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Abstract—The long-term, continuous analysis of electroen-
cephalography (EEG) signals on wearable devices to automatically
detect seizures in epileptic patients is a high-potential application
field for deep neural networks, and specifically for transformers,
which are highly suited for end-to-end time series processing with-
out handcrafted feature extraction. In this work, we propose a
small-scale transformer detector, the EEGformer, compatible with
unobtrusive acquisition setups that use only the temporal channels.
EEGformer is the result of a hardware-oriented design exploration,
aiming for efficient execution on tiny low-power micro-controller
units (MCUs) and low latency and false alarm rate to increase
patient and caregiver acceptance.Tests conducted on the CHB-MIT
dataset show a 20% reduction of the onset detection latency with
respect to the state-of-the-art model for temporal acquisition, with
a competitive 73% seizure detection probability and 0.15 false-
positive-per-hour (FP/h). Further investigations on a novel and
challenging scalp EEG dataset result in the successful detection
of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate
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the deployment of the EEGformer on three commercial low-power
computing platforms: the single-core Apollo4 MCU and the GAP8
and GAP9 parallel MCUs. The most efficient implementation (on
GAP9) results in as low as 13.7 ms and 0.31 mJ per inference,
demonstrating the feasibility of deploying the EEGformer on wear-
able seizure detection systems with reduced channel count and
multi-day battery duration.

Index Terms—Deep learning, electroencephalography, time
traces, transformer, wearable.

I. INTRODUCTION

E PILEPSY is a common neurological disorder causing the
recurrence of seizures temporarily compromising brain

function. Wearable seizure-detecting solutions could enable
prompt interventions from caregivers during or immediately
after the seizures to reduce their impact and provide physi-
cians with more reliable information for optimizing therapy.
Currently, seizure detectors approved by health authorities only
detect generalized convulsive seizures, which account for less
than 20% of all seizures, relying on other signals than electroen-
cephalography (EEG) despite the fact that the latter provides
the hallmark of the brain’s epileptic activity [1]. This is due
to the lack of unobtrusive and non-stigmatizing EEG systems
suitable for very long-term monitoring [2], which could poten-
tially leverage our capacity to detect all seizure types. Moreover,
despite analyses in epilepsy monitoring units being essential
for identifying seizure types, long-term recording in ambulatory
patients also appears as a significant challenge that needs to be
addressed to improve the estimation of seizure occurrence and
the notification of seizure events.

While several artificial intelligence models have been tested
for the detection of seizures based on complete, high-electrode
count EEG acquisition setups, there is still a need for efficient
solutions targeting the wearable domain and managing to reach
the required accuracy standards based on low-channel count
disguisable acquisition devices. In particular, minimizing false
alarms appears as the major goal to enable long-term monitor-
ing [3]. In this work, we assess the performance as a seizure
detector of the EEGformer model, first presented in [4]. The
EEGformer is a compact transformer model for online epilepsy
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monitoring, designed to target low-power devices causing min-
imal discomfort to the patient [5], [6], thanks to a small
acquisition setup limited to the temporal channels, a memory
footprint of 50.6 K parameters and a complexity of 14.7MOPS.
EEGformer operates on the raw EEG signal, and it represents
an adaptable solution combining data-driven feature extraction
and classification. EEGformer targets wearable epileptic seizure
devices for everyday life use. As such, it focuses on minimizing
the false alarm rate, as requested by patients and caregivers [3].

A brief outline of the contents of the paper is given in the
following. After revising in Section II the state of the art of
EEG processing and epilepsy monitoring approaches, Section III
presents the architectural description of EEGformer. In Sec-
tion IV, we assess its performance on the state-of-art CHB-MIT
dataset [7], [8], considering the most typical performance met-
rics. Particularly, we target minimizing the false alarm rate and
the onset detection latency.

Given the encouraging results of this first assessment,
Section V presents a novel scalp-EEG epilepsy dataset recorded
at Epilepsy Monitoring Units (EMUs), for which no signal
cutting and reduction has been made in order to preserve the
natural unbalance of seizure events vs normal state. We evaluate
the EEGformer on this new dataset, discussing the challenges
of training a classifier on the data typically available in clinical
practice. The comparison with the state of the art of seizure de-
tectors is discussed in Section VI. Finally, in Sections VII-A and
VII-B we deploy the EEGformer on three resource-constrained
platforms suitable for low-power continuous health monitoring,
exploiting parallel execution to speed up the computations and
reduce the energy consumption of the monitoring device.

This work significantly extends the preliminary results pre-
sented in [4]. The main novel contributions of this paper are:
� presentation of a novel scalp-EEG dataset for epilepsy

monitoring, providing a test benchmark close to the clinical
practice;

� first-time seizure-detection assessment on the novel
dataset, achieving detection of 88% of the annotated
seizure events and reaching 0.45 FP/h with the EEGformer;

� demonstration of state-of-the-art performance on the CHB-
MIT dataset for systems with a small number of electrodes
(4), detecting 73% of the seizure events while guaranteeing
an FP/h rate as low as 0.15 (with 5 out of 8 tested patients
exhibiting zero false alarms);

� first-time implementation of EEGformer on two parallel
ultra-low-power architectures of the GAP family of pro-
cessors: GAP8 and GAP9;

� new state-of-the-art energy efficiency for a transformer em-
bedded implementation on a parallel RISC-V architecture,
reaching 13.7 ms inference time and 0.31 mJ/inference
energy consumption, approx. 5× lower than the imple-
mentation on the Apollo4 platform [4].

II. RELATED WORK

A rich literature describes the EEG processing solutions tar-
geting the epilepsy monitoring task [9], [10], [11], and the best-
performing approaches reach up to perfect sensitivity, with a

false alarm rate limited to 0.04 FP/h, considering subject-specific
models, and acquisition from a large number of channels spread
over the whole surface of the head [12]. However, long-term
monitoring in normal life conditions requires non-stigmatizing
wearable devices, where the acquisition is limited to minimal
recording setups with a reduced number of channels. As such,
approaches based on full electrode coverage are impractical. In
fact, for wearable long-term monitoring scenarios (which is the
main target of this paper), the following constraints apply:
� compact detection model size, to fit on an embedded plat-

form, and low energy consumption suitable for long-term
monitoring on low-power wearable devices;

� low number of acquisition channels, placed on the temporal
region, as required for compact and easily concealable
wearable solutions [5], [6], [13];

� minimized false alarms, even at the expense of lower
sensitivity, to guarantee that the final user will be able and
willing to use the device [2], [3], [14];

� minimized detection latency to promptly issue alarms.
Accurate seizure detection becomes even more challenging

when this set of constraints is applied. In the following, we
limit the state-of-the-art (SoA) discussion to works contributing
to this challenge, by presenting solutions based on a reduced
acquisition setup, exploiting less than 8 channels localized in
the temporal region.

Several works explored seizure detection based on reduced
channel count EEG acquisition during at-home real-time mon-
itoring [15], [16] or in-hospital recording [17]. The authors
of [17] presented a behind-the-ear recording system, feeding
a subject-specific Support Vector Machine (SVM), and tested
it on the data collected from 54 patients by the University
Hospital Leuven. Long-term monitoring through 2-channels
subcutaneous acquisition was presented in [15], where a residual
Convolutional Neural Network (CNN) classifier was trained
and tested on 490 days of EEG recordings from 9 patients
with epilepsy and 12 control healthy patients. Similarly, the
authors of [16] examined the EEG recordings of 102 patients,
acquired with a single-channel headband and including 364
seizure events, exploiting a CNN classifier for seizure detection.
These relevant contributions have the merit of assessing their
proposed systems on real-life monitoring scenarios, showing
how a generally limited performance is achieved, especially in
terms of event-level seizure detection sensitivity. However, a
direct comparison with these results is not feasible, due to the
private nature of the referenced datasets.

Limited channel count acquisition was also emulated on the
open-source CHB-MIT dataset. An example is represented by
the work of [18], where a K-nearest-neighbor (KNN) classifier
working only on the data acquired from 5 selected channels was
considered. However, this solution is not unobtrusive, as the
data of the complete acquisition setup was considered in order
to guide the channel selection. Furthermore, a common issue
is represented by a low specificity value, incompatible with a
comfortable user experience [2], [3].

Suboptimal specificity is also reported in the works of [19],
[20] and [21]. In particular, the authors of [19] exploited discrete
wavelet transform pre-processing on only 2 acquisition channels
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TABLE I
PARAMETERS AND TOPOLOGY OF THE EEGFORMER

and classification based on the Random-Forest (RF) model,
whereas [20] presented an energy-efficient wearable seizure
detection system, based on 8-channel frontal lobe acquisition
and an SVM classifier, and [21] presented a CNN model with
4 convolutional layers, applied to statistical and power features
extracted after tunable Q-wavelet.

Our main reference for the detection task based on low-
channel count acquisition is provided by the work of [22], which
was able to reach perfect sensitivity and specificity for some
patients on the CHB-MIT dataset, with subject-specific training
and careful exploration and tuning of the signal windowing.
The best results were obtained with the RF and AdaBoost (AB)
classifiers, applied on features representing the energy after
4-level Haar-wavelet decomposition of the signal acquired only
by the temporal channels. However, these promising numbers
were obtained on a very small subset of the CHB-MIT data.

The main limitations of the listed works will be quantitatively
discussed in Section VI. In general, although well-suited for
truly wearable long-term monitoring as relying on a reduced set
of acquisition channels, these solutions still report a too-high
number of false positives [19], [20], [21] and long detection
latency [22] compared to the approach presented in this paper.
Furthermore, removing the complexity of the feature extraction
step and relying on data-driven features would be of interest to
enhance the adaptability to new subjects and datasets.

To address these challenges, in [4] we presented EEGformer,
a transformer model for subject-specific seizure detection based
on raw EEG signals from temporal channels, assessing its
performance on the CHB-MIT benchmark dataset and demon-
strating its deployment on a single-core low-power microcon-
troller (Apollo4). In comparison with the other transformer-
based seizure detectors from the literature, it does not rely
on a full acquisition setup [23], [24], [25]. Furthermore, these
solutions exploit complex architectures, stacking 4 or 6 encoder
blocks [24], [25], or three parallel encoder towers [23], and thus
are not suitable for efficient wearable deployment.

The EEGformer satisfies the efficiency constraints of com-
pact and wearable monitoring solutions, with a complexity
and memory footprint suitable for efficient execution on tiny
microcontroller units, and an energy consumption compatible

with low-power long-term monitoring (see Section VII). The
proposed model aims at reducing the false-alarm rate and the
onset detection latency of existing solutions [19], [20], [21],
[22].

In this work, we examine in more depth the preliminary
results of [4], by extending the assessment of the EEGformer
to a novel dataset, demonstrating performance aligned with
similar solutions at the state-of-the-art tested on private clini-
cal data [15], [16], especially in terms of event-level sensitiv-
ity, and with a comparable tree-based approach presented in
Section VI-B. Moreover, to the best of our knowledge, this paper
presents the first deployment of a transformer-based algorithm
for non-obstructive seizure monitoring on parallel microcon-
trollers, targeting two RISC-V multi-processor platforms, where
state-of-the-art time for inference and energy efficiency were
achieved.

III. EEGFORMER

In the following, we describe our proposed seizure detector
model, EEGformer. Since we target an unobtrusive acquisi-
tion setup, we only consider data acquisition from the tempo-
ral channels (F7-T7, T7-P7, F8-T8, T8-P8, according to the
10-20 international system), which is compatible with using
non-stigmatizing wearable EEG devices such as over-ear head-
phones, headbands, or e-glasses [13], [22]. We translated the
epilepsy monitoring problem into the periodic classification of
the raw EEG signal, avoiding the need for handcrafted feature
extraction, into a non-seizure or a seizure class.

The EEGformer architecture is based on a Vision Transformer
([26]), where the input image is replaced by a 4-row matrix of
consecutive samples, acquired with a 256 Hz sampling rate. Each
row in the input matrix corresponds to one of the channels of
interest. Fig. 1 provides a general overview of our classification
system, whereas Table I describes the general network topology
considered for the design of the EEGformer, inspired to [27].
The network architecture is composed of three main processing
stages. The first embedding stage performs data preparation to
adapt the matrix of EEG samples for transformer-based process-
ing. According to the experience of Bioformers [27], the embed-
ding stage is configured as a sequence of two 1D-convolutional
layers, applying non-overlapped filtering kernels of size K to
the input signal. The output of this convolution block has size
E × S, where E is the number of output channels and S is the
resulting data length, which is reduced based on the size K of
the filtering kernels. This mechanism thus resembles the image
decomposition into a sequence of embedded patches, which is
performed in [26], where S is interpreted as the sequence length
and E as the size of the embedded patches. A set of learned
positional weights is also added to the flattened sequence of
patches to encode ordering information.

The core of the algorithm is the encoder stage, introducing the
most relevant transformer mechanism: the attention layer [28],
indicated as MHA (Multi-Head-Attention) in Fig. 1. First, three
linear projections of the data are computed, called query q,
key k and value v, each of size d. The attention matrix is
obtained as the dot-product between these projections, according
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Fig. 1. Architecture of the EEGformer. The Multi-Head-Attention layer is indicated as MHA.

to (1), resulting in a set of attention scores reflecting the mutual
relevance between two points in the examined window.

Attention(q,k,v) = Softmax

(
qkT

√
d

)
v (1)

MHA enhances the detecting power of the attention mechanism
with multiple parallel threads, indicated as heads, performing
independent projections of the input, and recovering the input
dimensionality with an additional final linear projection. The
attention layer is typically followed by a feed-forward network
and their sequence can be replicated multiple times, into a stack
of encoder blocks. As it can be noticed from Table I, we consid-
ered a single encoder block, where the two main sublayers, the
MHA and the feed-forward network, are combined with Layer
Normalization and residual connections to their respective input.
Each Dense layer in the feed-forward network is combined with
GELU activation.

Finally, the classification stage evaluates the mean of the
sequence resulting from the encoder processing and applies a
Multi-Layer Perceptron (MLP) to compute the output probabil-
ities. In the general topology considered, the MLP is collapsed
into a single Dense layer.

The EEGformer model was implemented in TensorFlow
Keras [29] and designed based on the general architecture in
Table I, where the main parameters were selected with an explo-
ration considering the working memory (SRAM) typically avail-
able on tiny MCUs (we set a maximum footprint of 512 KB), and
the seizure detection performance, evaluated on the CHB-MIT
dataset, referencing subject 1 (further details on the assessment
are given in Section IV). The accuracy is evaluated, based on its
standard definition, as the ratio of correctly classified windows
over the overall number of processed windows. The outcome of
the exploration is summarized in the plot of Fig. 2, where the
evaluated design points are placed based on their accuracy and
footprint.

We started from the evaluation of the input window size,
defining a set of possible values w = {2 s, 4 s, 8 s, 16 s}. The
remaining parameters were kept fixed, and equal to K = 5,
H = 8, and h = 128. A window of w = 8 s resulted in the best
accuracy and was considered for the rest of the exploration. As a
second parameter, we tuned the kernel size, considering values
of K = 3 (i.e., increasing the sequence length and the number
of operations performed in each attention head) and K = 10.
The first choice resulted in storage requirements non-compatible

Fig. 2. Design points explored for EEGformer architecture definition. The
selected point representing EEGformer is highlighted in black. The different
curves represent the performance resulting from the selection of the parameters
explored: window size, kernel size, number of heads, and hidden layer size.
Shaded grey area: outside of the 512 kB feasibility region.

TABLE II
CLASSIFICATION PERFORMANCE AND COMPLEXITY OF THE DESIGN POINTS

CONSIDERED FOR THE EEGFORMER PARAMETER EXPLORATION

with the footprint constraint, whereas an accuracy drop was
observed when increasing the kernel size. Hence, K = 5 was
kept for the following explorations. Similarly, we evaluated the
impact of reducing or increasing the number of parallel heads
H = {4, 16}, and the size of the hidden layer in the feed-forward
network h = {64, 256}.

The two best-performing combinations obtained are high-
lighted in Table II, which also reports a detailed analysis of the
memory footprint and computational complexity of the evalu-
ated models (for each of the explored parameter configurations).
Table II and Fig. 2 also reveal that no further performance im-
provement is obtained by increasing the complexity through the
choice of H and h, which have a limited impact on the network
complexity, especially compared to w and K. The parameters
selected for the EEGformer are detailed in Table I and result in
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TABLE III
EEGFORMER TRAINING STRATEGY EVALUATION ON THE CHB-MIT DATASET,

WITH 2 S TEST EVALUATION PERIOD

a topology having 50.6 K parameters, with a memory footprint
of 150 kB and requiring the execution of 14.7 MOPS.

IV. ASSESSMENT ON CHB-MIT DATASET

We consider in this section the CHB-MIT Scalp EEG dataset
for seizure detection [7], [8], which has been an important ref-
erence for researchers over the years and provides a meaningful
common benchmark to set the state-of-the-art context. As a
reminder, we target to maximize specificity, since having nearly
zero false alarms is a strict requirement for the acceptance of
continuous monitoring devices by patients and caregivers [2],
[3], [14].

Dataset description: The CHB-MIT dataset is an open-source
collection of scalp EEG recordings from 23 pediatric patients,
curated by the Children’s Hospital Boston and the Massachusetts
Institute of Technology. It provides a list of records of different
duration, and a summary file reporting the expert annotations
about the time of occurrence of seizure events. The data is
collected with a 256 Hz sampling frequency, including 18 to
23 channels.

Training strategy: As a first step, we have compared two
training strategies, respectively consisting of a single-phase
subject-specific training or of a two-phase approach, with
a global subject-independent pre-training and subject-specific
fine-tuning. In the single-phase solution, we perform 100 epochs
of training, whereas, in the two-phase one, we dedicate 100
epochs to the first phase and 50 additional epochs to the second.
To evaluate the detection performance, we define a test set ob-
tained with the leave-one-out strategy, consisting of one record
among those available for the test patient. Then we randomly
split the remaining data between a training set and a validation
set, with an 8:2 ratio. We alternatively test all the seizure records
of the considered subject. The training and validation data are
represented by non-overlapped windows of signal, whereas for
a more detailed performance evaluation, we consider test data
obtained as sliding windows of 8 s length, overlapped with 2 s
intervals.

The comparison between the two strategies has taken patient
CHB 1 as a test subject and has included the records provided
for patients CHB 2 to 8 in the pre-training data.

In Table III we compare the two approaches. Observing
the exploration results, we highlight the positive effect of the
pre-training phase in improving the specificity of the detection,
reflected in a 0 FP/h rate. This advantage does not compromise
the percentage of seizure episodes detected, which is still 100%.

Detection performance assessment: We evaluate at this point,
referring to the two-phase strategy, the detection performance
of the EEGformer. The assessment covers a subset of 8 pa-
tients, whose seizure records are tested with the leave-one-out

TABLE IV
SEIZURE DETECTION ON THE CHB-MIT DATASET WITH EEGFORMER

Fig. 3. Record-wise FP/h on the CHB-MIT dataset and our dataset with the
EEGformer.

approach, after a pre-training phase, including the data of the
other patients who are not the test subject. Exploiting a typical
approach to filter out isolated errors in the classification, we
post-process the inference output with a majority voting method,
considering a buffer of 3 classified windows for the EEGformer.
Moreover, considering that after a seizure episode the EEG
signals appear as altered for several minutes, we neglect any
FP registered within 15 minutes after the annotated end of the
event.

We summarize in Table IV the performance metrics obtained
with a comprehensive evaluation of 40 records including a
seizure. EEGformer allows detecting 73% of the examined
seizure events (32/44), with 65.5% average segment-level sen-
sitivity (570 False Negatives (FNs) registered over 1652 seizure
windows tested). This detection rate was obtained while preserv-
ing high specificity values, with 5/8 patients exhibiting 100%
specificity.

Fig. 3 shows a boxplot of the distribution of the event-level
FP/h trend across the 40 tests performed. We achieved a median
value of 0 FP/h, which is the false alarm rate registered in
over 80% of the left-out records tested, with 5/40 outliers.
Considering consecutive false positives as single events, we
obtained a state-of-the-art false alarm rate of 0.15 FP/h, with
the great majority of subjects exhibiting no false alarms at all.
The maximum duration is reported in the corresponding column
in Table IV and is mostly affected by two long-lasting EEG
artifacts.

Among the performance metrics in Table IV, we report the
detail of the event-level sensitivity on single patients: on 6/8
subjects, 100% of the annotated events are successfully de-
tected, while the overall sensitivity is compromised by the poor
performance obtained on patient CHB 6, presenting seizures
lasting on average less than 16 s. Finally, we also report the
average onset detection latency: for every test, the latency value
is evaluated based on the number of FNs registered at the
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TABLE V
COMPOSITION OF OUR DATASET FROM LAUSANNE CHUV

beginning of the seizure, multiplied by the time interval between
successive windows (which is 2 s in our sliding test approach)
and incremented to account for the majority voting delay.

V. ASSESSMENT ON A PRIVATE DATASET

The results of the assessment conducted on the CHB-MIT
dataset are very encouraging, showing the EEGformer can
provide a good trade-off between sensitivity and specificity.
Nevertheless, this dataset depicts a scenario that deviates consid-
erably from a typical monitoring use case. To further assess the
performance of EEGformer, we refer in this section to a novel
dataset curated by the Lausanne University Hospital (CHUV),
as a detection scenario that aligns more closely with practical
clinical settings.

Dataset description: This dataset is acquired as a part of the
currently running Pedesite study,1 during routine clinical evalu-
ations at the in-hospital EMU, where patients are investigated in
order to record and characterize their epileptic seizures. Patient
monitoring lasts from 2 consecutive days up to two weeks. All
the recording period is available. Approval for retrospective
data analysis with a waiver of informed consent due to the
retrospective nature of the study was obtained from the local
Ethical Committee of the University of Lausanne (study nr 2021-
01419). The study report conforms to the STROBE statement
for the report of observational cohort studies.

The dataset used in the present analysis is a subset of 6 patients
from the overall study that has been curated by the CHUV.
Table V summarizes the data provided for the examined patients,
identified in column 1 with progressive ID numbers: for each
one, we list the duration of the available EEG recordings and
the number of annotated seizure events, as well as the duration
of the seizures recorded. The data was acquired with an SD LTM
PLUS 642 at 1024 Hz sampling frequency, with a setup of up
to 24 Compumedics disposable Ag/AgCl sintered electrodes. A
team of expert neurologists annotated the onset and end of the
seizure events. However, it is important to note that the exact
onset is at times uncertain due to several factors, including:
1) the epileptic discharge can occur in deep brain regions several
seconds before it is detectable on scalp EEG, 2) similarly, clinical
manifestations might not be present at seizure onset, and 3) EEG

1A project funded by the Swiss National Foundation that aims at developing
innovative wearable solutions for seizure detection

2[Online]. Available: https://micromedgroup.com/products/brainquick/
brainquick-ltm/

TABLE VI
SEIZURE DETECTION ON OUR DATASET WITH EEGFORMER

artifacts might obscure the seizure onset. It can also be difficult
to precisely identify when the seizure ends. Due to these issues,
we consider an uncertainty of 20 s in the following.

Seizure detection with EEGformer: In the following, we an-
alyze the performance obtained with EEGformer. As we are
targeting unobtrusive devices, we select only the data acquired
from the 4 temporal channels, down-sampled with a ratio of 4:1
to adapt it to the expected input dimensions reported in Fig. 1,
corresponding to an 8 s window of the signal. As we did for
the CHB-MIT dataset, we performed leave-one-out tests for
cross-validation, including in the test set a significant number
of non-seizure records. For each test record, we repeated the
same train-test schedule:
� global pre-training on the seizure records of all subjects,

excluding the test patient;
� subject-specific fine-tuning on the test patient, including all

the training seizure records and at least three non-seizure
records;

� test on the left-out record.
In this case, both training phases were conducted for 100

epochs, exploiting a weighted loss function to remedy the im-
balance between seizure and non-seizure samples affecting the
dataset. We also removed from the training and testing data
the 15 minutes following the seizure occurrence, as during this
interval, the signal is often unstable and affected by artifacts.

Table VI summarizes the detection performance for each of
the patients after post-processing based on majority voting was
applied. As can be derived from a general comparison with
Table IV, this dataset represents a harder detection challenge
than the CHB-MIT one. We will discuss in the following the
possible reasons for this increased complexity, which suggested
the selection of a different and slightly more complex averaging
approach: we extended the averaging period to 15 s around
the examined window of signal and evaluated inference more
frequently (one inference per second), to have more information
available during the voting.

Furthermore, to recover the best detection sensitivity while
still being able to filter out random FPs, we rely on an asymmetric
voting criterium, defining a non-seizure and a seizure state. In the
non-seizure state, an output seizure classification requires half
of the windows in the voting buffer to be classified as seizure;
then, once the voted output results in a seizure, a seizure state
is entered, where only 1 over 4 of the buffered windows are re-
quired to be seizures for an output seizure classification. Finally,
considering the uncertainty interval declared for the dataset

https://micromedgroup.com/products/brainquick/brainquick-ltm/
https://micromedgroup.com/products/brainquick/brainquick-ltm/
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TABLE VII
SUMMARY OF SCALP EEG-BASED SEIZURE DETECTION PROCESSING SOA, BASED ON SIGNAL ACQUISITION FROM A REDUCED NUMBER OF CHANNELS (< 8)

annotations (labels have an uncertainty of ±20 seconds), we
excluded from the reported results the FPs occurring within 20 s
before the annotated onset, or alternatively the FNs occurring
within 20 s after the annotation. We finally report the event-level
FP/h rate, where consecutive false positives are considered as a
single event.

While the segment-level sensitivity value exceeds 60% only
for 3/6 subjects, 88% of the examined seizure events were
detected (22/25), with the exception of seizures 6, 9, and 10
of patient 1, having the shortest duration in the dataset. The
segment-level sensitivity value results from 1774 FNs registered
over 3560 seizure windows tested. Table VI also reveals that
most of the seizures are detected with some delay, resulting in an
increased average onset detection latency compared to the results
reported in Table IV. Fig. 3 reports on the right the record-wise
event-level FP/h rate, in the 134 tests performed (23 seizure
records and 111 non-seizure records), whose average duration
is 3 h and 45 min. The median value is 0.2 FP/h, compared to
the 0 FP/h obtained on the CHB-MIT.

Discussion: We identify two reasons for the degradation
of the expected detection performance: the uncertainty of the
annotations and the presence of multiple unlabelled EEG ar-
tifacts. Both non-ideal characteristics are most likely present
in a practical clinical scenario. While the presence of artifacts
mostly affects the performance assessment during the test phase,
causing a higher false-alarm rate which could be recovered and
limited with the use of an artifact detector, the uncertainty of
the labeling of the signal has also a significant impact on the
training of the classifier. If some of the samples listed for one
of the classes belonged to the other, the learning process would
also be affected.

At the same time, removing altogether from the training
material the windows falling within the uncertainty interval

around the onset would aggravate the class imbalance, and, what
matters most, remove the earliest stages of the seizure from the
learning process, thus possibly compromising the possibility of
early detection.

VI. COMPARISON WITH THE STATE OF THE ART

We discuss in this section how the EEGformer compares to the
state-of-the-art low-channel count seizure detectors described
in the literature. To this end, we consider both the CHB-MIT
and our novel datasets. Table VII summarizes the most relevant
works presenting epilepsy monitoring based on reduced acqui-
sition setups.

A. CHB-MIT Dataset

In the first section of the Table, we list the most relevant works
based on the CHB-MIT dataset (see Sect. II). Despite the remark-
able sensitivity values achieved with the seizure detectors of [19]
and [20] (96.6% and 92.5%, respectively), they also result in a
limited specificity (92.5% and 80.1%, respectively). A similar
trade-off is presented in the work of [21], where the successful
detection of 98.9% of the occurred seizure events was obtained
with a specificity value limited to 97.87% and a non-negligible
2.13% FP percentage. On the other hand, despite providing a
better balance between a 99.77% sensitivity and 99.88% speci-
ficity, the work of [18] relies on a complete acquisition setup
(large number of channels) and therefore its performance cannot
be directly compared to small-channel-count solutions.

As frequent false alarms would compromise user experience
and the practical use of the device [2], [3], we consider as a
main reference [22], which reported up to 100% sensitivity and
specificity on some of the examined patients, and demonstrated
the highest specificity when evaluated on a larger scale, with
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TABLE VIII
CNN DETECTORS CONSIDERED FOR THE COMPARISON

an average 99.9% specificity and 72% sensitivity, a false alarm
rate of only 0.5 FP/h, and an average onset detection latency of
19.2 s. Moreover, to enrich the comparison, we also implemented
two CNN models specifically designed for the seizure detection
task based on low-channel count acquisition setups and opti-
mized on the CHB-MIT dataset (see below). We designed these
custom models in order to enable a direct comparison with the
performance of the EEGformer, considering the same test and
post-processing strategy.

Specifically, we first designed a CNN model (CNN B) to
directly process the raw EEG signal, providing performance
comparable with the topology proposed in [16] for the clas-
sification of the data from patients CHB 1 and CHB 6 of the
CHB-MIT dataset (not shown). Unlike the model in [16], our
custom CNN works on EEG signal segments of 8 s length,
in alignment with the test scenario considered for EEGformer.
Furthermore, we considered a CNN performing classification
on energy features obtained with wavelet decomposition (CNN
C), replicating the pre-processing strategy exploited in [22]
and providing comparable accuracy in the classification of the
data from patient CHB 1. Both models were implemented in
PyTorch [30] and trained with the two-step strategy evaluated
for the EEGformer, thus benefiting from the global pre-training
phase. The training process exploited the Adam optimizer, 5e-5
learning rate, and batch size 16. The first pre-training phase was
conducted for 100 epochs, while 50 epochs were exploited for
the subject-specific fine-tuning step.

1) CNN on Raw EEG Signal: This CNN operates on raw
EEG signals. The model design inherits some of the take-outs
of the exploration conducted for the EEGformer: the input is
arranged into windows of 8 s length and the first convolutional
layer replicates the one successfully exploited in the EEG-
former embedding stage for the input dimensionality reduc-
tion. The architectural details are described in the left half of
Table VIII (CNN B): the model consists of two convolutional
layers (Conv#), followed by Rectified Linear Units (ReLU)
activation functions, a MaxPooling and two Fully Connected
(FC#) layers. Its complexity is lower than the EEGformer’s (2.22
MOPs), while its storage requirements are higher (325 KB of
parameters with 8-bit representation), although still suitable for
our target platforms.

2) CNN on Pre-Processed Input Features: Table VIII shows
a second CNN model, CNN C, whose input is obtained from
the windowed signal with Haar-wavelet decomposition. We will
consider it in the following as a reference to define the impact
of feature extraction on detection performance. The architecture
exploits a sequence of 5 convolutional layers, followed by ReLu

TABLE IX
PERFORMANCE COMPARISON ON CHB-MIT DATASET CONSIDERING

ACQUISITION FROM TEMPORAL CHANNELS

activation, and finally a MaxPooling layer and an FC module.
This sequence of operations is applied to a 3D tensor, of shape
(channels, height, width) (C,H,W). Each input item is obtained
evaluating the energy of 8 wavelet levels on 8 successive window
frames (each of 8 s duration), partially overlapped with 1 s step
size. The computational complexity (12.5 MOPs) is comparable
to the EEGformer’s and should be considered in addition to the
online pre-processing for feature extraction. On the other hand,
the storage requirements (105.3 KB) are lower than the first CNN
example.

3) Discussion: We provide in Table IX the comparison of
the EEGformer performance with the CNN-based detectors de-
scribed in the previous sections and with the SoA AB model for
seizure detection based on low-channel count acquisition [22].
The reported results refer to the same subset of the CHB-MIT
dataset and to a comparable testing and post-processing strategy:
the output of the AB model is filtered with 3 windows majority
voting, while averaging over 5 successive windows was consid-
ered for the CNN models, to obtain a higher specificity.

No significant performance degradation resulted from the
elimination of the feature-extraction step, which is required both
by the CNN C detector and by the SoA AB detector. Overall,
the EEGformer reaches quality metrics comparable to the state-
of-the-art reference for unobtrusive detection restricted to the
temporal channels, introducing a 20% reduction in the average
onset detection latency. Other works, like [31], report a lower
detection latency, however at the price of higher false alarms,
thereby making the solution not acceptable for practical settings.
Considering the more general scenario reported in Table VII,
the low sensitivity value is mostly impacted by the performance
obtained on patient CHB 6 (see also column 4 of Table IV),
which is not included in the set of tested patients in [21].
Excluding the results obtained on this patient, the event-level
sensitivity reaches 94%, thereby approaching the performance
of alternative models with lower specificity, providing a reliable
detection rate. To complete the assessment of EEGformer detec-
tion performance, we provide in Fig. 4 the Receiver Operating
Characteristic curve, obtained evaluating different thresholds
in the range [0,1] to discriminate a seizure prediction from a
non-seizure prediction. The plot refers to a cumulative anal-
ysis of the segment-level sensitivity and specificity over all
the leave-one-record-out tests performed on the eight patients
considered from the CHB-MIT dataset. Fig. 4 reveals that the
results reported in Table VII for the EEGformer correspond to
a region of the plot aimed at the minimization of the False Posi-
tive Rate (evaluated as 1− Specificity = FP/(FP + TN)).
Higher sensitivity reaching over 90%, can be obtained at the



616 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 18, NO. 3, JUNE 2024

Fig. 4. Receiver Operating Characteristic for the EEGformer, considering
classification performance of the set of considered patients on the CHB-MIT
dataset. The red point highlights the EEGformer working point designed to
minimize the False Positive Rate, whereas we report in black the sensitivity-
specificity trade-off at a lower specificity level, i.e. 92.5%, as in [19], bringing
to 79% event-level sensitivity, with the detection of all the seizure events in all
patients except 6.

price of a reduced specificity. However, as this work targets
long-monitoring devices, where minimal false alarm rates have
to be preserved, a similar trade-off would not encourage the
practical use of the device. Due to this reason, we also did
not make extensive use of approaches to balance the number of
training instances from the two classes, to avoid compromising
the specificity in favor of a higher sensitivity.

Improvements are still needed to reach the performance
achievable with access to complete acquisition setups (100%
sensitivity and 0.04 FP/h in [12]). Nonetheless, the performance
achievable with EEGformer indicates that minimal channel-
count systems are a viable solution for monitoring outside of
EMUs. The EEGformer is compliant with the main constraints
of long-term monitoring highlighted in Section II. It is distin-
guished by its minimized false alarm rate and detection latency,
which guarantee timely alarm responses without compromising
on accuracy. Moreover, the unobtrusiveness of the required
acquisition setup, along with the compact computational work-
load, make EEGformer especially suitable for integration into
wearable devices for long-term monitoring.

B. Comparison to a Tree-Based Approach on Clinical Dataset

As previously mentioned, since our dataset represents a very
novel resource, there is still no state of the art on it. Hence, to
compare EEGformer to other approaches, we consider the AB,
which is the current SoA reported for the CHB-MIT dataset [22].
Table VI reports in the last row the performance achieved with
AB on our data. When evaluated on a dataset different from
CHB-MIT, considered during its development, AB shows lower
specificity and higher FP/h, indicating that further optimizations
are required. The comparison to EEGformer further confirms
that our model holds promise for the successful implementation
of epilepsy detection on wearable devices with minimal false
positives and fast detection times.

Finally, the bottom section of Table VII compares the perfor-
mance of EEGformer to other models on proprietary clinical
datasets. Firstly, we notice that the achieved performance is
generally lower than the one reported on works based on the
CHB-MIT dataset. At the same time, despite the numbers being

not directly comparable (due to the different datasets consid-
ered for the evaluation), the event-level sensitivity achieved by
EEGformer is higher than the values reported by [15] and [16]
on their respective tasks (where 86% and 79% of the occurred
seizure events were detected). In terms of false alarm rates, a
comparable performance was obtained with respect to [15] (for
which the false alarms vary from 2 FP/day to 13 FP/day based
on the target patient) and [16], whereas nearly 2× less false
positives are achieved with respect to [17].

VII. DEPLOYMENT

Finally, we show how EEGformer can be efficiently exploited
to provide real-time detection on low-power health monitor-
ing devices, describing its implementation on three different
resource-constrained hardware targets. The selection of the plat-
forms considered is oriented to demonstrate that EEGformer is
suitable for efficient execution on single-core and multi-core
devices, with different levels of available computational re-
sources and technological maturity. We regulate the frequency
and voltage to optimize the energy efficiency on all targets. We
used the Quantlab software package [32] to perform quantization
up to 8-bit precision, thus reducing the memory footprint of
the model and enabling efficient byte-level processing with no
accuracy drop (not shown). Since the targeted platforms do
not support sub-byte arithmetic, more aggressive quantization
schemes appear as not beneficial, as they would not enable
significant efficiency gains, while they would adversely impact
accuracy [33]. To speed up the execution of the model, we use
the implementation of Integer Softmax, LayerNorm, and GELU
from I-BERT [34], where non-linear operands are replaced
with their polynomial or iterative approximations. Hence, we
avoid the expensive dequantization and exponential computation
normally required to implement those non-linear layers. As
reported in Table X, the final memory footprint of the model
is 150 kB, considering the buffers required for the storage of the
intermediate results.

A. Deployment on Apollo4

As a first deployment target, we considered the Ambiq Ultra-
Low-Power Apollo4 MCU [35]. This power-efficient platform,
requiring 5 µA/MHz, embeds a 32-bit ARM Cortex-M4 pro-
cessor accessing a 2 MB MRAM and a 1.8 MB SRAM and
allows for application-oriented frequency tuning. The technical
details about the implementation, based on the CMSIS-NN
library [36], are provided in [37]. We report the inference metrics
in the first column of Table XI. Having tuned the frequency
to 96 MHz, we measured 405 ms inference time and 1.79mJ
energy consumption, based on the average power consumption
measured with the Keysight N6715 C analyzer.

B. Deployment on GAP: Exploit Parallelism

The intrinsic parallel nature of the transformer workload
offers great opportunities for efficient inference through par-
allel computation. The landscape of edge-processing platforms
offers heterogeneous computing units, providing parallel and/or
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TABLE X
STATE OF THE ART FOR EPILEPSY MONITORING HARDWARE IMPLEMENTATIONS ON PROGRAMMABLE CORES

Fig. 5. Inference performance at different frequencies for single-core and multi-core execution on GAP9.

TABLE XI
INFERENCE PERFORMANCE ON HARDWARE

hardware-aided computational power. We evaluated the effects
of exploiting parallel computations moving to the GAP family of
processors by Greenwaves, representing IoT modules optimized
for machine learning applications. We first deployed the EEG-
former on the GAP8 processor, and finally targeted the more
recent GAP9, which demonstrated the best accuracy vs energy
efficiency performance in tiny-ML benchmarks [44], [45].

The GAP8 embeds 9 RISC-V parallel processors, one acting
as a control processor, and 8 constituting the computing cluster,
whose voltage and working frequency can be modulated based
on the application requirements. The memory hierarchy includes
a 512 KB L2 shared memory and a small 64 KB L1 memory,
local to the computing cluster, with multiple DMAs allowing for
autonomous and power-efficient data transfers. It is based on the
TSMC 55 nm LP technology, enabling a clock frequency of up
to 250 MHz. Leveraging the parallel nature of transformer-based
inference, we exploited the increased computational power pro-
vided by the 8 parallel cores.

As it is shown in Fig. 6, the MHA layer represents the
main computational workload. It is parallelized along the heads
dimension, according to the implementation described in [37],

Fig. 6. Percentage inference time distribution for the different operators in
EEGformer on GAP9 and 1 core execution.

allowing for an almost linear speedup with the number of cores,
as reported in Fig. 8. Table XI reports in columns 2 and 3 the
inference performance, referring to 65 MHz clock frequency,
and 1 V supply voltage. Even though the GAP8 platform is not
more energy efficient than the Apollo4 for single core execution,
the available parallelism allows for over 3× speedup (limited by
the less parallel operands in the network), resulting in an energy
consumption per inference 30% lower than the one required for
execution on the Apollo4.

The GAP9 processor is fabricated as a more advanced tech-
nological node, based on the TSMC 22 nm LP technology and
reaching up to 400 MHz working frequency. The computing
cluster includes an additional supervising core, and the memory
hierarchy is based on a 1.6 MB L2 memory and a 128 KB
L1 memory. Columns 4 and 5 of Table XI report the inference
performance on GAP9 measured at 240 MHz clock frequency
and 1.8 V supply voltage.
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Fig. 7. (a) System-level overview of how the PPK2 current supply is connected
to the GAP9 Evaluation Kit. (b) Photo of the GAP9 Evaluation Kit with
measurement connections. The measurement is performed running the cluster
domain of GAP9 at the most energy-efficient point of 240 MHz.

Fig. 8. Parallel speedup of the MHA execution time for execution on the GAP
processors.

As shown in the plots in Fig. 5(b) and (c), this configuration
represents the most power efficient setup for the platform: the
power consumption is reduced by a factor of 2 for parallel
execution on 8 cores, resulting in 1.5× energy saving. The
parallel execution on the computing cluster allows us to reach
an inference time equal to 22% of the one required by GAP8
and results in 82% energy savings over the first Apollo4 im-
plementation. The measurements were performed with a Power
Profiler Kit II (PPK2) connected to the GAP9 Evaluation Kit.
The measurement setup is shown in Fig. 7(b).

C. Discussion

In the following, we compare the efficiency of our deployment
solution with the state of the art. We limit the comparison to
programmable solutions, based on MCUs, which are inher-
ently less efficient, yet more flexible, than highly specialized
ASIC systems. Table X reports recent works presenting energy-
efficient systems for wearable epilepsy monitoring. The analysis
of the results reported in the Table highlights how our proposed
implementation is aligned with the performance achieved in the
works of [38], [39], [40] in terms of energy consumption per
inference, with the work of [40] reporting the best numbers for
a reduced acquisition setup.

We note that the systems proposed in [38], [39], [40], [41]
work with intracranial EEG, which is inherently less noisy. The
detector exploited in [38] is based on a simple RF model, where
most of the memory requirements are represented by the need
to store the training data for inference execution. On the other

hand, [40] and [39] exploit detectors of lower complexity com-
pared to the EEGformer, based on Hyperdimensional computing
(HD) and CNN.

Even higher efficiency is achieved in the work of [41], which
presents a tiny CNN for the classification of the EEG signal
of six rats. This interesting work achieves as low as 0.95 µJ
per inference, with a custom specialized co-processor, based on
RISC-V and exploiting a custom instruction set. Nonetheless,
the device embeds a tiny 6 kB SRAM memory, which limits the
range of possible deployable detectors, and the targeted tasks
cannot be directly compared.

The solution presented in reference [22] stands out as the most
energy-efficient general-purpose approach in the comparison. It
relies on a very lean AB model for detection, which requires
minimal inference execution time. In contrast to [22], our so-
lution aims to achieve a lower false positive/healthy rate and
faster onset detection latency through a more complex algorithm.
Consequently, despite the system’s power consumption being
over 1.2× lower, the EEGformer model dissipates significantly
more energy per inference, exceeding the energy dissipation of
reference [22] by one order of magnitude.

Nevertheless, our proposed solution is still executable in
real-time and is comparable with some existing ASIC imple-
mentations, whose energy consumption per classification ranges
from as low as 2.73 µJ per classification [46] up to 0.17mJ per
classification [47].

VIII. CONCLUSION

We presented EEGformer, a transformer-based seizure de-
tector designed to enable efficient long-term monitoring of the
raw EEG signal with unobtrusive devices, recording only from
the temporal channels. We first assessed its detection perfor-
mance through cross-validation and leave-one-out tests on the
open-source CHB-MIT dataset, and compared its performance
to state of the art of seizure detectors based on low-channel count
acquisition. EEGformer sets a new state-of-the-art 15.2 s average
onset detection latency for temporal-channels-only detection
and detects 73% of the considered seizure events while achieving
0 FP/h in 35/40 of the tests performed (more than 60% of the
considered patients do not experience false alarms).

Furthermore, we presented a novel dataset, containing con-
tinuous recordings lasting on average 3 days. We evaluated
EEGformer on this new realistic benchmark for clinical practice,
showing it is able to detect 88% of the annotated seizure events
with only 0.45 FP/h.

We finally considered the deployment on three edge-
processing platforms, the Apollo4 MCU and two GAP proces-
sors. With the first implementation, we show how the memory
footprint and the computational complexity of the EEGformer
can be accommodated on a tiny MCU, and executed efficiently
with 405 ms and 1.79mJ per inference, at 96 MHz operating fre-
quency. Parallelizing the inference workload on multiple cores
on the GAP8 and GAP9 processors allows further benefit from
parallel execution, reaching up to 82% energy savings. To con-
clude, the EEGformer represents an efficient transformer-based
detector targeting low-power and low-channel count continuous
monitoring systems.
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Future work will focus on further improving the event-level
sensitivity and detection latency while preserving or further
improving specificity. In addition, further studies should include
a more general exploration of the transformer topology, consid-
ering the effects of exploiting overlapping filtering kernels in the
first embedding stage, and especially of including the decoder
structure, to consider previous history when elaborating on
each EEG window. Finally, EEGformer represents a promising
seizure model to be tested on wearable devices for real-time
seizure detection in hospital or ambulatory settings.
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