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Abstract

β-catenin signaling has recently been tied to the emergence of tolerogenic dendritic cells (DC). 

Here we demonstrate a novel role for β-catenin in directing DC subset development through IRF8 

activation. We found that splenic DC precursors express β-catenin, and DC from mice with 

CD11c-specific constitutive β-catenin activation upregulated IRF8 through targeting of the Irf8 

promoter, leading to in vivo expansion of IRF8-dependent CD8α+, plasmacytoid, and 

CD103+CD11b− DC. β-catenin-stabilized CD8α+ DC secreted elevated IL-12 upon in vitro 

microbial stimulation, and pharmacological β-catenin inhibition blocked this response in WT cells. 

Upon infections with Toxoplasma gondii and vaccinia virus, mice with stabilized DC β-catenin 

displayed abnormally high Th1 and CD8+ T lymphocyte responses, respectively. Collectively, 

these results reveal a novel and unexpected function for β-catenin in programming DC 

differentiation towards subsets that orchestrate proinflammatory immunity to infection.

Introduction

Dendritic cells (DC) critically bridge innate and adaptive immunity through their exquisite 

capacity to drive antigen-specific T cell activation and effector subset differentiation. 

Furthermore, DC are central players in determining tolerance versus immunity during 

inflammation and infection (1). DC are a heterogeneous population of cells with varying 

surface markers and transcription factor requirements. All originate from a common myeloid 

progenitor (CMP), but they subsequently differentiate into distinct subsets, including 

monocyte-derived DC (moDC), conventional DC (cDC), and plasmacytoid DC (pDC). 
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Many elegant studies have identified phenotypic and functional differences amongst these 

subsets, but identifying factors determining control points of DC subset generation is a 

continuing focus of intense interest. Several key cytokines and transcription factors have 

been implicated in controlling DC developmental pathways (2), and recent gene mapping 

studies have begun to elucidate the order in which these factors become expressed (3, 4). For 

example, transcription factor Batf3 is involved in generation of splenic CD8α+ DC, while 

IRF4 is important in differentiation of CD11b+CD103+ DC in the intestinal lamina propria 

(5, 6). Recently, Zbtb46 was identified as a global transcription factor necessary for 

generation of cDC(3). Nevertheless, a thorough understanding of the mechanisms of DC 

differentiation and the signals that direct branch points leading to distinct subsets remains 

incomplete.

β-catenin is the primary mediator of the Wnt signaling pathway and is critical for numerous 

cellular functions, including hematopoietic cell fate determination and proliferation (7, 8). 

Cytosolic β-catenin levels are normally maintained at low levels through continual 

phosphorylation by the serine threonine kinases glycogen synthase kinase (GSK)-3β and 

casein kinase (CK) I-α, which cooperate to promote its ubiquitination and proteosomal 

degradation. Activating Wnt ligands trigger disassembly of the complex that coordinates 

these kinases, leaving β-catenin unphosphorylated, in turn enabling nuclear translocation for 

transcriptional activity in association with T cell factor/lymphoid enhancer factor (Tcf/Lef) 

transcription factors (9). While normally associated with embryonic development and 

tumorigenesis (10), β-catenin is increasingly being recognized for its role in immunity (11). 

This is particularly the case for DC, where β-catenin signaling was first implicated in cluster 

disruption-mediated maturation towards a tolerogenic phenotype during in vitro culture (12). 

Moreover, β-catenin was found to be involved in the generation or maintenance of 

tolerogenic DC subsets in the intestinal mucosa (13).

Here, we provide surprising new insight into the role of β-catenin in DC function by 

employing transgenic mice with a CD11c-specific deletion in the third exon of the β-catenin 

gene. The exon 3 fragment encodes the β-catenin amino acid sequence that is targeted for 

GSK-3β-mediated serine threonine phosphorylation and subsequent degradation. Removal 

of this region through Cre-lox mediated excision therefore results in phosphorylation-

resistant and constitutively active β-catenin (14). We made the unexpected discovery that β-

catenin stabilization in DC results in selective expansion of steady-state levels of splenic 

CD8α+ DC, pDC, and peripheral CD103+ DC. These DC subsets share a dependence on 

IRF8 for their differentiation, and in accordance with this observation, we show that 

constitutive β-catenin signaling increases IRF8 expression by these DC subsets via enhanced 

targeting of the Irf8 promoter. We employed infections with the intracellular protozoan 

Toxoplasma gondii and vaccinia virus to determine the in vivo consequences of DC-specific 

β-catenin stabilization. In accord with the known role of CD8α+ DC as an IL-12 source and 

driver of Th1 responses during T. gondii infection (15), the parasite triggered an abnormally 

strong Th1 response associated with overproduction of IL-12 and IFN-γ. Immunity to 

vaccinia virus is known to require a DC-mediated cross-presentation pathway (16). As such, 

vaccinia infection in mutant mice triggered enhanced expansion and activation of virus-

specific CD8+ T cells. Our results uncover a new role for β-catenin in controlling IRF8 
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expression in DC, thereby revealing this transcription factor as a key player regulating IRF8-

driven DC differentiation and proinflammatory function.

Materials and Methods

Ethics statement

All experiments in this study were performed strictly according to the recommendations of 

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocols were approved by the Institutional Animal Care and Use Committee at 

Cornell University (permit number 1995–0057). All efforts were made to minimize animal 

suffering during the course of these studies.

Mice and infections

Female Swiss Webster mice (6–8 weeks of age) were purchased from the Jackson 

Laboratory (Bar Harbor, ME), and female C57BL/6 were purchased from Taconic Farms 

(Germantown, NY). C57BL/6-Tg (TcraTcrb)425Cbn/J (OT-II) mice were obtained from the 

Jackson Laboratory and maintained as a breeding colony at Cornell University College of 

Veterinary Medicine. The β-catenin Ex3fl/fl mice were kindly provided by M. M. Taketo 

(Kyoto University) and were maintained as breeding colonies crossed to CD11c-cre 

expressing mice at the Transgenic Mouse Core Facility at the Cornell University College of 

Veterinary Medicine. Cre+ offspring (Ex3DC−/− mice) were identified by PCR amplification 

of the Cre gene from genomic DNA isolated from tail snips. Infections were initiated in 8–

12 week old mice. T. gondii infections were performed by intraperitoneal inoculation of 25 

cysts of the type II ME49 strain. Cysts were isolated from chronically infected Swiss 

Webster mice by homogenization of whole brain in sterile PBS. Alternatively, mice were 

inoculated with 2×105 pfu of recombinant vaccinia virus expressing MHCI-restricted HSV 

gB498-505 (VACV-gB) by intraperitoneal injection (17). VACV-gB was maintained in 143B 

cells for the generation of viral stocks.

Preparation and purification of leukocytes

Splenocyte single cell suspensions were prepared by crushing spleens between sterile glass 

slides and filtering the resulting suspension through 40 μM filters. For lung leukocytes, lung 

tissue was minced with sterile razor blades and incubated with collagenase type IV (Sigma) 

in a 37°C water bath for 30 min with frequent agitation. The resulting digest was passed 

through a 40-μM filter to create a single cell suspension. A single round of positive selection 

using CD11c+ magnetic bead sorting was performed for purification of total splenic DC 

from single cell suspensions (Stem Cell Technologies), while two-step magnetic bead 

sorting, with an initial negative selection to enrich for DC followed by CD8α+ positive 

selection (Miltenyi Biotec), was performed to isolate CD8α+ splenic DC.

In vitro culture of bone marrow-derived DC and MutuDC1940 cells

Bone marrow-derived DC were cultured as described previously (18). Briefly, femurs of 

Ex3fl/fl, Ex3DC−/−, or C57BL/6 mice were flushed with PBS and cultured for 9 days in 

media containing 10% fetal calf serum (Hyclone), 100 U/ml penicillin (Life Technologies), 

0.1 mg/ml streptomycin (Life Technologies), 50 μM 2-mercaptoethanol (Sigma), and 20 
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ng/ml GM-CSF (Peprotech). Cells were harvested from the plates with gentle pipetting and 

cultured as indicated. Flt3L BMDC cultures were performed by flushing femurs with PBS, 

lysing red blood cells with ACK lysis buffer (Life Technologies), and plating cells in RPMI 

supplemented with 10% fetal calf serum, 25 mM HEPES (Life Technologies), 100 U/ml 

penicillin (Life Technologies), 0.1 mg/ml streptomycin (Life Technologies), and 100 ng/ml 

murine Flt3L (Peprotech). Cells were cultured for 9 days at 37°C. MutuDC1940 cells, 

kindly provided by Dr. Hans Acha-Orbea (University of Lausenne), were grown in a 

monolayer in media containing 8% fetal calf serum (Hyclone), 10 mM HEPES (Life 

Technologies), 50 μM 2-mercaptoethanol, 100 U/ml penicillin (Life Technologies), and 0.1 

mg/ml streptomycin (Life Technologies). Cells were harvested by 10 min incubation with 

PBS and 5 mM EDTA.

Western blotting

To validate nuclear translocation of β-catenin in Ex3DC−/− mice, BMDC were subjected to 

nuclear and cytoplasmic fractionation following the manufacturer’s guidelines (Active 

Motif). Resulting nuclear and cytoplasmic proteins were diluted in reducing SDS sample 

buffer and separated by 10% SDS-PAGE. Separated proteins were transferred onto 

nitrocellulose and blocked for 1 hr at room temperature in Tris-buffered saline containing 

0.1% Tween-20 and 5% nonfat dry milk (TBST). Following 3 washes in TBST, blots were 

incubated overnight in primary antibody diluted in TBST containing 5% BSA. Blots were 

subsequently washed in TBST and incubated for 1 hr with anti-rabbit IgG conjugated to 

horseradish peroxidase-conjugated (HRP) diluted in TBST containing 5% nonfat dry milk. 

Following 5 washes in TBST, blots were developed and imaged using a chemiluminescent 

detection system (Thermo Scientific). Anti-β-catenin and anti-PARP were purchased from 

Cell Signaling, and anti-Rab5a was purchased from Santa Cruz Biotechnology.

Flow cytometry

Single cell suspensions were washed in PBS prior to resuspension in Zombie Aqua viability 

dye (BioLegend) for 15 min at room temperature to exclude dead cells. Primary antibodies 

(anti-CD11c FITC, eFluor610, or APC; anti-CD8α Pacific Blue or APC-Cy7; anti-CD4 

PerCP-Cy5.5 or FITC; anti-PDCA-1 APC or PE; anti-NK1.1 FITC or APC; anti-CD11b 

FITC or APC-Cy7; anti-CD24 Pacific Blue; anti-CD103 PE; anti-B220 PE; anti-CD3 FITC; 

anti-Gr1 FITC; anti-CD127 PerCP-Cy5.5; anti-CD16/32 eFluor450; anti-CD19 FITC; anti-

CD135 PE; anti-Sca1 PE-Cy7; anti-CD117 APC-Cy7; anti-MHCII PE or FITC) 

resuspended in ice-cold FACS buffer (1% bovine serum albumin/0.01% NaN3 in PBS) were 

added directly to the cells for 30 min. Tetramer staining for Tgd057+CD8+ T cells (provided 

by George Yap, New Jersey School of Medicine and Dentistry), CD4Ag28m+CD4+ T cells 

(provided by Marion Pepper, University of Washington), and gB-8p:Kb+CD8+ T cells (NIH 

Tetramer Core Facility, Emory University) was performed by labeling at room temperature 

for 1 hour. For intracellular staining, cells were fixed using the FoxP3/transcription factor 

staining kit fixative (eBioscience) and subsequently incubated with primary antibodies 

resuspended in the FoxP3/transcription factor permeabilization buffer (eBioscience). 

Antibodies used for intracellular cytokine staining include anti-IRF8 PerCP, and anti-IRF4 

eFluor450 (eBioscience); anti-β-catenin Alexa-647 (Cell Signaling). IgG isotype controls 

(eBioscience) were used for each fluorophore. For IFN-γ staining following T. gondii 
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infection, cells were incubated for 4 hr with Brefeldin-A (eBioscience; 10 ug/ml), PMA 

(Sigma; 10 ng/ml), and ionomycin (Sigma; 1 ug/ml), while for VACV-gB infection, 

splenocytes were restimulated with gB-8p peptide (SSIEFARL; 10−7 M) for 5 hr in the 

presence of Brefeldin-A. Cells were then fixed with the FoxP3/transcription factor staining 

kit fixative (eBioscience) and subsequently incubated with anti-IFN-γ (PE-Cy7, BioLegend; 

PE, eBioscience). All samples were run on an LSRII flow cytometer (BD), and the data 

were analyzed using FlowJo software (FlowJo, Ashland, OR).

Identification of bone marrow and splenic DC progenitors

Bone marrow was flushed from the femur and tibia of Ex3fl/fl and Ex3DC−/− mice and 

broken up with a 21-gauge syringe. Bone marrow and splenocyte pellets were lysed with 

ACK buffer and passed through a 40-μm filter to generate single cell suspensions. For 

precursor staining, a FITC lineage cocktail was created in-house (anti-NK1.1, anti-CD11b, 

anti-Gr1, anti-Ter119, anti-CD3, anti-MHCII, anti-CD19). Gating strategies were adopted 

from a previous study (3), whereby CMP were defined as 

Lin−Sca1−CD127−CD117hiCD11c−CD135+CD16/32−, GMP as Lin-

Sca1−CD127−CD117hiCD11c−CD135−CD16/32+, CDP as 

Lin−Sca1−CD127−CD117intCD11c−CD135+CD16/32−, and pre-cDC as 

Lin−Sca1−CD127−CD117loCD16/32−CD11c+CD135+. Pre-CD8α+ DC were defined as 

CD11c+CD8α−B220−CD24+ as previously described (19).

Chromatin immunoprecipitation

Recombinant murine Flt3 ligand bone marrow cultures from Ex3DC−/− mice (1×107) were 

cross-linked with 1% formaldehyde (Pierce) at room temperature for 6 min, and chromatin/

protein complexes were prepared following the manufacturer’s instructions (Millipore). 

Shearing was performed using a Bioruptor UCD-200 sonicator (Life Technologies) in an ice 

slurry, with a program of 30 seconds on and 60 seconds off for 30 min. Protein 

immunoprecipitation was performed overnight with agitation at 4°C using protein G 

magnetic beads and 2 μg of a rabbit monoclonal β-catenin antibody or rabbit IgG (Cell 

Signaling). The following day, samples were proteinase K digested at 65°C to free the DNA, 

and semi-quantitative PCR was performed to amplify a region of the Irf8 promoter 

containing a Wnt/β-catenin binding site (Forward, CACACTGGGTGGACATTTG; 

Reverse, ACCTTATAAGCGTATGCAGATT). DNA levels were normalized to 1% input 

chromatin.

ICG-001 inhibition

BMDC (1×106) or MutuDC1940 cells (2×105) were plated and cultured overnight. The 

following day, the cells were cultured with 5 or 20 μM ICG-001 (Selleck Chemicals), 

respectively, or DMSO control for 5 hr or overnight at 37°C. Cells were surface stained for 

CD11c and/or CD24, fixed, intracellularly stained for IRF8, IRF4, and β-catenin, and 

analyzed by flow cytometry. Alternatively, DC were resuspended in Trizol (Life 

Technologies) for quantitative PCR analysis of Irf8 and Axin2 mRNA transcripts.
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Measurement of mRNA by quantitative PCR

RNA was isolated from CD11c+ splenocytes magnetically sorted from naïve Ex3DC−/− and 

Ex3fl/fl mice or from BMDC by resuspension in Trizol reagent (Life Technologies). RNA 

was converted to cDNA (Quanta Biosciences, Gaithersburg, MD) and assayed for gene 

expression by SYBR green technology (Quanta Biosciences). Primers were designed to span 

exons by Integrated DNA Technologies. The following primer sequences were used: Irf8 

Forward, TGCCACTGGTGACCGGATAT; Reverse, 

GACCATCTGGGAGAAAGCTGAA; Nfil3 Forward, GAACTCTGCCTTAGCTGAGGT; 

Reverse, ATTCCCGTTTTCTCCGACACG; Id2 Forward, 

ATGAAAGCCTTCAGTCCGGTG; Reverse, AGCAGACTCATCGGGTCGT; Batf3 

Forward, CAGACCCAGAAGGCTGACAAG; Reverse, CTGCGCAGCACAGAGTTCTC; 

Axin2 Forward, TAGGTTCCGGCTATGTCTTTG; Reverse, 

TGTTTCTTACTCCCCATGCG. GAPDH was used as a housekeeping gene. Gene 

expression was normalized to Ex3fl/fl samples or DMSO controls.

Cytokine measurement

IFN-γ IL-12p70 and TNF-α secretion were assayed by enzyme-linked immunosorbent assay 

(ELISA) following the manufacturer’s instructions (eBioscience) following culture with 

media, LPS (100 n/gml), or soluble tachyzoite antigen (50 μg/ml) prepared as previously 

described (20). IL-12p40 secretion was measured using an in-house ELISA(21).

Parasite burden measurement

Levels of T. gondii DNA were measured as described previously (22). Briefly, spleens were 

homogenized, and DNA was extracted using a tissue extraction kit (Omega Biotech). The T. 

gondii B1 gene and the host argininosuccinate lyase (ASL) gene were amplified by 

quantitative real-time PCR, and resulting ct values were compared to standard curves 

developed from 10-fold serial dilutions of parasite DNA and splenocyte DNA, respectively. 

The parasite burden is displayed as the ratio of T. gondii DNA to host DNA.

Statistical analyses

Differences between groups were analyzed by Student’s t test. Expression of β-catenin 

among splenic DC subsets was analyzed by one-way ANOVA followed by a Newman-

Keuls post-test. A Kaplan-Meier curve (Logrank test) was used to calculate differences in 

survival between Ex3fl/fl and Ex3DC−/− mice. P values were considered statistically 

significant at <0.05 and were designated *, p<0.05; **, p<0.01; *** p<0.001.

Results

β-catenin is selectively enriched in splenic DC precursors and mature DC

Common myeloid progenitors, (CMP), granulocyte-macrophage progenitors (GMP), 

common dendritic progenitors (CDP), and pre-conventional dendritic cells (pre-cDC) 

represent different stages of hematopoiesis towards the dendritic cell (DC) lineage and can 

be distinguished by surface marker expression (Supplemental Fig. 1) (3, 23). While CMP 

can develop into any cell of the myeloid lineage and GMP can ultimately become 
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macrophages, granulocytes, or DC, CDP and pre-cDC are restricted to the DC lineage, 

although they remain immature until terminal differentiation within the tissue (23). To 

investigate the role of β-catenin at these different stages of DC differentiation, β-catenin 

expression levels were determined among DC precursor populations in the bone marrow and 

spleens of wild-type (WT) mice by flow cytometry. We were able to detect each precursor 

population in both tissues, although the overall levels of precursors, particularly CDP, were 

far lower in the spleen (Supplemental Fig. 1). Interestingly, β-catenin was undetectable in 

the precursor populations in the bone marrow and in splenic CMP. However, β-catenin 

expression was increased in splenic GMP, CDP, and pre-cDC with GMP and pre-cDC 

displaying the highest levels (Fig. 1A, 1B). These results provide evidence that the β-catenin 

signaling axis may be active in later stages of DC development.

To ask if β-catenin expression was maintained in mature tissue-resident DC, levels were 

measured in splenic conventional DC (cDC) subsets and plasmacytoid DC (pDC). 

Compared to the CD4+ splenic cDC subset, immediate CD8α+ DC precursors (pre-CD8α+ 

DC), which are defined by CD24 expression (19), CD8α+ DC, and pDC were all 

significantly enriched for β-catenin expression, where pre-CD8α+ DC and pDC expressed 

the highest levels (Fig. 1C, 1D). These data demonstrate that β-catenin is selectively induced 

in particular DC subsets and that, based upon protein expression levels, β-catenin signaling 

is more active in tissue-resident DC progenitors and mature DC than in bone marrow cells.

β-catenin stabilization directs splenic DC progenitors towards CD8α+ DC

Because β-catenin was clearly expressed by DC progenitors, we next investigated the effect 

of β-catenin stabilization on the outcome of DC differentiation. To address this, mice floxed 

for exon 3 of the β-catenin gene were crossed with CD11c-cre animals, resulting in Cre-

positive progeny whose CD11c+ cells possessed an exon 3-deleted β-catenin form resistant 

to phosphorylation-induced degradation (14). Flow cytometric analysis of CD11c+ splenic 

DC from Cre-positive offspring (Ex3DC−/− mice) demonstrated high β-catenin expression 

levels compared to Cre-negative littermate controls (Ex3fl/fl mice), indicating accumulation 

of β-catenin protein upon exon 3 deletion (Fig. 2A). This was confirmed to be specific to 

CD11c+ cells, as CD4+ T cells from Ex3DC−/− mice did not display upregulation of β-

catenin compared to CD4+ T cells from Ex3fl/fl mice (Fig. 2B). Furthermore, upon 

cytoplasmic and nuclear fractionation, Ex3DC−/− BMDC were found to be enriched for a 

truncated form of nuclear β-catenin compared to Ex3fl/fl DC, confirming enhanced nuclear 

translocation of protein (Fig. 2C). Thus, CD11c-directed exon 3 deletion results in β-catenin 

accumulation and nuclear translocation.

To determine the effect of β-catenin stabilization on DC precursor levels, bone marrow and 

splenic pre-cDC were quantified from Ex3fl/fl and Ex3DC−/− mice by flow cytometry. 

Consistent with the failure to detect β-catenin in bone marrow precursors (Fig. 1B), no 

differences were observed in the levels of DC progenitors in the bone marrow following β-

catenin stabilization (Fig. 2D). However, β-catenin stabilization in Ex3DC−/− mice led to 

significantly fewer splenic pre-cDC compared to Ex3fl/fl littermate controls (Fig. 2E), 

suggesting that constitutive β-catenin signaling was depleting this precursor pool. We next 

asked whether this decrease in progenitors influenced later stages of DC development, in 
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particular by quantifying levels of pre-CD8α+ DC. Indeed, DC-specific β-catenin activation 

resulted in a 2-fold increase in splenic pre-CD8β+ DC compared to WT controls (Fig. 2F). 

These data suggest that β-catenin signaling drives the differentiation of splenic DC 

progenitors into the immediate precursors of mature CD8β+ DC.

β-catenin stabilization expands splenic and peripheral dendritic cell populations

Since β-catenin signaling influenced the levels of splenic DC progenitors, we next focused 

on the outcome of β-catenin stabilization on steady-state levels of mature tissue-resident DC. 

We first observed that the percentage and total number of CD11c+MHCII+ cells were 

unaffected in Ex3DC−/− mice (Fig. 3A, 3B). However, further analysis revealed a striking 

expansion of the CD8α+ DC subset and a concomitant decrease in CD11b+ DC (Fig. 3C, 

3E). Furthermore, plasmacytoid DC (pDC), as defined by expression of B220 and PDCA-1, 

were also expanded in the spleens of Ex3DC−/− mice (Fig. 3F, 3G). These collective data 

suggest that β-catenin exerts major effects on the generation of specific splenic DC 

populations and are consistent with the finding that these particular subsets upregulate β-

catenin during development (Fig. 1D).

Peripheral DC can be subdivided into CD103+CD11b−, CD103+CD11b+, and 

CD103−CD11b+ DC and, much like splenic DC subsets, these DC display differential 

transcription factor requirements and functions (6, 24). Importantly, CD103+CD11b− DC 

found in non-lymphoid tissues, such as the intestine and the lung, exhibit a similar 

dependence upon Batf3 as the CD8α+ DC subset, leading to the conclusion that these two 

subsets are developmentally related (24). Examination of these DC subsets in Ex3DC−/− 

mice revealed a dramatic expansion of resident lung CD103+CD11b− DC compared to 

Ex3fl/fl littermate controls (Fig. 3H, 3I). Furthermore, intestinal CD103+CD11b− DC, but 

not CD103+CD11b+ DC, were also expanded in Ex3DC−/− mice (Fig. 3J–L). These data 

demonstrate that constitutive DC β-catenin signaling promotes a developmental pathway 

that is shared by splenic CD8α+ DC, pDC and peripheral CD103+ DC.

β-catenin signaling controls Irf8 expression

Genetic knockout studies have identified several transcription factors involved in CD8α DC 

differentiation, including Id2, Nfil3, Batf3, and Irf8 (5, 25–27). Therefore, we determined 

expression levels of these transcription factors amongst splenic CD11c+ cells from Ex3fl/fl 

and Ex3DC−/− mice. While there was no significant difference in Id2 expression, Nfil3 and 

Batf3 transcripts were slightly increased albeit in a statistically non-significant manner (Fig. 

4A). However, there was a striking increase in Irf8 expression in the CD11c compartment 

upon β-catenin stabilization (Fig. 4A). We also assessed IRF8 protein expression in CD8α− 

and CD8α+ splenic DC in Ex3fl/fl and Ex3DC−/− mice by flow cytometry. Levels of IRF8 

were relatively low in CD8α− DC from both mouse strains (Fig. 4B, 4C). However, there 

was an increase in IRF8 mean fluorescence intensity (MFI) in CD8α+ DC in both mouse 

strains. Furthermore, IRF8 MFI and percent positive populations were increased when 

comparing CD8α+ DC from Ex3DC−/− relative to Ex3fl/fl strains (Fig. 4B–D). To confirm 

that the effect of β-catenin stabilization was specific for IRF8, we examined expression of 

IRF4 and found it to be unchanged in Ex3DC−/− relative to Ex3fl/fl CD8α splenic DC (Fig. 

4E). Consistent with this finding, levels of splenic CD4+ DC and intestinal CD11b+CD103+ 
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DC, both of which are known to depend on IRF4 for development, were unchanged between 

Ex3fl/fl and Ex3DC−/− mice (6, 26) (Fig. 3J, 3L; data not shown).

To ask whether β-catenin targets the Irf8 promoter in vivo, chromatin immunoprecipitation 

assays were performed on Flt3 ligand cultures of bone marrow DC derived from Ex3DC−/− 

mice. β-catenin displayed a greater than 6-fold enrichment in Irf8 promoter occupancy over 

IgG control, suggesting a direct role for this signaling axis in Irf8 transcription (Fig. 4F). To 

ask if Irf8 transcription could be blocked by inhibiting β-catenin, WT BMDC were cultured 

with the Wnt/β-catenin inhibitor ICG-001, which competes with β-catenin for binding to its 

co-factor Creb-binding protein (CBP)(28). As a control, 5 hr of ICG-001 treatment led to a 

significant reduction in transcript levels of the known β-catenin target gene Axin2(29). 

Importantly, Irf8 transcripts were also significantly reduced following ICG-001 treatment 

(Fig. 4G). This downregulation was observed at the protein level, as IRF8 expression in 

BMDC was markedly decreased compared to DMSO-treated control cells by flow cytometry 

(Fig. 4H). Furthermore, ICG- 001 treatment of MutuDC1940 cells, a DC-derived cell line 

that has many characteristics of CD8α+ DC(30), also resulted in strong downregulation of 

IRF8 (Fig. 4I). IRF4 levels were unchanged by ICG-001 treatment, confirming the 

specificity of β-catenin signaling for IRF8 (data not shown). These data establish a 

functional link between β-catenin and IRF8 expression that controls differentiation of 

CD8α+ DC, pDC and peripheral CD103+ DC.

β-catenin stabilization enhances IL-12 production by CD8α+ DC

CD8α+ DC are a potent IL-12 source during infection with the Th1 pathogen Toxoplasma 

gondii (15). Furthermore, it was recently shown that this cytokine activity requires 

IRF8(31). Additionally, LPS has been shown to upregulate Irf8 expression, resulting in 

binding to the IL-12 promoter (32). Therefore, we wanted to determine if increased IRF8 

expression in CD8α+ DC from Ex3DC−/− mice would impact their functional activity, in 

particular as related to IL-12 production.

To examine this, whole splenocytes from Ex3fl/fl and Ex3DC−/− mice were cultured in the 

presence of media, LPS, or soluble tachyzoite antigen (STAg), an antigenic preparation of T. 

gondii that stimulates CD8α+ DC IL-12 through the interaction between TLR11/12 and 

parasite profilin (31). Indeed, upon LPS or STAg stimulation, supernatants from Ex3DC−/− 

splenocytes contained significantly increased levels of IL-12p40 compared to Ex3fl/fl 

controls (Fig. 5A). To confirm that the source of IL-12 was DC, CD11c+ cells were 

magnetically purified (~90% purity) from Ex3fl/fl and Ex3DC−/− splenocytes and cultured 

with LPS and STAg. As expected, increased IL-12 secretion was again observed in 

Ex3DC−/− cells (Fig. 5B). These results clearly show that DC from Ex3DC−/− produce more 

IL-12 than cells from WT littermates. However, they leave open to question whether this is a 

result of an increase in the proportion of CD8α+ DC, or whether Ex3DC−/− CD8α+ DC 

produce increased IL-12 on a cell-to-cell basis relative to corresponding cells from Ex3fl/fl 

mice. Therefore, CD8α+ and CD8α− DC were magnetically purified from Ex3fl/fl and 

Ex3DC−/− spleens and stimulated in vitro with STAg. While IL-12 production was restricted 

to the CD8α+ subset, the Ex3DC−/− CD8α+ DC secreted enhanced IL-12 levels compared to 

Ex3fl/fl CD8α+ DC (Fig. 5C). Next, WT splenocytes were treated with the β-catenin 
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inhibitor ICG-001 and then stimulated with STAg or LPS overnight. Inhibitor-treated cells 

secreted lower levels of IL-12p40 compared to DMSO-treated cells without negatively 

affecting viability (Fig. 5D, data not shown). Furthermore, the elevated IL-12 secretion 

displayed by Ex3DC−/− splenocytes over Ex3fl/fl splenocytes could be inhibited by treatment 

with ICG-001, further indicating that ICG-001 treatment suppresses β-catenin-dependent 

responses (Fig. 5E). To further implicate CD8α+ DC in these findings, we replicated these 

experiments in vitro using MutuDC1940 cells. Stimulation of MutuDC1940 cells with STAg 

resulted in extremely high IL-12 levels, consistent with their origin from splenic CD8α+ DC. 

Furthermore, pre-treatment of MutuDC1940 cells with ICG-001 significantly impaired the 

IL-12 response to STAg (Fig. 5F). Thus, β-catenin stabilization promotes both 

differentiation and IL-12-secreting capacity of CD8α+ DC by promoting increased Irf8 

expression.

Constitutive DC β-catenin signaling promotes Th1 immunity during Toxoplasma gondii 
infection

As a source of IL-12 that drives Th1 activation, CD8α DC are required to control infection 

with Toxoplasma, yet overexpression of IL-12 and downstream proinflammatory cytokines 

is also lethal (15, 33). Therefore, we used intraperitoneal infection with T. gondii to evaluate 

the impact of DC β-catenin stabilization on host immunity. Ex3DC−/− mice began to 

succumb within 9 days of low dose T. gondii intraperitoneal infection, while the Ex3fl/fl 

littermate controls fully survived acute infection (Fig. 6A). Parasite levels in the spleen (Fig. 

6B) and peritoneal cavity (data not shown) were equivalent between the genotypes, arguing 

that susceptibility of Ex3DC−/− mice was not due to defective control of Toxoplasma.

Splenic DC from infected Ex3DC−/− mice secreted dramatically more IL-12 compared to 

Ex3fl/fl controls as measured by both p40 (Fig. 6C) and p70 (Fig. 6D) subunits and, at nearly 

50 ng/ml, the level of IL-12p40 detected in Ex3DC−/− mice was approximately 5-fold over 

WT controls. To examine Th1 responses in these animals, Ex3fl/fl and Ex3DC−/− splenocytes 

from infected mice were cultured in vitro, and the supernatants were assayed for both IL-12 

and IFN-γ. Accompanying increased IL-12 secretion by Ex3DC−/− splenocytes, IFN-γ levels 

were enhanced, suggesting elevated T and possibly NK cell activation in Ex3DC−/− mice in 

response to T. gondii infection (Fig. 6E). Furthermore, serum collected from infected mice 

revealed significantly elevated levels of IFN-γ, IL-12, and TNF-α in Ex3DC−/− mice 

compared to Ex3fl/fl controls (Fig. 6F), suggesting systemic hyperproduction of 

proinflammatory cytokines upon DC β-catenin stabilization. By contrast, IL-17 was 

undetectable or expressed at very low levels in splenocyte cultures or serum prepared from 

infected Ex3fl/fl or Ex3DC−/− mice (data not shown).

To determine the source of elevated Th1 cytokines in Ex3DC−/− mice during T. gondii 

infection, IFN-γ production by splenic CD4+ T cells, CD8+ T cells, and natural killer (NK) 

cells was assayed 8 days post-infection. Both CD4+ T cells and NK cell populations in 

Ex3DC−/− mice displayed a marked increase in IFN-γ responses compared to Ex3fl/fl 

littermate controls (Fig. 7A, 7C). Interestingly, given previous studies implicating CD8α+ 

DC in cross-presentation (5, 34), IFN-γ from CD8+ T cells was not significantly changed 

between the two genotypes (Fig. 7B).
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We next determined whether the increase in IFN-γ could be explained by increased 

activation and expansion of Toxoplasma-specific T cells. We used MHCI tetramers that bind 

CD8+ T lymphocytes specific for the endogenous T. gondii epitope Tgd057 and MHCII 

tetramers that bind CD4+ T cells specific for the Toxoplasma epitope CD4Ag28m (35, 36). 

The frequency of parasite-specific CD4+ and CD8+ T cells was equivalent in Ex3DC−/− and 

Ex3fl/fl mice (Fig. 7D, 7E). Although IFN-γ produced by antigen-specific CD8+ T cells was 

equivalent in Ex3fl/fl and Ex3DC−/− mice, levels of cytokine produced by tetramer-positive 

CD4+ T lymphocytes were increased in Ex3DC−/− relative to Ex3fl/fl mice (Fig. 7F, 7G). 

Therefore, in the context of T. gondii infection, DC β-catenin stabilization impacts the 

intensity of the CD4 and NK cell IFN-γ response, but does not have a measurable influence 

on IFN-γ production by CD8+ T cells.

DC β-catenin signaling enhances CD8+ T cell priming during vaccinia virus infection

DC-mediated cross-presentation of exogenous antigen through the cytosolic pathway is 

crucial for the generation of a CD8+ T cell response against vaccinia virus (VACV) 

infection (16, 37). Thus, we finally asked if DC β-catenin signaling influenced DC cross-

presentation in the context of VACV infection. To address this, Ex3fl/fl and Ex3DC−/− mice 

were infected intraperitoneally with recombinant VACV expressing the herpes simplex virus 

(HSV) glycoprotein B (gB) peptide (VACV-gB)(17). On day 6 post-infection, spleens were 

harvested, and gB-specific CD8+ T cells were quantified by flow cytometry using MHCI-

restricted gB-8p:Kb tetramers. We found a striking increase in the percentage and total 

number of gB-specific CD8+ T cells in Ex3DC−/− mice compared to littermate controls, 

suggesting increased cross-presentation by β-catenin-stabilized DC (Fig. 8A–C). 

Furthermore, restimulation of splenocytes with gB peptide revealed significantly increased 

IFN-γ+CD8+ T cells in Ex3DC−/− mice, demonstrating a functional impact of DC β-catenin 

activation on CD8+ T cell activity (Fig. 8D–F). These results demonstrate that stabilization 

of DC β-catenin promotes development of CD8+ T cell responses in the context of viral 

infection.

Discussion

Dendritic cell differentiation is a complex process involving an array of transcription factors 

and growth factor cytokines whose details are continuing to be elucidated. In this study we 

identify an unexpected role for β-catenin in controlling differentiation of CD8α+ DC, pDC, 

and developmentally related non-lymphoid CD103+ DC. This pattern of transcriptional 

control precisely matches that of IRF8(24, 26, 38). In support of a functional connection 

between β-catenin and IRF8, overexpression of β-catenin increased steady state IRF8 levels 

in CD8α+ DC. In addition, IL-12 production by CD8α+ DC, a known function of this cell 

subset, was prevented by β-catenin inhibition concomitant with IRF8 down-modulation, and 

CD8α+ DC overexpressing β-catenin produced enhanced IL-12 in response to microbial 

stimulation. During infection with T. gondii, a prototypic Type 1-inducing pathogen, mice 

overexpressing DC-specific β-catenin developed exacerbated Th1 responses culminating in 

early death. In addition, infection with VACV increased expansion and IFN-γ production by 

virus-specific CD8+ T lymphocytes.
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Wnt/β-catenin signaling has a well-studied role in embryogenesis and tumorigenesis (10). It 

is now also clear that differentiation of T cells and NK cells requires LEF-1/TCF β-catenin 

cofactors. Furthermore, β-catenin regulates proliferation of pro-B cells (39). Using a β-

catenin stabilization approach similar to that employed here, it has been found that this 

signaling molecule plays a fundamental role in regulating hematopoietic stem cells in the 

bone marrow (40). Furthermore, β-catenin has been recently shown to target Irf8 during 

hematopoiesis to alter granulocyte development (41). We now show that stabilization of β-

catenin at the CD11c-expressing stage has unanticipated effects on generation of mature DC 

subsets whose differentiation depends upon IRF8.

Our data are notable because other recent studies have implicated β-catenin signaling in 

promoting tolerogenic DC phenotypes. For example, in contrast to activation by microbial 

stimulation, cluster disruption of bone marrow-derived DC activates β-catenin, endowing the 

cells with the ability to promote regulatory T cells that protect against experimental 

autoimmune encephalitis (EAE)(12). In the intestine, β-catenin expression by CD11c+ cells 

was shown to be required for regulatory T cell induction and production of anti-

inflammatory factors, including retinoic acid-metabolizing enzymes, TGF-β and IL-10 (13). 

In this case, absence of β-catenin in DC increased sensitivity to dextran sodium sulfate 

(DSS)-mediated colitis. Our data uncover an important new facet of β-catenin signaling 

because they reveal a role in promoting the differentiation of IRF8-dependent CD8α+ DC 

with enhanced proinflammatory activity.

IRF8 controls conventional DC formation by actively suppressing granulocyte 

differentiation while simultaneously promoting commitment to the DC lineage (42, 43). This 

is best illustrated by the observation that IRF8-deficient mice suffer from chronic myeloid 

leukemia-like syndrome with massive expansion of granulocytic cells (44). As such, IRF8 

expression is enriched in CDP over common myeloid progenitors and is nearly absent in 

GMP(43), which is consistent with our finding that splenic DC precursors express β-catenin. 

Mice expressing constitutive β-catenin in the hematopoietic stem cell compartment, either 

through exon 3 deletion or transgenic expression of a phosphorylation resistant β-catenin, 

display a differentiation block at the granulocyte progenitor stage, which leads to lethality of 

the host (40, 45). It is tempting to speculate, therefore, that over-activation of β-catenin may 

lead to excessive IRF8 expression as early as the progenitor stage, resulting in suppression 

of granulocytic precursors and the subsequent direct promotion of DC development. This is 

supported by earlier findings that showed impaired granulocyte formation following β-

catenin activation in HSC (41). Further, constitutive DC β-catenin signaling in our study 

appeared to push differentiation towards mature DC subsets by depleting early progenitor 

pre-cDC pools. Future studies should identify the activating Wnt ligand responsible for 

driving DC differentiation and suppressing granulocyte formation during hematopoiesis.

Several lines of evidence indicate a role for CD8α+ DC in antigen cross-presentation and 

activation of CD8+ T lymphocytes (5, 34). Toxoplasma is well known for its ability to elicit 

potent CD8+ T cell responses, and cross-presentation has previously been found to play a 

role in MHC class I presentation to CD8+ T cells during infection with this intracellular 

protozoan (46, 47). Therefore, it was initially surprising that there was no indication of 

abnormally strong CD8+ T cell responses in T. gondii-infected Ex3DC−/− mice that 
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overexpress CD8α+ DC. However, the recent discovery that the parasite directly injects a 

subset of secretory proteins into the host cell cytoplasm (48), as well as evidence that the 

majority of T cell activation is stimulated by actively infected DC (49), argues that 

conventional presentation rather than cross-presentation may be the dominant mechanism 

for CD8+ T cell priming during T. gondii infection.

In contrast to normal CD8+ T cell responses following Toxoplasma infection in mice with 

DC-specific β-catenin activation, there was a clear increase in CD4+ T cell, and to a lesser 

extent NK cell, IFN-γ production in the mutant mice. This is of interest because CD4+ and 

CD11b+ DC, which are believed to be the most adept at activating CD4+ T cells (50), were 

unchanged or even reduced in Ex3DC−/− mice. Therefore, it is most likely that increased 

CD4+ T and NK cell IFN-γ resulted from increased splenic CD8α+ DC activity, and that 

failure to activate CD8+ T cells was due to the lack of cross-presentation. This is supported 

by the finding that virus-specific CD8 T cell responses were enhanced during VACV 

infection, which has been shown to require the cross-presentation pathway for CD8+ T cell 

activation.

Our findings uncover for the first time a role for stabilized β-catenin signaling in promoting 

DC subset differentiation and activity. Based upon previous findings, it has been suggested 

that exploiting strategies that activate β-catenin signaling in DC might be useful in the 

control of inflammatory and autoimmune diseases (12, 13). Our study throws a cautionary 

light on this approach, showing that constitutive β-catenin signaling promotes differentiation 

of IRF8-dependent DC resulting in increased proinflammatory responses during protozoan 

and viral infection.
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BMDC bone marrow-derived DC

cDC conventional DC

CDP common dendritic progenitor

CMP common myeloid progenitor

DC dendritic cell

GMP granulocyte-macrophage progenitor

IRF interferon regulatory factor
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pDC plasmacytoid DC

STAg soluble tachyzoite antigen
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FIGURE 1. 
β-catenin is upregulated in splenic DC precursors and mature DC subsets. (A and B) Flow 

cytometric analysis of β-catenin expression by mean fluorescent intensity (MFI) in DC 

precursors from the bone marrow and spleen of naïve WT mice compared to isotype control 

staining. The data are representative of 2 independent experiments (n=4 mice per group). 

(C) Comparison of β-catenin expression levels among splenic DC subsets by flow 

cytometry. (D) MFI of β-catenin expression among different DC subsets. Statistics are 

relative to β-catenin expression in CD4+ DC. The data are representative of 3 independent 

experiments (n=5 mice per group). *, p<0.05; ***, p<0.001.
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FIGURE 2. 
β-catenin stabilization directs splenic DC progenitors towards CD8α+ DC development. (A) 

Intracellular β-catenin expression in naïve Ex3fl/fl and Ex3DC−/− splenic CD11c+ cells. (B) 

Intracellular β-catenin levels in splenic CD4+ T cells isolated from Ex3fl/fl and Ex3DC−/− 

mice. The data show results from an individual mouse that is representative of of at least 3 

experiments with 3–5 mice per group. (C) Western blot analysis of β-catenin in bone 

marrow-derived DC from Ex3fl/fl and Ex3DC−/− mice following cytoplasmic (C) and nuclear 

(N) fractionation. Antibodies against PARP and Rab5 were used for nuclear and cytoplasmic 

loading controls, respectively. The data are from 1 independent trial. (D and E) Comparison 

pre-cDC populations from the (D) bone marrow and (E) spleen of Ex3fl/fl and Ex3DC−/− 

mice by flow cytometry. Numbers in representative plots represent percentages of relevant 

populations within the indicated gate. Bar graphs show mean percentages plus standard error 

(S.E.) of relevant populations. The data represent the combination of 2 independent 

experiments (n=10 mice per group). (F) Levels of splenic pre-CD8α+ DC, defined as 

CD11c+CD8α−B220−CD24+, in Ex3fl/fl and Ex3DC−/− mice by flow cytometry. The data are 

representative of 3 independent experiments, each involving 4–5 mice per group. **, 

p<0.01; ***, p<0.001.
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FIGURE 3. 
β-catenin stabilization expands splenic CD8α+ and plasmacytoid DC populations. (A–G) 

Mature DC subset analysis of naïve Ex3fl/fl and Ex3DC−/− splenocytes by flow cytometry. 

(A and B) Percentage and total number of CD11c+ cells in Ex3fl/fl and Ex3DC−/− spleens. 

(C–E) Percentage and total number of (C and D) CD8α+ DC and (C and E) CD11b+ DC in 

naïve Ex3fl/fl and Ex3DC−/− spleens. The data are representative of at least 3 independent 

experiments (n=3–5 mice per group). (F and G) Percentage and total number of 

B220+PDCA-1+ plasmacytoid DC in naïve Ex3fl/fl and Ex3DC−/− spleens. (H and I) Mature 

DC subset analysis of naïve Ex3fl/fl and Ex3DC−/− lung tissue by flow cytometry. (H) Plots 
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from representative mice and (I) percentage of CD103+CD11b− lung DC for multiple mice 

are shown. (J–L) Mature DC subset analysis of naïve Ex3fl/fl and Ex3DC−/− intestinal lamina 

propria by flow cytometry. (J) Plots from representative mice and percentages of (K) 

CD103+CD11b− and (L) CD103+CD11b+ intestinal DC for multiple mice are shown. Dots 

in relevant graphs represent results from individual mice. Bar graphs display means and 

standard errors of individual mice. The data are representative of at least 2 independent 

experiments (n=3–5 mice per group). *, p<0.05; **, p<0.01; ***, p<0.001.
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FIGURE 4. 
β-catenin signaling controls Irf8 expression. (A) Semi-quantitative PCR analysis of Nfil3, 

Batf3, Id2, and Irf8 mRNA in CD11c+ splenocytes magnetically purified from naïve Ex3fl/fl 

and Ex3DC−/− mice. mRNA levels were normalized to GAPDH. The data are representative 

of 2 independent experiments (n=2–3 mice per group) (B) Representative flow cytometric 

plots of IRF8 expression by Ex3fl/fl and Ex3DC−/− CD8α− and CD8α+ splenic DC. (C) MFI 

of IRF8 within Ex3fl/fl and Ex3DC−/− CD8α− and CD8α+ DC and (D) the percent of CD8α+ 

DC expressing IRF8 are shown. Dots represent results from individual mice. The data are 

the combined results of 2 experiments, and the experiment was independently performed at 

least 3 times (n=4–5 mice per group). (E) Representative FACS plot of IRF4 expression and 

IRF4 MFI in Ex3fl/fl and Ex3DC−/− CD11c+ splenocytes. The data are representative of 3 

independent experiments (n=4 mice per group). (F) Chromatin immunoprecipitation of 
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naïve Ex3DC−/− Flt3L DC cultures with control IgG or β-catenin antibody followed by 

quantitative PCR to determine Irf8 promoter occupancy. DNA levels were normalized to 1% 

input chromatin. The data are representative of 2 independent experiments. (G) Quantitative 

PCR analysis of Axin2 and Irf8 gene expression in BMDC following 5 hr culture with 

DMSO or ICG-001. Fold change is relative to DMSO control. The data are from one 

independent trial. (H and I) Intracellular expression of IRF8 and β-catenin following 

ICG-001 treatment of BMDC (H) or MutuDC1940 cells (I). The data are representative of 2 

(MutuDC1940 cells) and 4 (BMDC) independent experiments with 3 replicates per 

treatment per experiment. *, p<0.05; **, p<0.01; ***, p<0.001.
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FIGURE 5. 
β-catenin stabilization enhances IL-12 production by CD8α+ DC. (A) IL-12p40 production 

by naïve Ex3fl/fl and Ex3DC−/− splenocytes stimulated in vitro with LPS, STAg, or media 

control measured by ELISA. (B) IL-12p40 production by splenic CD11c+ DC magnetically 

purified from Ex3fl/fl and Ex3DC−/− mice stimulated in vitro with LPS, STAg, or media 

control measured by ELISA. (C) IL-12p40 production by CD8α+ and CD8α− DC DC 

purified from naïve Ex3fl/fl and Ex3DC−/− splenocytes following in vitro stimulation with 

media or STAg for 48 hr measured by ELISA. (D) IL-12p40 secretion by Ex3fl/fl 

splenocytes pre-treated with ICG-001 for 5 hr and then stimulated overnight with LPS or 

STAg measured by ELISA. (E) IL-12p40 production by splenocytes (106) from Ex3DC−/− 

mice cultured for 5 hr with 5 μM ICG-001 or DMSO and then stimulated with media, LPS 
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(100 ng/ml), or STAg (25 μg/ml) overnight. (F) IL-12p40 production by MutuDC1940 cells 

(105) pre-treated with 20 μM ICG-001 or DMSO for 2 hr and then stimulated with media or 

STAg (25 μg/ml) overnight. The data are representative of at least 3 (A, F) and 2 (B–E) 

independent experiments, each involving 3–5 mice per group, except (C), which used pooled 

samples from 3 mice per experiment. *, p<0.05; **, p<0.01; ***, p<0.001.
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FIGURE 6. 
Constitutive DC β-catenin signaling increases the proinflammatory cytokine response to 

Toxoplasma. (A) Survival of Ex3fl/fl and Ex3DC−/− mice following i.p. infection with 

Toxoplasma Type II strain ME49 (25 cysts) (n=4–6 mice per group). The data are 

representative of at least 3 experiments. (B) Quantitative PCR amplification of parasite (B1 

gene) and host DNA (ASL gene) isolated from Ex3fl/fl and Ex3DC−/− spleens 9 days post-

infection. Parasite load is displayed as a ratio of parasite genomes to host genomes (n=3–4 

mice per group). (C) IL-12p40 production by CD11c+ DC magnetically separated from 

Day-6 post-infection Ex3fl/fl and Ex3DC−/− splenocytes and cultured overnight without 

additional stimulation (n=3 mice per group). (D) IL-12p70 production by bulk splenocytes 

from Day-6 post-infection Ex3fl/fl and Ex3DC−/− mice (n=3 mice per group). The data are 

representative of 2 independent experiments. (E) IL-12p40 and IFN-γ production by 

splenocytes from Day-10 post-infection Ex3fl/fl and Ex3DC−/− mice cultured for 72 hr 

without additional stimulation (n=3–5 mice per group). The data are representative of 3 

independent experiments. (F) IL-12p40, IFN-γ, and TNF-α levels in serum collected from 

Day-9 post-infection Ex3fl/fl and Ex3DC−/− mice (n=3–5 mice per group). The data are 

representative of 2 independent experiments. The means and S.E. of individual mice are 

shown. *, p<0.05; **, p<0.01.
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FIGURE 7. 
CD4+ T cells and NK cells, but not CD8+ T cells, overproduce IFN-γ following Toxoplasma 

infection in mice with constitutive DC β-catenin signaling. (A–C) Intracellular flow 

cytometric analysis of IFN-γ production by (A) CD4+ T cells, (B) CD8+ T cells, and (C) NK 

cells from Day 9 T. gondii-infected Ex3fl/fl and Ex3DC−/− spleens following 4 hr of PMA 

and ionomycin stimulation in the presence of Brefeldin-A. Shown are representative contour 

plots of individual mice and the mean ± standard error of IFN-γ levels from multiple mice. 

The data are representative of 3 independent experiments (CD4 and CD8) and 1 (NK) 

experiment. (D and E) Quantification of Toxoplasma-specific (D) Tgd057+CD8+ T cells and 

(E) CD4Ag28m+CD4+ T cells. Means and standard errors of individual mice are shown, and 

each dot represents a single mouse. (F and G) IFN-γ levels expressed by tetramer-positive 

CD8+ (F) and CD4+ (G) T cells following 4 hr of culture with PMA, ionomycin, and 

Brefeldin-A. The data are representative of 3 independent experiments (n=3 mice per 

group). *, p<0.05; ***, p<0.001.
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FIGURE 8. 
β-catenin stabilization promotes activation of antigen-specific CD8+ T cells during viral 

infection. (A–C) Quantification of gB-8p-specific CD8+ T cells in Ex3fl/fl and Ex3DC−/− 

spleens 6 days post-VACV-gB infection. (A) Representative plots of MHCI-restricted 

gB-8p:Kb tetramer-positive CD8+ T cells, and (B) percentage and (C) total number of 

gB-8p:Kb+CD8+ T cells. (D–F) IFN-γ production by gB-8p-specific CD8+ T cells in Ex3fl/fl 

and Ex3DC−/− spleens 6 days post-VACV-gB infection. (D) Representative plots of 

CD8+CD44+IFN-γ+ T cells following gb-8p restimulation of splenocytes, and (E) 

percentage and (F) total number of gB-8p-specific CD8+CD44+IFN-γ+ T cells. The data 

shown are the combination of 2 independent experiments (n=9–13). **, p<0.01.
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