, as a

substantial part of their activities takes place in metropolitan areas.

We focus on the case of a large European energy provider, denoted by EEP (it cannot be named

because of a non-disclosure agreement), that routes technicians to provide on-site services (e.g.,

small maintenance work, consumption evaluations, and consumer-setting upgrades). Every day,

technicians who are not assigned to clients are employed for heavy works on the electricity network.

However, once assigned to on-site services, the workers cannot be re-assigned thereafter to heavy

works, even if they terminate their working day earlier. Indeed, for the heavy works, teams of

technicians are selected for the full day’s work, and the jobs are frequently located outside of the

cities. As a result, idle time arises in the workers’ planning, either at the depot or on their route,

due to the presence of time windows to serve the jobs. As each worker assigned to on-site services

must be employed for the whole working day, EEP’s current practice is to first minimize the number

of technicians necessary to serve all jobs. In a second phase, EEP minimizes the remaining costs

implied by the technicians’ routes (i.e., vehicle fixed costs and total driving distance).

EEP manages thousands of workers in urban areas, who drive more than a million kilometers every

year. In that respect, EEP aims to evaluate the savings potential generated by the use of walking to

reduce the total costs of its routes while also meeting the workers’ expectations. EEP observed that

its technicians often leave their vehicles to perform clustered jobs on foot, even if their planning
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would indicate driving to the next job. EEP also wants to go one step further by evaluating the

savings potential of carpooling (i.e., using the same car to transport multiple workers), to scale

down the size of its fleet and to possibly further reduce the overall driving costs.

Introducing these alternative transportation options obviously presents significant challenges. It is

necessary to build and manage routes that are highly synchronized. Possible waiting times must be

e�ciently managed, as drivers might have to wait for workers to be picked up, and non-motorized

workers might have to wait for drivers to be transported. Competitive solutions must also ensure

that the workers’ productivity remains stable, which could be decreased by the slower walking

speed and the detours imposed by carpooling to drop o↵ and pick up non-motorized technicians.

1.2. Problem description

We consider the problem of routing a set of workers through di↵erent client locations in order to

provide on-site jobs. Each job has a given duration and must be performed in a specific time window

that is agreed upon with the involved client. This problem has garnered considerable interest in the

research community in recent decades and is referred to as the Vehicle Routing Problem (VRP), or

more specifically, as the Vehicle Routing Problem with Time Windows (VRPTW). In the VRPTW,

each worker moves from one job to another by driving an individually assigned car. We propose

a modeling framework that relaxes this assumption, and we consider an extension of the VRPTW

in which workers are allowed to share a vehicle and to choose between walking or driving to reach

their next job. The technicians can be separated from their vehicles and are seen as transportable

resources that can move autonomously. We refer to this extension as the Vehicle Routing Problem

with Transportable Resources (VRPTR), for which a full description of the considered assumptions

is given in Section 3.1. While keeping the number of workers stable compared with EEP’s current

practice (i.e., VRP solutions), we aim at reducing the size of the vehicle fleet and/or the total

driving distance. We allow for the modeling of every situation in which workers have to visit clients

without any delivery or transportation of heavy equipment, making walking a viable option. This

particularly occurs with various types of home services, such as health and elder care, IT support,

household appliance repairs, and security checks.

A toy example is given in Figure 1, which illustrates how a VRPTR solution works. The charac-

teristics of the instance are given in the left part of the figure. Compared with the VRP solution

(middle part of the figure), the VRPTR solution (right part of the figure) provides improved e�-
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ciency: the same number of workers, one car saved, and the total driving distance is reduced by

22.6%.
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(a) Values on the arcs denote the driving time (in minutes); walking is 10 times slower than driving; the
planing horizon is 130 minutes; job durations are 60 minutes for j1 and j4, and 30 minutes for j2 and j3.
(b) and (c) The vehicle path is drawn with a specific line style; walking is represented with a dashed line;
the label of an arc specifies which workers are using it.
(c) Worker w3 is dropped o↵ at j2 by w1 and then walks to j3, where s/he is picked up by w2. w1 (resp w2)
works on j1 (resp. j4) after (resp. before) dropping o↵ (resp. picking up) w3.

Figure 1: Comparison between a VRPTR solution and the corresponding VRP optimal solution.

1.3. Contributions and outline

We develop both a mixed integer linear program (MILP) and a metaheuristic to solve the VRPTR.

The latter uses a dedicated neighborhood structure and a fast insertion mechanism to tackle the

increased complexity resulting from the introduction of walking and carpooling. Whereas the MILP

is able to tackle instances up to 18 customers, the metaheuristic can solve all other instances,

which involve up to 50 jobs. Compared with EEP’s current practice (i.e., one vehicle assigned

to each worker, no walking) on a representative set of instances capturing urban characteristics,

the computational experiments yield an average improvement of 6.5% for the driving distance and

18.4% for the reduction of the vehicle fleet. We show that the introduction of carpooling and walking

is able to generate a simultaneous gain, both in terms of fleet size and total driving distance, in

25% of the considered instances. We highlight and quantify the trade-o↵ that might arise between

removing cars and the resulting total driving distance. Finally, we study the existing relationship

between the achieved gain and the specific instance characteristics.

The remainder of the paper is organized as follows. A literature review is presented in Section 2.
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We formally describe the VRPTR and develop the associated MILP formulation in Section 3. In

Section 4, we describe the proposed metaheuristic. Section 5 presents the computational experi-

ments and the results. Section 6 proposes managerial insights (e.g., quantifying the gains compared

with current practice and understanding the promising configurations for carpooling). Finally, con-

cluding remarks and future research opportunities are presented in Section 7.

2. Literature review

The literature review is structured as follows. We first position the VRPTR with respect to the

existing VRP formulations that also synchronize di↵erent resources (a formal review of VRP with

synchronization constraints can be found in (Drexl 2012)). Next, we describe the solution method-

ologies that have proven to be e�cient for such related problems.

Several studies consider the situation in which drivers and vehicles are allowed to disassemble along

their route. Domı́nguez-Mart́ın et al. (2018) examine a case where vehicles must start and terminate

their route at di↵erent depots, whereas drivers have to come back to their starting depot. As a

consequence, drivers must change vehicles during their route. Similarly, in the Vehicle and Crew

Routing Problem (Lam et al. 2015), a vehicle is driven by di↵erent drivers to maximize its use.

Although these contributions explicitly consider the synchronization between vehicles and workers,

they do not address aspects related to carpooling and walking.

Levy and Bodin (1989) originally introduced the combined used of walking and driving for mail

delivery purposes. It is referred to as Park-and-Loop and was generalized by Ghiani and Laporte

(2001) as the Location-Arc Routing Problem. The postman parks her/his car, visits a subset of jobs,

comes back to the car, and drives to the next customers. In the related contributions, the modeling

di↵ers from ours, as an arc-oriented approach is considered (i.e., workers must visit arcs and not

nodes). A node-oriented approach was later considered by Gussmagg-Pfliegl et al. (2011) for a

similar mail delivery application. Whereas these works acknowledge the advantages of combining

walking and driving to serve on-site jobs, they do not address a potential reduction of the fleet size

through the use of carpooling.

Other extensions of the VRP share a similar structure as Park-and-Loop, in particular when trucks

and trailers can uncouple at specific locations to serve clients that cannot receive a truck paired with

a trailer (thus, a lone truck stands for an on-foot worker, and a truck paired with a trailer stands for
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a worker equipped with a vehicle). Such problems have been introduced as the Partially Accessible

Constrained VRP by Rochat and Semet (1994) and Semet (1995). More recently, this research axis

has received substantial attention under the Truck and Trailer Routing Problem (TTRP) (Chao

2002, Lin et al. 2009) or the Vehicle Routing Problem with Trailers and Transshipments (VRPTT)

(Drexl 2014) formulations. As our contribution is not limited to the introduction of Park-and-Loop

sub-tours in vehicle routes but also involves carpooling, these works cannot be directly applied to

the present situation. Additionally, these formulations di↵er from ours since the motivation for

Park-and-Loop sub-tours di↵ers. In our case, this is due to customer restrictions in the TTRP and

cost reductions in our case. Whereas the locations where the uncoupling of trailers can take place

are limited to specific areas, a car can be parked at any client location in the present case.

In addition to Park-and-Loop aspects, the VRPTR involves the transportation of on-foot workers.

Among these, Lin (2008) considers the synchronization of on-foot couriers with vans to deliver mail.

However, and contrary to our formulation, Lin (2008) does not consider a complete synchronization

of the resources, as on-foot couriers can only walk from the depot to a van or from a van to the

depot. Fikar and Hirsch (2015), in a problem referred to as Home Health Care Sta↵ Scheduling,

addressed the situation where nurses have to visit patients in their homes. Nurses are allowed to

walk but cannot drive a car. When walking is not possible, drivers, who are not permitted to visit

patients, are employed to transport nurses by cars. Hence, the total number of workers (namely,

nurses and drivers) is strictly greater than in the situation where nurses would drive their own cars

(n.b., in the VRPTR, the technicians are both able to drive and perform jobs; hence, a reduction

in the size of the vehicle fleet is achieved without increasing the number of employed workers).

In the context of parcel delivery (more generally, when the on-site presence of technicians is not

mandatory), unmanned vehicles, such as drones (Wohlsen 2014) or robots (Daimler 2017), can be

synchronized with vans to decrease the routing costs. Whereas, in the present case, unmanned

vehicles would not be eligible to perform on-site services, the associated formulations share some

similarities with the VRPTR. Indeed, both situations yield a similar modeling framework, where

autonomous and transportable resources are dropped o↵ and retrieved at di↵erent locations along

the van routes. Although several recent contributions (e.g., (Murray and Chu 2015, Ferrandez et al.

2016, Poikonen et al. 2017, Agatz et al. 2018, Boysen et al. 2018)) have considered such types of

synchronization, various limitations and specific constraints prevent adapting the associated solu-

tion approaches to the present case. Murray and Chu (2015) introduced a formulation called Flying
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Sidekick Traveling Salesman Problem, in which drones can be transported by vans to deliver parcels

at client locations for some parts of their routes. In this situation and typically for contributions

in this specific research domain, several major discrepancies with the present formulation can be

underlined. First, only one location can be visited by the drone between its drop-o↵ and its pick-up.

Second, a single van is considered; hence, the global synchronization aspects that follow from the

possibility of a drone being dropped o↵ and picked up by di↵erent vans is not addressed. Third, the

considered objective di↵ers as its focus is on minimizing the completion time (i.e., time windows

are not considered). Finally, Boysen et al. (2018) assume that robots can wait indefinitely at the

depot or at client locations. Such an assumption precludes its application in the present context,

since the number of workers is limited and their employment is costly.

In the Active Passive Vehicle Routing Problem (APVRP) (Meisel and Kopfer 2014, Tilk et al. 2017),

a set of trailers has to be transported with trucks from loading to unloading locations (i.e., pick-up

and delivery requests). The duration of these operations is long enough to allow the trucks (i.e., the

active transportation resources) to move other trailers (i.e., the passive transportation resources) in

the meantime. Moreover, trailers can be carried by di↵erent vehicles (see (Smilowitz 2006) for an

example of such a practice in drayage operations in the Chicago region). Creating bridges with the

present study, a trailer can be seen as a non-motorized worker that requires transportation between

di↵erent locations. However, the complexity is increased in our problem because the passenger

transportation requests are not fixed a priori and are part of the decision-making process.

Most of the above-cited papers propose an exact formulation for the problem under study, which is

able to solve instances of limited size (e.g., the MILP developed in (Murray and Chu 2015) is able

to tackle instances involving up to 10 customers in a 10-square-mile region). The exact approaches

are often complemented with a two-stage heuristic to find solutions for larger instances, either in

a cluster-first-route-second or in a route-first-cluster-second fashion. The first alternative is aimed

at initially building job clusters that will be visited by the transportable resources alone and then

creating routes for the carrying vehicles to connect the clusters together (Levy and Bodin 1989,

Fikar and Hirsch 2015). The second alternative proposes to first build routes for the carrying

vehicles and then to assign some clients to the transportable resources (Ghiani and Laporte 2001,

Gussmagg-Pfliegl et al. 2011, Murray and Chu 2015). Even though these two approaches are able

to e�ciently improve the quality of the initially generated solutions, they su↵er from being easily

trapped in a local minimum since the decision at the first stage strongly impacts the quality of the
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decisions in the second one.

General metaheuristics based on the ruin and recreate principle have proven to be successful for

various related VRP formulations (Schrimpf et al. 2000). These solution approaches do not su↵er

from the drawbacks of a two-stage methodology, as the decisions on the job clusters and the routing

are made simultaneously. In a routing context, the ruin and recreate principle aims to improve a

solution by iteratively removing and reinserting some jobs (one of the numerous fruitful implemta-

tions is presented in (Pisinger and Ropke 2007)). Known as Large Neighborhood Search (LNS) and

introduced by Shaw (1997), this principle has been the basis of multiple successful contributions in

various domains. In particular, two related metaheuristics are developed in (Derigs et al. 2013) for

the TTRP. They both combine the strength of a descent algorithm for the intensification with the

exploration ability of LNS for the diversification. The authors highlight the benefit of combining a

local search and a collection of neighborhood structures of di↵erent amplitudes, as in LNS.

3. Problem formulation

As the VRPTW is a special case of the VRPTR (where walking is forbidden and the number of

vehicles is equal to the number of workers), the VRPTR can be classified as an NP-Hard problem

(see Cordeau et al. (2007) for overviews of the various VRP characteristics, their associated models,

and their e�cient solution approaches).

3.1. Definition and assumptions

A walking path between a set of jobs is called a walking route (WR). Idle time is the total time that

a worker waits in a solution (either en route or at the depot). Returning to the depot earlier at the

end of the day is considered idle time, as workers are employed for the whole day, and they cannot

be assigned to other tasks once they are back at the depot. For the EEP context, the following

features are taken into account:

• The planning horizon is a day (i.e., the daily working time is upper bounded), for which all

the jobs and travel information are accurately known (static data).

• For each worker, the walking limitations are the maximum daily walking distance (dfM ) and

the maximum allowed walking time between two jobs (⌧ fM ).
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• Vehicles and workers can disassemble and reassemble at any job location (the duration of this

operation is assumed to be null).

• Each vehicle has a single assigned worker, meaning that the workers are separated into two

categories: the drivers and the passengers (drivers have to perform their assigned jobs and to

fulfill the transportation requests of passengers).

• Workers and vehicles start and end their routes at the depot.

• Both driver and passenger workers can walk to reach the next job on their routes. In the

driver case, the return path to her/his car is mandatory (i.e., departure and arrival points of

a WR must coincide), whereas a in the passenger case, departure and arrival points of a WR

can be di↵erent.

• Idling is allowed for both the drivers and the passengers at job locations.

3.2. Graph modeling and variables

Let J = {1, . . . , n} be the set of jobs, K the set of motorized workers (i.e., drivers), and L the set of

non-motorized workers (i.e., passengers). W = K [L denotes the set of all workers. For job j 2 J ,

pj 2 + is its processing time, and (ej , lj) 2 +2 is its time window, consisting of the earliest and

latest possible service times. Between two jobs (i, j) 2 J2, the distance (in km) is given by dij 2 +,

and the driving (resp. walking) time (in minutes) is denoted by ⌧ij 2 + (resp. ⌧̃ij 2 +). c 2
indicates the maximum number of non-motorized workers allowed in a car (in addition to the

motorized worker). Finally, M1 = max
j2J

lj + max
i2J,j2J

⌧ij and M2 = max
j2J

lj + max
j2J

pj + max
i2J,j2J

⌧̃ij are

su�ciently large numbers, which are required for the MILP.

The node set J is duplicated using J+ = {n + 1, . . . , 2n}, where i 2 J and i + n 2 J+ represent

the same physical location, with i 2 {1, · · · , n}. These two sets allow distinguishing the di↵erent

operations taking place at the same physical node (e.g., a motorized worker parks her/his car, starts

a WR, and retrieves her/his car). J (resp. J+) stands for the set of starting and intermediate points

(resp. terminating points) of a WR. As a result, in the optimization model, a motorized worker

starts a WR at j 2 J and finishes it at j + n 2 J+ (three di↵erent times are thus managed:

arrival time, service time, and departure time). V = J [ J+ [ {0, 2n + 1} is the set of all nodes,

where 0 represents the starting depot and 2n + 1 the ending depot. Based on this notation,

A1 = {(i, j) 2 V \{2n+ 1}⇥ V \{0}, such that i 6= j and j 6= i� n for i 2 J+} is the driving arc

set and A2 =
n

(i, j) 2 J ⇥ (J [ J+), such that i 6= j and ⌧̃ij < ⌧̃ fM

o

is the walking arc set.
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We define the variables:

• xkij = 1 if motorized worker k 2 K uses arc (i, j) 2 A1; xkij = 0, otherwise,

• yklij = 1 if non-motorized worker l 2 L is transported by the vehicle associated to motorized

worker k 2 K on arc (i, j) 2 A1; yklij = 0, otherwise,

• zwij = 1 if a worker w 2 W walks on arc (i, j) 2 A2; zwij = 0, otherwise,

• twi denotes the time at which worker w 2 W leaves node i 2 V ,

• si stands for the time at which the service starts at node i 2 J .

Figure 2 illustrates the flow of a motorized worker when walking is involved. It is helpful to

understand the coordination between a motorized worker and her/his vehicle as detailed in the

constraints below.

i 2 J

xk

i,i+n

P

(j,i)2A1

xk

ji

P

(i,j)2A2

zk
ij

(a) Start WR

i 2 J

P
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ji

P
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(b) Intermediate

i 2 J+

P

(j,i)2A2

zk
ji

xk

i�n,i

P

(i,j)2A1

xk

ij

(c) End WR

Dashed (resp. plain) lines denote an edge traveled on foot (resp. with a car).
(a) Shows the arcs activated if motorized worker k 2 K starts a WR in i 2 J .
(b) Shows the arcs activated if i 2 J is an intermediary point of a WR performed by a motorized worker
k 2 K.
(c) Shows the arcs activated if motorized worker k 2 K terminates a WR in i 2 J+.

Figure 2: Di↵erent flow configurations for a WR performed by a motorized worker.

Due to carpooling, and contrary to the standard VRP formulations, a worker can visit a node

without performing the associated job. Indeed, when a non-motorized worker is dropped o↵ at

a node i 2 J , the motorized worker (and potentially other non-motorized workers) stops at node

i, but only the dropped worker performs the associated job. Consequently, with the introduced

notation, a worker w 2 W completes the job at i 2 J if and only if w exits the node on foot

(i.e.,
P

(i,j)2A2
zwij = 1). Figure 3 illustrates the di↵erent node sets and variables for the VRPTR
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solution displayed in Figure 1. In this example, J = {1, 2, 3, 4} and J+ = {5, 6, 7, 8} (e.g., nodes

1 and 5 represent the same physical node j1), and node 0 (resp. node 9) represents the starting

(resp. ending) depot.

1 5

2 6 3 7

4 8

0

9

x10,2 y1,30,2

z32,3
z33,7

x12,1

x11,5

z11,5

x15,9 x20,4

x24,8

z24,8

x24,8

x27,9 y2,37,9

Figure 3: Modeling of the VRPTR solution displayed in Figure 1 using the introduced sets and variables

.

3.3. Mathematical formulation

We propose a MILP model for the VRPTR, where the numbers of both the involved workers and

vehicles are given as inputs. More precisely, we fix the number of workers to the optimal value

found when all workers are motorized. The costs associated with worker daily wages hence remain

the same in the VRPTR solutions and in the corresponding optimal VRP solutions. To reduce the

number of vehicles, the MILP is then launched sequentially, every time with one vehicle less, until

no feasible solution can be found (i.e., a sequence of instances is thus generated in this way). The

trade-o↵ that appears between the size of the employed vehicle fleet and the total driving distance

is discussed in Section 6.1.2.

For a fixed number of workers and a given vehicle fleet, Objective (1) minimizes the total driving

distance (which constitutes the remaining transportation costs):

minimize
X

(i,j)2A1

X

k2K
dij · xkij (1)
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Constraints for workers and vehicles flows.

X

(i,j)2A2

X

w2W
zwij = 1, i 2 J (2)

X

(i,j)2A2

dij · zwij  dfM , w 2 W (3)

X

(j,i)2A1

xkji =
X

(i,j)2A1

xkij , i 2 J [ J+, k 2 K (4)

X

(i,j)2A2

zkij 
X

(j,i)2A2

zkji +
1

2

0

@

X

(j,i)2A1

xkji + xki,i+n

1

A , i 2 J , k 2 K (5)

X

(j,i)2A2

zkji +
X

(j,i)2A1

xkji  1, i 2 J , k 2 K (6)

X

(j,i)2A2

zkji = xki�n,i, i 2 J+, k 2 K (7)

X

(i,j)2A1

xkij  1, i 2 V , k 2 K (8)

X

(i,j)2A2

zwij  1, i 2 J , w 2 W (9)

X

i2V
xk0i =

X

i2V
xki,2n+1, k 2 K (10)

Constraints (2) ensure that all the jobs are processed. Note that some nodes in J+ might not be

visited, as all jobs do not terminate a WR (e.g., see node 6 in Figure 3). Constraints (3) define

an upper bound on the total daily walking distance of a worker (valid for both motorized and

non-motorized workers). Constraints (4) ensure that vehicles arriving at a node ultimately exit

the node. Constraints (5) impose that a motorized worker leaving i 2 J by walking must formerly

arrive at this node either by walking or by car (see Figure 2 (a, b)). Constraints (6) forbid a

motorized worker from arriving both by car and by walking at i 2 J . Constraints (7) state that

a motorized worker walking to i 2 J+ has her/his car waiting for her/him at i (see Figure 2 (c)).

Constraints (8) and (9) forbid a worker (motorized or non-motorized) from using two di↵erent arcs

simultaneously. Constraints (10) state that every motorized worker who leaves the depot has to

come back to it in a single trip.
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Specific constraints for non-motorized workers:

X

k2K

X

(j,i)2A1

yklji +
X

(j,i)2A2

zlji =
X

k2K

X

(i,j)2A1

yklij +
X

(i,j)2A2

zlij , i 2 J , l 2 L (11)

X

k2K

X

(i,j)2A1

yklij +
X

(i,j)2A2

zlij  1, i 2 J , l 2 L (12)

X

k2K

X

(j,i)2A1

yklji +
X

(j,i)2A2

zlji =
X

k2J

X

(i,j)2A1

yklij , i 2 J+, l 2 L (13)

X

k2K

X

i2V
ykl0i =

X

k2K

X

i2V
ykli,2n+1, l 2 L (14)

X

(j,i)2A2

zwji 
X

(i,j)2A2

zwij , i 2 J , w 2 W (15)

X

l2L
yklij  c · xkij , (i, j) 2 A1, k 2 K (16)

X

(j,i)2A1

yklji  1, i 2 V , l 2 L, k 2 K (17)

Constraints (11) ensure that a non-motorized worker arriving at node i 2 J (either by walking or

by car) ultimately exits the node. Constraints (12) state that a non-motorized worker cannot use

the two di↵erent transportation modes (i.e., walking and driving) to leave a node. Constraints (13)

force any non-motorized worker arriving at a node i 2 J+ to exit the node by car. Constraints (14)

state that every non-motorized worker who leaves the depot has to come back to it in a single trip.

Constraints (15) ensure that a worker arriving by walking at i 2 J exits by walking. Constraints

(16) couple non-motorized worker transportation and motorized worker routes. Such constraints

are also considered in the APVRP (see (Meisel and Kopfer 2014)). Constraints (17) forbid a worker

from using two di↵erent arcs arriving at the same node.

Time constraints :

tlj � tki + ⌧ij �M1 · (1� yklij ), (i, j) 2 A1, k 2 K, l 2 L (18)

tkj � tki + ⌧ij �M1 · (1� xkij), (i, j) 2 A1, k 2 K (19)

twj � si + pi + ⌧̃ij �M2 · (1� zwij), (i, j) 2 A2, w 2 W (20)

si � twi �M3 · (1�
X

(i,j)2A2

zwij), i 2 J , w 2 W (21)

tki � tli �M3 · (1�
X

(i,j)2A1

yklij ), i 2 J+, k 2 K, l 2 L (22)

li � si � ei, i 2 J (23)

l0 � tw0 � e0, w 2 W (24)
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For each non-motorized worker l 2 L, constraints (18) set the arrival time at j 2 V after being

transported by motorized worker k 2 K using arc (i, j) 2 A1. Constraints (19) define the arrival

time at j 2 V of motorized worker k 2 K using arc (i, j) 2 A1. Constraints (20) set the arrival

time at j 2 J [J+ for worker w 2 W after processing job i 2 J and walking thereafter. Constraints

(21) impose that the service time of job i 2 J takes place after the arrival time of the worker at

that node. Constraints (22) impose that a motorized worker can only leave node i 2 J+ if all the

non-motorized workers to be transported by her/him have arrived at the node. Constraints (23)

impose that the service time of each job must belong to the associated time window. Constraints

(24) impose that all workers leave and come back to the depot within the regulatory hours.

4. Methodology

This section starts by describing the general principles of the proposed Variable Neighborhood

Search (VNS) and the reasons why it is expected to provide good results for the VRPTR. Next, we

present a dedicated insertion heuristic that helps to specifically manage walking and carpooling.

Finally, after highlighting the complexity associated with searching for the best insertion position

for a job in a VRPTR solution, we introduce an algorithm to speed up this procedure, which is

then employed as a key procedure of our VNS.

4.1. VNS: motivation and general principles

To tackle the considered problem, we propose a VNS (Mladenović and Hansen 1997) that combines

a large neighborhood structure Nq (it first removes q > 1 jobs from the solution and then reinserts

them sequentially) and a local search (LS). On the one hand, the role of the LNS component is to

diversify the search (i.e., explore new parts of the solution space). For this purpose, it is mandatory

to consider large neighborhoods to tackle the VRPTR, as the presence of WRs is responsible for

trapping the search in local minima. More precisely, a WR synchronizes multiple workers (i.e., the

one that is dropped, the driver that brings her/him at the beginning of the WR, and the driver

that picks her/him up at the end of it). Unless all the jobs composing such a WR are removed

from the solution, the removed jobs tend to be reinserted at the same position in the same WR.

The exploration capability of Nq would thus be poor for small values of q. On the other hand, and

in contrast with the LNS component of VNS, the role of LS is to intensify the search in promising

regions of the solution space. For this purpose, small (in terms of the modification of the solution
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structure) but e�cient (i.e., it should be able to favorably modify the solution value) moves should

be performed iteratively on the incumbent solution. Unsurprisingly, Derigs et al. (2013) (for the

TTRP) and Meisel and Kopfer (2014) (for the APVRP) have shown that combining a LNS and a LS

outperforms the use of a LNS only. We have confirmed this observation by performing preliminary

experiments on our instances.

A generic version of the VNS is given in Algorithm 1. It starts from an initial solution s and

considers a collection of neighborhood structuresN = {N1, . . . ,Nqmax} that are ranked according to

their strength for modifying a solution (i.e., Nq modifies the structure of the involved solution more

than Nq�1). Section 4.2 details the dedicated algorithm that is used to explore the neighborhood

Nq.

The implemented LS is a descent algorithm based on relocate moves. Formally, at each step, a job

is removed from the solution and reinserted at the best possible location, with or without involving

additional walking. As long as the generated neighbor solution sneighbor outperforms the current

solution s, the new current solution immediately becomes sneighbor. The process stops when the

current solution cannot be improved further (i.e., all jobs of s have been tested). More refined LS

algorithms (e.g., a tabu search for which it is forbidden to insert a job in some positions) were

tested, but they did not yield better results.

In order to facilitate the exploration of the solution space associated with the VRPTR, constraints

(2), which guarantee that all jobs are visited, are relaxed (i.e., removed from the constraints and

penalized in the objective function with a penalty parameter  ). Following this, for each solution

s = {x, y, z}, d(s) = P

k2K

P

(i,j)2A1

dij ·xkij is the overall driving distance. J in(s) = {j 2 J | P

(j,i)2A2

zji =

1} is the set of jobs that are served in s, and Jout(s) = J\J in(s) is the set of unserved jobs in s.

Objective (1) thus becomes as shown below, where  is chosen su�ciently large to ensure that for

the two solutions s and s0, if |Jout(s)| < |Jout(s0)|, then c(s) < c(s0), with:

c(s) = d(s) +  · | Jout(s) | (25)

4.2. VNS: shaking phase

Neighborhood Nq is explored by means of an LNS-type procedure, based on the sequential use of

a removal heuristic (Section 4.2.1) and an insertion heuristic (Section 4.2.2).
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Algorithm 1 Variable Neighborhood Search (VNS)

Input: n
L

, q
max

, K, W .

Generate an initial solution s with |K| vehicles and |W | workers.
Set q = 1.

While no stopping condition is met, do

(1) Shaking: randomly generate n
L

(parameter) solutions inN
q

(s), and let s0 be the best of these solutions.

(2) Local search (LS): apply the local search on s0, and let s00 be the resulting solution.

(3) Move or not: if s00 is better than s, move there (i.e., set s = s00), and continue the search with N1

(i.e., set q = 1); otherwise set q = q + 1, but if q > q
max

, set q = 1 (i.e., start a new research cycle).

4.2.1. Removal heuristic

The removal heuristic aims at dropping jobs that currently block the search process in a local

minimum. We consider here the related removal heuristic (RRH) proposed by Shaw (1998) and

adapt it for the VRPTR. The general idea is that it is likely to be easier to reinsert removed

jobs that share some similarities. The relatedness function R(i, j) indicates how two jobs i and j

are similar. To that aim, some parameters are introduced. (↵,�, �, �, ✏) are positive weights, and

wr(i, j) = 1 if i and j are served in the same WR; wr(i, j) = 0 otherwise. ki=kj = 1 if i and j are

served in the same route; ki=kj = 0 otherwise. This relatedness function takes into account the

geographical proximity (↵ · dij), the similarity in service time (� · |hi � hj |), the similarity in time

windows (� · |li � lj |), and the presence in common WRs (� · (1 � wr(i, j))) and common routes

(✏ · (1� ki=kj )). The smaller R(i, j) is, the greater i and j are related:

R(i, j) = ↵ · dij + � · |hi � hj |+ � · |li � lj |+ � · (1�wr(i, j)) + ✏ · (1� ki=kj ) (26)

The first removed job is randomly selected in J in(s). Then, LNR designates the ranked list of

non-removed jobs. The relatedness of a non-removed job i is computed according to one of the

removed jobs j (that is randomly selected, as proposed in other studies considering related removal,

e.g., (Ropke and Pisinger 2006)). Next, as long as q removals have not been performed, the job

LNR[by⇢ · |J in(s)|c] is removed from the solution. y is randomly generated in [0, 1], and ⇢ 2 [0, 1]

is a parameter that calibrates the degree of randomness of the removal heuristic (⇢ = 1, jobs are

randomly removed; ⇢ = 0, the most related job is removed at each step).
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4.2.2. Insertion heuristic

Before introducing the proposed insertion heuristic, we start by describing the drawbacks that best-

insertion heuristics (BIHs), which is one of the most frequently used insertion components of the

LNS (e.g., (Ropke and Pisinger 2006, Masson et al. 2014, Grangier et al. 2016)), have in the present

situation. The BIH inserts first the job that minimizes the insertion cost (i.e., the additional driving

distance in the present case). The BIH is ine�cient in the VRPTR context because it either favors

(a) insertions involving walking only or (b) insertions in a driver’s planning. For (a), it follows

from the fact that walking does not increase the driving distance. For (b), moving a driver to a

job only requires one detour with her/his assigned car, whereas assigning this job to a passenger

requires two detours: one for the drop-o↵ and one for the pick-up. First, these drawbacks limit

the diversification ability of the insertion heuristic. Second, unbalanced schedules are created for

the workers because more jobs are assigned to drivers than to passengers, which finally results in

assigning the latest considered jobs to the passengers (which are the most di�cult resources to

move). For all these reasons, we propose below an insertion heuristic capable of removing these

two drawbacks due to carpooling and walking.

We propose a Random Worker Best-Insertion (RWBI) heuristic, the pseudo-code of which is given

in Algorithm 2. At each step of the RWBI, a worker is first randomly chosen, and then a non-

dominated insertion is performed. An insertion is said to be non-dominated if no other insertion

has a better performance, according to both the walking distance and the insertion cost. Randomly

selecting the worker that will serve the next job helps in overcoming the problem of over-insertions

in drivers’ planning. Furthermore, choosing a non-dominated insertion position allows for e�ciently

managing the amount of walking time in the solution. On the one hand, walking seems favorable,

as it does not contribute cost-wise to the objective function. Additionally, the more the passengers

are walking, the less the drivers are used for transporting the passengers, and the more time they

can allocate to perform jobs themselves. However, on the other hand, walking directly reduces the

workers’ availability and thus augments the likelihood of having unserved jobs that will remain

at the end of the shaking phase. During the RWBI, the jobs are inserted without walking in the

drivers’ routes. This maximizes the likelihood of getting a feasible and non-saturated solution at the

end of the diversification step. Walking is added to the drivers’ planning during the intensification

step (i.e., LS).
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Algorithm 2 Random Worker Best Insertion heuristic (RWBI)

Input: s

Set Jout(s) as the set of unserved jobs in s.

While Jout(s) 6= ;, do
(1) Compute the set W av of available workers.

(2) Select a worker w 2 W av randomly.

(3) Randomly choose a non-dominated insertion from Jout in w.

If no feasible insertion is found, change w or stop RWBI if all workers have been tested.

Else: proceed the insertion and update Jout(s).

4.3. Complexity of an insertion

The best-insertion move is the core component of both RWBI and LS. This section shows that find-

ing the best insertion position for a job in a solution involving carpooling requires O(n5) feasibility

tests. For the VRP, it only requires O(n) of such tests.

All the insertion positions are greedily tested to find the cheapest one. We consider the insertion of

job j 2 Jout(s) to a non-motorized worker route (n jobs are inserted in the solution). In this case,

we therefore need to transport this worker from its previous WR to j, and from j to its next WR

(after the job has been processed). This leads to the creation of two new transportation requests

(each one composed of a pick-up and a delivery) that have to be inserted in the driver routes. As

a result, four nodes must be inserted into the solution, and accordingly, the number of feasibility

tests is in O(n4). The number of insertion positions (between two WRs) for this non-motorized

worker is proportional to the number of jobs in the solution, and therefore the total number of

required tests grows to O(n5). Note that removing a job from the route of a non-motorized worker

is also a complex task, as a transportation request from her/his previous WR to her/his next WR

has to be created.

4.4. Fastening the insertion phase

In addition to the significantly larger number of tests to be performed, proving the feasibility of an

insertion is a more complex task for the VRPTR than for the VRP. First, we need to check that

the induced delay after the insertion does not violate future time windows. As all routes can be

interconnected, it is not su�cient to only recompute the concerned route; rather the whole solution

may have to be updated. Second, when assigning a job to a non-motorized worker, four nodes must
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be inserted into the solution (see Section 4.3). Therefore, the solution must be correctly updated

four times (once after each node insertion) when checking the overall feasibility of the insertion.

To avoid having to recompute the whole solution after each of the four insertions, we propose a

fast insertion algorithm based on a precedence graph that captures all the temporal constraints.

Masson et al. (2014) introduced the same type of graph structure for a vehicle routing problem in

which transfers are allowed to transport persons. Each physical node in the real network has its

associated node in the precedence graph. For each node v in this graph, it is possible to compute

the earliest arrival time hv and the latest departure time �v (i.e., leaving v after this time would

lead to a violation of a future time window) and the waiting time matrix � between all pair of

nodes. For a driver, waiting at a node is either due to an early arrival before the start of a time

window or to the later arrival of a non-motorized worker that needs to be transported further. The

computation of these values is done in O(n2). Appendix A shows the construction of the precedence

graph and provides details on the computation of hv, �v and � (Cherkassky et al. 2009).

i1 + 1 denotes the successor node of i1 in route k1. eD1 (resp. lD1) is the earliest start time of

the WR starting at node D1 (resp. latest arrival time at the WR starting at D1 to serve all jobs

of the WR on time). pD1 is the processing time of the WR starting at D1. After proceeding

with an insertion in the graph, for node v in the precedence graph, h̄v is the new arrival time and

�v = max{h̄v � hv, 0} denotes the delay induced in v.

Based on these notations, Algorithm 3 tests in constant time whether assigning a job to a non-

motorized worker at a given position is feasible. More precisely, the proposed algorithm contains a

specific feasibility check that corresponds to the precedence constraints arising between the WRs

performed by a same worker. Algorithm 3 details the most complex situation when four nodes

(namely (P1, D1) and (P2, D2), corresponding to the two new transportation requests created for

the non-motorized worker) are inserted into positions (i1, j1) (resp. (i2, j2)) in route k1 (resp. k2).

After inserting any of the four nodes, the induced delay at any other node is computed in constant

time. For this purpose, the delay after each insertion is reduced by the smallest waiting time

between the predecessor and successor nodes. If the delay does not exceed the latest departure

time of the successor node, all other jobs will still be served within their time window, and the four

nodes remaining to be inserted are tested. If this is not so, the insertion position is determined to

be unfeasible. Experiments have shown that using this fast feasibility check procedure can reduce

the computation time of the proposed VNS by 95%.
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Algorithm 3 Algorithm for testing the feasibility of the insertion of (P1, D1) and (P2, D2) after
i1, j1, i2, j2, respectively.

Evaluate the insertion of P1:

• set h̄
P1 = max{e

P1 , hi1 + ⌧
i1,P1} , if h̄

P1 > l
P1 return FALSE.

• set h̄
i1+1 = h

P1 + ⌧d
P1,i1+1 , if h̄

i1+1 > �
i1+1 return FALSE.

Evaluate the insertion of D1:

• set h̄
j1 = h

j1 +max{�
i1+1 � ST

i1+1,j1 , 0}, set h̄
D1 = max{h

j1 + ⌧
j1,D1 , eD1}, , if h̄D1 > l

D1 return

FALSE.

• set h̄
j1+1 = h̄

D1 + ⌧
D1,j1+1 , if h̄

j1+1 > �
j1+1 return FALSE.

Evaluate the insertion of P2:

• set h̄
i2 = h

i2 +max{�
i1+1�ST

i1+1,i2 , �j1+1�ST
j1+1,i2 , 0} and set h̄

P2 = max{h
i2 +⌧i2,P2 , hD1 +p

D1}
.

• set h̄
�(i2) = h

P2 + ⌧
P1,i2+1 , if h̄

�(i2) > �
�(i2) return FALSE.

Evaluate the insertion of D2:

• set h̄
j2 = h

j2 +max{�
i1+1 � ST

i1+1,j2 , �j1+1 � ST
j1+1,j2 , �i2+1 � ST

i2+1,j2 , 0}, set h̄
D2 = h̄

j2 + ⌧d
j2,D2

,

if h̄
D2 > l

D2 return FALSE.

• set P3 as the pick-up at the end of WR D2, if max{h̄
D2 , eD2}+ p

D2 > �
P3 return FALSE.

return TRUE.

5. Computational experiments

We start by describing the considered set of benchmark instances in Section 5.1. Section 5.2

introduces some notation needed to present the numerical experiments as well as the considered

routing configurations. Section 5.3 presents the results of the MILP, whereas Section 5.4 analyzes

the performance of the proposed VNS. Finally, Section 5.5 gives the results of the VNS for the

introduced set of instances.

The MILP and the VNS have been coded in C++. The MILP is solved with CPLEX 12.4 (called

with the Concert Technology). Computations were performed on a 2.2 GHz Intel Core i7 with 16

Go 1600 MHz DDR3 RAM. In Algorithm 1, the parameters qmax and nL were tuned to 30% and

10 respectively. In preliminary experiments, values were tested in [10%, 50%] for qmax and in [1, 15]

for nL.
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5.1. Instances

The VRPTR is a new problem proposed by company EEP for which no benchmark instance exists

in the literature. Focusing on urban contexts, a set of instances has been generated according to

the real parameter distributions provided by EEP. The job locations are uniformly distributed in a

square grid of 10 km by 10 km. The Euclidean metric is used to compute the distance between the

jobs. As highlighted by Boysen et al. (2018), using Euclidean distances ensures that the triangle

inequality is satisfied for both walking and driving. The driving speed is 30 km/h and the walking

speed is 4 km/h. The job duration ranges between 20 and 35 minutes (uniformly distributed). The

maximum walking time ⌧ fM to reach a job on foot is 15 minutes (i.e., 1 km), and the maximum

walking distance dfM per day and per worker is 8 km (i.e., 2 hours). The duration of the working

day is 7 hours, from 8 am to 3 pm. The depot is located at the center of the considered urban area.

Instances with n 2 {20, 30, 40, 50} are considered. Such instance sizes allow for comparing our

results with VRP optimal solutions and are in line with the existing literature considering the

en route synchronization of transportable resources (e.g., Boysen et al. (2018) solve real-world

instances for up to 40 customers). In the present study, the same distance matrix is used for

both walking and driving. This yields the obtained results to be a lower bound on the ones that

would be obtained when walking implies shorter distances than driving (e.g., when vehicles would be

constrained by one-way streets or in the presence of pedestrian walkways). Although other distance

matrices could be alternatively considered, preliminary experiments have shown that similar results

are found when the Manhattan metric is used, but for a slightly reduced grid size compared to the

Euclidean case considered here. While the Manhattan distance could decrease the walking potential

of the instances (as the distances between the jobs would increase by a factor lying in [1,
p
2]), the

walking potential (as introduced in Section 6.2.1) of the considered instances is in line with EEP’s

field observations when using the Euclidean metric.

Three service levels are envisioned by EEP. The smaller the time window, the shorter the mandatory

availability for the involved client and, hence, the better the service level. Three types of time

window are considered: all day (i.e., each job can be served in the [8 am, 3 pm] time window),

half day (i.e., each job is associated to either the [8 am, 11:30 am] or the [11:30 am, 3 pm] time

windows), and quarter day (i.e., each job is associated with one of the following time windows:

[8 am, 9:45 am], [9:45 am, 11:30 am], [11:30 am, 1:15 pm], [1:15 pm, 3 pm]). We consider three

types of instances, each of them representing one single envisioned service level. The time window

21



assigned with each job is uniformly chosen among the possible alternatives, describing the clients’

preferences.

An instance is referred to as “n TW i”, where n stands for the number of jobs, TW represents the

size of the used time window (A, H, and Q correspond, respectively, to all day, half day, and quarter

day), i characterizes the instance identifier, and n TW denotes the set of all instances of size n

and time window size TW . 10 instances have been generated for each n and each TW , leading to

a total of 120 instances.

5.2. Notation and considered configurations

All of the 120 instances have been solved to optimality for the VRP configuration. For this purpose,

we have used the algorithm proposed by Desaulniers et al. (2008), which is acknowledged to be one

of the most e�cient algorithms for solving the VRP (Baldacci et al. 2012). By assigning appropriate

weights to the number of workers used in the solution, Desaulniers et al. (2008) first minimize the

number of employed workers and then minimize the total traveled distance. Accordingly, we know

the associated smallest number of workers |W ?| required to serve all jobs. In the following, we

consider di↵erent configurations
⇣

P
|K|
a

⌘

, where |K| designates the number of used vehicles and

a 2 {walk, no walk} indicates whether or not walking is allowed. d
⇣

P
|K|
a

⌘

(resp. d?
⇣

P
|K|
a

⌘

)

gives the total driving distance for configuration (P |K|
a ) found by VNS (resp. the total driving

distance for the optimal solution). All configurations are solved with |W ?| workers (fixed by the

VRP optimal solution).

The following five
⇣

P
|K|
a

⌘

are considered:

•
⇣

P
|W ?|
no walk

⌘

: all workers are motorized, but they are not allowed to walk (i.e., VRP);

•
⇣

P
|W ?|
walk

⌘

: all workers are motorized, and they are allowed to walk (i.e., Park-and-Loop);

•
⇣

P
|W ?|�1
no walk

⌘

: carpooling is allowed, one worker is not motorized, but walking is forbidden;

•
⇣

P
|W ?|�1
walk

⌘

: both carpooling and walking are allowed, and one worker is not motorized;

•
⇣

P
|W ?|�2
walk

⌘

: both carpooling and walking are allowed, and two workers are not motorized.

For the considered instances and when walking was not permitted, it was never possible to remove

more than one car with respect to the optimal VRP solution. When walking was allowed, it was
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never possible to remove more than two cars.

5.3. MILP results for the VRPTR

As already mentioned, a time limit of 10 hours is used. When only walking is allowed (but no

carpooling), the MILP can find solutions for instances involving 20 jobs. However, when both

walking and carpooling are considered, the MILP can only find solutions for instances with up to

n = 18 jobs. A solution obtained by the MILP is shown in Figure 4. It exhibits both carpooling and

walking, and points out the e�cient synchronization that arises between a driver and a passenger.

Considering the instances for which the MILP can be used to find optimal solutions, the proposed

VNS finds results with a percentage gap never exceeding 1%.
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j15

Two workers (the driver w0 and the passenger w1) and one vehicle are required to visit the n = 16 jobs.
Dashed (resp. plain) lines represent walking (resp. driving); light gray (resp. black) lines represent the
movement of w0 (resp. w1). w0 and w1 initially move from the central depot to job j3, where w1 is dropped
o↵. After serving j3, w1 walks to j12 and serves it. Meanwhile, using the car, w0 serves j7 and j5 before
picking up w1 at j12. w1 is then dropped o↵ at j13, serves it, and walks to j6 before coming back to j13.
During this period of time, w0 uses the car to serve j8, and then comes back to pick up w1. Both workers
then move together to j10, where w1 is dropped o↵. Then, the tour continues with the same logic.

Figure 4: An optimal solution to the VRPTR, with both carpooling and walking.

5.4. Performance of VNS on the VRP configuration

Focusing on configuration P
|W ?|
no walk (i.e., VRP), for all generated instance types (number of jobs and

time window sizes), Table 1 gives the average percentage of unserved jobs in the solutions found by

the VNS (column “% unserved.”), the average percentage gap of VNS with respect to the optimal

values (column “% gap?”) and the percentage of instances that could be solved to optimality
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(column “% opt”). “% gap?” is computed as follows:
d
⇣
P

|W?|
no walk

⌘
�d?

⇣
P

|W?|
no walk

⌘

d?
⇣
P

|W?|
no walk

⌘ · 100. Columns “All

Day”, “Half Day”, and “Quarter Day” refer to the size of the considered time window, and each

line considers the 10 instances for a given value of n. Table 1 shows that the VNS finds optimal

solutions for 95% of the instances. For the remaining 5%, either the VNS did not find a feasible

solution (i.e., some jobs remain unserved) with a number of vehicles fixed at its optimal value (see

column “% unserved”), or a small gap is observed with respect to the optimal driving distance (see

column “% gap?”). Although the proposed VNS has been specifically designed for the VRPTR,

these results contribute to validating its e�ciency and consistency.

Table 1: Performance of VNS on configuration P |W?|
no walk.

Time Window Size All Day Half Day Quarter Day

n % unserved % gap? % opt % unserved % gap? % opt % unserved % gap? % opt

20 0% 0% 100% 0% 0% 100% 0% 0% 100%

30 0% 0% 100% 0% 0% 100% 0.3% 0% 90%

40 0% 0% 100% 0% 0.04% 90% 0.2% 0.08% 90%

50 0% 0% 100% 0% 1.34% 90% 0.4% 0.82% 80%

5.5. VNS results for the VRPTR

5.5.1. Proportion of feasible instances for configurations involving less cars than workers.

Contrary to the Park-and-Loop configuration for which a VRP solution can be initially built and

then improved through the introduction of walking sub-tours, the configurations involving carpool-

ing (i.e., less cars than workers:
⇣

P
|W ?|�1
walk

⌘

,
⇣

P
|W ?|�1
no walk

⌘

, and
⇣

P
|W ?|�2
walk

⌘

) are structurally more

complex. Finding a feasible solution cannot be taken for granted. Indeed, both walking (slower

than driving) and carpooling (need for detours to drop o↵ and pick up non-motorized workers)

involve potential ine�ciencies, and it is therefore not surprising that some instances end up un-

feasible when some workers are non-motorized. While Fikar and Hirsch (2015) generate solutions

involving less cars than workers, it comes at the price of increasing the total number of employed

workers (compared with the VRP optimal solution). Here, we keep this total number of workers

stable.

Figure 5 qualitatively highlights the potential values associated with the feasible solutions of the

configurations involving less cars than workers. More precisely, three situations might arise, ranging

from an improvement with respect to the Park-and-Loop configuration, an amelioration of the
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VRP solution, to not improving the one-man-one-car models (VRP and Park-and-Loop). Indeed,

reducing the driving distance poses an additional challenge since detours to transport non-motorized

workers must be e�ciently compensated by merging the right paths with carpooling.

Improving
Park-and-Loop Improving VRP Non-improving

d?
⇣

P
|W ?|
no walk

⌘

d?
⇣

P
|W ?|
walk

⌘

Driving
distance

Figure 5: Potential driving distance of the solutions found feasible with less cars than workers.

For the three configurations involving carpooling, Table 2 gives the number of instances (and the

associated percentage), over the 120 considered instances, that belong to each category identified in

Figure 5. It indicates that for 55% of the instances, the VNS is able to reduce the fleet size when only

carpooling is allowed (configuration
⇣

P
|W ?|�1
no walk

⌘

). Moreover, the VNS finds smaller total driving

distances than in the VRP solution for 6.7% of the instances, meaning that the need for detours

generated by carpooling can be overcompensated by e�ciently merging worker journeys. When

walking is permitted in addition to the implementation of carpooling (configuration
⇣

P
|W ?|�1
walk

⌘

),

the number of feasible instances found by the VNS grows from 55% to 56.7%, the number of

instances for which VRPTR dominates VRP increases from 6.7% to 19.2%, and the proportion of

instances for which VRPTR is able to improve the Park-and-Loop configuration
⇣

P
|W ?|
walk

⌘

increases

from 0% to 6.7%. When two cars are removed with respect to the VRP optimal solution, the VNS

finds feasible solution for 7.5% of the instances. This relatively low number can be explained by the

fact that the generated instances require a maximum of 5 workers (with an average of 3.3 workers)

to be solved. Thus, removing two cars represents a drastic reduction of the vehicle fleet.

Table 2: Proportion of feasible instances for the di↵erent configurations involving less cars than workers.

Solution characteristics
⇣
P

|W?|�1
no walk

⌘ ⇣
P

|W?|�1
walk

⌘ ⇣
P

|W?|�2
walk

⌘

% Inst. Nb. Inst. % Inst. Nb. Inst. % Inst. Nb. Inst.

Improving Park-and-Loop 0.0% (0 / 120) 6.7% (8 / 120) 0.0% (0 / 120)

Improving VRP 6.7% (8 / 120) 19.2% (23 / 120) 0.0% (0 / 120)

Non-improving 48.3% (58 / 120) 30.8% (37 / 120) 7.5% (7 / 120)

Total feasible 55.0% (66 / 120) 56.7% (68 / 120) 7.5% (7 / 120)

5.5.2. Detailed results

Appendix B details the results found by VNS for all instances and all configurations. An extract of

three representative instances (corresponding to the three boxes displayed in Figure 5) is given in

25



Table 3. The “VRP” columns reflect the characteristics of the optimal VRP solutions: the number

of workers required (|W ?|), the total driving distance (d?), and the corresponding idle time (either

en route or at the depot). The “Park-and-Loop” column gives the total driving distance found for

configuration
⇣

P
|W ?|
walk

⌘

. The “Carpooling” columns denote the associated driving distance (d) and

the number of jobs that cannot be served in the solution (|Jout|) for all configurations involving

carpooling (n.b., the driving distance is not displayed for unfeasible solutions). Focusing on con-

figuration
⇣

P
|W |?�1
walk

⌘

, it shows that for instance 40 H 2, it improves the Park-and-Loop solution

(driving distance reduced by 2.8%), which itself already improves the optimal VRP solution. The

solution of instance 50 A 6 improves the VRP optimal solution (driving distance reduced by 1.8%)

but exhibits a driving distance 7.2% greater than in the Park-and-Loop solution. Instance 50 Q 5 is

found feasible, but its solution returns a driving distance larger than in the optimal VRP solution.

Table 3: Detailed results for the representative instances.

Instance VRP
⇣
P

|W?|
no walk

⌘
Park-and-Loop Carpooling

Idle Time
⇣
P

|W?|
walk

⌘ ⇣
P

|W?|�1
no walk

⌘ ⇣
P

|W?|�1
walk

⌘ ⇣
P

|W?|�2
walk

⌘

|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

40 H 2 4 73.1 0.0% 25.8% 63.9 75.1 0 62.1 0 94.6 0

50 A 6 4 71.8 0.0% 11.7% 66.1 78.7 0 70.9 0 - 4

50 Q 5 5 113.2 17.9% 2.7% 104.4 130.7 0 117.0 0 - 2

Figure 6 exemplifies a VRPTR solution (right part of the figure) for configuration
⇣

P
|W ?|�1
walk

⌘

in

instance 50 A 6 and compares it with the optimal VRP solution (left part of the figure). In this

example, carpooling and walking allow for improving the optimal VRP solution, as for the same

number of employed workers, the driving distance is reduced by 1.3% and one car is saved. In

this VRPTR solution, the non-motorized worker walks for 71 minutes. Note that for all performed

experiments, walking never exceeds 90 minutes per worker.

5.6. Execution time

The stopping criterion of the VNS has been set to 10 hours (i.e., one night of computation, from 8

pm to 6 am), which follows EEP’s requirements in the present one-day-ahead optimization context.

Table 4 gives the average execution times (for each n and TW values) to obtain the best found

solutions. It highlights the fact that solving (P |W ?|�1
walk ) is more complex than solving (P |W ?|

walk ).

Indeed, the additional complexity of finding the best insertion position for a job when carpooling
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(b) VRPTR solution of
⇣
P |W?|�1
walk

⌘

Plain (resp. dashed) lines represent the vehicle paths (resp. the walking routes). Each line type corresponds
to a worker: double line for worker w1, light gray for w2, gray for w3, and black for w4 (non-motorized
worker in (b)). The jobs explicitly labeled are those included in a WR. In (b), w4 is dropped o↵ at j16 and
walks to j42. w2 fulfills j36 and j43 in a WR before picking up w4 at j42. Before being dropped o↵ at j37,
w4 works on j1 while w2 serves j24. The tours continue as described, and w4 returns to the depot with w3.

Figure 6: Illustration of a VRPTR solution for which one car is saved and the total driving distance is reduced by
1.3%. The optimal VRP solution and a VRPTR solution are presented for the same instance.

is allowed (as shown in Section 4.3) is reflected in these execution times. Interestingly, Table 4

furthermore indicates that the time window size only has a marginal impact on the execution time.

Table 4: Average execution time of the VNS (in seconds) for each instance and time window size.

(P
|W?|
walk ) (P

|W?|�1
walk )

n All day Half day Quarter day All day Half day Quarter day

20 71 62 30 1,133 1,470 611

30 381 860 1,174 4,552 5,498 3,834

40 1,993 1,988 3,747 10,939 10,030 9,825

50 6,779 8,143 11,219 24,454 18,972 21,856

6. Managerial insights

In Section 6.1, we position the obtained VRPTR solutions with respect to the existing industrial

practices. Next, in Section 6.2, we highlight the instance characteristics that influence the gain

obtained with the VRPTR formulation. Finally, in Section 6.3, we discuss how the obtained static

solutions would be expected to react when unforeseen events occur, and we propose some associated

research avenues.
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6.1. Comparison with existing practices

In Section 6.1.1, we discuss how classical VRP solutions can be improved with the introduction of

walking only (i.e., results of the Park-and-Loop). Next, in Section 6.1.2, we show how also allowing

carpooling competes with respect to the one-man-one-car models (i.e., results of the VRP and of

the Park-and-Loop).

6.1.1. Benefits of the Park-and-Loop

Table 5 quantifies the aggregated gains provided by the Park-and-Loop formulation over the 120

considered instances. Each line corresponds to a specific time window and instance size (i.e., it

covers 10 instances). The “VRP” columns characterizes the optimal VRP solutions (idle time, |W ?|
and driving distance). The “Park-and-Loop” columns display the average total driving distance

(in km) found by VNS in column “d
⇣

P
|W ?|
walk

⌘

” and the corresponding percentage gap with respect

to the optimal VRP solution values in column “% gap” (computed as:
f
⇣
P

|W?|
no walk

⌘
�f

⇣
P

|W?|
walk

⌘

f
⇣
P

|W?|
no walk

⌘ · 100).

Table 5 shows that a significant reduction in the driving distance is achieved when walking is allowed

(average gain of 6.4% over the 120 instances). The gain remains stable with the instance size, and

no systematic e↵ect can be observed from the time window size. The explanation of such an output

will be discussed in Section 6.2.1. This driving distance gain is the consequence of transferring parts

of the journeys traveled by car to walking, resulting in an e�cient use of the available idle time

present in the VRP optimal solutions. This aspect will be further discussed in Section 6.2.1. We

also observe from Table 5 that a threshold e↵ect on the achieved gains might appear depending

on the number of involved jobs and the considered time window size. This is due to the fact that

depending on the considered configuration (n, TW ), the worker plannings can be more or less

saturated in the optimal VRP solutions. For example, configuration (n = 40, TW = all day) yields

optimal VRP solutions that contain little idle time for the involved workers. As explained later

in Section 6.2.1, where the instance characteristics associated with e�cient VRPTR solutions are

discussed, this leads to less potential gain when walking and/or carpooling is implemented.

6.1.2. Benefits of joint walking and carpooling

In their decision-making processes, managers have the choice of favoring one configuration over

another to either reduce the driving distance (objective denoted as fdist, in km) or the size of

the vehicle fleet (objective denoted as fcar). Three di↵erent scenarios are envisioned by EEP.
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Table 5: Aggregated results for the Park-and-Loop configuration
⇣
P |W?|
no walk

⌘
.

Instance VRP Park-and-Loop

Idle time |W ?| d?
⇣
P

|W?|
no walk

⌘
d
⇣
P

|W?|
walk

⌘
%gap

20 A 24.8% 2.0 42.1 38.2 9.2%

20 H 22.5% 2.2 56.3 48.6 13.7%

20 Q 30.2% 2.4 64.7 62.5 3.4%

30 A 26.5% 3.0 53.4 46.8 12.4%

30 H 24.6% 3.0 65.3 59.5 8.9%

30 Q 27.2% 3.3 85.9 82.8 3.7%

40 A 8.4% 3.2 60.8 57.5 5.5%

40 H 18.4% 3.7 76.6 69.5 9.3%

40 Q 22.0% 4.0 98.6 93.2 5.5%

50 A 10.5% 4.0 69.3 63.1 9.0%

50 H 8.3% 4.0 87.8 83.9 4.5%

50 Q 16.8% 4.6 112.4 108.0 3.9%

�

S(dist)
�

focuses on the minimization of fdist (vehicles are removed as long as the incurred detours

are compensated);
�

S(car)
�

targets fcar (vehicles are removed as long as all jobs can be served on

time); and
⇣

S
(car)
(dist?)

⌘

represents the balanced scenario where both fdist and fcar are simultaneously

considered (vehicles are removed as long as the driving distance is below the driving distance from

the optimal VRP solution).

Table 6 presents the results for all of the above-mentioned scenarios and provides a comparison with

the one-man-one-car models. The reported values are averaged over all instances sharing the same

time window size. Instances are aggregated per time window size in order to avoid any misleading

interpretation due to the threshold e↵ect that might appear for some configurations (n, TW ) (as

observed in Section 6.1.1) and hence obtain a general understanding of the average gain that follows

from the introduction of walking and carpooling. The “KPI” (Key Performance Indicator) column

indicates the considered value |K| (resp. d) for the size of the vehicle fleet (resp. the total driving

distance). The “VRP” and “Park-and-Loop” columns reflect some of the values presented in Table

5. Column “%VRP” (resp. “%P&L”) gives the percentage gap with respect to the VRP solution

(resp. with the Park-and-Loop solution).

Table 6 shows that, while keeping the number of workers stable with respect to the optimal VRP

solution, the size of the vehicle fleet can be significantly reduced (scenario S(car)). This reduction is

up to 23% for instances with all day time windows and averages 18.4% for all instances. Carpooling

allows for a further improvement of the total driving distance compared with the one-man-one-car

models (scenario S(dist)). The improvement with respect to the VRP averages 6.5% for all instances,
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Table 6: Results for both the vehicle fleet and the total driving distance for all scenarios.

Time Window KPI VRP Park-and-Loop S(dist) S(car) S
(car)
(dist?)

Size Value %VRP Value %VRP %P&L Value %VRP %P&L Value %VRP %P&L

All day |K| 3.1 3.1 0.0% 2.9 4.1% 4.1% 2.4 23.0% 23.0% 2.7 13.1% 13.1%

d 56.4 51.4 8.9% 51.2 9.3% 0.5% 55.3 1.9% -7.7% 52.0 7.8% -1.2%

Half day |K| 3.2 3.2 0.0% 3.1 1.6% 1.6% 2.6 17.3% 17.3% 2.9 7.1% 7.1%

d 70.4 65.4 7.2% 65.3 7.3% 0.1% 71.3 -1.2% -9.1% 66.4 5.8% -1.5%

Quarter day |K| 3.6 3.6 0.0% 3.5 0.7% 0.7% 3.0 15.4% 15.4% 3.4 4.9% 4.9%

d 90.4 86.6 4.2% 86.6 4.3% 0.0% 92.2 -2.0% -6.5% 87.0 3.7% -0.5%

Total |K| 3.3 3.3 0.0% 3.2 2.0% 2.0% 2.7 18.4% 18.4% 3.0 8.2% 8.2%

d 72.4 67.8 6.4% 67.7 6.5% 0.1% 73.0 -0.7% -7.6% 68.5 5.4% -1.0%

and it increases to 9.3% for instances with all day time windows. A small average gain still exists in

terms of total driving distance compared to the Park-and-Loop, which shows that the vehicle fleet

is more e�ciently used. Whereas Table 6 indicates that the presence of Park-and-Loop sub-tours is

responsible for most of the reduction of the driving distance, scenario S
(car)
(dist?) highlights that with

an average increase of 1% of the driving distance with respect to Park-and-Loop solutions, savings

in the number of used cars are as high as 8%.

From Table 6, we observe that a conflict exists between objectives fcar and fdist as well as between

the achieved gain and the implemented level of service (i.e., the time window size). Reducing fcar

yields an increase of fdist for 45.7% of the feasible instances with fewer cars. Indeed, reducing the

number of cars might create a need for detours in the drivers’ planning (to pick up and drop o↵

non-motorized workers) that cannot be compensated by merging paths. However, we observe that

the introduction of both carpooling and walking is able to generate a simultaneous gain, both in

terms of fleet size and total driving distance, for 25% of the considered instances. Increasing the

service level (i.e., shrinking the time window size) decreases the achieved gain for both fcar and

fdist. With a smaller time window size, the number of jobs that can be reached on foot decreases,

which ultimately leads to an increased need for detours to drop o↵ and pick up non-motorized

workers. This will be further analyzed in Section 6.2. However, a reduction of 15.4% in terms of

the size of the vehicle fleet is still achieved for instances with quarter day time windows.

To go beyond these average results with respect to the associated optimal VRP solutions, the

following observations can be made. For all day time windows, the largest obtained reduction in

terms of driving distance is 16.6% (for instance 40 A 8). For half day time windows, the largest

achieved gain is 19% (for instance 40 H 9). Finally, for quarter day time windows, the largest
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observed reduction in driving distance is 8.3% (for instance 50 Q 1). Regarding the reduction of

the fleet size, the largest gain is 50% (e.g., for instances 20 A 1, 20 H 5, and 30 Q 10). As several

instances (e.g., 20 Q 3, 40 A 3) do not exhibit any gain (over the ten runs) either in terms of driving

distance or with respect to the size of the vehicle fleet, the smallest achieved gain is therefore 0%.

Detailed results for the 120 considered instances can be found in Appendix B.

6.2. Instance characteristics that favor carpooling

In the previous section, we analyzed the gain o↵ered by the VRPTR formulations over the 120

considered instances. In this section, we focus on understanding which instance characteristics can

be linked to the magnitude of the achieved gain.

6.2.1. Idle time and walking potential

Two indicators, gwalk and gidle, are discussed. First, the walkability gwalk characterizes the walking

potential of an instance. It represents the average number of jobs reachable on foot from a given

job. A job j is said to be reachable on foot from job i if the walking time from i to j (⌧ fij) is less

than ⌧ fM (15 minutes in our experiments) and, if leaving job i as early as possible, the worker arrives

on time at job j. More precisely, let JR
i be the set of jobs reachable from job i 2 J . Formally,

we have JR
i =

n

j 2 J | ⌧ fij  ⌧ fM ; ei + pi · ⌧ij  lj

o

. Hence, gwalk =
P

i2J |JR
i |

|J | . Depending on the

instance, gwalk lies between 0 and 1.5 (which is in line with EEP’s field observations). Second,

the idle time, denoted by gidle, is the percentage of time during which the workers are idle in the

corresponding optimal VRP solutions. On the one hand, tightening the time window reduces gwalk

(fewer jobs can be reached on foot without time window violations) but increases gidle (waiting

appears en route for the start of a job). On the other hand, gwalk increases with n. Indeed, the

density of jobs increases, and hence, on average, more jobs can be reached on foot from a given

position. Figure 7 focuses on the results of
⇣

P
|W ?|�1
walk

⌘

according to gidle and gwalk. Each instance

is positioned on the x-axis and y-axis according to gidle and to gwalk. More specifically, for each

instance, Figure 7(a) gives the number of jobs that cannot be served in
⇣

P
|W ?|�1
walk

⌘

. Figure 7(b)

plots the gap found with the optimal VRP solution (i.e.,
d?(P

|W?|
no walk)�d(P

|W?|�1
walk )

d?(P
|W?|
no walk)

) for the 58 feasible

instances for configuration
⇣

P
|W ?|�1
walk

⌘

.

Figure 7(a) indicates that for instances with gidle < 10%, no feasible solution can be found for
⇣

P
|W ?|�1
walk

⌘

. To put that number into perspective, gidle = 10% represents an idle time of 45 minutes
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per worker. Figure 7(b) highlights that the gain increases with the walking potential gwalk of the

instance. Moreover, for an idle time between 15% and 30%, it is necessary, from a given job, to

have on average more than 0.5 jobs reachable on foot to find competitive solutions regarding the

driving distance.

0 10 20 30 40 50

0

0.5

1

1.5

gidle (%)

g w
a
lk

(#
jo
b
s)

0
1

{2; 3}
{4; 5}

(a) Distribution of unserved jobs

0 10 20 30 40 50

0

0.5

1

1.5

gidle (%)

g w
a
lk

(#
jo
b
s)

Gap < 0%

Gap2[0; 5%]

Gain2[5; 10%]

Gap > 10%

(b) Distribution of fdist-gain

Each point corresponds to an instance defined by its indicators g
idle

(x-axis) and g
walk

(y-axis)
(a) The number of unserved jobs is denoted by the color code given in the upper right corner.
(b) For the feasible instances, the f

dist

-gain range is denoted by the color code given in the upper right
corner.

Figure 7: Distribution of the feasible instances and fdist-gains for configuration
⇣
P |W?|�1
walk

⌘
(i.e., one car is removed

from the VRP optimal solution).

6.2.2. Geographical characteristics

To keep the recommendations as general as possible, some instance characteristics that favored

walking and carpooling were not explicitly taken into account in the preceding sections. Denser

urban configurations are likely to appear in practice, as the considered instances have a job density

between 0.2 and 0.5 jobs per km2. Ultimately, only 3% of the arcs are actually eligible for traveling

on foot. A greater density of jobs per km2 would increase gwalk and, hence, the e�ciency of

the VRPTR formulation, as discussed in Section 6.2.1. Considering congestion or parking time

explicitly would also substantially reduce the gap between walking time and driving time for some

arcs. Additionally, walking would sometimes becomes a mandatory option in pedestrian zones.

Other experiments (not reported here) have shown that for the 40 instances with all day time

windows, considering a non-centered depot (located at one of the corners of the 10 km by 10

km square grid) increases the e�ciency of scenario S(car), as the fcar-gain goes up from 23% to
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29.2% on average, whereas the fdist-gain jumps from 1.9% to 8.8%. Indeed, in such a situation,

the optimal VRP solutions are likely to route workers through close paths from the depot to the

customer locations at the beginning of the working day and back to the depot at the end of it. A

consolidation of these travels to and from the depot is hence expected to arise.

6.3. Expected impact of random perturbations

In this paper, we considered a static case where all the service times and travel data are assumed

to be known. The aim of this study is to measure the benefits of walking and carpooling. However,

in practice, the actual service and travel times are likely to di↵er from the forecasted ones. In the

following, we discuss the expected impacts resulting from such perturbations and what mechanisms

could be envisioned to overcome such issues.

Compared with VRP solutions, the routes involving carpooling are interdependent. As a conse-

quence, an unexpected event on one route can potentially modify the schedule of all the intercon-

nected routes. For example, considering the VRPTR solution displayed in Figure 6, if worker w3 is

delayed on her/his route (gray line) because of longer service or travel times, s/he will only be able

to pick up the non-motorized worker w4 behind schedule, which would ultimately lead to a late

arrival at the depot for both workers. Robust approaches, such as those derived in the VRP context

(e.g., (Lu and Gzara 2019)), could be extended to the VRPTR case. In the context of online VRP

(see (Pillac et al. 2013) for a recent review), Lorini et al. (2011) and Respen et al. (2017) propose

a solution method to rebuild – in real-time – solutions that have been modified by unexpected

events. Their methods rely on fast moves, including the reassignment of a limited number of jobs

or vehicle diversion (i.e., modify the current destination of the vehicle). In the VRPTR situation,

taxi services (Zu↵erey et al. 2016) could also be envisioned as an urgency back-up. Removing future

WRs in driver routes would also be an appropriate technique for overcoming delays in their routes.

7. Conclusion, perspectives, and future works

This study considers a new type of VRP called the Vehicle Routing Problem with Transportable

Resources (VRPTR), where vehicles and walking workers coexist and must be synchronized to

satisfy a given set of jobs spread over a territory. Such a formulation has not yet been introduced in

the literature, and it opens up new perspectives in decision-making processes for routing problems.

The proposed modeling framework is suitable for each situation in which two distinct transportation
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resources are available: the transporter ones (e.g., cars, trucks, or buses), which move autonomously,

and the transportable ones (e.g., pedestrians, scooters, bicycles, or drones), which can either move

autonomously or be transported by a transporter one for parts of their route.

In this contribution, we treat an application of the VRPTR that comes from an industrial case.

It involves cars, walking, and carpooling. Coordinating all these transportation options allows

managers to generate a brand new set of solutions in a routing context. Considering an urban

context, we evaluate the potential of such a novel formulation, as simultaneous savings can be

achieved both in the total driving distance and in the number of vehicles, even with tight time

windows. Obviously, when focusing on these two objectives, the gains obtained depend on the

instance characteristics. We have identified some conditions under which a significant gain can be

expected. For instances involving idle times (inside the routes due to time window constraints or

at the end of the routes), the new formulation is able to invest them e�ciently in carpooling and

walking. Further works could explore in detail the trade-o↵ that arises between decreasing the need

for resources and the total en route time, as done in a Green VRP context in Demir et al. (2014).
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