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Abstract 

One of the main problems in risk management is the lack of good communication as well as 

efficient and effective collaboration between the agencies, services and organizations in charge 

of risk prevention, mitigation and management. The involvement of various stakeholder groups 

is an important component of risk prevention and mitigation. This calls for an integrated and 

coordinated approach which helps responsible stakeholders in managing risk, starting from risk 

identification to the decision-making process for achieving the best combination of risk 

reduction strategies. As natural hazards and associated risks are spatial in nature, web-based 

decision support tools integrated with Geographic information systems (GIS) have been 

increasingly considered as useful instruments for providing decision support. Taking the 

advantages of modern web, spatial and open-source technologies to achieve a centralized and 

integrated framework, in this research, a web-GIS based collaborative decision support platform 

is proposed for risk management with involvement of various stakeholders. The principal 

purposes of this research are: (1) to conduct a systematic and integrated risk management 

approach with diverse involvement of different stakeholders; (2) to explore the possibility and 

application of interactive web-GIS decision support tools for the analysis, communication and 

exchange of decision support information between risk management stakeholders and (3) to 

propose an innovative approach to potentially enhance collaboration activities between 

stakeholders through interactive and participatory approaches.  

The conceptual inputs of this study are based on the initial feedback, semi-structured interviews 

and observations obtained from the field visits and stakeholder meetings carried out in three 

case studies of Europe: the Małopolska Voivodeship of Poland, Buzău County of Romania and 

the Friuli-Venezia-Giulia region of Italy. Even though some platforms exist in study areas, no 

single case has a platform at hand which enables as flexible and collaborative approach for the 

formulation and selection of risk management measures as attempted in this study. Moreover, 

most platforms have focused mainly on inventory of events, risk visualization and 

dissemination of information. In this research, a prototype is realized and focused on the risk 

analysis, formulation and selection of potential measures through the use of an interactive web-

GIS based interface integrated with a Multi-Criteria Evaluation (MCE) tool. This platform is 

regarded not only as a web platform for centralized sharing of risk information but also for 

ensuring an integrated framework where involved stakeholders can analyse risk and evaluate 

risk reduction measures. For the prototype development, a three-tier client-server architecture 
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backed up by Boundless (OpenGeo) was applied with its client side development environment. 

This developed prototype was presented to the local and regional stakeholders of the study 

areas and feedback was collected to understand their perspective in determining whether the 

platform is useful and applicable for their activities in risk management. The prototype was also 

further evaluated with students to obtain feedback on different aspects of the platform as well 

as to analyse how the application of interactive tools could assist students in studying and 

understanding risk management. 

The main part of this research was carried out within the Marie Curie Research and Training 

Network “CHANGES: Changing Hydro-meteorological Risks as Analyzed by a New Generation of 

European Scientists” funded by European Commission’s 7th framework program 

(www.changes-itn.eu, 2011-2014, Grant No. 263953).  
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Résumé  

L'un des principaux problèmes dans la gestion des risques est le manque de bonne 

communication et de collaboration efficace entre les services, agences et organisations chargés 

de la prévention, l'atténuation et la gestion des risques. La participation des différents groupes 

d’acteurs est une importante composante de la prévention et l'atténuation des risques. Cela 

demande une approche intégrée et coordonnée, qui aide les parties prenantes responsables de 

gérer le risque, depuis l'identification des risques jusqu’au processus de prise de décision, à 

obtenir la meilleure combinaison des stratégies de réduction des risques. Comme les dangers 

naturels et les risques liés à ces dangers sont de nature spatiale, les outils d'aide à la décision 

basés sur le web et intégrés aux systèmes d'informations géographiques (SIG, GIS en anglais) 

ont été considérés de plus en plus comme des instruments utiles. En prenant les avantages du 

web moderne, les technologies géospatiales et open-source pour obtenir une structure intégrée 

et centralisée, une plateforme collaborative web-SIG est proposée pour la gestion des risques 

avec la participation des différentes parties prenantes. Les principaux objectifs de cette 

recherche sont 1) de proposer une approche systématique et intégrée de gestion des risques 

avec la participation des différents parties prenantes; 2) d'étudier la possibilité et l'application 

des outils interactifs web-SIG d'aide à la décision pour l'analyse, la communication et l'échange 

d'informations entre les parties prenantes de la gestion des risques and 3) de proposer une 

approche novatrice pour améliorer potentiellement les activités de collaboration entre les 

parties prenantes grâce à des approches interactives et participatives.  

Les apports conceptuels de cette étude sont basés sur les premiers feedback, les entretiens 

semi-structurés et les observations obtenues lors des visites sur le terrain et des réunions avec 

les parties prenantes menées sur trois sites d’études en Europe, dans les régions de Voïvodie en 

Pologne, de Buzău en Roumanie et du Frioul-Vénétie julienne en Italie. Même si certaines plates-

formes existent dans les zones d'études, aucune n’a une plate-forme qui permet une approche 

flexible et collaborative pour formuler et la sélectionner des mesures de gestion des risques 

comme ce qui est tenté dans cette étude.  De plus, la plupart des plates-formes existantes sont 

principalement concentrées sur l'inventaire des événements, la visualisation des risques et la 

diffusion de l'information. Dans cette recherche, un prototype est réalisé et centré sur l'analyse 

des risques, la formulation et la sélection des mesures potentielles en utilisant une interface 

interactive web-SIG intégrée à un outil d'évaluation multicritères (MCE). Cette plate-forme est 

considérée non seulement comme une plate-forme web pour le partage centralisé des 
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informations des risques, mais aussi comme un outil pour assurer un cadre intégré où les 

parties prenantes concernées peuvent analyser les risques et évaluer les mesures de réduction 

des risques. Pour le développement du prototype, une architecture client-serveur à trois 

niveaux renforcée par Boundless (OpenGeo) a été appliquée avec son environnement de 

développement côté client.  Ce prototype a été présenté aux parties prenantes locales et 

régionales des zones d'études. Leur feedback a été collecté pour comprendre leurs points de vue 

et déterminer si la plate-forme est utile et applicable pour leurs activités en matière de gestion 

des risques. Le prototype a également été évalué avec les étudiants pour obtenir des 

commentaires sur les différents aspects de la plate-forme et pour analyser la façon dont 

l'application des outils interactifs pourrait aider les étudiants à analyser et comprendre la 

gestion des risques. 

La partie principale de cette recherche a été réalisée dans le cadre du projet européen FP7-

Marie Curie « CHANGES: Changing Hydro-meteorological Risks as Analyzed by a New 

Generation of European Scientists » financé par la Commission Européenne (www.changes-

itn.eu, 2011-2014, Grant No. 263953).  
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Chapter 1: Introduction 

1.1 Background  

Natural hazard is a “natural process or phenomenon that may cause loss of life, injury or other 

health impacts, property damage, loss of livelihoods and services, social and economic 

disruption, or environmental damage” (UNISDR, 2009a). Natural hazards include geophysical, 

geological or geomorphological hazards such as floods, droughts, landslides, earthquakes and 

tsunamis. Over the years, disasters caused by natural hazards have become common and 324 

disasters were reportedly registered in 2014 (CRED, 2015). Even though this was reported as 

the third lowest number of disasters in the last decade, millions of people are still affected 

worldwide, especially in lower-income countries. This is not only because of the changes in 

climate conditions but also because of the effects of population growth and urbanization in 

hazard prone areas, which have led to a higher exposure of people and infrastructures to 

natural and anthropogenic hazards (Middelmann, 2007). Hazard alone does not constitute risk 

and turn into a disaster unless there are negative consequences on communities or probabilities 

of human related loss (Sudmeier-Rieux, 2011). All components of risk (i.e. hazard, exposed 

objects and vulnerability) need to be evaluated and considered for disaster risk reduction, 

mitigation and prevention. A good understanding of these components is fundamental (Bokwa, 

2013) and it must be first analysed to manage risk. The potential risk due to a hazardous event 

must therefore be identified and assessed. Based on the outcomes of risk assessment and in the 

case of unacceptable risk, appropriate risk mitigation measures need to be implemented in the 

affected areas by responsible authorities and decision makers. The understanding of risk 

management framework would allow risk managers and authorities not only to identify 

potential areas at risk but also to take appropriate mitigation measures considering different 

factors contributing to risk. This needs to be properly presented and communicated to the 

involved stakeholders so that better informed decisions can be made. In this aspect, advanced 

decision support tools could assist in providing risk information with informed choices based 

on an integrated and systematic approach of risk management. Risk information is spatial in 

nature, and with the advancement of web and spatial technologies, it has become possible not 

only to visualize and disseminate spatial information over the web but also to analyse and 

process interactively (Dragićević, 2004). This progress in web-based Geographical Information 

Systems (GIS) helped advancing (collaborative) decision support than traditional analysis and 

decision-making approaches (Dragićević and Balram, 2004).  
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1.2 Motivation 

Over the past decades, researches in decision support systems (DSS) have been carried out for 

various purposes such as hazards modelling, forecasting, assessment, planning and 

management, early warning systems and so on (Lazzari and Salvaneschi, 1999; Ahmad and 

Simonovic, 2006; Hearn et al., 2006; Pasche et al., 2007). However, previous researches covered 

one or several parts of the risk management framework, either in risk assessment, risk 

reduction or forecasting/monitoring of natural hazards. There is a need for integrated 

approaches and applications, which allows stakeholders in understanding the whole process of 

risk management starting from risk identification to the decision-making process for risk 

reduction. In addition, most web-GIS based applications in risk management have mainly 

focused on data visualization and dissemination (Müller et al., 2006; Salvati et al., 2009; Giuliani 

and Peduzzi, 2011; Frigerio et al., 2014). Pre-defined (calculated) risk scenarios and 

information were made available and uploaded beforehand in such platforms in order to 

visualize and access necessary information, limiting the possibility of interactive risk 

assessment, identification and selection of potential mitigation measures with involvement of 

different stakeholders. The widely usage of developed tools can also be limited due to their 

adaptability, mobility and complex system designs. Nowadays, with the use of open-source 

solutions and technologies, responsible organizations can benefit in terms of cost, flexibility and 

freedom, community support and accountability. For example, OpenStreetMap data can be 

extracted and used for rapid damage assessment (Schelhorn et al., 2014; Westrope et al., 2014). 

Therefore, in this research, a web-GIS based decision support platform is designed and 

proposed to support responsible stakeholders in risk management of hydro-meteorological 

hazards such as floods, debris flows and landslides. An online prototype of the platform is 

realized based on the open-source architecture and solutions. This developed platform is 

envisaged as an integrated platform in which risk managers can not only analyse risk but also 

select and evaluate appropriate risk reduction measures with other involved stakeholders 

through a collaborative decision-making framework. Furthermore, common risk information 

can be shared between responsible organizations and institutions through this centralized web 

platform. Such an integrated approach is important in risk management since the best 

combination of management practices can be achieved through coordinated and collaborative 

efforts (Hansson et al., 2008). In this way, different stakeholders are engaged and involved in 

the decision-making process of risk management. Different opinions and valuations of 
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stakeholders are taken into account aiming to achieve a common goal (Jankowski and Nyerges, 

2001). The conceptual input of this platform is based on the initial feedback and observations 

obtained from field visits and stakeholder meetings carried out within case study sites of the 

European FP7 CHANGES project (www.changes-itn.eu) in Romania, Italy and Poland.  

1.3 Research objectives 

This research highlights the significance of an integrated and collaborative risk management 

approach with engagement of various stakeholders. The main objectives of this research are: 

 To conduct a systematic and integrated risk management approach with diverse 

involvement of different stakeholders, linking components of risk assessment and risk 

reduction for the decision-making process; 

 To explore the possibility and application of interactive web-GIS decision support tools 

for the analysis, communication and exchange of decision support information between 

risk management stakeholders; and 

 To propose an innovative approach to potentially enhance collaboration activities 

between risk management stakeholders through interactive and participatory 

approaches, enabling a transparent and better informed decision-making process.  

For this purpose, the practical web-based application is proposed for formulation and selection 

of different risk reduction measures based on the analysis of risk information, integrating a 

web-GIS framework with a Multi-Criteria Evaluation (MCE) method for collaborative decision 

support with participation of various stakeholders. This decision support application aims: 

 To assist risk managers in analysing impacts and consequences of natural hazards using 

a quantitative approach; 

 To assist authorities and decision makers in the decision-making process for the 

formulation and selection of different risk management strategies using a MCE 

approach; 

 To assist in potentially enhancing collaboration activities between risk management 

stakeholders using a collaborative web-GIS based framework; and  

 To contribute findings and practices to the open-source research community in natural 

hazards and risk management using open-source software solutions. 

http://www.changes-itn.eu/
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1.4 Research questions 

The main research questions are identified as follows:  

1) What are the encountered difficulties in taking more informed decisions, looking 

through the lens of a long-term perspective in risk prevention and mitigation? 

2) How to identify the most efficient option, making good use of available resources and 

encouraging the involvement of various stakeholder groups? 

3) How to facilitate and integrate the involvement of stakeholders in risk management and 

decision making? 

4) How to potentially enhance collaboration and coordination activities between 

responsible stakeholders in risk management? 

5) What is the possibility of applying a decision support tool based on open-source 

solutions in study areas? 

1.5 Structure of the thesis 

This thesis was developed as a part of the European Marie Curie Initial Training Network (ITN): 

“CHANGES: Changing Hydro-meteorological Risks as Analyzed by a New Generation of 

European Scientists” (2011-2014) under the 7th Framework Program. The organization of the 

thesis is divided into several chapters based on two main parts of risk management framework 

developed within the platform: risk analysis (estimation) and risk reduction (treatment). Apart 

from the introduction, background and conclusion chapters (i.e. Chapter 1, 2, 3 and 7), the rest 

of the chapters are based on the already published peer-reviewed ISI journal publications, 

conference proceedings and articles. 

Chapter 2 and 3 give a general overview of the risk management framework, decision support 

and open-source technologies applied for the development of web-GIS based decision support 

tools in risk management. 

Chapter 4 presents a quantitative (raster-based) risk analysis tool, which is the first component 

of the web-GIS based decision support platform. The purpose of this study is to assist the 

experts (risk managers) in analysing impacts and consequences of a certain hazard event in a 

considered region. The outcomes of this risk analysis tool provide an essential input to the 

decision-making process in the selection of risk management strategies by responsible 

authorities and decision makers. In the platform, the users can import necessary maps (hazard 
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layers in raster format and object layers in vector format) and vulnerability information to 

analyse areas at risk. Based on these provided information and additional parameters, loss 

scenarios (amount of damages and number of fatalities) of a hazard event are generated on the 

fly and visualized interactively within the web-GIS interface of the platform. The annualized risk 

is calculated based on the combination of resultant loss scenarios with different return periods 

of the hazard event. A prototype version is realized and demonstrated using a regional data set 

from one of the case study sites, Fella River of North Eastern Italy, of the CHANGES project. 

Chapter 5 presents a collaborative web-GIS framework integrated with a multi-criteria 

evaluation tool, which represents the second component of the decision support platform. The 

objective is to support the engagement of different stakeholders and encourage a collaborative, 

decision-making process for risk management. The conceptual framework is based on initial 

data collected from field visits and stakeholder meetings carried out in three case study areas of 

the CHANGES project: the Małopolska Voivodeship of Poland, Buzău County of Romania and the 

Friuli-Venezia-Giulia region of Italy. Based on the needs and issues identified in each case study, 

this chapter also presents how such a platform could potentially assist and enhance the 

interactions between risk management stakeholders in formulating and selecting risk 

management measures. The prototype is presented to the local and regional stakeholders of the 

study areas during the dissemination meetings of the project. Collected feedback of 

stakeholders is then discussed to understand their perspectives in determining whether the 

platform is useful and applicable for their activities in risk management.  

Chapter 6 presents the evaluation exercise carried out with university students for the 

collaborative part of the decision support platform. The purpose of this exercise is to obtain 

feedback in details on the conceptual and technical aspects of the platform as well as to analyse 

how the application of such interactive tools during an exercise could assist students in studying 

and understanding risk management. The feedback obtained from students is then discussed for 

future research directions of the developed collaborative web-GIS based decision support 

framework. 

Chapter 7 finally concludes the thesis with summaries and findings of the researches carried out 

and future perspectives of this presented research work. 
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Chapter 2: General background in risk management 

In the previous Chapter 1, we introduced natural hazards and briefly explained that these 

natural processes alone do not represent risk unless there are some elements being exposed 

and threatened (such as buildings, infrastructures and people) (Alexander, 2004). Definitions of 

risk have been evolved and perceived differently by different sectors due to its multi-

dimensional nature and concept (Haimes, 2009). Risk is defined by Einstein (1988, p. 1076) as 

“the multiplication of hazard and potential worth of loss since the same hazard can lead to 

entirely different consequences depending on the use of the affected terrain risk”. In recent 

years, risk management approaches have shifted from active control and mitigation approach 

against hazards to a more integrated and comprehensive risk approach (Figure 2.1) (EEA, 

2010).  

 

Figure 2.1. Integrated risk management framework (Source: FOCP, 2014). 

This integrated risk management (IRM) approach is based on the basic risk management 

framework defined by the International Organization for Standardization (ISO) as illustrated in 

Figure 2.2. It consists of two main stages: risk assessment (identification, analysis and 

evaluation) and risk treatment (preparedness, response and recovery). It starts with the 
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identification of potential causes and consequences of sources and events. This is followed by an 

analysis process to estimate the level of risk and an evaluation process to determine whether 

risk is acceptable. In the case of unacceptable risk, risk reduction actions are taken in the stage 

of risk treatment. The framework also includes a communication and consultation process at all 

stages with responsible stakeholders including the affected population. Monitoring and review 

process is also included as an ongoing and iterative process to re-assess the affected landscape 

and the effectiveness of measures implemented. A similar process flow of IRM is also described 

in Bonin et al. (2009) based on Boutellier and Kalia (2006), and Habegger (2008). 

 

Figure 2.2. The IRM process as described in ISO 31000 (Source: FOCP, 2014). 

This approach requires an active engagement and participation of stakeholders at all levels of 

risk management. This is one of the four conditions which need to be fulfilled to achieve IRM 

(FOCP, 2014): integrated hazard analysis, integrated risk assessment, integrated action 

planning and integrated participation. Engaging local stakeholders in the process can help in 

gathering knowledge of the local hazard events and their associated risks at a local scale (EEA, 

2010). Sustainable and coordinated risk management measures can also be derived from this 

integrated and participative approach, fostering a shared understanding of risk and establishing 

a societal consensus in risk reduction and management.  

According to Crozier and Glade (2005), Fell et al. (2005) and ISSMGE TC32 (2004), definitions of 

some important terms of risk management are as follow:  
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Risk: Measure of the probability and severity of an adverse effect to life, health, property, or the 

environment. Quantitatively, Risk = Hazard x Potential Worth of Loss.  

Acceptable risk: A risk which everyone impacted is prepared to accept. Action to further 

reduce such risk is usually not required unless reasonably practicable measures are available at 

low cost in terms of money, time and effort. 

Tolerable risk: A risk within a range that society can live with so as to secure certain net 

benefits. It is a range of risk regarded as non-negligible, and needing to be kept under review 

and reduced further if possible. 

Intolerable risk: A risk that society is not prepared to live with and which must be reduced, 

removed, or avoided. 

Risk assessment: The process of making a decision recommendation on whether existing risks 

are tolerable and present risk control measures are adequate, and if not, whether alternative 

risk control measures are justified or will be implemented. Risk assessment incorporates the 

risk analysis and risk evaluation phases. 

Risk analysis: The use of available information to estimate the risk to individuals or 

populations, property or the environment, from hazards. 

Risk estimation: The process of deriving a measure of the probability and severity of loss to the 

elements at risk by the integration of hazard and consequence analysis. This can be carried out 

quantitatively or qualitatively. 

Risk evaluation: The stage at which values and judgement enter the decision process 

(explicitly or implicitly) by including consideration of the importance of the estimated risks and 

the associated social, environmental, and economic consequences, in order to identify a range of 

alternatives for managing the risks. 

Risk mitigation: A selective application of appropriate techniques and management principles 

to reduce either likelihood of an occurrence or its adverse consequences, or both. 

Risk management: The systematic application of management policies, procedures and 

practices to the tasks of identifying, analysing, assessing, mitigating and monitoring risk. 
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2.1 Stakeholder involvement 

Aaltonen and Kreutz (2009) mentioned stakeholders as those who have an interest in a certain 

decision either as individuals or representatives of a group. Stakeholders consists of people who 

influence (or can influence) a decision as well as those affected by that decision. In another way, 

it is a combination of the public sector, private sector and the civil society. Alternatively, Morss 

et al (2005) stated that stakeholders are not a coherent entity but a collection of individuals, and 

each of them uses different information to address different goals in a unique context. Multi-

stakeholder engagement ensures strong stakeholder support and is a catalyst for proactive 

commitment in disaster issues. Disaster risk reduction has an important linkage with the 

involvement of diverse stakeholders. Besides, lack of good communication and collaboration 

between stakeholders responsible for prevention, mitigation and management is one of main 

issues in risk management (De Marchi and Scolobig, 2012). 

IRM brings a participatory, cross-sectoral and transparent approach in risk management 

(APFM, 2009). It calls for coordination of stakeholders at various levels and can be best adopted 

using participatory process so that stakeholders are involved not only in risk assessment but 

also in developing appropriate combination of management strategies, along with monitoring 

and review during its implementation. A diverse range of stakeholders are brought together to 

share information, knowledge and harmonize different objectives in achieving common goals. 

Since various groups of stakeholder have different needs depending on their areas of interest, 

respective roles and responsibilities, participation methods are varied with a varying degree of 

involvement in the process (APFM, 2006). Figure 2.3 illustrates the levels of stakeholder 

participation: provision of information, hearings, consultation, collaborative decision-making 

and delegation of responsibilities.  
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Figure 2.3. Levels of stakeholder participation (Source: APFM, 2006). 

There are particular requirements for successful and sustainable involvement of stakeholders, 

and the most vital one is to build trust through information sharing and iterative interaction. 

However, there are no universal solutions which facilitate the involvement of concerned 

stakeholders and the civil society (APFM, 2006). Besides, it can be a time-consuming and 

resource-intensive work. It demands for the identification of appropriate stakeholders, 

realization of their issues under consideration and assisting their participation through a 

reasonable, fair, accountable and transparent process. 

2.2 Risk Assessment 

Risk assessment is defined as “the process of making a decision recommendation on whether 

existing risks are tolerable and present risk control measures are adequate, and if not, whether 

alternative risk control measures are justified or will be implemented” by Technical Committee 

on Risk Assessment and Management (ISSMGE TC32, 2004). The purpose is to determine if a 

risk may be acceptable or tolerable. If not and classified as too high, actions to reduce risk 

should be taken. Risk assessment and its quantification are main parts of risk management 

(Schmidt et al., 2011). The components of a risk assessment process within the risk 

management framework are shown in Figure 2.4 (Fell et al., 2005). The risk assessment process 

is multidisciplinary and consists of hazard analysis, consequence analysis (characteristic of 

elements at risk and their vulnerability) and estimation (calculation) of risk. In this section, the 

scope is limited to risk estimation and evaluation. 
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Figure 2.4. Components of the integrated risk management framework (Source: Fell et al., 2005). 

For management purposes, a comprehensive and accurate risk assessment is necessary 

considering its essential role in risk management. Risk assessment should be able to support the 

decision-making and risk treatment process for the effectiveness of risk management (Carreño 

et al. 2007). There are several assessment methods (qualitative, quantitative and semi-

quantitative) depending on the study scale, data availability and aims of the analysis (Lee and 

Jones, 2004; Glade et al., 2005; van Westen et al., 2006; Corominas et al., 2014). Qualitative 

methods are based on descriptive rankings, weighted indexes and classification systems, leading 

to descriptive and ordinal risk estimation. On the other hand, quantitative methods use 

numerical scales and ranges of values, leading to risk estimation in terms of economic values or 

number of people killed (Mavrouli et al., 2014).   

2.2.1 Risk Estimation 

The quantitative assessment has become an essential practice in risk management (Fell and 

Hartford, 1997). According to Fell et al (2005), risk can be quantified as:  
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𝑅 = 𝐻 × 𝐸 × 𝑉 × 𝑊   (2.1) 

where H is the hazard (i.e. multiplication of frequency and probability of the hazard reaching to 

elements at risk); E is the probability of presence of the elements at risk (exposition); V is the 

vulnerability of elements at risk to that hazard event; W is the amount (monetary) value or net 

present value (number of people) of the exposed elements at risk. A simple conceptual and 

spatial diagram of this process is illustrated in Figure 2.5. It is important to analyse where these 

hazard events can occur and with what frequency, as well as the elements exposed to hazard 

events and their vulnerability (i.e. degree of loss). 

Risk (R)

Elements at risk (E, V, W)

Hazard (H) 

Danger

 

Figure 2.5. Spatial illustration of the elements of risk based on Jaboyedoff and Nicolet (2015). 

However, it should be stressed that such a quantitative approach provides a limited estimation 

of risk.  It only considers direct damages to elements at risk in monetary terms, and thus, 

indirect damages and consequences are not included. Risk assessment should consider potential 

economic, social and environmental consequences due to a hazardous phenomenon in a period 

of time (Carreño et al, 2005). Besides, due to the complex nature of risk assessment, study scale 

and lack of data in practice, many aspects of the risk cannot be fully quantified (Jaboyedoff et al., 

2014). In such cases, qualitative approaches are adopted and considered as useful. They are 

often based on approaches using spatial multi-criteria evaluation (SMCE) (Castellanos Abella 

and van Westen, 2007; Raaijmakers et al., 2008) and risk matrix (Pine, 2008; FEMA, 2001) for 

risk prioritization and ranking. SMCE is a MCE method, a decision support methodology, but it 

works in a spatial manner and is based on the weighting and combination of spatial criteria (in 

the form of maps) to produce a composite map at the end. An example of composite risk index 
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map produced based on a semi-quantitative, expert-based SMCE approach is illustrated in 

Figure 2.6, as carried out by Castellanos Abella and van Westen (2007) for landslide risk 

assessment at a national scale in Cuba. Even though this method can be subjective, it is a useful 

instrument for decision-making as an initial screening process, especially for a large-scale study 

area and when there is insufficient data, inventories and resources to perform a detailed risk 

assessment.  

 

Figure 2.6. A landslide risk assessment model using SMCE (Source: Castellanos Abella and van Westen, 2007). 

Risk ranking methodologies have been developed since the nineties (Haimes, 2008). Qualitative 

approaches based on risk matrices are widely adopted due to its simplicity and effectiveness to 

risk management. Risk matrix is a tool which allows classifying and ranking risks in qualitative 

classes based on an assessment of their levels of impact (consequences) and probability 

(likelihood). An example risk reporting matrix is illustrated in Figure 2.7, to determine levels of 

risk (low, medium and high) in different colours (green, yellow and red) respectively. The 

classes of likelihood range from ‘not likely’ to ‘near certainty’ with an increase in probability of 
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occurrence. Similarly, the level and types of consequences range from ‘minor’ to ‘catastrophic’ 

with an increase in damage to property, for example. These defined classes and their definitions 

are varied depending on the institutional framework where the risk matrix is applied. Risk 

matrices may be regarded as a subjective and approximate tool for estimation of risk. However, 

they are useful for prioritizing risks qualitatively in many settings. Still cautions need to be 

given in using risk matrices despite its simple appearance. The limitations of risk matrices are 

discussed in Cox (2008) such as uncertainty associated to inputs and outputs as they require 

subjective interpretation by different users, and this may result opposite rankings of the same 

risks.  

 

Figure 2.7. A risk matrix (Source: DoD, 2006). 

2.2.2 Risk evaluation 

Risk evaluation is regarded as “the process of determining the significance of a risk to the 

individual, organization or community” (Crozier and Glade, 2005). It is “the stage at which 

values and judgements enter the decision process, explicitly or implicitly, including 

consideration of the importance of the estimated risks and the associated social, environmental 

and economic consequences, in order to identify a range of alternatives for managing the risks 

(ISSMGE TC32, 2004).” This process involves the determination of whether risk is acceptable, 

tolerable or intolerable. The acceptable risk is a risk which impacted community is prepared to 

accept while tolerable risk is a range of risk which community can live with it to secure certain 

benefits. The latter is non-negligible and needs to be reduced as low as reasonably practicable 

(ALARP) (Fell et al., 2005; ISSMGE TC32, 2004). The inacceptable risk must normally be reduced 

regardless of the cost. There are several factors which affect one’s attitude and perception to 
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these risks (AGS, 2000) such as insurance plans, available resources to reduce risk and his/or 

her past exposed experiences to risk. The acceptable risk level (individual and societal risk) is 

not universally established and varies from country to country (Bell et al., 2005) according to 

their standards. For example, the Geotechnical Engineering Office (Hong Kong) set acceptable 

(individual) risk for landslides and boulder falls as 1 x 10-5 and 1 x 10-4 is for new and existing 

developments respectively (Moore et al., 2001; Crozier and Glade, 2005). On the other hand, 

cumulative F-N curves are used for the acceptability of societal risk though this is not universal 

(Fell et al., 2005; Crozier and Glade, 2005). An example F-N diagram is shown in Figure 2.8, 

illustrating the frequency of exceeding N victims per year as a function of N due to landslides, 

for example.  

 

Figure 2.8. A F-N diagram for societal risk criteria (Source: Crozier and Glade, 2005). 

2.3 Risk Treatment 

The outcomes of the risk assessment process serve as an important input for this stage of risk 

management, depending on whether risks are tolerable or intolerable. Risk treatment is a 

process for risk modification and involves the selection and implementation of one or more 

options. In this section, the focus is placed on preparedness (and prevention) phase of IRM cycle 

before an event is occurred. There are many options (alternatives) which can be applied in 
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order to reduce the risk based on factors contributing to risk, for example, modifying the 

impacts of affected elements by reducing their vulnerability or reducing the intensity of the 

hazard through the implementation of some structural control measures in the area. According 

to Fell et al. (2005), some possible mitigation options include: reducing the frequency of a 

hazard, reducing the probability of the hazard reaching the element at risk, and reducing the 

exposure and vulnerability of the element at risk. Other management options include: avoiding 

the risk, transferring the risk and postponing the decision (in case of uncertainty and further 

investigations are needed to be carried out).   

Definitions of different terms for mitigation measures are listed based on UNISDR (2009a), 

Holub and Hubl (2008), Hubl and Fiebiger (2005), and Wilhelm (1997): 

 Structural measures: All physical measures to reduce or avoid natural hazards and 

their associated impacts, including the application of engineering techniques for hazard-

resistance in structures or systems.  

 Non-structural measures: All non-physical measures using knowledge, practice or 

agreement to reduce impacts and risks, typically concentrating on the identification of 

hazard-prone areas and limiting their use either temporarily or permanently. 

 Active measures: Measures to reduce the consequences of hazard by altering the 

characteristics of hazard such as magnitude or frequency.  

 Passive measures: Measures based on the principle of spatial separation of elements at 

risk (such as endangered people and objects) from the hazardous area.  

Risk management measures for floods and landslides account for both temporal and spatial 

dynamics of the hazard, the distribution and vulnerability of elements-at-risk (Fuchs et al., 

2013). Regardless of temporary or permanent implementation, measures can be categorized 

into structural and non-structural as well as passive and active measures. The following table 

2.1 shows the categories of mitigation measures, as defined in Holub and Hubl (2008). 

Table 2.1. Categories of risk mitigation measures (Source: Holub and Hubl, 2008). 

 Active Passive 

Permanent Soil bio-engineering  

Forest management 

measures  

Technical measures  

Spatial planning and land-use 

Hazard mapping 

Local structural measures 
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Temporary Immediate measures  Information and warning 

Exclusion zones and evacuation 

Not only hazard mitigation measures should be considered but also measures addressed to 

affected elements at risk and spatial planning should be taken into account within the natural 

hazard reduction framework (Kanonier, 2006). Spatial planning is a part of IRM and plays an 

important role in prevention to assure appropriate use of potentially affected areas (FOEN, 

2006). The IRM requires a combination of active and passive measures for risk reduction (Holub 

and Hubl, 2008), and therefore, there is a need for coordinated efforts between responsible 

authorities and organizations (such as sectoral and spatial planning) in selection of efficient and 

effective measures. Risk management is an iterative process which needs to be monitored for 

the re-evaluation of the situation after the implementation of risk management measures. 
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Chapter 3: General background in decision support for risk 

management 

In Chapter 2, we presented concepts and key elements of risk management framework. Risk can 

be reduced or mitigated through the implementation of integrated risk management measures 

as previously discussed. However, responsible authorities and decision makers face major 

informational and financial challenges in developing and prioritizing mitigation measures. 

Collaborative interactions and coordinated efforts amongst stakeholders are important in 

producing such coordinated mitigation strategies. Available resources and financial means need 

to be used efficiently and effectively for risk reduction. 

Increasingly, risk related information has become widely available with the help of advanced 

geospatial technologies. However, in many cases, individuals do not require more information, 

but need assistance in interpreting existing information and determining what is needed to 

make informed decisions (Hearn et al, 2006). Information needs to be well communicated and 

presented so that better informed decisions are made. In this case, decision support systems are 

regarded as useful tools for providing support and assistance to the decision makers. EEA 

(2010) also mentioned that it may be desirable to implement such kind of comprehensive 

information and decision support systems. This would support the impact assessment of natural 

hazards and the decision-making process in selection of appropriate risk reduction measures. 

Geographical information systems are also essential for understanding the spatial distribution 

of risks associated with natural hazards due to its powerful ability in analysis, processing and 

visualization of spatial data. Due to these additions to the decision-making process, they have 

been increasingly integrated as a major component in the decision support tools (Tkach and 

Simonovic, 1997) for natural hazards and risk management. 

3.1 Decision support systems 

With the evolution of the technology, decision support systems have been developed (Power, 

2007). They have emerged as an important component of computer-based information systems 

since around early 1970s, and the concept of DSS is generally considered as having originated 

with the study of Gorry and Scott-Morton (1971) (Keenan, 1996). Many definitions of DSS exist 

in the literature, however, there is a general view that these systems aim to support decision 

makers and facilitate decision processes in making informed choices, rather than replacing 

managerial judgment and automating the decision process (Keen and Scott-Morton, 1978; 
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Keenan, 1996; Arnott, 2006). A decision support system is defined as an interactive, computer-

based system that assist users in the process of decision-making (Finlay, 1994), targeting to 

improve users’ effectiveness in the process.  A DSS can be particularly useful and beneficial 

when some of these following characteristics are identified in the process (Keen and Scott-

Morton, 1978):  

 the existence of a large data set to analyse and process; 

 the need of computational ability in the process; 

 the existence of time pressure; 

 the need of judgment in the process, either to identify alternatives or to select a solution.  

3.1.1 Multi-criteria based decision support 

Data mining, artificial neural networks and multi-criteria decision making (MCDM) approaches 

have been widely used in the development of DSSs for finding relationships between the data, 

training knowledge to apply in decision-making patterns, and for ranking options based on the 

user criteria and preferences (Shim et al., 2002b; Kuo et al., 2002; Power and Ramesh, 2007). A 

fundamental component of a DSS is to provide functions which support choices amongst 

feasible alternative solutions. Alternatives can be compared and evaluated using Cost-Benefit 

Analysis (CBA) or MCDM approaches (Janssen, 1992). CBA requires evaluation of alternatives in 

monetary terms, and general decision rules such as cost-benefit ratio, internal rate of return and 

net present value are used. However, there are other important and competitive aspects of the 

decision problem, which are difficult to evaluate and quantify such as environmental and social 

aspects (van Herwijen, 1999). Particularly in the field of natural hazard and risk management, 

these aspects should be considered in the decision process to achieve integrated, appropriate 

and sustainable management strategies. In this section, we briefly introduce the concepts and 

approaches of MCDM.  

The decision problems with conflicting objectives can benefit from the application of MCDM 

techniques by making it more rational, explicit and efficient (Hobbs et al., 1992).  Belton and 

Stewart (2002) defined MCDM as “an umbrella term to describe a collection of formal 

approaches which seek to take explicit account of multiple criteria in helping individuals or 

groups explore decisions that matter”. These techniques are based on the objectives and 

preferences of decision makers as well as the criteria values associated with each alternative to 

produce a ranking of alternatives (Zeleny, 1982; Janssen, 1992; Vincke, 1992; Tkach and 
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Simonovic, 1997). The criteria may be quantitative or qualitative, and they may also be 

considered spatially depending on the study objective, criteria and decision problem at hand. 

The performance table used to evaluate alternatives against criteria is presented schematically 

in Figure 3.1. The performance value of an alternative for a criterion is represented either as a 

black dot (point) or map, where a1-a3 represents alternatives and c1-c4 represents criteria.  

 

Figure 3.1. Illustration of non-spatial and spatial performance tables of a decision problem (Source: van Herwijen, 1999). 

MCDM methods can be categorized into three main groups (Goicoechea et al., 1982; Tkach and 

Simonovic, 1997; Guitouni and Martel, 1998):  

(1) Outranking: uses pairwise or global comparisons of alternatives in terms of each 

criterion. Every pair of alternatives is evaluated and an outranking relation is produced. 

ELECTRE (Roy, 1991; Figueira et al., 2005) and PROMETHEE (Brans and Mareschal, 

2005) methods are the most frequently applied outranking methods (Mendoza et al., 

2006).  

(2) Multi-attribute utility and value: apply additive or multiplicative models for the 

aggregation of single criterion evaluations. AHP (Saaty, 1980; Zahedi, 1986) and TOPSIS 

(Hwang and Yoon, 1981) methods are ones of the most popular methods in this group.  

(3) Mathematical programming: is characterized by iterative and progressive process, 

seeking to discover alternatives which are closest to achieving desirable goals 

associated with each criterion. Among other approaches, Compromise Programming 

(CP) (Zeleny, 1973) and Goal Programming (Mendoza, 1987) methods are the most 

studied methods. 

3.1.2 (Web) GIS based decision support 

As natural hazards are location dependent, risk management activities can benefit from 

geographical representations. Geospatial technologies such as Remote Sensing (RS), GIS and 

Global Navigation Satellite System (GNSS) are increasingly utilized as a tool to support decision 
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making in risk management (Thomas and Kemec, 2007). For example, hazard mapping, analysis 

of the trends and patterns of population growth and settlements, spatial and land use planning, 

allocation of resources for response activities and so on. GIS has been portrayed as a decision 

support technology since the early beginnings in the 1960s, and GIS applications have provided 

necessary information for decision making in diverse fields such as environmental and natural 

resources management, regional and land use planning, natural hazards management and so on 

(Jankowski, 1995). Particularly in risk management, GIS plays a central role in the process of 

risk assessment and can be used to calculate potential damages in the affected area caused by a 

hazard event. This outcome helps risk managers and decision makers to take appropriate 

preventive measures (Peggion et al., 2008). However, GIS does not provide explicit decision 

support abilities (Carver, 1991), for example, the selection of a suitable alternative option to 

reduce risk. In this case, decision support tools and methods can be integrated or used in 

combination with GIS to provide better decision support capabilities (Malczewski, 2006). This 

combination of technologies is referred to as Spatial Decision Support Systems (SDSS), and 

plays an increasing role in geographic information science. Different levels of integration can be 

considered as discussed in the studies (Carver, 1991; Fedra, 1993; Jankowski, 1995; 

Malczewski, 2006). Many researches have been done in the development of SDSS applications in 

various fields (Tkach and Simonovic, 1997; Matthews et al., 1999; Rinner, 2003; Sugumaran et 

al., 2004; Levy et al., 2007).  

With the emergence of the World-Wide Web in approximately 1995, DSS and GIS technologies 

have been further extended and applied for online applications (Power, 2007; Bhargava and 

Power, 2001). Power (1998) defined a web-based DSS as “a computerized system that delivers 

decision support information or decision support tools to a manager or business analyst using a 

thin-client web browser like Netscape Navigator or Internet Explorer.” The web technologies 

used for DSS is reported in Bhargava and Power (2001) and overview of web-GIS techniques are 

described in Peng and Tsou (2003), Green and Bossomaier (2002) and Fu and Sun (2010). 

Examples of non-spatial decision support tools are Web-HIPRE (Mustajoki and Hamalainen, 

2000) and DEFINITE (Janssen and van Herwijnen, 1994). Web mapping and decision support 

features are combined, and examples of such web-GIS based decision support applications 

include Rinner and Malczewski (2002), Shim et al. (2002a), Yu et al. (2007) and Jankowski et al. 

(2008).  
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Many researches in the literature used the term web-based (spatial) decision support for 

different purposes, regardless of the degree of integration between web-GIS and decision 

methods. Such web platforms integrate GIS for visualization and analysis of spatial data, with or 

without the use of (spatial and non-spatial) decision methods explicitly. For example, 

Sugumaran et al. (2000) proposed a decision support tool, limiting to visualization and data 

retrieval for floodplain management. Yu et al. (2007) presented a web-GIS DSS for slope land 

hazard warning based on real-time rainfall monitoring (Figure 3.2). Similarly, Rao et al. (2006) 

described a prototype tool for resource management and assessment of environmental quality, 

based on feature extraction and assessment tools. They do not, however, apply core decision 

support methods in their applications. Nevertheless, outcomes of such tools can be used to 

support the decision-making process. 

 

Figure 3.2. Components of the web-GIS platform for slope land hazard warning (Source: Yu et al., 2007). 

3.1.3 Examples of decision support applications  

A variety of decision support applications have been evolved in the field of natural hazard and 

risk management research. These applications are developed to provide decision support in 

different phases of risk management framework. As risk systems are rather complex, decision 

support tools are particularly relevant to assist the processes of risk analysis, evaluation and 
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multi-criteria evaluation for selection of potential alternatives for risk reduction. In this section, 

some examples of existing decision support tools are briefly presented, focusing on the planning 

and management of natural hazards.  

Chen et al. (2001) introduced a program called MCE-RISK for risk-based decision-making, with 

an example to determine priority areas for bushfire hazard reduction. It includes modules for 

data standardization, weighting, MCE-GIS methods, and sensitivity analysis. Within this 

program, different MCE-GIS methods such as TOPSIS and CP are also incorporated for 

comparisons of the same decision problem. ANFAS (Prastacos et al., 2004) is a web-based 

decision support system for simulation of river floods and estimation of potential impacts, used 

by decision makers and stakeholders. To compare flood scenarios and estimate the impacts, 

different modules are integrated: GIS databases, hydraulic models and impact assessment 

procedures. Data obtained from different sources are also integrated in specific databases to be 

applied in these modules. The results can be visualized in the form of graphs and maps or can be 

downloaded using specially designed software. Besides, Pasche et al. (2007) proposed a 

decision support tool called Kalypso Planner-Client that enables spatial planners to create 

planning scenarios and mitigation measures for the evaluation of their hydrological, ecological 

and economic impact. This is integrated into an open source GIS-based system for flood risk 

modelling, based on Open Geospatial Consortium (OGC) standards to ensure a high level of 

interoperability of the spatial data. A review of existing tools for long-term flood risk 

management is reported in the FLOODsite (2007) project report. 

The decision-making process involves exchange of information, discussion and negotiation 

between involved stakeholders (Wang and Cheng, 2006). Levy et al. (2007) applied a multi-

criteria DSS for flood management in an urbanized Japanese watershed. This proposed 

framework used analytic network process (ANP) for weighting of criteria, aggregation and 

prioritization of emergency management options with the preferences of stakeholders. It aims 

to assist in enhancing communication between stakeholders and improving emergency 

management resource allocation through the visualization, analysis and integration of 

emergency management information. Participative and collaborative decision support is further 

promoted by Simonovic and Akter (2006), White et al. (2010), Aye et al. (2016b) and Evers et al. 

(2016) for group decision making.   
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3.2 Architecture of web-GIS decision support applications 

A web-based DSS may include a GIS component to facilitate spatial data retrieval, display and 

analysis, depending on the purpose of the study. It combines several components including user 

interfaces, computational models and spatial databases. The improvement of access to 

information can be achieved by integrating GIS in decision support systems. Developing a DSS in 

combination with web-GIS support can provide its end users in making better informed 

decisions referenced to a geographical location. The term Internet GIS (IGIS) is defined as 

“network-based geographic information services that can utilize wired or wireless Internet 

protocols to access geographic information, spatial analysis tools and GIS Web services” by Peng 

and Tsou (2003). They described IGIS as client/server systems in which basic functions (i.e. 

presentation, program logic and database) are distributed between client and server. Based on 

the client-server architecture, clients send requests to services running on a server and receive 

appropriate information in response. Typically, a client is a web browser and the server-side 

includes a web server, GIS server and database together with other supporting tools (Figure 

3.3). The client-server model can be a multi-tier architecture where geo-processing is divided 

into server-side and client-side tasks (Alesheikh et al, 2002). This architecture is used to 

facilitate the maintenance of the application and its functionality can be upgraded or modified at 

any time without affecting the end user’s computer system (Sugumaran et al, 2004; Zhang and 

Goddard, 2007). 

 

Figure 3.3. A Typical web-GIS model for the development (Source: Helali, 2001). 

There are two types of approaches based on the location where the actual information and 

processing tasks occur: client-side and server-side processing. Server-side based web SDSS are 

found in the literature and on the Internet since 1996 (Rinner, 2003). The server-side approach 

uses a thin client, and most of the processing is performed on a server. The client-side approach 

uses a thick client in which processing is mainly carried out on the user’s computer system. Both 
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of them have their advantages and disadvantages, and thus, the decision on which architecture 

may depend on the user requirements and the solution has to meet.  

3.2.1 Thin and thick client  

In a thin-client system (Figure 3.4), the clients only have user interfaces to communicate with 

the server and display the results. Most of the processing is done on the server and therefore, 

the server computers typically have more power than the client to manage the centralized 

resources (Alesheikh et al, 2002). For the web-based applications, there is no need to install 

additional software and only a browser is sufficient in most cases, and it can be accessed from 

every web-terminal (Kobben et al, 2010). Besides, the system performance is not dependent on 

the client. Therefore, if there is a need to revise or update the system’s functionality, it can be 

done on the server-side easily without affecting the client users. However, the speed of the 

system can be limited due to the processing task on the server and the connection of the 

network.  

 

Figure 3.4. A schematic diagram of the server-side processing approach (Source: Kobben et al, 2010). 

In a thick-client system (Figure 3.5), a high degree of processing is done on the client and it can 

be varied from no server involvement to a fairly amount of server processing. In this case, the 

client application can be more intelligent and is capable to process data more locally. Hence, it 

appears to be faster and basically can work temporary offline. Nevertheless, the performance 

mainly depends on the hardware of the client side and complex software needs to be installed. 

As a consequence, access to the application from any clients can be limited, unlike a web-based 
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thin-client solution (Kobben et al, 2010), as more resources are needed to be present at the 

client side to be able to use the application.  

 

Figure 3.5. A schematic diagram of the client-side processing approach (Source: Kobben et al, 2010). 

3.2.2 Three-tiered client-server architecture 

N-tier architecture is applied in many developments due to its easy maintenance of the 

application and data layers (Sugumaran and Sugumaran, 2007). The typical architecture of a 

web-based spatial decision support application uses a three-tiered architecture based on a 

client-server manner. Based on open-source technologies and solutions, a paradigm of such 

architecture is illustrated in Figure 3.6. Aside from being free, one of the main advantages of 

utilizing open-source solutions is that it can easily be tailored to meet the requirements of end 

users. A client-side approach is not adopted as it requires additional installation of software and 

plug-ins on the client side which can affect the usability and flexibility of the system. 

As shown in Figure 3.6, the server-side typically includes a Web server, a map server that 

provides GIS services and a geo-database for storage of spatial and non-spatial data. The map 

server acts as a common platform for the exchange of geospatial data and services. The Web 

server transfers spatial and non-spatial data between the client-side and the map server. The 

client-side interface allows end users to interact with the spatial application. An example 

sequence diagram of the communication between client and server components is illustrated in 

Figure 3.7. 
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Figure 3.6. Schema of the three-tiered client-server architecture for the web-GIS applications. 

Web Server Map Server Database

Request data 

Return features
of the request layer

Query features 
of a map layer

Response data

Retrieve data

Response data

 

Figure 3.7. A diagram illustrating the communication between client and server components upon the user request to 
retrieve features of a map layer from the client side.  
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In the following sub-sections, respective web services, standards and open-source components 

of the presented architecture are introduced.  

3.2.2.1 Geo-database 

A lot of progress has been observed in the management of spatial and non-spatial data in an 

integrated database management system (DBMS) called a geo-database, and this progress has 

been largely contributed by OGC (Zlatanova and Stoter, 2006).  

PostgreSQL is a powerful, open source object-relational DBMS with well-defined and open 

access protocols, operating on all major operating systems (PostgreSQL, 2016). PostGIS is an 

open-source spatial extension to PostgreSQL that implements the OGC’s “Simple Features for 

SQL Specification”. It is used to store and query location and mapping information, providing 

spatial objects such as geometry, geography and raster for the PostgreSQL database (PostGIS, 

2016). It spatially enables the PostgreSQL server, and can be utilized as a backend spatial 

database for GIS applications (Balbo et al., 2013). Besides, it provides additional functions and 

index enhancements for analysis and processing of spatial objects. This enhanced the ability of 

the main PostgreSQL database, providing a fast, reliable and feature-rich DBMS (Boundless, 

2016). Importantly, PostGIS database can be used in conjunction with GeoServer as a data 

source, allowing to publish spatial data online through standard OGC web services. Server-side 

and general-purpose scripting languages such as PHP and Python also provide PostgreSQL 

functions to connect and perform necessary operations within the geo-database through SQL 

(Structured Query Language) queries. 

3.2.2.2 Map engine server 

GeoServer is a Java-based, open-source software server for sharing, analysing and editing of 

geospatial data from different spatial data sources. Using open standards of OGC, geospatial data 

are published and displayed on the Web with a great flexibility and interoperability (GeoServer, 

2016). Many OGC standards are implemented in GeoServer including Web Map Service (WMS), 

Web Feature Service (WFS & WFS-T), Web Coverage Service (WCS) and Web Processing Service 

(WPS), forming a core component of the geospatial web. GeoServer is available as a standalone 

servlet and can be used with existing application servers such as Apache Tomcat or Jetty. For 

faster display, GeoWebCache (an open-source Java web application) can be used with 

GeoServer to cache images from different sources, helping to accelerate the delivery of map tiles 
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(Boundless, 2016). Figure 3.8 illustrates data formats, services and functions offered by 

GeoServer.  

 

Figure 3.8. GeoServer and its supporting functions (Source: Boundless, 2016). 

GeoServer supports the most widely used standards for web-oriented geo-spatial applications 

as defined by OGC (2016): 

 Geographic Markup Language (GML) is an eXtensible Markup Language (XML) 

grammar for encoding spatial features. It serves as a modelling language for GIS and an 

open exchange format for spatial transactions on the Web. 

 Web Map Service (WMS) allows a client to request geo-registered map images from 

one or more distributed geospatial databases. The response is geo-registered map 

images (rendered as JPEG, PNG, etc.) that can be displayed in a web browser.  

 Web Feature Service (WFS) allows a client to retrieve and update geospatial data 

encoded in GML from multiple Web Feature Services at the feature and feature property 

level, rather than sharing geographic information at the file level using File Transfer 

Protocol (FTP). 

 Web Processing Service (WPS) allows a client to request the execution of a geospatial 

process such as polygon overlay. It facilitates the publishing of geospatial processes and 

clients’ discovery of and binding to those processes.  
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 Web Coverage Service (WCS) allows a client to request coverage data in the forms that 

are useful for client-side rendering based on given spatial constraints and other query 

criteria. 

GeoServer also provides REST API (REpresentational State Transfer) to programmatically 

configure and manage the data served by GeoServer such as workspaces, stores, layers and 

styles. Using this extension, clients can configure a GeoServer instance through simple HTTP 

calls to perform operations such as GET, DELETE, PUT, POST, etc. Specific object 

representations can also be obtained in XML and JSON formats. A simple diagram of a REST 

process is shown in Figure 3.9, where the clients GET a current state representation of 

something from GeoServer and PUT that representation back to modify, in which object’s state 

is modified. This process can be performed through cURL utility, a command-line URL handler 

for executing HTTP requests and transferring files. 

 

Figure 3.9. REST interface of GeoServer (Source: Boundless, 2012). 

3.2.2.3 Client-side development libraries 

For the client-side user interface, a variety of open-source software libraries and solutions are 

available for the web mapping development.  

GeoExt is an open-source JavaScript library for the creation of rich web mapping applications. It 

combines OpenLayers with ExtJS to build customizable widgets, making it easy to build 

powerful desktop-styled web-GIS applications for viewing, editing, and styling of geospatial data 

(GeoExt, 2016).  

OpenLayers, a high-performance, feature-rich and open-source JavaScript library, is a key 

component of GeoExt for displaying and editing of geospatial data in desktop or mobile 
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browsers. It can be used for easy integration of dynamic maps in any web pages (OpenLayers, 

2016).  

Ext JS is a feature-rich JavaScript library for the creation of cross-platform HTML applications, 

which enables a most comprehensive Model-View-Controller (MVC) architecture in building 

applications. It features high-performance user interface widgets and templates including chart 

options, scalable grids, layouts and trees. A robust data package is also included to serve data 

from any data sources (Sencha, 2016). 
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Chapter 4: Quantitative risk analysis (estimation) 

This chapter presents a quantitative risk analysis tool for flood and landslide hazards. The aim 

of the presented tool is to assist the experts (risk managers) in analysing the impacts and 

consequences of a certain hazard event in a considered region, providing an essential input to 

the decision-making process in the selection of risk management strategies by responsible 

authorities and decision makers. It is one of the main modules of the collaborative decision 

support platform (see Chapter 5). A prototype is developed based on the Boundless (OpenGeo 

Suite) framework and its client-side environment. Within this platform, the users can import 

necessary maps and information to analyse areas at risk. Based on provided information and 

parameters, loss scenarios (amount of damages and number of fatalities) of a hazard event are 

generated on the fly and visualized interactively within the web-GIS interface of the platform. 

The annualized risk is calculated based on the combination of resultant loss scenarios with 

different return periods of the hazard event. The application of this developed tool is 

demonstrated using a regional data set from one of the case study sites, Fella River of north-

eastern Italy, of the CHANGES project. 

This chapter is extracted and modified based on the published peer-reviewed ISI journal article: 

Aye, Z. C., Jaboyedoff, M., Derron, M. H., van Westen, C. J., Hussin, H. Y., Ciurean, R. L., Frigerio, S., 

and Pasuto, A.: An interactive web-GIS tool for risk analysis: a case study in the Fella River basin, 

Italy, Nat. Hazards Earth Syst. Sci., 16, 85-101, doi:10.5194/nhess-16-85-2016, 2016. 

4.1 Introduction 

During recent years, natural hazard and risk assessment has become a major topic of interest 

among natural and social scientists, engineering professionals, endangered communities and 

local administrations in many areas of the world (Aleotti and Chowdhury, 1999). At the same 

time, hazardous processes in mountainous environments such as landslides, debris flows and 

floods have also increased in terms of frequency, magnitude and impact, as a result of climate 

change combined with continuously growing settlement areas (Sterlacchini et al., 2014). An 

increase in occurrences of such hazard events can be expected in the future due to the extreme 

rainfall events associated with climate change. Landslides happen in different geological and 

environmental settings in Europe each year (EM-DAT, 2003; EEA, 2010) and are mostly 

triggered by intense and long rainfall (Krejčí et al., 2002; Zêzere et al., 2005; Guzzetti et al., 

2007; Brunetti et al., 2010), though other factors such as rapid snowmelt, earthquakes and 
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human activities also contribute to the occurrences of these events. Natural processes alone 

present no risk unless they threaten some elements at risk (Alexander, 2004). Therefore, it is 

important to analyse where these hazard events can occur and with what frequency, as well as 

the elements exposed to hazard events and their vulnerability (i.e. degree of loss), leading to the 

identification of areas at risk. Einstein (1988, p. 1076) defined risk as “the multiplication of 

hazard and potential worth of loss since the same hazard can lead to entirely different 

consequences depending on the use of the affected terrain risk”.  

Risk assessment and management includes the estimation of the level of risk, followed by an 

evaluation of whether this level of risk is acceptable. If this is not the case, the adaptation of 

appropriate measures needs to be taken for risk mitigation (Aleotti and Chowdhury, 1999; Dai 

et al., 2002; Crosta et al., 2005; Sassa and Wang, 2005; Fell et al., 2008). The acceptable risk is 

defined as “a risk which everyone impacted is prepared to accept” (ISSMGE TC32, 2004) and 

varies from country to country (Bell et al., 2005). For management purposes, risk assessment 

should be able to support the decision-making process in order to contribute to the 

effectiveness of risk management (Carreño et al., 2007). Therefore, a comprehensive and 

accurate risk assessment needs to be carried out, realizing its important role in the risk 

management framework. There are several assessment methods which can be applied 

depending on the study scale, availability of data and aims of the analysis (Lee and Jones, 2004; 

Glade et al., 2005; van Westen et al., 2006; Corominas et al., 2014), which can be grouped into 

qualitative, semi-quantitative and quantitative methods. The quantitative assessment of hazard 

and risk has become an essential practice in risk management (Fell and Hartford, 1997). This 

approach should quantify the expected losses as the product of the probability for a given 

intensity, costs of exposed elements at risk or number of exposed people, and their associated 

vulnerability (Uzielli et al., 2008). However, risk assessments are often complex in nature and 

many aspects of the risk cannot be fully quantified (Jaboyedoff et al., 2014) due to the lack of 

data, scale of study or other socio-economic aspects of study area. Therefore, if insufficient data 

are available for a quantitative assessment, qualitative approaches are adopted, which are often 

based on spatial multi-criteria evaluation (SMCE) methods (Castellanos Abella and vanWesten, 

2007; Raaijmakers et al., 2008) and risk matrix approaches (Pine, 2008; FEMA, 2001) for risk 

prioritization, ranking and evaluation. SMCE is a multi-criteria evaluation method but in a 

spatial manner, based on the weighting and combination of spatial criteria (maps) to produce a 

composite map. The risk matrices are also widely adopted due to its simplicity, making it 

possible to classify and prioritize risk in qualitative classes depending on the levels of impact 
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and probability of a hazard event. In this study, the scope is limited to quantitative risk 

estimation (analysis). 

Geographical Information Systems (GIS) play a central role in natural hazard risk assessment 

referenced to a geographical location (Peggion et al., 2008). Nowadays, with the support of 

advanced internet developments, open-source data, software and technologies, it has become 

much easier to exchange and analyse spatial information on the web through web-GIS based 

applications. Web-GIS is the combination of web technologies and GIS for data handling and 

analysis of spatial data on the web, simplifying the exchange of data and providing structural 

information to users without needing to install additional stand-alone software (Yang et al., 

2005). In recent years, a number of studies have been conducted on the design and 

development of web-GIS applications for different purposes in the field of natural hazards and 

risk management (Lan et al., 2009; Frigerio and van Westen, 2010; Pessina and Meroni, 2009; 

Furdu et al., 2013; OpenQuake, 2015). However, most web platforms have focused mainly on 

risk visualization and dissemination of information (Müller et al., 2006; Salvati et al., 2009; 

Giuliani and Peduzzi, 2011; Frigerio et al., 2014) while risk assessment applications still remain 

as desktop-based applications such as CAPRA-GIS (a modular and free GIS for probabilistic risk 

analysis of natural hazards) or the InaSAFE (a free and open-source plugin to calculate impact 

scenarios for natural hazards) of Quantum GIS (QGIS) software. Further research needs to be 

done on the development of interactive risk analysis and management tools, taking the benefits 

of advanced web and web-GIS technologies to achieve a centralized and integrated framework. 

A good example of such developments for earthquake risk assessment was realized based on 

Geonode (an open-source platform for the creation, sharing and collaborative use of geospatial 

data) and OpenQuake engine (an open-source software for seismic risk assessment) by the 

Global Earthquake Model (GEM) foundation. Moreover, with the use of open data, it has become 

possible to perform rapid damage assessment using OpenStreetMap (Westrope et al., 2014) and 

its base data can be extracted (Schelhorn et al., 2014) and integrated in web-GIS applications for 

analysis. 

The aim of this research work is to contribute to the practice of the open-source research 

community through the development of an interactive, open-source web-GIS-based risk analysis 

tool for natural hazards such as floods and landslides. Section 4.2 presents the background 

methodology, workflow and architecture used for the development of the prototype together 

with the data model design and calculation procedures of the prototype risk tool. In Sect. 4.3, we 
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demonstrate the components of the prototype using a regional data set from the Fella River 

basin area in Italy, where flash floods, river floods and debris flows are frequent and cause 

severe consequences. Finally, a discussion of limitations and potential improvements of the 

presented risk analysis tool is reported. 

4.2 Background framework and methods 

An overview diagram of the prototype platform is presented in Fig. 4.1, where the risk analysis 

module is one of the main modules. The data management module acts as an essential input to 

the risk analysis module in order to provide the necessary data (i.e. hazards, elements-at-risk 

and vulnerability information) for the calculation of loss and risk scenarios. The purpose of the 

loss component is to quantify the probability of losses either in monetary values or fatalities 

caused by a hazard event in a specific area for a certain time period. The risk component 

produces a risk curve which shows the relationship between frequency and its associated losses 

of hazard events. When the resultant risk level is not acceptable, the results of risk analysis are 

applied in the decision-making process for formulation and selection of appropriate control 

measures for the purpose of risk reduction. In this chapter, we mainly focus on the structure of 

the risk analysis module along with its supporting data management module. The targeted users 

of this module are mainly experts who are responsible for providing and analysing risk 

information especially for hydro-meteorological hazards such as floods and landslides. 
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Figure 4.1. Overview diagram illustrating the main modules of the prototype web-GIS platform. For the user interactions, 
the risk analysis module is mainly intended for expert users (risk managers) while various stakeholder groups can be 
involved in the risk reduction module for the decision-making process in the formulation and selection of different risk 
management measures. 

4.2.1 Definitions of loss and total risk 

We define the term “loss scenario” as a scenario with estimated number of fatalities and 

physical damage to assets in monetary value, which are caused by a specific hazard event with a 

given intensity for a certain return period. According to Hungr’s (1997) definition, intensity 

represents “a set of spatially distributed parameters describing the destructiveness of a hazard”. 

Intensity can be defined quantitatively using various parameters, e.g. in the case of debris flow, 

depth of accumulated deposit, impact pressure, kinetic energy per unit area, etc. The return 

period is the inverse of the average frequency of events with intensities above a given threshold. 

The physical losses of a certain category of elements at risk for a given frequency of a hazard 

event can be quantified as (van Westen et al., 2014): 

Loss (L) = Spatial Probability (SP) x Vulnerability (V) x Amount (A)  (4.1) 
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where SP is the expected spatial probability values of modelled hazard zones (either a map or a 

value between 0 and 1) depending on data availability and considered hazard event/type; V is 

the level of potential damage (or degree of loss) of the affected elements-at-risk resulting from 

the hazard event of a given intensity (Fell and Hartford, 1997); A is the quantity (number of 

people) or economic (monetary) value of the affected elements-at-risk. 

In this study, only the physical vulnerability of the elements at risk is being considered. The 

physical vulnerability represents the expected level of damage and can be quantified on a scale 

of 0 (no damage) to 1 (totally destroyed) in function of the intensity of the phenomenon (Fell et 

al., 2005). In the prototype, vulnerability data can be represented in the form of data ranges (i.e. 

a range of minimum and maximum intensity values corresponding to a certain minimum and 

maximum vulnerability value) or a function with or without class (type) information for a 

specific category of elements at risk. An example of vulnerability curve is illustrated by the 

cumulative distribution function (CDF) in Fig. 4.2, with its defining equation (Kotz and van Drop, 

2004; Haimes, 2008): 
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where x is a given intensity value; a is the lowest intensity value; b is the highest intensity value; 

c is a varying value between a and b values. The CDF is initiated as an example to experiment 

the possibility of applying a certain vulnerability curve (function) in the loss calculation of this 

prototype version. The parameter values used to generate this curve are fed directly by the 

expert user (after having the possibility to perform a detailed analysis outside of the web 

platform). Therefore, uncertainties could be associated with the expert knowledge of the users. 
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Figure 4.2. An example illustration of a generic vulnerability curve using a Cumulative Distribution Function (CDF). The 
input parameters a, b and c are obtained from the user to generate the vulnerability curve with or without class (type) 
information for a certain category of elements-at-risk. 

The resulting loss scenarios (either fatalities or damages) of a specific hazard event with 

different return periods are then combined to compute the annualized “risk” total (R) per year. 

It can be represented in the form of a risk curve (van Westen et al., 2010). In this study, the 

staircase-shaped curve is applied for the calculation of total risk as illustrated in Fig. 4.3, 

showing the contribution of the selected loss scenarios to the annualized total risk (R). 

Therefore, the resulting annualized risk here represents the area below the staircase rather 

than the area under the fitted (black) curve of the combination of frequency and loss of all 

scenarios: 
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where Rj is the annual risk of the scenario j; fj is the frequency (inverse of the return period T) of 

the scenario j; Lj is the loss of the scenario j.  
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Figure 4.3. An example of risk curve in the form of staircase. A1–A4 represents the area derived from the loss calculation 
for four return periods. Each A1–A4 contributes to the risk total (R) of the considered hazard event (e.g. debris flows). 

A simple conceptualized diagram for the generation of loss and risk scenarios is shown in Fig. 

4.4, where hazard (e.g. debris flows) scenarios with different return periods are overlaid with 

the elements-at-risk map (e.g. buildings) in order to obtain the intensity associated with each 

affected object and calculate their vulnerability values, which are finally multiplied with the 

amount or value of the affected objects. The spatial probability values of the hazard scenarios 

are also considered in the loss calculation, if available. These resultant loss scenarios are then 

combined to obtain the total annualized risk. The background layers of debris flows (Hussin et 

al., 2014a), building maps and vulnerability curves of the example illustrated in Fig. 4.4 are 

parts of the research results of two European projects: CHANGES and IncREO. 
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Figure 4.4. A simple illustration of the generation of loss scenarios and risk curve (adopted from van Westen et al., 2014 
with data from Ciurean et al., 2014; Hussin et al., 2014a). (a) Debris flow scenarios with varying colours represent the 
deposit height (m) of accumulated debris materials for four return periods. (b) Building map consists of the related 
information such as value and material type of each building. (c) Vulnerability curves of the buildings illustrate a 
comparison of the considered area’s debris flow vulnerability curve with existing ones from the literature. (d) The 
generated loss scenarios based on (a), (b) and (c). (e) The final risk curve derived from the combination of four loss 
scenarios with its respective frequency. 

4.2.2 Workflow of the risk analysis module 

The conceptual workflow of the loss component (Fig. 4.5) is composed of three main parts: 

hazard, elements-at-risk and vulnerability information. In a first step, the user can select an 

uploaded hazard map of a certain hazard type. The spatial probability information (either as 

map or value) can be entered depending on the availability of spatial probability information 

and selected hazard type. This spatial probability value is given based on the knowledge of the 

expert user and thus, it can be subjective. If no information is given or available, a spatial 

probability value of 1 is assumed in the calculation. The user can then move to a second step for 

the selection of the corresponding elements-at-risk map and enter additional information such 

as the amount (cost values) and type (class) information depending on the chosen elements at 

risk, if available. This input information is important in the loss calculation not only to match the 
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existing attributes of a given elements at risk with its corresponding vulnerability information 

in the next step but also to calculate the estimation of damages. For example, in the case of 

buildings, the user can indicate the amount (monetary) value and building type (e.g. reinforced 

concrete, masonry, etc.) information within the selected buildings layer. If no amount 

information is given or available, only number of affected elements-at-risk calculation is 

possible (e.g. the number of buildings exposed to the selected hazard scenario). Finally, in a last 

step, if no vulnerability information is given or available, a vulnerability value of 1 (complete 

damage) is assumed. If vulnerability data are available, the user can indicate whether it is a 

“data ranges” or “function”, which is either uploaded or created in the data management module 

by the user. The user then matches the selected vulnerability information with the given class 

(type) information of the selected elements-at-risk layer. Finally, the loss scenario is calculated 

on the fly based on these given input data. The resulting calculated loss scenario can be 

visualized interactively in the web-GIS interface of the platform. This process is repeated for all 

available hazard scenarios with different return periods and for all elements at risk. The option 

of setting the spatial probability and vulnerability values to 1 is made available in the case 

where the associated spatial probability of a hazard event or vulnerability information of 

elements at risk is not available. Since lack of data is an issue in reality and it is not always 

possible to obtain a complete data set. 
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Figure 4.5. Workflow of the loss calculation component, illustrating the three main types of input information (hazard, 
elements at risk and vulnerability) with additional parameters for the generation of loss scenarios. For example, if the 
buildings (as elements at risk) have no amount (monetary) information, only the affected number of buildings can be 
obtained. 

The resulting loss scenarios with different return periods are then combined to produce an 

annualized risk based on the staircase approach as mentioned above in Eq. (4.3) and Fig. 4.3. At 

least three different loss scenarios of the same hazard event with different return periods are 

required to calculate the annualized risk and visualize the risk curve within the platform. This 

process starts with the summation (aggregation) of the losses (Lj) for each loss scenario of a 

certain elements-at-risk. Then, each loss total is multiplied with the respective frequency value (

111  jjj TTf ) to obtain the annual risk (Rj) for each step of the staircase curve (Fig. 4.3), 

and finally, the summation of all steps (Rj) produces the total annualized risk (R) for the 

considered hazard event. The step-by-step conceptual workflow of this risk calculation 

component is shown in Fig. 4.6, and this process can be repeated for different types of hazards. 

In the current version of the prototype, we did not consider whether hazards are dependent or 

not. Moreover, we only considered calculating the area under the staircase-shaped curve, and 

therefore, there are possibilities to improve the calculation of the entire area under the curve. In 
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addition, the calculation was carried out for the whole study area rather than per administrative 

units. 

 

Figure 4.6. Workflow of the risk calculation component. The loss scenarios with different return periods are combined to 
obtain the total annualized risk (per year) based on the staircase approach. 

4.2.3 Background architecture 

The background architecture of the platform is based on the three-tier client-server 

architecture model, facilitating the maintenance and upgrade of the platform at a later time 

without needing the users to make changes at the client side (Sugumaran et al., 2004). The 

processing is done mainly on the server side and only a web browser is needed for the users to 

access the platform (Aye et al., 2015). The Boundless (formerly OpenGeo) framework was 

adopted to develop this prototype version of the platform. It offers a complete open-source 

geospatial architecture with modular components (Boundless, 2016). Only open-source 

components and standards are specifically chosen for the development of this web platform. 

The PostGIS database is integrated for data storage of spatial data. GeoServer and GeoWebCache 

are used for application servers to access and render the spatial data through web map services. 

GeoExt, ExtJS and Open-Layers (JavaScript libraries) are applied for the user interface 
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framework of the interactive web map application across web browsers and mobiles. Moreover, 

it also provides a client-side software development kit (SDK) environment to build JavaScript-

based, complete and customizable web mapping applications. This prototype platform is based 

on GXP template (a JavaScript SDK) for developing high-level GeoExt based applications with 

OpenLayers 2. The presented risk analysis and other supporting modules are developed as 

plugins (dependencies) within the platform. The possibility to develop such customized plugins 

makes the implemented tools extensible and reusable when and where needed, allowing a 

faster prototyping with integration of existing map tools and functionality in the web-GIS 

platform. 

4.2.3.1 Schema design 

A part of the data model of the prototype platform, focusing mainly on the presented risk 

analysis module, is illustrated in Fig. 4.7 together with its supporting data management module. 

(see Appendix IV for the full schema). The input information related to the hazards, elements-at-

risk maps and vulnerability information are recorded in the tables of hazards, elements-at-risk 

and vulnerability, respectively. These three tables belong to the data management module.  

 

Figure 4.7. Data Model of Data Management (hazards, elements-at-risk and vulnerability tables) and Risk Analysis (loss 
scenario, loss-risk and annualized risk tables) modules. Three types of information can be seen in each table: the actual 
column name (e.g. id), the type of the column (e.g. serial) and the attribute of the column (e.g. <<pk nn>> represents that 
this is a primary key column and null values are not allowed for this column). For the full data model with other modules, 
see Figure 2 and 3 of Appendix IV. 
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The hazards table records the information related to each hazard map such as type (e.g. floods), 

return period (e.g. 100 years), name of the hazard map, etc. Similar type of information is also 

recorded in the elements-at-risk table for all elements-at-risk layers (e.g. replacement value, 

type and population information). In the vulnerability table, information related to vulnerability 

data or function curves is recorded. In all cases, the mapping_index attribute serves as an 

important look-up index to link each record in parent tables (e.g. elements-at-risk) with its 

corresponding child tables (e.g. Fella buildings) in the database and published layers in the 

GeoServer. The child tables are created dynamically upon the user uploads of layers (e.g. Fella 

buildings). Thus, such tables are not included (illustrated) in the fixed schema design of Fig. 4.7, 

and their respective column attributes can be varied depending on the uploaded data (see 

Figure 3 of Appendix IV for the illustration of such spatial tables). Like the other tables, the 

information related to each loss scenario such as name, description and category of the scenario 

is recorded in the loss scenario table, and this table is linked to the other three tables (hazards, 

elements-at-risk and vulnerability) in order to retrieve the input information which is necessary 

for the calculation of a specific loss scenario. For the follow-up calculation of the annualized 

total risk of a certain hazard with different return periods, this loss scenario table is linked with 

annualized risk table through a loss-risk table since a total risk scenario includes at least three or 

more loss scenarios with different return periods. The annualized risk table contains the 

information related to the calculated annualized risk total such as name, description and total 

amount (per year). The mapping_index attribute of this table links to its associated child table 

which stores the summary information of loss and annualized risk for considered return 

periods of a certain hazard event. 

4.2.3.2 Processing steps for calculating losses and risk 

For the loss calculation component, the processing is done mainly within the PostGIS database 

on the server side and the results of each calculated scenario are published to GeoServer for 

visualization in the web platform. GeoServer’s REST (Representation State Transfer) 

configuration is used to programmatically configure operations such as creating a new feature 

type or data store in GeoServer. These published layers can be visualized and edited within the 

web-GIS interface through Web Map Services (WMS) and Web Feature Services (WFS) of OGC 

(Open Geospatial Consortium) standards. In the Data Management module, map layers (hazard 

maps in raster format, and elements-at-risk maps in vector format) can be imported into the 

database and GeoServer for processing and visualization. The vector layers are stored in a data 
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store linked to the PostGIS database. However, the raster layers are stored separately in a 

coverage store and in the PostGIS database without having the link between them. For this 

purpose, the raster2pgsql tool (a raster loader for raster data into a PostGIS raster table) is used 

through a PHP (a server-side scripting language) script to store the uploaded raster in the 

PostGIS database for the loss calculation. 

The algorithm for the calculation of a loss scenario within the database has the following steps 

(buildings as elements-at-risk, in this case): 

1. Create a loss table populated with the records derived from the following sub-queries: 

a. Perform a spatial intersection (ST_Intersects) operation on the hazard intensity 

raster map and elements-at-risk map based on geometry (spatial) intersection; 

b. Perform a clip (ST_Clip) operation to crop the intersected raster; 

c. Perform a polygonised (ST_DumpAsPolygons) operation to obtain a geometry 

(in this case, a polygon) with values representing a raster band value; 

d. Perform count, minimum, maximum and average operations on pixel values of 

the clipped polygons to obtain the hazard intensity values, grouped and ordered 

by each affected unique identifier of the objects. 

2. Add new columns to this created loss table and fill in the respective attribute values 

(based on the given input information) to calculate loss estimates as follows: 

a. Extract spatial probability values for each affected object (either from maps or 

given value); 

b. Extract vulnerability values for each affected object by mapping in the 

vulnerability look-up table or calculating using the given vulnerability function 

based on the respective intensity values;  

c. Extract the corresponding types and monetary values for each affected object by 

matching in the elements-at-risk map; 

d. Multiply spatial probability, vulnerability and amount value of each affected 

object as explained in Eq. (4.1) and update the loss table accordingly. 
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3. Register the record of this calculated loss table in the loss scenario table of Fig. 4.7, so 

that the information can be retrieved later. 

As a final step, this calculated loss table is published to the GeoServer for visualization in the 

platform as mentioned above, using cURL (client URL) and GeoServer’s REST configuration. This 

REST service facilitates the process between the client and GeoServer (e.g. in XML format, 

Extensible Markup Language) through HTTP (Hyper Text Transfer Protocol) calls to create, 

retrieve or update information of something in GeoServer – for example, to add a new style or 

change the name of a certain published layer in GeoServer (only if the logged-in user has the 

authorization to do so). 

After calculating each loss scenario for different return periods of a considered hazard, the 

algorithm for the total annualized risk is performed as follows: 

1. Create a total risk table that stores the information about a collection of considered loss 

scenarios (i.e. return period, frequency, number of affected elements-at-risk, loss and 

annual risk values) 

a. Populate the table with records of return period, frequency and its 

corresponding losses;  

b. Update the table’s risk attribute value to compute the annual risk (the 

calculation as explained in Sect. 4.2.2 and Fig. 4.6) 

2. Register the summed annual risk total record in the annualized risk table of Fig. 4.7 

along with additional information.  

3. Register the relationship record in the loss-risk table of Fig. 4.7 to link between loss and 

annual risk scenarios. 

The snippets for loss and risk calculation are accessible at the following link for interested 

readers: https://bitbucket.org/snippets/zaye/.  

https://bitbucket.org/snippets/zaye/
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4.3 Demonstration of the prototype 

4.3.1 Case study of Fella River basin, Italy 

The Fella River is a left tributary of the Tagliamento River, the dominant river system in the 

Friuli-Venezia Giulia region, northeastern Italy (Cattaneo et al., 2006). The study area is 247 

km2 in size (Fig. 4.8) and the catchment has an average altitude and mean precipitation of 

1140ma.s.l. and 1920 mm, respectively (Sangati, 2009). The drainage has a torrential regime 

due to the concentrated rainfall in intense and erosive showers, the steep topography and the 

lithology consisting a large part of limestone and dolomite. In addition, the area is seismically 

active and characterized by a high distribution of landslides (Borga et al., 2007). Extreme 

precipitation events leading to hydro-meteorological hazards such as flash floods, landslides 

and debris flows are frequent in the area, resulting in catastrophic consequences and damages 

to infrastructure worth hundreds of millions of euros and human casualties (Scolobig et al., 

2008). 

 

Figure 4.8. The Fella River study area, Friuli-Venezia Giulia region, northeastern Italy (Data from Chen et al., 2014; 
Ciurean et al., 2014; Hussin et al., 2014b). 
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In August 2003, a major alluvial event occurred, triggering landslides and debris flows 

mobilizing about 1 million cubic metres of debris material and causing a major flood on the 

whole Fella River basin (Fig. 4.9). Moreover, shallow and deep-seated landslides and flash 

flooding also occurred in this area (IncREO, 2014). Despite being scarcely populated, the valley 

represents an important transportation and communication corridor in the region, with a high 

interest of local authorities and population in tourism activities. Therefore, an expansion of 

touristic and recreational areas could result in more elements at risk affected and thus an 

increase in potential risks to hydrometeorological hazards. 

 

Figure 4.9. Debris flow events in Fella River basin in August 2003 (©Civil Protection of Friuli-Venezia Giulia region, 
Italy). 

4.3.2 Fella River data set 

For debris flow hazards, four types of events have been modelled by Hussin et al. (2014b): 

frequent, minor, moderate and major with related estimated return periods of 1–10 years, 10–

25 years, 25–100 years and 100–500 years, respectively. This model is an empirical regional-

scale model with some limitations that gives only the run-out extent. By using the expert-based 

approach and comparing with past events, impact pressure intensities are given to these run-

outs. The modelled impact pressure (in KPa) is considered as the intensity parameter for the 

debris flows. Figure 4.10 illustrates the major debris flow event of a part of the Fella study area 

for the return periods of 100–500 years. The modelled debris flows have not all occurred. 

However, they are all possible debris flows that could occur in the study area if they were to be 

triggered, and based on a susceptibility analysis of the most likely areas to be debris flow 
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sources in the future. Their intensities (including run-out distance and extent) correspond to 

similar events with a return period scenario that have occurred in the past. The set of modelled 

debris flows were simulated according to a calibration with debris flow events occurring in each 

return period scenario. 

 

Figure 4.10. Debris flow (maximum intensity) of major event with return periods of 100–500 years (Hussin et al., 2014b). 

The elements-at-risk database contains information about building characteristics such as 

location, occupancy type, material of construction, number of floors, building’s value (minimum 

and maximum) and number of people occupying the building (during tourist and non-tourist 

seasons) (Ciurean et al., 2014). The building database was developed using an initial digital data 

set which was subsequently updated and validated through GIS-desktop and field mapping, 

which gave information about the building geometry, type, use, etc. Building value was 

calculated based on existing cadastral information, whereas population at individual building 

level was estimated using a dasymetric mapping technique. An illustration of the building 

classification based on construction material and numbers of floors in Pontebba commune is 

given in Fig. 4.11. 
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Figure 4.11. Classified building information in Pontebba commune, Fella River basin (Ciurean et al., 2014). 

4.3.3 Uploading of Fella data in the data management module 

As a first step to calculate loss and risk scenarios, the input data needs to be imported into the 

platform through the data management module, i.e. hazard intensity maps, elements-at-risk 

maps and associated vulnerability information. If available, the spatial probability map 

associated with a certain hazard event can also be uploaded into the system to be included in 

the calculation. For example, spatial probability of debris flow can be calculated by overlaying 

the modelled debris flow areas with actual inventories corresponding to each return period. All 

debris flow areas that are part of the historical inventory are given a spatial probability of 1. The 

spatial probability of the simulated debris flows that do not overlap with past events are 

calculated by dividing the total area of the historical events of a given return period scenario by 

the total area of the modelled debris flows of that scenario (Hussin et al., 2014b). The users can 

upload data in .tiff format for raster images or zip format for vector shapefiles. The additional 

properties of the imported layers are also recorded in the system, such as type and return 

period (in case of hazards), and the indication of whether the imported map reflects the current 

situation or a possible future situation after implementing certain measures (for risk reduction 

module of the platform). Upon successful upload of maps to the system, the users can visualize, 

edit, query and style the layers in the web-GIS interface of the platform. 

For the vulnerability component, the user can enter data in the form of numerical values (data 

ranges) or functions to calculate vulnerability curves. The “data ranges” is a discrete range of 

minimum and maximum degree of loss values associated with the corresponding minimum and 
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maximum intensity of a certain hazard event, and it can be uploaded by the users in .csv, excel 

and .txt formats. The “function” option is used to create a continuous CDF together with its 

specific parameter values, as defined by the users and explained in Eq. (4.2). The CDF must fulfil 

two mathematical requirements: (a) the depending variable, i.e. degree of loss, should be 

confined by the [0–1] interval; and (b) it should increase steady and monotonic with the interval 

of the explaining variable, i.e. intensity (Papathoma-Köhle et al., 2012). Such examples of 

probability functions are the Weibull, Fréchet, log-logistic, triangular, beta, etc. The visualization 

of vulnerability curves obtained by using both options is demonstrated in Fig. 4.12a and b, 

where the average curves obtained from a set of data ranges and a generic CDF are illustrated 

respectively. The import interfaces of the hazard and vulnerability components are included in 

Appendix I for demonstration. 

 

Figure 4.12. (a) Visualization of the vulnerability curves generated using data ranges. The curves are drawn based on the 
average intensity values for different building material types such as masonry 1 floor, reinforced concrete 1 floor, etc. (b) 
Visualization of the vulnerability curve generated using the CDF. The curve is drawn based on Eq. (4.2) for the building 
material type (e.g. reinforced concrete). The input parameter values a, b and c are given by the user. 

4.3.4 Risk analysis module 

Each loss scenario is then calculated in the Loss Component of the Risk Analysis module using 

the available maps and information in the system. As explained in Sect. 4.2.2, the loss 

component is composed of three main parts: hazards, elements-at-risk and vulnerability 

information for calculation of a new loss scenario (see Appendix I for the loss interface). The 

users can first select a “hazard” map amongst the existing ones depending on the hazard type 

(e.g. debris flows or floods) and its corresponding spatial probability data can be entered either 
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in the form of map or input value in the range of 0 to 1. For the “elements-at-risk” part, the same 

concept applies, allowing the users to select an existing map (e.g. buildings) as well as to enter 

additional parameters such as amount (e.g. building value) or different class information (e.g. 

material type) of the selected elements-at-risk layer. Only the number of affected elements at 

risk can be calculated if no monetary information of the elements at risk is given. In the 

“vulnerability” part, the user can indicate whether vulnerability information is available or not. 

In the case of no information, we assume that the affected elements will be totally destroyed (i.e. 

vulnerability value equals 1) regardless of hazard intensity. If not, the user can select the 

available vulnerability information based on its data type (either data ranges or function). Then, 

the user can match the vulnerability data with classes of objects (e.g. material types) 

accordingly to retrieve the corresponding vulnerability value of a certain intensity level on each 

affected object. 

Based on these three types of input information, a new loss scenario is calculated according to 

the loss algorithm described in Sect. 4.2.3.2. Thereafter, the user can visualize each calculated 

loss scenario (Fig. 4.13) where the economic loss (damage) of each affected building by the 

debris flow hazard can be seen in the pop-up of the map interface. The additional information 

used to calculate the loss is also presented such as minimum, maximum and average intensity 

values, vulnerability value based on the building’s material type, spatial probability and 

monetary value of the building. 

 

Figure 4.13. Visualization of the calculated loss scenario, illustrating the affected buildings with economic losses for the 
debris flow major event (maximum intensity in KPa). 
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This loss calculation process is repeated for all return periods of a given hazard (in this case, 

debris flows). After that, these loss scenarios with different return periods of the debris flow 

event are combined to calculate the annualized risk, as mentioned in Sect. 4.2.3.2. At least three 

or more loss scenarios with different return periods are required for the Risk Component of this 

module (see Appendix I for the risk interface). The visualization of calculated minimum (Fig. 

4.14a) and maximum (Fig. 4.14b) risk curves for debris flow events in the Fella River study area 

is demonstrated, along with affected number of buildings and their corresponding losses for 

each return period of the calculated scenarios. 

 

Figure 4.14. (a) Visualization of the debris flow risk curve (minimum). (b) Visualization of the debris flow risk curve 
(maximum). 

According to the calculation results, Fig. 4.14 shows that high return period events (i.e. low-

frequency events) caused higher losses compared to the low return period events (i.e. high-

frequency events). For the maximum intensity scenarios of debris flow, the economic losses of 

the major event reached EUR 15 million (703 houses were affected) while the most frequent 

event was only EUR30 thousand (seven houses were affected). The variation in risk estimation 

can be indicated with minimum and maximum values of total economic losses – for example, in 

the case of major debris flow event, the difference ranges from EUR 3.7 to 15 million. The total 

annualized risk for debris flow is estimated approximately from EUR 0.026 to 0.4 million (for 

minimum and maximum scenarios, respectively). 
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For the same study area, risk assessment has been carried out by Chen et al. (2014) in which a 

multi-hazard quantitative risk assessment model was developed using a historical hazard 

inventory and GIS technology for risk curves generation and annualized risk calculation. The 

results of the web-GIS risk analysis tool were compared with the ones produced by Chen et al. 

(2014). For number of affected buildings, the difference varied from 0 to 100 with an increase in 

return periods of the events. Fewer buildings were affected as a result of calculations in the 

web-GIS tool with a difference of 4–10 buildings for minor events, 38–40 buildings for moderate 

events and 90–100 buildings for major events, while there was no difference for frequent 

events. Within the web-GIS tool, 5x5m cell sizes of the debris flow raster maps (with 100x100m 

tile sizes) were used for calculation within the PostGIS database. This cell grid size (5x5 m) was 

chosen since it gives better approximate results when compared to Chen et al. (2014), according 

to the test results obtained by using different cell size raster maps. If a building polygon was 

overlapped to multiple pixels of the debris flow raster map, the maximum intensity value of the 

overlapping pixels was used to retrieve the vulnerability value for loss calculation. A spatial 

probability value of 1 was applied in the loss calculation for the underestimated (modelled) 

debris flow maps. This value was chosen based on the expert knowledge and assumption that 

this area witnessed debris flows in the past completely (i.e. historic debris flow events). Debris 

flows that have occurred in channels in the past are more likely to also occur in the future. Due 

to discrepancies in raster cell size and spatial probability values, the calculated loss values 

showed a difference of about EUR7 million for major events while comparable results were 

achieved for moderate, minor and frequent events. 

4.4 Discussion and conclusion 

This chapter has presented the design and development of a web-based risk analysis tool which 

aims to assist in analysing the impact of flood and landslide events on society and people, with 

the demonstration of the prototype using a data set from Fella River basin located in north-

eastern Italy, where frequent floods and landslides occur with severe consequences for the 

infrastructure and mountainous community in the region. The presented tool is developed as a 

module of a prototype decision support platform so that the risk managers can not only analyse 

areas at risk but also formulate and compare different risk reduction measures with 

involvement of other stakeholders from different institutions and organizations (see Chapter 5 

for the collaborative framework of the platform). This risk analysis tool has been developed 

based on the feedback of local stakeholders during a workshop organized in Malborghetto 
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Valbruna municipality of Fella River basin in September 2014. The stakeholders indicated their 

strong interest in the potential development of a spatial-query-based risk analysis tool along 

with a cost–benefit analysis tool for comparison of different risk reduction measures in the area. 

As a first step, this prototype scenario-based risk analysis module was developed. As 

stakeholders suggested, the possibility of integrating a spatial-query-based tool could further 

facilitate the risk analysis process in a much more interactive, query-based environment (for 

example, drawing a polygon query for risk calculation in the web-GIS interface of the platform 

for a certain area of interest). 

This prototype represents an essential step towards a more complex risk analysis platform. 

Further improvements of the developed risk analysis tool can be identified. For example, the 

vulnerability component could be advanced with the integration of additional vulnerability 

curves for specific hazards and elements-at-risk types. For the loss component, at its current 

state, loss scenarios are calculated one by one based on input parameters, and therefore, the 

manual input iteration time of the same process could be reduced with the integration of a batch 

processing mode. This can be done for all loss combinations of hazards with different return 

periods and elements-at-risk scenarios. The uncertainty of the chosen input parameters in the 

process should also be communicated to the user. Besides, it is also planned to integrate 

qualitative hazard intensity layers in vector format in the loss calculation. For the risk 

component, more accurate ways of calculating the total annualized risk under the area of risk 

curves (i.e. over the combination of loss scenarios with frequency) could be explored, and 

visualization of risk curves could be improved by considering different hazards for multi-hazard 

risk assessment. In this study, all input data required were available and imported into the 

platform. However, availability of hazard intensity (raster) maps and elements-at-risk 

information can be rather limited for such kind of full quantitative risk analysis, especially in 

developing countries. Therefore, other approaches dealing with lack of data should also be 

further integrated within the platform – for example, a qualitative impact-probability matrix to 

assess and compare different situations for affected elements at risk at object level based on 

expert and local knowledge of the territory. Data scarcity can also be overcome through 

simulation based on value distribution for missing variables and/or adding variables to the 

existing data, and this would lead to obtaining exceedance curves by running several and 

random simulations. 
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This prototype tool was developed based on Boundless architecture and its client-side 

environment due to its flexible and extensible open-source components, making it possible to 

implement a faster prototyping of the tool. Regarding technical improvements of the tool, the 

loss scenarios were generated in the spatial database hosted on the server side of the web 

application. Therefore, raster and vector layers had to be imported into the database to perform 

spatial operations and published to GeoServer for visualization purposes in the platform. If the 

calculation processing of loss scenarios could be directly carried out using Web Processing 

Services (WPS), the importation and publishing procedures to the database and GeoServer 

could be minimized. Furthermore, moving forward to implementing WPS for loss and risk 

calculation could assist in particular for recalculation of loss and risk scenarios dynamically for 

different risk reduction measures, at least for preliminary risk calculations without needing the 

users to re-upload the new updated hazard raster maps. In that case, it would greatly simplify 

and reduce the complexity of the steps used to recalculate risk for reduction measures, which is 

required for the risk reduction module of the platform. Additionally, risk calculation could 

benefit from the use of remote data sources from other available web map servers and services 

provided by responsible organizations of the study area. 

To conclude, regardless of some limitations of the presented approach, the prototype tool was 

successfully realized as one of the main outcomes of the decision support platform, and its 

possible application was demonstrated to the stakeholders and tested using a real data set from 

the Fella River basin study area. This prototype plays an important role in obtaining feedback 

and suggestions from potential stakeholders and users of the application, possibly leading to a 

full-scale development of the system based on a user-centred designed approach. Additionally, 

rather than being a standalone risk analysis tool, this tool has been integrated within a decision 

support platform. The great benefit lies in achieving an integrated risk management framework 

which supports the end users and stakeholders in better understanding the entire process of 

risk management starting from risk identification to the selection of risk management 

strategies, while providing a centralized and collaborative multi-users platform. Furthermore, 

this simple risk analysis tool is developed based on a generalized framework with use of open-

source software and architecture, and hence it offers a high degree of replicability and mobility 

in other study areas. Unlike desktop-based applications, the end users need not install 

additional plug-ins or GIS software to analyse risk, and the resultant risk information can be 

visualized and shared amongst the users for efficient communication and dissemination over 

the web, benefiting from web-GIS and web technologies. Several functionalities for 
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improvements are possible for future development such as qualitative impact-probability 

matrix for risk analysis at object levels, integration of additional vulnerability curves and 

simulation approaches as well as for working with (semi) qualitative hazard intensity maps.  

Some of the mentioned aspects to be improved in this work (such as CBA, spatial query-based 

and qualitative vector-based hazard intensity layers for loss calculation) are already considered 

and included in an on-going research project for natural hazards and risk management in 

Canton Vaud, Switzerland.  
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Chapter 5: Collaborative risk management framework  

This chapter presents a collaborative framework of an interactive web-GIS platform integrated 

with a multi-criteria evaluation tool for the second component of the decision support platform. 

The objective is to support the engagement of different stakeholders and the encouragement of 

a collaborative, decision-making process for flood and landslide management. The conceptual 

framework is based on initial data collected from field visits and stakeholder meetings carried 

out in three case study areas of the CHANGES project: the Małopolska Voivodeship of Poland, 

Buzău County of Romania and the Friuli-Venezia-Giulia region of Italy. Based on the needs and 

issues identified in each case study, this chapter also presents how such a platform could 

potentially assist and enhance the interactions between risk management stakeholders in 

formulating and selecting risk management measures. The developed prototype was presented 

to the local and regional stakeholders of the study areas and feedback was collected to 

understand the stakeholders’ perspectives in determining whether the platform is useful and 

applicable for their activities in risk management. Feedback from stakeholder responses 

indicates that stakeholders found the prototype not only useful, but innovative and supportive 

in potentially assisting their activities. However, feedback also highlighted several aspects of the 

platform that can be improved for the development of a full-scale system to apply in practice. 

This includes the engagement of stakeholders toward higher levels of participation and a more 

extensive evaluation of the platform by carrying out concrete group exercises in the study areas.  

This chapter is extracted and modified based on the published peer-reviewed ISI journal 

articles:  

 Aye, Z. C., Sprague, T., Cortes, V. J., Prenger-Berninghoff, K., Jaboyedoff, M., Derron, M.-H.: 

A collaborative (web-GIS) framework based on empirical data collected from three case 

studies in Europe for risk management of hydro-meteorological hazards, International 

Journal of Disaster Risk Reduction., 15, 10-23, doi:10.1016/j.ijdrr.2015.12.001, 2016.  

 Aye, Z. C., Jaboyedoff, M., Derron, M.-H., and van Westen, C. J.: Prototype of a web-based 

participative decision support platform in natural hazards and risk management, ISPRS 

International Journal of Geo-Information., 4(3), 1201-1224, doi: 10.3390/ijgi4031201, 

2015. 
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5.1 Introduction 

In broad terms, collaborative decision-making within the context of disaster risk management 

can be defined as the “combination and utilization of resources and management tools by 

several entities to achieve a common goal” (Kapucu and Garayev, 2011, p. 366). Collaborative 

interactions are increasingly required under complex decision-making processes to facilitate 

knowledge and contributions of different stakeholders and actors towards better-informed 

decisions (Edelenbos et al., 2011; Failing et al., 2007). These interactions may evolve throughout 

the different stages of a decision-making process (Bardach, 2005; Jankowski et al., 1997; Ranger 

et al., 2010). In practice, decision-making processes for risk management vary depending on a 

variety of factors including which stakeholders and actors are involved in the process, what are 

the mechanisms of deliberation, what are the values and interests of the involved parties, and 

the spatial distribution of risks. In the case of widespread spatial distribution of risk, for 

example, multiple municipal jurisdictions and higher (whether it be regional or even national) 

levels of authority will be involved in the management process. The degree to which different 

actors are involved depends also on the legal and regulatory structure in place which can 

prescribe both formally and informally the roles and responsibilities of the different actors.  

The term “actor” is understood as apart from the term “stakeholder” as it describes the agents of 

action in decision making, referring quite literally to who can take actions and have power in the 

decision-making process. Borrowing from Scharpf (1997, p. 43), actors are identified as 

individuals or entities “…that are actually involved in the policy process and whose choices will 

ultimately determine the outcome”. In a broader sense, the term “stakeholder” means any 

individual, group, or organization which has an interest in the issue at hand, as well as those 

who are potentially affected by decisions, actions, and plans (Baede et al., 2007, p. 87), including 

individuals who are not aware that they will be affected. There are overlaps between the two 

terms where, for example, a mayor has both an interest and power in decision making for 

reducing risk in his or her community. In contrast, a member of the general public may have an 

interest in the outcome of a risk reduction measure decision but might not have any power in 

the decision-making process.  

It is important to establish an understanding of the key actors and stakeholders as they often 

determine priorities for risk reduction goals and influence the formulation and selection of risk 

reduction measures. The outcome of the selection of measures varies depending upon the 

perceived benefits of these measures given the available information. Risk management 
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measures targeting flood and landslide risks must also account for information including both 

the temporal and spatial dynamics of the hazard itself and the distribution and vulnerability of 

elements at risk (Fuchs et al., 2013). Uncertainties in the spatial-temporal distribution of risks 

often require a combination of measures, grouped into management alternatives. Hence, the 

identification of potential alternatives is a continuous iterative process to achieve a specific 

combination of measures towards implementing risk management strategies (Hutter, 2006). In 

addition, the complexity of the decision-making process increases due to the different and 

competing objectives which should be considered in the evaluation of alternatives (for example, 

immediate vs. sustainable benefits in the long term). According to Balbi et al. (2012), decision 

criteria are related not only to direct costs or benefits from the implementation, but also to 

other indirect and non-tangible aspects such as socio-economic development and 

environmental protection. Consideration of these many aspects supports the use of multi-

criteria evaluation (MCE) tools that can facilitate the evaluation of the variety of consequences 

in a risk management problem without measuring them only at the monetary scale (Meyer et al., 

2007). These tools can be used in combination with GIS and spatial information technologies 

through online platforms to reach and involve a wide range of stakeholders and actors in the 

decision-making process. 

Due to the rapid development in modern web, GIS, and spatial information technologies, it has 

become possible to deliver and communicate risk information to a wider range of communities, 

facilitating the participation of different stakeholders in collaborative decision-making. Rapid 

exchange of spatial information can be enabled through web-GIS platforms shared by several 

entities allowing access to risk related information at various spatial and temporal scales. These 

platforms can feature decision support systems (DSS), which are widely recognized as 

computer-based systems developed to assist decision makers through interactive tools to 

enhance understanding of a management problem (Salewicz and Nakayama, 2004). DSSs 

generally go beyond the need of centralizing all necessary information while assisting in the 

interpretation of available knowledge, formulation, and evaluation of choices (Rizzoli and 

Young, 1997). Such systems can thereby assist problem analysis without taking over the 

decision maker’s responsibility for their choices and actions (Harsh et al., 1989). The main goal 

and expected outputs of the decision support applications should be discussed and agreed with 

those who are involved in the use of these applications. Prototypes of these decision support 

applications provide a form of user requirement analysis (Evers, 2008) and can facilitate the 
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contribution and integration of the needs of potential users, evaluation and potential 

improvement of the support system itself (Mysiak et al., 2005).  

In this chapter, a collaborative decision support framework for the management of hydro-

meteorological risks, integrating an interactive web-GIS interface with a MCE tool is presented. 

The aim is to assist stakeholders in the formulation of potential risk reduction measures and the 

elucidation of criteria preferences for the selection of those measures. The preliminary 

empirical inputs of the framework were based on initial data collection methods in the form of 

semi-structured interviews and observations obtained from field visits and stakeholder 

meetings carried out in three case study areas: the Małopolska Voivodeship of Poland, Buzău 

County of Romania and the Friuli-Venezia-Giulia region of Italy (as shown in Fig. 5.1). These 

cases were chosen primarily based on their physical characteristics. All are located in 

mountainous areas prone to hazards including flash floods, river floods, landslides, and debris 

flows. A prototype was developed based on these preliminary empirical inputs and then 

presented to the stakeholders for feedback during the dissemination meetings of the project. 

 

Figure 5.1. All case study sites of the CHANGES project (Source: Prenger-Berninghoff et al., 2014). 

The structure of this chapter is organized as follows. Section 5.2 introduces the need for 

collaborative decision-making and interactions. Section 5.3 discusses important considerations 

in the development of a collaborative decision-making tool based on initial data collection from 

the case study areas, including for establishing an understanding of the key actors and about the 

potential for application of a web-based collaborative decision support platform. Section 5.4 
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describes the background methodology and workflow of the collaborative decision-making 

framework. Section 5.5 presents background architecture, data model design and additional 

specific configurations used for the development of the prototype.  Section 5.6 demonstrates the 

prototype with an example case study area, Malborghetto Valbruna commune of Italy. Section 

5.7 presents the feedback collected in different study areas and discusses how it could support 

and enhance collaboration and exchange activities between the participating actors. Finally, we 

conclude this chapter by discussing the presented framework and its potential for in-practice 

implementation along with relevant aspects for platform improvement. 

5.2 Need for collaborative decision-making in risk management 

One of the main problems in risk management is the lack of good communication as well as 

efficient and effective collaboration between the agencies, services and organizations in charge 

of risk prevention, mitigation and management (De Marchi and Scolobig, 2012). Collaborative 

decision-making addresses this issue and attempts to bring together all concerned parties 

across and within various horizontal and vertical levels. Encouraging collaboration helps 

establish individual and community ownership, legitimization of implemented policies and 

measures, and continued commitment and involvement in risk management efforts. An 

additional benefit is that collaboration provides an opportunity to enhance interactions 

between the involved stakeholders through improved cooperation and coordination for risk 

management activities (Gulati et al., 2012; Fuks et al., 2008). Collaborative decision-making 

generally takes place with “active” involvement of stakeholders. This “active” involvement is 

understood within this research to reflect the need for ownership in a given decision-making 

process in which stakeholders contribute ideas, influence decision-making criteria, and assist in 

selecting a final action (including non-action). In this way, stakeholders are invited to contribute 

actively in the planning and decision-making process in risk management.  

In order to initiate collaborative decision-making in risk management, it is necessary to 

facilitate mechanisms and tools that support bringing different stakeholders together. Diverse 

interests, views and approaches need to be coordinated and cooperated so that effective risk 

management can be applied and implemented (Wanczura, 2006). This has also been stressed by 

the European Commission (2009), which underlines the requirement of linking all stakeholders 

involved in the development and implementation of measures that can significantly influence 

disaster prevention. However, often the management of natural risks is carried out by 
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disconnected actors, especially those engaged in civil protection, sectoral1 and spatial planning. 

Linkages and an exchange among actors involved do not always exist. Such a lack of 

collaboration may result in a lack of synergies and duplicated measures (Sapountzaki et al., 

2011; Greiving et al., 2012). Mitigation measures derived from a collaborative effort can assist in 

the creation of a wide range of appropriate, acceptable, cost-effective, and sustainable risk 

management solutions that respect the characteristics, needs and priorities of a certain risk 

prone location and its inhabitants. Therefore, attempts should be made to link the diverse range 

of stakeholders in the field of risk management, especially as the key to an integrated risk 

management is the need to engage different stakeholders (i.e. involved experts, authorities, 

policy, decision-makers and civil society) in a participative and collaborative manner. 

5.3 Preliminary empirical inputs from data collection in case study 

areas 

Preliminary empirical inputs of the framework were based on semi-structured interviews and 

observations obtained from field visits and stakeholder meetings carried out in three case study 

areas of the project. The field visits were conducted in coordination with CHANGES project 

partners at the local and regional level of each case study site to ensure representation of both 

local and higher administrative levels. This enabled the ability to visit sites where past events 

have occurred, and to be in contact with those who had been affected by and who had dealt with 

the aftermath of these events. During meetings with stakeholders, semi-structured interviews 

were conducted with a list of guiding questions that were translated and asked in the native 

language. This list was comprised of open-ended general questions asked in each case and 

assisted in gathering information about past events, current issues, and potential interest in a 

decision support tool. Observations were additionally made following a general observational 

protocol created for the purpose of establishing a basic understanding of the physical aspects of 

the case study context and in identifying the key actors. The data obtained through the 

interviews and observations was analysed and provided important insight into the 

responsibilities of different actors in the institutional frameworks (and how these operate in 

practice) and additionally identified collaboration needs between certain actors, existing 

information systems and tools, and the potential application of a web-based collaborative 

decision support platform. The information gathered also provided more information regarding 

the damages that have occurred in the case study areas in recent years due to extreme hydro-

                                                           
1 Sectoral planning includes geological services, environmental protection agencies and water boards. 
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meteorological hazards (Fig. 5.1). The municipalities within Wieprzówka catchment in Poland, 

faced extreme flood events in 2005, 2007, and 2010 in Wieprz and Andrychów; the lattermost 

event in 2010 affected the entire country. Landslides have also occurred within this site, 

including one in Stryszawa municipality in the village of Lachowice in 2001. In the Nehoiu 

catchment in Romania, one of the most violent flash flood events occurred in 2005, taking with 

it homes and critical infrastructure within the town of Nehoiu. In 2003, the Fella basin in 

northern Italy experienced torrential rainfall producing an extremely violent flash flood and 

debris flow covering multiple communes, resulting in extensive structural damage and causing 

two casualties. Accordingly, all three cases have experienced challenges within the last two 

decades in terms of securing, preparing, and protecting their inhabitants and territory from the 

impacts of these extreme events. 

The following sub-sections first highlight the key actors and stakeholders as well as the typical 

informational inputs used in the decision-making process. It is described in general terms and 

for each case study site, emphasizing the roles and responsibilities of the various actors and 

stakeholders collaborating and contributing to decision-making. This is followed by a section 

identifying existing platforms found in the case study sites. Though some platforms exist, no 

single case has a platform at hand which enables as flexible and collaborative approach for the 

formulation and selection of risk management measures as attempted in the web-based 

prototype platform presented in this study. 

5.3.1 Key actors and stakeholders in decision making  

Several patterns emerged in understanding how decision making for risk management 

functions at a local (municipal or town) level. Stakeholders and actors all provide different 

information inputs to the primary decision maker. In all three case study sites, this local 

decision maker is the mayor who has the legally defined responsibility to provide for the safety 

and security of his or her citizens. The decisions to be made by this individual rely on a variety 

of informational inputs provided by a wide range of other stakeholders and actors. This can be 

in the form of (but not limited to) technical information provided by geological services, 

environmental protection agencies, and water board authorities (all three of which are 

addressed as “sectoral planners” in this research). Knowledge is also gathered from the 

experience of emergency responders and managers such as police, civil protection, firefighters, 

and aid agencies. Local knowledge provided by the public provides a further input for the 

information which can be received, interpreted and used by the primary local decision maker 
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(for example, the mayor). In some cases, this local knowledge provided by members of the 

public and municipal technicians acts as a substitute for the lack of available technical 

knowledge (such as risk and hazard maps) and is considered to be highly valuable as it often is 

the information that is most reflective of the local terrain and population needs and interests.  

In the case of the Wieprz municipality in Poland, the key technicians and officers include the 

local professional and volunteer fire departments. Though the mayor is legally responsible for 

the safety of the population, many of the decision making responsibilities can be and in some 

cases are delegated to these technicians particularly in the case of an emergency. In this way, 

the technicians also act as decision makers for disaster risk management and hold important 

local knowledge. This knowledge is also used during the peace time (the time when there is no 

emergency), and helps influence the development and implementation of measures such as 

landslide stabilization. In this case, additional technicians working in the municipality conduct 

studies to determine, for example, where the stabilization of a landslide for a local church 

should be and how it should be constructed. Of important note is that in some cases, villages 

within the municipalities also have a village leader. They act as the primary overseer and 

coordinator for the village’s activities and day to day life and issues. The villages do not 

necessarily have in-house technicians to provide risk information; however, this can be 

provided via external services such as the regional water authority or the local water authorities 

(the Spółka wodna) as well as from the municipality itself. Municipal boards and councils work 

with the mayor as part of the entirety of decision making bodies at the local level. At this level, 

studies are also provided by private planning firms, especially in the case of development of 

individual or groups of parcels. County and regional levels also play a role in the availability of 

information and resources at the local level. At this level, agencies such as the Regional 

Directorate of Environmental Protection in Krakow, the Regional Water Management Board in 

Krakow, and the Polish Geological Institute provide information in the form of studies and 

maps. This information includes the recently developed coverage of landslide hazards from the 

Polish Geological Institute, environmental impact assessments from the Regional Directorate of 

Environmental Protection, and area or parcel specific flood risk maps from the Regional Water 

Management Board.  

In the town of Nehoiu in Buzău county, Romania, the local level decision maker is still the mayor 

but the input of technical informational resources (for example, landslide and flood risk maps) 

that are available for use in the decision-making process is substantially limited as compared to 
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the resources available in the other two cases. This is in large part due to financial constraints. 

Local technicians and particularly urban planners in the town hall largely rely on expert 

knowledge, and specifically their expert knowledge of the territory. There is also a village 

representation system in Romania. This acts largely as an information network and assists in 

relaying local knowledge such as changes in the physical structure of the territory including if 

there has been a minor landslide or debris flow. Through this network, village representatives 

are the responsible conduits between more isolated villages and the decision makers in the 

town (equivalent municipal) level. At this local level, the town police, the emergency volunteers, 

and the local environmental protection inspector also act as key providers of local level 

information in decision making for the town hall administration. Additional key actors include 

the private forestry agencies who are responsible for enforcing decisions involving the clearing, 

planting, and maintaining of forests. It was noted especially within the Romanian case study 

that the current maintenance of forest cover and the efforts these agencies make in balancing 

this coverage against the demands of the timber industry proved to be substantially important 

in planning for landslide and debris flow risks. As compared to Poland, there is no local fire 

department and therefore no local actor in this capacity who contributes to the decision-making 

process. Instead, in this case heavy reliance is placed on the county level.  

Located within the county level, the Emergency Situation Inspectorate (ISU) Buzău is the 

primary emergency management actor and often fulfils the responsibilities that would be 

attributed to trained local level emergency personnel. Information and indeed often decisions 

for prevention as well as emergency plans and actions are generated and come from ISU Buzău 

and other county level actors such as the Institute of Geography (for example, information for 

landslide assessment and risk mapping) and private planning firms such as BLOM Romania (for 

example, flood risk mapping and information). At the county level, additional actors include the 

Bucharest Environmental Protection Agency (who provide environmental assessments and 

guidance on building permit requirements) and the Buzău Ialomita Branch of the Romanian 

Waters National Administration (who provide flood risk and hazard maps in cooperation with 

BLOM Romania). 

Within the town of Malborghetto Valbruna in the FVG region in Italy, there are also a variety of 

actors involved in the local decision-making processes. These include the local fire brigades, the 

local civil protection and volunteer civil protection, as well as the local administrative offices 

(for example, the mayor, technicians). There is a strong volunteer network for civil protection at 
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the local level in which members from each community are involved and can also provide an 

informational input. Similarly to the Romanian case, this helps bolster an understanding of 

changes in terrain and encourages better use and integration of local knowledge into the 

decision-making process. This information is used in conjunction with information provided by 

municipal technical officers and urban planners who are responsible for the layout and 

management of the municipality territory.  

Information is also provided at higher administrative levels (e.g. provincial and regional levels) 

for risk and hazard mapping and related information by the Soil Defence Services, the Forest 

Services, as well as the Geological Service and the Water Basin Authority of the Isonzo, 

Tagliamento, Livenza, Piave, and Brenta-Bacchiglione. These offices provide information on a 

range of scales including municipality to individual parcel scale. Information and guidance on 

adherence to environmental protection standards is provided by the Agency for the Protection 

of the Environment of FVG. Architects and private planning firms also provide important 

informational inputs but have a less direct influence in the decision-making process as they take 

and combine the information provided by the above mentioned higher level administrative 

actors and provide this in the form of local level (municipal) and parcel level plans but do not 

create additional information of their own. With regard to higher administrative level decision 

making power, it is important within this case to note that though the mayor, as in the other 

cases, is the legally responsible entity for local level decision making, in-practice, there is 

substantial influence from the Regional Civil Protection in terms of what physical, structural 

measures are put in place. This decision making power and influence is seen especially during 

an emergency in which the management actions and resources needed for response exceeds the 

capacities of the municipality. The actions and indeed measures put in place by the Regional 

Civil Protection also tend to have a lasting impact during the peace time following such an event.  

5.3.2 Potential application of a collaborative web-GIS platform 

In the case study sites, facilitation of interactions between different actors would allow for a 

general improvement of communication processes, as an exchange of data, information and 

other important aspects related to risk reduction does not always take place. For example, 

research undertaken in the case study sites reveals that either a dearth or a merely weak 

interaction exists between spatial planners and emergency managers2. This also holds true for 

                                                           
2 For further information within this focus, it is recommended to consult the authors’ previous work in 
Prenger-Berninghoff et al. (2014).   
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the existing links and interactions between sectoral and spatial planners during peace time. In 

the Polish case study site, interviews pointed at existing links between spatial planners and 

representatives from both the geological survey and the regional water board. Since it is the 

planners’ responsibility to collect sufficient information about natural hazards and to properly 

consider risks in the planning process, the interaction between information providers and 

information users is indispensable. In the Romanian case site, although examples of overlapping 

objectives of spatial and sectoral planners were identified, a close cooperation could not be 

recognized. Accordingly, training for planners about the use of hazard maps and a better 

interaction with information providers could be an asset. In the Italian study site, river basin 

authorities, as stated by Law 183/1989, are responsible for monitoring and preventing geo-

hydrological events. Activities carried out by river basin authorities include the preparation of 

basin plans, the provision of advice on flood prevention, and the elaboration of hazard and risk 

maps (Bianchizza et al., 2011). Hazard and risk information can be regarded as an important 

evidence base that spatial planning can make use of in order to purposefully deal with natural 

risks. In this context, coordination between spatial planners and providers of hazard and risk 

information can be considered crucial. As previously mentioned, successful risk reduction 

necessitates an interdisciplinary, collaborative approach (DeGraff, 2012; Sapountzaki et al., 

2011; Prenger-Berninghoff and Greiving, 2014), and thereby, the sharing and dissemination of 

information is communicated quickly and more effectively (UNISDR, 2009b). 

Regarding the existing platforms and tools observed in the case study sites, in Poland, there is 

an application (ARCUS, 2005) which is specially designed for reporting information about 

events from the municipality to the district level, allowing the creation of a database and 

exchange of information between different levels. This system is primarily useful for the 

regional center of crisis management as it provides a comprehensive list of available measures 

and resources in case of emergency. In addition, there exists an online information system for 

landslides named “System Osłony Przeciwosuwiskowej” (SOPO), which is currently under 

development in the Polish Carpathians, to better identify landslide exposed areas for purposes 

of urban planning and formulation of adequate land-use regulations (Prenger-Berninghoff et al., 

2014). For the Romanian case study, a main operational platform called “Information 

Management system for Emergency Situations” (Sistemul de Management Informaţional pentru 

Situaţii de Urgenţă, SMISU) exists at the regional level, which is an integrated management 

system used by the Emergency Situation Inspectorate (ISU) with informational input from both 

local and national levels. It has been mentioned during an interview with ISU Buzău that the 
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system could be improved by better integrating scientific results into practice. In Italy, efforts 

are being carried out to support the exchange of information between the regional agencies and 

municipal authorities that are involved in risk management activities. These efforts include geo-

information systems that have been implemented such as the “Sistema Informativo Territoriale 

per la Difesa del Suolo” (SIDS) which is the Territorial Informative System for the Soil Defence. 

Through that system, regional technicians from Civil Protection can upload reports coming from 

citizen’s alerts. The Geological Service, Forest Services and IRDAT (the cartography institution 

of the region) can integrate information about elements at risk and hydraulic structure 

databases. Within this platform, the Geological Service can also cross-validate and follow-up 

with the documentation process of hydro-geological events being reported by the Civil 

Protection. Furthermore, there exists an information system to assist information sharing and 

updating of emergency plans at the municipal level. This platform “Aree di emergenza” is 

managed by the Regional Civil Protection. In this way, responsible authorities and citizens can 

access hazard maps, the location of critical infrastructures and emergency procedures according 

to different accessibility rights (RiMaComm, 2013).  

According to the observations and semi-structured interviews taken in all case study areas, 

there is no existing collaborative decision support platform and no other system that meets the 

purpose of formulation and selection of different risk reduction strategies with the involvement 

of all relevant stakeholders. Several information platforms and inventory databases were 

mentioned by stakeholders; however, they mainly serve for emergency preparedness and 

response activities and as hazard information inventories. Despite ensuring the provision of 

information, which can be commonly used and exchanged, they do not assist in the decision-

making process for a collaborative formulation and selection of appropriate measures. 

Particularly, in the Polish site, it was mentioned that the municipality has the best knowledge of 

risk; however, the municipality does not have proper instruments and tools to work towards 

reducing the risk before a disaster occurs. It would be of value if such a DSS existed in the 

selection of different measures since the prevention phase is the most important phase in their 

opinion. Based on these and the abovementioned issues, potential benefits for application of a 

collaborative platform were identified. In the Polish case study, a centralized web-based system 

could further help in distributing relevant information more effectively and could help simplify 

the search for adequate information. In the case of Romania, it could enhance the general 

coordination between actors involved and assist in selecting the most efficient risk management 

strategy and measures depending on available funds and resources. In the Italian case site, an 
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interactive platform would not only provide opportunities for an exchange of information 

among users of the system but could also facilitate the establishment of closer links. This may 

lead to a more effective collaboration between the different actors in the study areas by 

interactively involving them in making decisions on risk reduction measures. 

5.4 Framework of the collaborative web-GIS platform  

The main purpose of the proposed collaborative platform is to inform and assist the 

stakeholders involved in the formulation and selection of risk reduction measures based on 

available risk information and stakeholders’ preferences. The web-based environment enables 

collaborative interactions by allowing accessibility to different stakeholders while facilitating a 

transparent elucidation of preferences for the selection of measures. With respect to legal 

responsibilities, a real collaborative decision-making is not always possible and is beyond the 

ability of the decision support systems. This platform supports the collaborative interactions 

between stakeholders in a better-informed and transparent decision-making environment, 

rather than providing the collaborative decisions itself. The framework is designed in a generic 

way so as to be applicable in different areas and to enable a high level of flexibility in its 

application. The type of users, the level of involvement and interaction in the platform depends 

on the institutional settings and the users’ respective roles and responsibilities in a certain 

study area.  

A preliminary but essential requirement is to identify where areas at risk are. This may vary in 

detail depending on the data availability, which is the output of qualitative, semi-quantitative or 

quantitative risk assessments. In the prototype platform, potential losses and damages of 

affected elements can be calculated (if data for risk assessment is available) for the considered 

study area (see Chapter 4). Based on this available (or calculated) risk information (Fig. 5.2), in 

a first phase, expert actors (for example, sectoral and spatial planners) can propose preliminary 

risk management alternatives (i.e. a combination of measures) based on their expertise and 

knowledge of the local territory. Involving planners in this process could be useful not only for 

sharing of hazard information but also for the development of spatial plans and zoning 

regulations in the hazard prone areas. The land regulations (or planning) alternatives proposed 

by planners could be considered as one of the potential solutions, and thus, opinions of different 

expert stakeholders including planners are taken into account in the decision-making process. 

In a second phase, a multi-criteria evaluation process with involved actors and stakeholders is 

carried out for the selection of alternatives. Different views and prioritizations are taken into 
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account by providing weights on decision criteria (Keeney, 1992; Mendoza and Martins, 2006). 

This assists in attempting to achieve the most appropriate solution while considering several 

urgent objectives and encouraging collaboration, additionally helping legitimize the final 

decision that can be accepted by the majority (Simão et al., 2009).  

Phase 1:
Formulation of alternatives

Phase 2:
Selection of alternatives

Risk 
scenario

Ranking of 
alternatives

Web-GIS mapping 
interface

Multi-Criteria 
Evaluation 
(MCE Tool)

Risk Reduction Module

 

Figure 5.2. A collaborative two-phase framework of the risk reduction module of the prototype platform. Risk scenarios 
are obtained from the risk analysis module (see Figure 4.1 and Chapter 4). Different types of users exist and the detailed 
interaction of who is involved in which phases is explained in Table 5.1.  

The prototype platform accounts for three main types of users: moderator, experts and decision 

makers. All users have the possibility to be stakeholders, depending on whether they have an 

interest (or stake) or are affected by the topic at hand. The term actor more explicitly refers to 

the decision maker user type, as this user makes choices that directly determine the outcome. 

Table 5.1 summarizes these types of users and their interactions according to the different 

phases of Fig. 5.2.  

Table 5.1. Types of users and interactions in the collaborative web-GIS based platform. 

User Types Roles Examples of users 
User 

interactions 

Moderator An administrative user to create, 

assign and manage the roles of 

different users within a workspace 

(study area). Either an 

independent user or selected 

Representatives of an 

institution with 

capacity to moderate 

the collaborative 

process. 

Phase 1 and 2. 
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among other expert users to act as 

a moderator of the decision-

making process.   

Experts Generally belong to organizations 

that are responsible for providing 

and using relevant risk 

information. For example, hazard, 

elements-at-risk maps, 

vulnerability information and 

evaluation of potential measures 

related to flooding and landslides. 

Representatives from 

one or from different 

sectoral planning 

authorities such as 

the geological survey, 

hydraulic services 

and basin authorities 

as well as spatial 

planners. 

Phase 1 and 2 

according to the 

respective 

institutional 

structure and 

their decision-

making roles in 

the study area. 

Decision 

makers 

Generally belong to actors who are 

responsible for taking decisions.  

Mayor of the 

municipality, 

representatives of 

civil protection, 

expert users and 

public 

representatives. 

Phase 2. 

Phase 1 for 

necessary 

adjustments 

within the 

iterative process 

of defining 

alternatives. 

5.4.1 Formulation and selection of alternatives 

An “alternative” scenario is defined as a combination of structural and/or non-structural risk 

reduction measures. This research uses the understanding provided by Holub and Hubl (2008, 

p. 83) who described structural measures as “all physical measures to mitigate natural hazards” 

whereas non-structural is referred to measures which “concentrate on identifying hazard prone 

areas and limiting their use temporarily or permanently”. The focus is placed mainly on these 

two categories due to an emphasis taken by this research on coordinated actions for mitigation 

and preparedness rather than event management. The formulation of management options can 

be grouped into four types: protection, accommodation of infrastructure, strategic retreat, and 

the action of ‘doing nothing’ (Niven and Bardsley, 2013). Table 5.2 describes an example list of 

potential measures grouped into management alternatives. 
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Table 5.2. Example of potential measures grouped into management alternatives (based on Holub and Hubl, 2008; Niven 
and Bardsley, 2013). 

 

Management 

alternatives 

Examples of potential risk management measures 

Structural  Non-Structural 

Protection or 

mitigation 

Engineering protection measures 

implemented along the catchment, 

channel track or deposition area, 

engineering works with the 

possibility to expand or address 

multi-functional requirements 

Forest management measures, 

spatial and land-use planning, 

shared loss through private 

insurance schemes, early warning, 

education and awareness raising 

for self-protecting behaviors 

Accommodation 

of infrastructure 

Local structural measures, adapted 

building design, operation of 

protection works (e.g. dams or 

levees), maintenance of 

engineering measures (e.g. check 

dams) 

Contingency and emergency plans 

Strategic Retreat - Exclusion zones. Establishment and 

management of protected areas 

Do Nothing No specific action is carried out. Delay in or no implementation of 

measures. 

Based on the available risk information, preliminary alternative scenarios are proposed by 

experts such as a dike, relocation of the exposed settlement or restriction of building new 

houses in the area. Allowing expert users to interactively propose risk management measures 

not only promotes the coordination activities but also facilitates the centralized sharing of 

information between different organizations. While it is a preliminary proposition of potential 

alternatives, it is nevertheless an important phase to achieve the combined risk management 

strategies for the integrated risk management framework. The potential reduced risk for each 

alternative scenario can also be recalculated by updating the existing maps and data used in risk 

calculation (i.e., hazards, assets maps with occupancy of people and vulnerability data). In the 

prototype, risk analysis module is developed to support the decision-making process as 

presented in Chapter 4. For this initial identification phase of possible alternatives, only expert 

users are mainly involved because of their technical capacities and responsibilities. However, 
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decision maker users can provide their feedback on the proposed (preliminary) alternatives 

during the next selection phase, and therefore, this process is considered as a two-way, iterative 

process with all concerned stakeholders. 

The alternatives proposed by the experts are applied in the second phase for the selection and 

ranking of alternatives with the participation of involved actors and stakeholders since the need 

to involve experts, decision makers and the society is a key to risk management for the 

implementation of effective and efficient risk management strategies (APFM, 2006). In this 

study, selection of alternatives is based on one of the MCE methods as these methods consider 

different alternative options of a decision problem with the aim of addressing trade-offs 

between alternatives with inclusion of more additional important criteria than the traditional 

cost-benefit analysis (Munda, 2004). In this context, we used “decision criteria” to convey 

information about relevant impacts of management alternatives. According to Meyer et al. 

(2007), criteria should be measurable in quantitative or qualitative terms and meaningful to the 

decision makers. It also allows the representation of different (conflicting) views of 

stakeholders and facilitates the decision-making process through the comparison of alternatives 

(Kiker et al., 2005). To compare between different management alternatives, the effect of each 

alternative should be evaluated against each criterion. Thereby, selected criteria should 

highlight the extent to which objectives of the problem are satisfied by the management 

alternatives.  

There exist a number of MCE methods in the literature such as the Analytic Hierarchy Process 

(Zahedi, 1986; Saaty, 2001), goal programming (Mendoza, 1987; Romero, 1990), ELECTRE 

(Roy, 1968) and compromise programming (Zeleny, 1973; Zeleny, 1974; Nirupama and 

Simonovic, 2002). For the prototype platform, Compromise Programming (CP) method is used 

to calculate the ranking of alternative options due to its simplicity, transparency and easy 

adaptation to different settings of problems, and it has been recommended to be applied in 

disaster risk management problems (Simonovic, 2010). This method identifies alternatives 

which are closest to the ideal solution as determined by distance values (measures of 

closeness). It supports the selection of an optimum solution assuming that decision makers seek 

a solution which is as close as possible to the ideal one (Romero and Rehman, 1989). This ideal 

solution is defined as the vector of best values of evaluated criteria derived from a payoff matrix 

A of Equation (5.1) (an evaluation matrix of m Alternatives against n Criteria), depending on the 

types of the criteria (cost or benefit). 
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(5.1) 

The distance measure of an alternative Lp (x) is “a function of the criteria values themselves, the 

relative importance of the various criteria to the decision makers (αi), and the importance of the 

maximal deviation from the ideal solution (p)” as illustrated in Equation (5.2) (Simonovic, 2010, 

p. 274). 
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  (5.2) 

Thereafter, the compromise solution is calculated based on the defined values with given αi and 

p, to determine the distance value of each alternative from the ideal solution. The “best 

compromise solution” is determined by selecting the alternative with minimum distance value 

with a given parameter p (value of 2 is suggested by Simonovic (2010)) and a fixed set of 

decision maker’s preferences. The “most robust compromise solution” can also be achieved 

through a systematic sensitivity analysis or the iteration of Equation (5.2) with various sets of 

decision maker’s preferences αi with one value of distance parameter p (again with value 2), 

where there is an alternative which scores a high rank for most of the various sets of defined 

preferences (Simonovic, 2010). 
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5.4.2 Workflow of the risk reduction module 

The conceptual workflow of the alternative formulation process is demonstrated in Figure 5.3. 

Depending on whether the proposed alternative scenario consists of measures to be localized 

(mapped) on the map, the expert can either sketch measures using the interactive web-GIS 

based sketching tool or upload the vector layer (shape file) using the upload option. The 

sketching tool provides the necessary functionality to draw geometry vector features as in 

desktop-based GIS applications and allows the user to save the sketched layer with necessary 

information such as the type and name of each sketched measure within the proposed 

alternative scenario. These formulated alternative scenarios can then be visualized amongst 

users within the platform to support the on-line participatory and decision-making process. 
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Figure 5.3. Workflow of the alternative formulation component, illustrating two possible options (sketching or upload) 
with additional parameters for the formulation of a new alternative scenario. 

The conceptual scheme of the alternative selection process is demonstrated in Figure 5.4. The 

expert user acts as a moderator to moderate the decision-making process in selection of 

alternatives. Firstly, the criteria to be evaluated for each alternative are defined by the experts 
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to consider in the decision problem. These criteria can be adjusted and defined with the 

feedback given by decision makers. Each criterion can be either qualitative or quantitative 

depending on the nature and data availability of that criterion; for example, local agreement of a 

certain alternative scenario can be either in terms of qualitative scale or quantitative voting 

count. After this step of criteria definition, the moderator carries out the evaluation process of 

each alternative against all criteria to obtain the impact (evaluation) matrix (Equation 5.1). 

Upon the completion of the evaluation process, the moderator assigns the participants to give 

their weights (preferences) of the criteria. These weight sets are then used to produce ranking 

of alternatives for each participant based on CP method (Equation 5.2). At the end of weighting 

process, a negotiation process takes place in order to achieve a final agreeable solution. The 

aggregation of all weight sets could be done by implementing aggregation methods (Lansdowne, 

1996; Barzilai and Lootsma, 1997; Wei et al., 2000) in the platform to combine individual 

weight sets of participants into a group weight set. At present, however, it is unlikely that we 

can possibly give a weighting (balance) to different groups of stakeholders due to their different 

responsibilities in decision making. Besides, it is clear that the hierarchy of the decision-making 

process and respective responsibilities of stakeholders is far beyond this study. We can consider 

that the final decision is limited to the local decision makers who have the legal responsibilities 

for safety of the citizens of the considered study area. For example, the mayor is the main 

decision maker and responsible for any decisions made by the municipality. However, this could 

be different according to the country context where the platform is applied. 



A collaborative web-GIS based decision support platform for risk management of natural hazards 

 

  81 

 

P
h

a
se

 2
: 

S
e

le
ct

io
n

 o
f 

a
lt

e
rn

a
ti

v
e

s

Define criteria

Expert users as ModeratorsExpert users as Moderators

Evaluate each alternative 
against defined criteria

Give comments for new criteria 
(and alternatives)

 to consider

Start negotiation process to 
achieve a final solution

Decision maker users 
including experts

Final agreed ranking of 
the alternatives 

Weigh defined criteria

Rank the alternatives 
(Compromise Programming)

 
Figure 5.4. Workflow of the alternative selection component, illustrating different steps of the decision-making process 
with all involved stakeholders for the selection of alternative scenarios. 

5.5 Architecture of the platform 

The web-GIS interface is integrated within the decision support platform to visualize maps, 

exchange (spatial) risk information and provide certain geo-processing capabilities on the web, 

which can be accessible by different organizations located in the case study site. The 

background architecture of the prototype is based on the client-server architecture model in 

which clients send requests to a server and receive appropriate information in response. The 

client-server model was chosen in order to facilitate the maintenance of the application and 

allow its functionality to be upgraded or modified at any time without involving the end user’s 

computer system (Sugumaran et al., 2004). In a thin-client application, the clients only have 

user interfaces to communicate with the server and display the results. Most of the processing is 

thus done on the server, and hence, the server computers typically have more power than the 

client to manage the centralized resources (Alesheikh et al., 2002). For the web-based 

applications, complex software is not needed on the client side and only a browser is sufficient 



A collaborative web-GIS based decision support platform for risk management of natural hazards 

 

82            

 

for most cases (Kobben et al., 2010). Besides, the system performance is not dependent on the 

client, and therefore, if there is a need to revise or update the system functionality, it can be 

done on the server-side easily without affecting the clients. However, the speed of the 

application could be limited as the processing take places on the server and the internet 

connection of the client’s network. Recently, Sun (2013) compared server-client and cloud-

based web–GIS platforms for enabling participatory decision makings. Cloud computing 

approaches can be adopted if maintenance costs and user accessibility turned out to be a 

bottleneck issue. 

As briefly presented in the Section 4.2.3 of Chapter 4, the development of the prototype is based 

on Boundless (formerly OpenGeo suite) framework (Fig. 5.5) and its client side SDK application.  

User Interface

Application Server

(Geo-)Databases

(WMS, WFS, WPS)

Figure 5.5. Open-source software stack of the prototype. 

The Boundless SDK backed by OpenGeo suite is used to build and deploy the prototype platform 

since it provides tools for creating JavaScript-based web applications with customizable 

components and data utility classes, which are based on GXP (a Javascript SDK for developing 

high level GeoExt based Applications), GeoExt and OpenLayers. This GXP component extends 

map related functionality to the equivalent classes in Ext and is configured to work with GeoExt 

and provides the powerful ability to create self-customized plugins and widgets for the 

application development. The different modules of the platform are developed as separate 

plugins (dependencies) and declared as add-ons components within the main JavaScript 

application, which facilities the plugging and unplugging of designed components within the 

platform as needed. The built-in plugins and widgets make the development phase faster and 

make it easier to integrate existing map tools and functionality within the platform.  
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The prototype application is also configured to work with PEAR (PHP Extension and Application 

Repository, a framework and distribution system for reusable PHP components) Mail library in 

order to send emails from the platform by the administrative users to the participants for the 

weighting of criteria in the platform. In addition, the deployed web application is combined with 

Bootstrap (an open source framework for creating websites and web applications containing 

HTML and CSS design templates) framework for customized HTML (Hyper Text Markup 

Language) and CSS (Cascading Style Sheets) templates. 

5.5.1 GeoServer configuration (Roles, users and services) 

Within the GeoServer, it is possible to configure different user groups, roles and services based 

on the needs of the web application for the map related services. In the platform, as there exists 

the different levels of stakeholders’ involvement, two user groups are defined within the 

GeoServer for different access rights to the map layers: admin and public. The users of the 

admin group (moderator and experts) can access to all the services provided by GeoServer (i.e., 

WMS, WFS, WPS, WCS, and GWC) and its respective methods while the public group can only 

access WMS and WFS services within the application interface. As a result of this configuration, 

the public group users can only visualize the maps and query the feature (layer) information 

with associated styles and legends while having no rights to make any changes to the accessed 

layer. This access is configured through Spring Security Check (a framework which provides a 

powerful and customizable authentication and access-control to Java based applications) of 

GeoServer depending on the logged in roles of the users. 

5.5.2 Schema design 

In the prototype platform, different case study sites (workspace) can be defined and each study 

site corresponds to a schema within the main database of the application, meaning the study 

data are stored accordingly within the specific schema of the database (see Appendix IV for the 

full schema design). Figure 5.6 shows the data model of the alternative formulation component 

of the prototype platform. Each of the alternative scenarios (including “Do Nothing” scenario) is 

associated with hazard, elements-at-risk maps and vulnerability information which have been 

uploaded into the platform. Upon the creation of a new alternative scenario with sketch option, 

a new table is created dynamically to store the mapped measures of that scenario along with its 

attribute information, which is then linked to alternatives table via an attribute named 

mapping_index (see Figure 3 of Appendix IV for the illustration).  
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In the data model of the alternative selection component (Figure 5.7), each decision problem 

(i.e., a matrix table) has the relationships with alternatives and criteria tables to be evaluated 

against each other. The resulted evaluated values of each alternative for all criteria are stored in 

the impact matrix (i.e., matrix_values table) as explained in Equation (5.1) of Section 5.4.2 in 

order to calculate the rankings of alternatives based on the weights given by the different 

participants. The assigned participants’ weight sets are stored accordingly in the weights table 

referencing to a specific decision matrix. Using the CP method (Equation (5.2) of Section 5.4.2), 

the calculated ranking results of each participants are then saved in the ranking_results table 

along with the distance (measure of closeness) values of considered alternatives for a certain 

decision problem.  

 

Figure 5.6. Data Model of the alternative formulation component. The three relationship tables (hazards_alternatives, 
elements_at_risk_alternatives and vulnerability_alternatives) are linked to the corresponding tables (hazards, elements-
at-risk and vulnerability) tables of Data Management module of the platform (Fig. 4.7 of Chapter 4). Three types of 
information can be seen in each table: the actual column name (e.g. alternative_id), the type of the column (e.g. serial) 
and the attribute of the column (e.g. <<pk nn>> represents that this is a primary key column and null values are not 
allowed for this column). For the full data model with other modules, see Figure 2 and 3 of Appendix IV. 
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Figure 5.7. Data Model of the alternative selection component. The relationship table (matrix_alternatives) is linked to 
the alternatives table of the alternative formulation component (Fig. 5.6). Three types of information can be seen in each 
table: the actual column name (e.g. matrix_id), the type of the column (e.g. serial) and the attribute of the column (e.g. 
<<pk nn>> represents that this is a primary key column and null values are not allowed for this column). For the full data 
model with other modules, see Figure 2 and 3 of Appendix IV. 

5.6 Demonstration of the prototype 

5.6.1 Case study of Malborghetto Valbruna municipality, Italy 

The prototype application is demonstrated based on a local scale case study site. Malborghetto 

Valbruna municipality is located in the Friuli-Venezia-Giulia (FVG) region of the North-Eastern 

Italy, bordered with Austria and Slovenia (Scolobig et al., 2008). The hydro-meteorological 

hazards such as flash floods and landslides occur frequently in this study area and it is one of 

the highest rainfall areas in Italy as well as in Europe. The heavy rainfall in combination with the 

other conditions triggered debris flow channels, and in August 2003, the major landslide events 

occurred and caused a major flood of the Fella River (Figure 5.8). Malborghetto Valbruna (with 

a population of about 1028 inhabitants) is one of the municipalities located in the Val Canale 

valley of the Fella River basin. During this event of August 2003, the damages occurred to the 

whole valley was estimated about 435 million Euros (Scolobig et al., 2008). This study area 

serves as an interesting example due to its decision problems for implementation of mitigation 

measures after the event in 2003. There was a debate regarding the efficacy of hydraulic works 

versus flood management measures to increase resilience by incorporating local people and 

their knowledge in the decision making process (Scolobig et al., 2008). Furthermore, there were 

overriding political interests in maintaining occupation of the valley in the face of continuous 



A collaborative web-GIS based decision support platform for risk management of natural hazards 

 

86            

 

outmigration, which resulted in a preference for big structural mitigation measures to be 

implemented as an effective option in order to prevent relocation of few houses in the area 

(Prenger-Berninghoff et al., 2014).   

 

Figure 5.8. Debris flow events occurred in Malborghetto-Cucco in August 2003 (© Civil Protection of FVG region, Italy). 

5.6.2 Definition of a workspace (case study site) 

A “workspace” belongs to a certain case study site for the groups of users to access, store and 

update all related information of that study site in the database. This workspace can only be 

created by the responsible administrative user of the study site and it is configured to 

automatically generate a database schema with default tables upon a new workspace creation 

as explained in Section 5.5.2 (Figure 5.9). Within the existing workspace, admin user can create 

and assign roles to user accounts according to the responsibilities of the involved stakeholders 

in the study area. The users can also switch to another workspace if they are assigned to more 

than one study area and can access the available data and functionality depending on their 

assigned roles within the platform.  
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Figure 5.9. Creation of a new study site (workspace). 

5.6.3 Steps of the collaborative process 

Based on a typical structure of the decision-making process (Bardach, 2005; Failing et al., 2007; 

Jankowski et al., 1997; Ranger et al., 2010), the demonstration of the collaborative platform is 

composed of the following steps (Fig. 5.10): 

 First phase: 

1. Formulation of preliminary risk management alternatives; 

 Second phase: 

2. Formulation of objectives in terms of decision criteria; 

3. Evaluation of risk management alternatives against decision criteria; 

4. Weighting of decision criteria by involved stakeholders and 

5. Comparison of ranking of alternatives to support final agreement. 
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Figure 5.10. Steps of the collaborative decision-making process of the platform. Steps 1-5 are demonstrated with 

sequential figures 5.11-5.16, which are identified by number as a reference to their place in the general workflow of the 

framework. Only the user groups involved in Step 4 are illustrated in this figure.  

5.6.3.1 Formulation of preliminary risk management alternatives (Step 1) 

In this step, expert users can formulate their own preliminary drafts (sketches) of risk reduction 

measures using the interactive web-GIS interface based on the available risk information. In this 

manner, involved expert users that may have different expertise and preferences for risk 

management can interactively propose measures. Figure 5.11 illustrates an example where an 

expert user proposes to adapt the building design and implement local structural measures for 

some houses exposed to debris flows in the area. The modelled debris flow map of Cucco village, 

Malborghetto municipality, is based on forward-prediction modelling with latest Digital 

Elevation Model (DEM) obtained in June 2008, using the best performing parameter values 
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obtained from the back-analysis of the 2003 debris flow event (Hussin et al., 2014a). The debris 

flow and building asset maps of Cucco are obtained from the research group of two European 

projects: CHANGES and IncREO (http://www.increo-fp7.eu/). 

Buildings

Debris flow

Adapted building design

Local structural measure

 

Figure 5.11. An example proposition of risk reduction measures by an expert user through a sketching tool of the 
prototype platform. 

5.6.3.2 Formulation of objectives in terms of decision criteria (Step 2) 

The formulation of decision criteria beyond the conventional cost-benefit analysis allows for the 

evaluation of other important and competitive objectives of the decision problem at hand. 

During this step, expert users can propose criteria to evaluate and compare differences between 

preliminary alternatives. Three main categories of criteria can be defined in the prototype 

platform: economic, social and environmental criteria with qualitative or quantitative 

indicators. Within the prototype, criteria are initially defined (proposed) by the expert users (an 

example shown in Fig. 5.12). Decision maker users can also give feedback on the criteria 

suggested by experts as part of the iterative process of using the web platform. This 

collaboration between experts and decision makers supports the evaluation of different 

alternatives based on decision criteria. 
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Figure 5.12. An example list of defined criteria (both qualitative and quantitative) in the prototype platform. 

5.6.3.3 Evaluation of risk management alternatives against decision criteria (Step 3) 

The effects of designed alternatives (Step 1) in terms of the decision criteria (Step 2) are used as 

inputs for the evaluation process of alternatives (Step 3). For this step, the moderator user 

would need to specify an “evaluation matrix” to compare the performance of each alternative 

against each criterion (Fig. 5.13). Only expert users are allowed to modify the performance 

values depending on their roles and expertise in a certain study area. Based on the criteria, such 

values should be ideally maximized (benefits) or minimized (costs). The expert users can 

evaluate the alternatives’ performances using either a quantitative or a qualitative scale 

according to the type of criterion. The qualitative scale is used to describe how an alternative 

performs for a specific criterion which cannot be expressed in quantitative terms. This can 

include, for example, if the impact on the environment caused by a specific alternative is very 

high.  

This evaluation matrix corresponds to the matrix A (see equation 5.1 of Section 5.4.1) and after 

the preparation of this matrix, in order to calculate the rankings of the alternatives based on 

Compromise Programming method (see equation 5.2 of Section 5.4.1 for calculation procedure), 
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the moderator allocates the involved participants (i.e. a group of decision makers) to assign 

their weights on the criteria in the next step. 

 

Figure 5.13. An example evaluation matrix of the defined decision problem in the prototype platform. 

5.6.3.4 Weighting of decision criteria by involved stakeholders (Step 4) 

In this step, different stakeholders are invited to the selection process to weigh the decision 

criteria, according to their preferences. This step can be repeated when necessary to align 

participants’ interests in achieving a favourable ranking at the end. Firstly, the moderator needs 

to allow participants into the decision-making process and can set a time frame for the weight 

assignment if needed. Secondly, participants can log into the platform and access the available 

information (for example, designed management alternatives and criteria) to indicate their 

preferences on the given criteria. To do so, a simple numeric scale is used (as shown in Fig. 

5.14). Such a choice of weighting scale was implemented in the prototype to simplify the 

complexity in determining preferences. Furthermore, during this weighting process, each 

decision maker user can also propose additional criteria and alternatives to the expert users to 

be considered through the “signal” option in the interface.  
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Each weight set is then normalized (in which weight values are divided by the total weights) to 

be used for ranking of alternatives using CP method. The ranking of alternatives is based on 

weighted aggregation method to combine the performance values of alternatives (obtained 

from Step 3) into one overall measure. Thereby, defined criteria and their evaluation of values 

against each alternative are aggregated based on the weighting preferences of the decision 

makers (Tkach and Simonovic, 1997). The combination of Step 3 and Step 4 produces the 

individual ranking of preferred alternatives which are recommended for implementation. 

 

Figure 5.14. An example of the weighting process of the participating user in the prototype platform, in which the land 
disruption criterion is highly weighted by the user (with a weight of 33%). 

5.6.3.5 Comparison of ranking outcomes to support final agreement (Step 5) 

At the end of the weighting process, each decision maker user can visualize their own 

immediate ranking results of the alternatives and justify it using weights provided for the 

criteria (Fig. 5.15). This ranking of alternatives (distance value or closeness of measure to the 

ideal solution) is calculated dynamically and immediately with the given weight set of the user 

and evaluation matrix using the CP method (Equation 5.2 of Section 5.4.1).  

The comparison of ranking information resulting from other decision maker users can also be 

visualized (Fig. 5.16) in the platform for the purpose of negotiation to achieve a final agreeable 

outcome of alternatives and a visible expression and communication of different preferences. As 
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mentioned in Section 5.4.2, an aggregation method could be applied, however, aggregation 

methods need to be further explored since the aggregation of all weight sets could introduce a 

decision bias in the decision making if it is not properly aggregated based on the responsibilities 

of stakeholders in the specific study area. Nevertheless, these ranking outcomes of different 

stakeholder groups serve as a good starting point for the negotiation process and the moderator 

can later assign a final agreeable weight set in the platform. We consider that the decision 

support tool aims to assist the users in making better and informed decisions by providing 

necessary inputs and information while the final decision still needs to be made by local 

decision makers according to their legal responsibilities and institutional structures of the study 

area.  

Within the platform, the decision maker users can not only assign weights and rank the 

alternatives but can also visualize alternatives and related risk information as provided by the 

expert users through a simplified interface of the platform.  

 

Figure 5.15. Visualization of own ranking result (based on the given weights in Fig. 5.14) in the prototype platform. The 
upper grid and lower left bar chart represent the ranking order of alternatives (i.e. in this case, alternative 4 is ranked 
first). The right lower pie chart represents the given weights (%) of a participating user for defined criteria. 
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Figure 5.16. Comparison of individual ranking results in the prototype platform, where the alternative with the shortest 
bar portion (distance value) is considered as the best solution (i.e. in this case, alternative 4 for all participating users). 

The presented approach encouraged the involvement of different groups of stakeholders in a 

participative and collaborative manner via an interactive web-based platform, aiming to achieve 

a better decision-making process with the use of open-source software tools in selection of a 

wide range of mitigation measures. This approach considered not only economic criteria but 

also other important criteria such as agreement of local population and potential effects on the 

environment in long term. Consideration of multiple criteria and the preferences of 

stakeholders in the decision-making process is particularly relevant in the case study area of 

2003 event, where the enormous and costly structural mitigation works were implemented to 

prevent outmigration and to protect the existing small settlements in the area while residual 

risk and long-term maintenance of structures continue to exist in the future development. In 

addition, the construction of protection works initiated by regional Civil Protection faced 

opposition that the local interest groups were not consulted during the decision-making 

process, claiming that local knowledge could propose better alternatives (Scolobig et al., 2008). 

This stressed the importance of such approach with all concerned parties in decision making, 

which is why the presented two-phase collaborative framework is realized for the development 

of a web-based platform. 

5.7 Feedback from case study areas 

During the dissemination meetings of the CHANGES project in 2014, this developed prototype 

was presented to the stakeholders in three case study regions to collect their preliminary 
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feedback and suggestions. At the end of the prototype presentation and follow-up discussion, 

one-page feedback forms in the stakeholders’ native languages were given to the participants. 

This feedback form (Appendix II) included three different sections. The first section consisted of 

establishing an understanding (gathering opinions) of the platform followed by five Likert scale 

questions (5 point: Extremely Bad (1) to Excellent (5)): usefulness, innovativeness, user-

friendliness, practice and supporting collaborative ability of the prototype. The second section 

asked participants about what aspects of the platform could be improved, while the third 

section provided an open space for additional comments and suggestions on the platform. 

A total of 49 feedback responses were obtained from the three case study sites and are 

presented in Fig. 5.17 according to the average scores given by the participants for the five 

questions. In Poland, out of 17 responses obtained, the innovativeness of the platform achieved 

the best score while the rest of the categories scored more than or equal to 4 (meaning more 

than Good or Good in terms of the scale used for the analysis). In Romania, out of 19 responses 

obtained, the usefulness and innovativeness of the platform achieved the best score around 4.3 

(meaning more than Good) while the rest of the categories scored around 3.8 (meaning Good 

enough). In Italy, out of 13 responses, the usefulness and supporting ability of the platform 

achieved the best score out of the five categories as 3.8 (can be interpreted as Good enough). 

From looking at the average scores of the total responses, innovativeness and usefulness ranked 

as first and second respectively, followed by supporting ability, user friendliness and practice 

aspects of the platform.  

 

Figure 5.17. Collected feedback (section 1) based on a 5-point Likert scale (of Extremely Bad to Excellent). 
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An analysis was also made of the open-ended commentary given by stakeholders on the 

categories (keywords) in section 1 and section 3 of the feedback form. The main points of the 

commentary are provided in the following statements:  

 a useful instrument not only in decision making but also in many other aspects including 

awareness raising; 

 an innovative idea which allows the participation of different stakeholder groups in the 

selection of coordinated risk management strategies. Nevertheless, the question 

remains of engaging potential stakeholders to get involved in the participation process, 

and therefore, further solutions such as positive incentives would need to be explored to 

improve the applicability of the platform; 

 a collaborative approach which contributes to decision making and could potentially 

enhance the collaboration between involved stakeholders; however, it still needs to be 

further evaluated and tested by creating concrete group exercises with stakeholders to 

assess and verify how they interact with each other through the web platform; 

 the availability of manuals and training exercises could help in assisting users and could 

also improve the usability and understanding of the platform; 

 the applicability of the platform in different contexts could be a potential issue because 

of the generic nature of the platform. 

Table 5.3 highlights the main points extracted from the feedback of stakeholders based on the 

first two sections of the feedback form and provides insights on the strengths and weaknesses 

of the platform and its potential improvements.  
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Table 5.3. Main points extracted from feedback responses given by local and regional stakeholders of the three study areas. 

Poland Romania Italy 

Section 1: Opinions of the platform 

 A useful community-based tool, 

especially for the participation of 

different social groups, simplifying 

exchange of information between 

experts, ordinary users and local 

community. 

 A useful platform and it would be good 

if people have a chance to vote, and if 

authorities and people would be willing 

to engage and to give weights 

 The idea of the platform makes a good 

impression, however, a lot of work is 

still required to be a useful platform.  

 A useful instrument in decision making 

(reflecting the concepts of risk 

governance) and enhances collaboration 

between stakeholders with simultaneous 

involvement of public authorities.  

 A useful tool which reduces the time, 

resources used and the costs. In addition, 

the decisions can be taken from different 

locations which results in a reduction of 

the response time. 

 A useful tool which gives users the 

possibility to understand the phenomena 

and decision. 

 The tool would be useful for the local 

administration and can be efficient, but 

only after the implementation of a few 

practical (instructional) exercises. 

 A real support for the safety of citizens 

and their properties. 

 The idea is very good and at some point, it 

can be applied at a national level. 

 A good and useful instrument to 

support decision making and to 

evaluate different decisions by 

comparing technical and social 

parameters. 

 A multi-user access platform that 

allows the interested parties to 

conclude and trade solutions. The 

users could have different roles and 

competences, and their opinions are 

equally important and considered. 
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Section 2: Aspects should be improved 

 A voting system for the alternatives. 

 A possibility to constrain the changes in 

application by time so that an expert 

user can analyse what the users did. 

 An introduction of weights only by 

experts, and a better way of weighting 

criteria and a comparison of weights of 

decision makers with those of experts. 

 A better user interface and all the 

components are required to refine and 

test with a few examples. 

 A possibility for both local and regional 

scope. 

 

 

 A step-by-step decision making support 

guide.  

 A more intuitive and simpler tool 

considering the reduced instruction level 

(expert knowledge) of the users. 

 Aspects related to the practice and 

applicability in decision making. 

 A possible adaption to the institutional 

structure and legislation of the applied 

study areas 

 A possibility to use the platform from 

multiple locations at multiple scales and 

multi-user (commune, region, different 

involved institutions, researchers, etc.) 

would be important. 

 A tool for cost-benefit analysis to 

compare the alternatives under the 

aspect of intervention type. 

 Quantification of cost-benefit analysis 

for both economic and social options 

(site) under consideration. 

 A possibility to add spatial queries for 

risk analysis and alternatives. 

 A possibility to easily import and make 

use of available data. 

 A simplification of the interface.  
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Finally, the feedback of stakeholders on the prototype platform feeds as an important input for 

potential development of a full-scale system to apply in practice. The future research directions 

include: 

 the integration of cost-benefit analysis and interactive spatial query tool to further 

analyse and evaluate the consequences of the natural hazard events; 

 the application of different MCE approaches with sensitivity analysis to achieve a more 

robust solution in decision making; 

 the aggregated weighting process which takes into account the balance of weights of 

involved decision makers depending on the institutional framework of a certain study 

area; 

 the clarification of interaction with end-users and stakeholders for specific 

requirements in study areas; 

 the engagement of the stakeholders and a way to motivate them for participation and 

 the training courses and concrete exercises with involved stakeholders to evaluate and 

test the functionality of the platform in practice. 

5.8 Discussion and conclusion  

We presented a collaborative web-GIS based prototype platform applied in the field of natural 

hazards and risk management mainly for floods and landslides. The purpose is to assist the 

involved stakeholders and actors in the formulation and selection of risk management 

strategies using an interactive web-GIS interface and CP approach. The development of the 

platform was strengthened by preliminary empirical data collected from each case study 

through field visits and stakeholder meetings within the CHANGES project. Considering the 

need for flexibility to apply to different study sites, the institutional framework of the platform 

can be adjusted according to the respective roles and responsibilities of the stakeholders 

involved in a certain study area. This flexible collaborative framework extends beyond the 

conventional use of GIS in three aspects: enhancing spatial data access, exchange and 

dissemination; supporting spatial data visualization and exploration; and creating a highly 

adaptable tool for spatial data analysis and processing for risk management activities (see 

Dragićević 2004 for these three aspects of web-based GIS studies). Moreover, this platform 

could assist in interactions between different experts at same level (horizontally) as well as 

between experts and decision makers across different levels (vertically) through the presented 

two-phase collaboration approach. The first phase opens up an opportunity for experts to 
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propose potential strategies, permitting an enhance adaptability of the platform in different 

study areas. The coordinated risk management strategies can be best adopted through such a 

participatory process with the involvement of responsible expert stakeholders (APFM, 2006). 

Furthermore, the second phase helps address the issues identified in the case study areas such 

as the lack of coordination between some stakeholders responsible for risk management and 

can enable a higher level of cooperation by providing a MCE tool for the comparison of different 

alternatives. Aside from the presented framework, we have also attempted to demonstrate how 

the potential use of such a platform could be beneficial to the stakeholders through the feedback 

collection conducted in the study areas. In general, the stakeholders found the platform 

innovative, useful and supportive while several aspects of the platform need to be improved. 

This included the desire for more active engagement of stakeholders in the process, validation 

of the platform through interactive real-time exercises and integration of additional supportive 

tools in the platform. These provided crucial topics for continued research of the prototype such 

as usability of the collaborative web-GIS platform, and such evaluation could start with testing 

groups (e.g. master students) to identify needs for improvements (see Chapter 6 for the 

evaluation exercise). Future research could consider the possibility of integrating spatial MCE 

approaches to address the spatial component in a more explicit way. This is for example by 

looking where a certain alternative could be spatially and suitably located within a study area at 

risk. 

To conclude, in complement to the attention drawn on collaboration activities between 

stakeholders, this research also stressed widely recognized needs for adaptive risk management 

strategies. Particularly in European mountain regions, there is a need to widen the range of 

appropriate, cost-effective and sustainable risk management options (Holub et al., 2012). 

According to the data collected from case study areas, effectiveness and sustainability are topics 

of particularly high relevance. There is, furthermore, a need to make efficient use of resources 

and to identify the most efficient alternative in a long-term perspective. This should also take 

into account the existing socio-economic and environmental objectives of each alternative 

during the decision-making process. Consequently, this highlights the importance of taking a 

more collaborative approach between different actors and stakeholders to achieve a common 

goal within the existing constraints. In addition, the implementation of such a collaborative 

decision support platform helps in the integration of all arguably necessary components from 

the eyes of the participating users (especially key decision makers) in a centralized manner to 

facilitate the easy access and sharing of information but also in a way that assists the decision-
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making process. This can be considered as going beyond a typical information exchange 

platform. Developing such a platform would be beneficial to the community, and could facilitate 

coordination across sectors and also support the kind of coordination called for under the 

Hyogo Framework for Action (United Nations, 2005). However, it must be stated that the 

development of such a platform is not intended to replace any existing participation methods 

but rather to act in complement and to contribute innovative practices and techniques for the 

community. Hence, the platform is not aimed at substituting the decision makers’ 

responsibilities, but rather to assist in making decisions by providing additional supportive 

information and tools.   
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Chapter 6: Prototype evaluation with students 

The developed collaborative framework of the prototype platform was further evaluated with 

students to obtain in-depths feedback on the conceptual and technical aspects of the platform as 

well as to analyse how the application of such interactive tools during an exercise could assist 

students in studying and understanding risk management. During the exercise, different roles 

(authorities, technicians, community) were assigned to each group of students for identification 

and selection of risk mitigation measures in a study area: Cucco village located in Malborghetto 

Valbruna municipality of North-Eastern Italy. Data were collected by means of written feedback 

forms on specific aspects of the platform and the exercise. The subsequent analysis of the 

feedback reveals that students with previous experience in GIS responded positively and 

showed interests in performing exercises with such kinds of interactive tools for learning, 

compared to the ones with fewer or no GIS experience. These results also show that the 

prototype is useful and supportive as a decision support tool in risk management while user-

friendliness, interactivity and practical aspects of the platform could be further improved.  

This chapter is extracted and modified based on the published journal article: Aye, Z. C., 

Charrière, M., Olyazadeh, R., Derron, M.-H., and Jaboyedoff, M.: Evaluation of an open-source 

collaborative webGIS prototype in risk management with students, Journal of Spatial 

Information Research, doi: 10.1007/s41324-016-0018-x, 2016. 

6.1 Introduction 

Under the framework of CHANGES project, an online collaborative web-GIS platform is 

developed for risk management of hydro-meteorological hazards, in particular floods, debris 

flows and landslides. This platform is regarded not only as a web platform for centralized 

sharing of risk information but also for ensuring an integrated framework where involved 

stakeholders can analyse risk and evaluate risk reduction measures. One of the main aims of the 

platform is to assist and integrate stakeholders’ inputs into the formulation and selection of 

different risk management measures through an online participation approach. The collected 

preliminary feedback from local and regional stakeholders of the case study sites were 

presented and discussed in the previous chapter 5.  

As a further step, presented in this chapter, the prototype was tested with Master students from 

the University of Lausanne. The purpose is not only to obtain in-depths feedback on the 

different aspects of the platform (such as visualization, accessibility, usefulness, user-
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friendliness and so on) but also to analyse the potential of such interactive tools for students’ 

learning process related to natural hazards and risk management. In this chapter, sections are 

organized as follows: section 6.2 presents the structure and study area of the evaluation 

exercise carried out with students. The feedback results of the tested prototype are then 

presented and discussed in Section 6.3. Finally, the conclusion (section 6.4) includes reflection 

on the results of the presented work and potential perspectives on the developed platform. 

6.2 Structure of the evaluation exercise 

The evaluation of the prototype with students is also believed to assist in learning about risk 

management with a real world problem of decision making. This kind of activity can be 

regarded as “active learning” in which students are involved “in doing things and thinking about 

the things they are doing” as defined by Bonwell and Eison (1991, p.2). This is meaningful and 

important as the activities can contribute to the understanding of concepts to be learned 

(Wiggins and Mc Tighe, 1998).  

This exercise took place, during a morning session of a course on risk communication, with 

eight Master students (majoring in Geology, Risk analysis and monitoring, Environmental risks, 

Social environment) at the University of Lausanne in April 2015. The exercise was composed of 

three main stages: risk identification, formulation and selection of alternatives (a combination 

of measures). These steps followed an integrated risk management approach with involvement 

of different stakeholder groups (McGahey et al., 2008). The structure of the exercise is 

illustrated in Figure 6.1. The students (in groups) played the roles of different stakeholders 

depending on the stages of the exercise (i.e. stages 2 and 3). The necessary information (for 

example, creation of user accounts, uploading of maps, etc.) was prepared by the moderator 

(teacher), considering the limited time allocated to the exercise. In a real life setting, the 

moderator would be an administrative user with the capacity to moderate the whole process, 

and could be one of the expert stakeholders (i.e. sectoral planning authorities and spatial 

planners). 
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Figure 6.1. Structure of the evaluation exercise of the prototype. 

As a guide, the following documents (Appendix III) were handed out to the students at each 

stage of the exercise:  

 log-in access information to the platform, 

 a scenario sheet of step-by-step instructions,  

 a role description sheet of the stakeholders’ roles for group exercises, and 

 a check-point feedback form for prototype evaluation, to be filled out at the end of each 

stage. The form included:  

o information of the students (i.e. name, major, GIS experience and assigned 

stakeholder roles); 

o an open question on the analysis of the presented problem;  

o five to ten Likert3 scale questions (5 points: Not at all to Absolutely) for specific 

aspects of the interface and functionality;  

o two open questions on improvements and suggestions on the presented stage of 

the prototype.      

                                                           
3 A psychometric response scale, originally developed by Likert [14]. The students were asked to indicate 
their level of preferences or agreement with each statement mentioned in the questionnaires. 
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At the end of the exercise, the students were asked to fill two final feedback forms: user 

evaluation and exercise feedback. The user evaluation feedback evaluated the overall prototype 

such as innovativeness, interactivity, usefulness, user-friendliness, satisfaction and effectiveness 

as a decision support tool, rather than detailed aspects as in the check-point feedback. The 

exercise feedback evaluated the exercise itself in order to gain understanding and opinions of 

students on the exercise in terms of usefulness for learning and understanding, helpfulness in 

understanding of how real world situation works, stimulation of interests in risk management 

topic and in doing further exercises which involve interactive tools. All the feedback forms are 

associated with basic information of the students such as name, major of master, GIS and role-

playing experiences, and their assigned stakeholder roles depending on the different stages of 

the exercise. 

6.2.1 Study area of the exercise 

Cucco village is located in Malborghetto-Valbruna municipality (North-Eastern Italy). This study 

area is also one of the case study areas of the CHANGES project and input risk data used for this 

exercise are the research outcomes of the project. This area was affected by debris flows in 

August 2003 and a dozen houses were approximately damaged due to the breaching of an 

existing barrier. After this event, new mitigation measures (such as retention basin, dam and 

channel) were placed by the Civil Protection of the Friuli-Venezia Giulia (FVG) region. Two 

houses were also relocated. The potential future scenario of debris flow in the area was 

modelled based on forward-prediction modelling to identify remaining risk and assess the 

effects of existing mitigation measures in the area (Hussin et al., 2014a).   

6.2.2 Three stages of the exercise 

In the first stage of the exercise (see Figure 6.1), individual students were asked to identify the 

areas at risk in Cucco. For this purpose, debris flow hazard and building footprint maps were 

uploaded beforehand into the platform by the moderator. In this exercise, the students 

conducted their analysis by simply overlaying these two layers and visualizing the areas being 

touched by debris flow in the web-GIS interface of the platform. However, in the prototype, 

potential losses of affected elements can be calculated using the risk analysis tool (see Chapter 

4).  

After identifying the areas at risk, the next step was to determine the possible measures to 

protect those areas. In the second stage of the exercise, students worked in three groups and 
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were assigned with stakeholder roles that are representative of a real-life situation: geologists, 

spatial planners and environmental protection associations. The task of each group was to 

design its own alternative scenario, which is a combination of possible risk reduction measures 

(both structural and/or non-structural measures). Potential structural measures include 

creation of new mitigation measures or structural adjustments of the existing measures or 

houses. Non-structural measures concern non-physical actions such as the relocation of houses, 

natural regeneration in the area or establishment of an early warning system. Each group of 

students proposed its own alternative scenario by mapping (sketching) measures in the 

platform. In the check-point feedback form, along with the evaluation of respective 

functionalities of this stage, the students were asked to explain why their scenarios should be 

considered as the most appropriate compared to other groups.   

The alternative scenarios proposed by different groups were then evaluated and ranked in the 

third stage of the exercise in order to select one single alternative scenario. For the 

simplification, within this exercise, criteria were pre-defined by the moderator (in real life, an 

expert) to evaluate the performance of the alternatives derived from the second stage. The 

corresponding performance values of alternatives against criteria were also evaluated by the 

moderator in advance due to the time constraints of the exercise. Four groups of students were 

re-assigned in this stage: public representatives, mayor and municipality council, geologists and 

planners, and environmental protection associations. The task of each group was to rank the 

alternatives by assigning weights to the defined criteria. In other words, depending on the role 

of each group, the students were asked to classify the importance of the criteria (with a scale of 

1: the least important to 5: the most important criteria). Within the platform, each group could 

assign weights and visualize their ranking outcomes of alternatives in comparison with the ones 

of the other groups. A negotiation process (using the chat function) was started with the other 

groups to try to achieve a final ranking of the alternatives on which every group agree. In the 

check-point feedback form, students were asked to comment on the results of their given 

weights and ranking outcomes as well as to provide feedback on certain functionalities of the 

interface such as visualization of charts for criteria weights and alternative rankings. 

6.3 Results and discussion  

6.3.1 Check-point feedback  

At the end of each stage of the exercise, the check-point feedback was used to evaluate certain 
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components of the prototype as explained in Section 6.2. To demonstrate the use of the open 

analysis question of the check-point feedback, results obtained from the second and third stage 

of the exercise are presented.  

For the second stage, measures designed by the “geologists” group of students are illustrated in 

Figure 6.2 as an example. This group proposed a combination of measures which included the 

improvement of the retention basin, of the barrier nets and of the protection forests in the area. 

In their opinions, structural measures are effective and sustainable despite the high cost of 

implementing such measures. Similarly, the “planners” group also proposed structural 

measures: the structural adjustments of the houses and the implementation of individual 

measures such as small walls and metal plates for the protection of houses. However, as 

opposed to the other groups, the group of “environmental protection associations” proposed 

non-structural measures to reduce the risk such as awareness raising, early warning system and 

relocation of houses. They believed that those would be better than structural measures as the 

latter might give the illusion to the people that they are fully protected. These feedback results 

show that students performed well in role-playing and proposed different mitigation measures 

according to their assigned roles of stakeholders. This reflects the real life situation in which 

measures are perceived differently by various stakeholders, underlining the needs of a 

collaborative approach to achieve a combined and coordinated risk management strategy. This 

participatory exercise thus demonstrated why such an approach with engagement of different 

expert stakeholders is important in risk management.   

 

Figure 6.2. An alternative scenario designed by a group of students (geologists). 
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Criteria weights and alternative rankings produced by the group of “environmental protection 

associations” at the third stage of the exercise are illustrated in Figure 6.3. Amongst all criteria, 

the lesser effects on the nature and the effectiveness to protect people, in their opinions, are the 

most important criteria to take into account while the total cost of the alternative is the least 

important one. Consequently, alternative 3 (i.e. relocation and nature regeneration in the area) 

was ranked first according to their given criteria weights. On the other hand, alternative 1 (i.e. 

enlarging the retention basin) was obtained for the group of “geologists and planners". This 

group also mentioned that this ranking outcome is satisfactory as it corresponds to their 

proposed measures and given weights. However, for the “mayor and municipality council” 

group, the cost criteria is quite important as it is an obvious essential criteria for a politician. 

However, the agreement of population was also perceived to be of huge importance as 

politicians usually care about the absence of popular disagreement with their decisions and 

about the safety of people. This group hence considered these three criteria as equally 

important. As a result, alternative 2 (i.e. an early warning system combined with structural 

adjustments to the houses) was ranked first by this group. Similarly, the group of “public 

representatives” also reached to the same alternative, considering that local agreement should 

be a high priority along with the cost and safety criteria. This feedback reflects that diverse 

views of stakeholders need to be taken into account in the decision-making process to achieve a 

common goal in risk management.  
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Figure 6.3. Ranking outcomes of alternatives (left) produced by a group of students (environmental protection 
associations) based on assigned weights (right). 

The Likert scale questions of the check-point feedback were related to various aspects of the 

interfaces, tools and functionality such as user-friendliness, satisfaction, usefulness, supporting 

ability, relevance and understanding of contents. A total of 21 rating questions were collected 

for three stages of the exercise. Table 6.1 presents selected feedback with respective average 

scores given by the participating students. The score ranges from a scale of 1 (Not at all) to 5 

(Absolutely). As can be seen in the table, the user friendliness of sketching interface could be 

improved (average score = 3.5). This is maybe due to the layer styling option, which can be 

improved by restricting the sketching tool to enable only either point, line or polygon geometry 

features in the same layer. However, students mentioned that sketching functionality (i.e. 

“create” and “editing” feature tools) is useful in designing measures (average score = 4). In the 

third stage of the exercise, the chart options were found helpful in visualizing criteria weights 

and comparing alternatives with others (average scores > 4). Overall, the transparency of 

decision-making process achieved an average score of 3.9, in which students with experience in 

GIS (75%) scored 4.7 and the rest (25%) scored only 1.5. This difference can explain why a high 

transparency score is not achieved as expected. 
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Table 6.1. Selected check-point feedback (with average scores) given by students. 

Selected questions Average scores 

How easy was it to find the maps you needed to visualize? 3.9 

How easy was it to sketch measures in the map interface? 3.5 

How useful is the “create” and “editing” feature tools? 4 

How helpful would it be if a toolbox of mitigation measures 

was available? 

4.5 

How understandable is the weighting scale? 4.3 

How helpful is the pie-chart visualization (criteria weights)? 4.4 

How helpful is the comparison of ranking outcomes with 

other groups? 

4.3 

How transparent is the decision-making process? 3.9 

Regarding the improvement and suggestion questions, feedback of students included: 

 the visibility of layer and legend view tab should be expanded and made more 

pronounced;  

 the geographical coordinates on the map should be available; 

 the hazard zone in the raster image should be made more understandable; 

 the compatibility of browsers for 3D Google Earth visualization tool should be 

improved; 

 the readability of the interface should be improved; 

 the visibility and user-friendliness of tools for the creation of alternative scenarios 

should be enhanced; 

 the weighting scale of the criteria should be indicated;  

 the (stacked) bar chart visualization for ranking outcomes should be clearer; 

 the explanation of the terminology usage in the interface should be provided and the 

chat option should be made more accessible.  
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6.3.2 Final feedback: prototype 

In the first section of the evaluation feedback form, students were asked to explain (in a few 

words) their understanding of the tested prototype. Students mentioned that it is a good 

decision tool for the formulation and the selection of risk reduction scenarios with all concerned 

stakeholders in a given risk zone. Moreover, it was stated that the tool is not only useful to 

communicate hazards and related impacts but also to enhance the collaboration between 

different experts in risk management. It was also mentioned that the tool allows the inclusion of 

different privileged criteria for the parties in the decision-making process for the selection of 

alternatives. According to the responses, the purpose of the platform was well-understood, and 

therefore, one of the important evaluation aspects of the exercise was fulfilled. 

The average scores for overall aspects of the prototype are shown in Figure 6.4. The students 

found the platform useful (average score = 4.5) and supportive as a decision support tool 

(average score = 4). Meanwhile, user friendliness of the interface and the usefulness of the main 

left navigation panel could especially be improved (average scores of 3.1 for both). This 

feedback also shows that the prototype platform is successful in performing its intended task 

(average score = 3.9). The overall user satisfaction achieved an average score of 3.5, which is 

acceptable considering the unavailability of tutorial documentation and training of students 

before the exercise.  

 

Q1. Is the prototype innovative? Q7. How useful is the left navigation 

panel to find information needed? 

Q2. Is the prototype interactive? Q8. How often does the prototype 

have errors and need to refresh? 

Q3. Is the prototype useful? Q9. How successful is the prototype in 

performing its intended task? 
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Q4. Is the prototype practical? Q10. How helpful is the chat 

functionality between users? 

Q5. Is the prototype supportive as a 

decision support tool? 

Q11. Are you satisfied with the 

prototype overall? 

Q6. Is the prototype easy to use?   

Figure 6.4. Feedback on the platform (overall) based on a 5-point Likert scale. 

Concerning the overall aspects to improve, students stated that the tool needs to be more 

interactive, accessible, user-friendly and intuitive. During a short discussion after the exercise, 

students also mentioned that the availability of a step-by-step video explanation, manual or 

training documentation of the tools and modules would be helpful in using the platform. 

Moreover, some students mentioned that the applicability of the platform in the real world by 

the authorities could be limited as risk management is quite complex. It was agreed that 

potential ways of encouraging and engaging stakeholders in the collaborative process should be 

further explored. Besides, it should be noted that the purpose of a decision support platform is 

to assist stakeholders in making better-informed decisions by providing necessary information 

and tools. Hence, the legal responsibility of stakeholders and the primary decision-maker 

remains according to the institutional context of the study area where this platform is applied. 

6.3.3 Final feedback: exercise 

The first section of the exercise feedback form asked students about what they had learned from 

this exercise. Note that all participating students had previous experience in role-playing. 

Students mentioned that it is a multi-disciplinary tool for decision making and the exercise was 

very useful as they were able to see the effects of the same problem from different points of 

view. They have also learned how an optimal decision can be reached considering different 

aspects at the same time and with other stakeholders.  

Figure 6.5 shows the average ratings of the five questions asked in the second part of the 

exercise feedback form. According to the responses, the students with experience in GIS (75%) 

found the exercise quite interesting, useful and helpful while almost excellent in stimulating 

their interests in risk management topic and in doing other exercises with such interactive 

tools. On the other hand, the students with few or little experience in GIS (25%) found that the 

exercise is quite helpful in understanding of how real situation works while results were quite 

low for the other questioned aspects. This result is not surprising as these students did not have 

experience working with similar software, and thus, the feeling of being uncomfortable doing 
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the exercise and using the platform for the first time is believed to have some effects. If this 

exercise should be reproduced, this aspect could be improved by giving training to students 

before the actual exercise.  

 

Q1. Is this exercise interesting? 

Q2. Is this exercise useful for your learning and understanding? 

Q3. Is this exercise helpful in understanding of how real situation works? 

Q4. Does this exercise simulate your interests in risk management topic more? 

Q5. Would you like to do other exercises with interactive tools? 

Figure 6.5. Feedback on the exercise based on a 5-point Likert scale. 

Regarding the aspects of the exercise to be improved, students commented that more time for 

the exercise is needed to present and discuss the results with others in order to reach a best 

consensus solution at the end. It was mentioned that the exercise gave them a good idea of the 

difficulties that can be faced in participative decision making and risk management. Students 

with no or few experience in GIS stated that the use of the platform could be more simple and 

adaptable for those who never worked in a mapping environment before (or alternatively, 

training can be given to them). Nevertheless, less-experienced students found the exercise 

interesting for the understanding of risk management scenarios because this topic is not 

addressed in their major, i.e. social environment.  

Concerning the allocated time frame of the exercise, we believe that at least one half-day should 

be allocated. Thus, sufficient time is given not only for providing a good amount of explanation 

of the theoretical framework of the platform but also for the follow-up discussion with students 

at every stage of the exercise. This could enhance the usefulness aspect of the exercise in 

learning and understanding the presented topic. During the exercise, it was observed that 
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students were less confused and adapted to the exercise as time went by. The students 

especially enjoyed the third stage of the exercise where they had to assign preference weights 

on criteria according to their played roles and where they compared the outcomes with other 

groups for the selection of alternatives. This is maybe due to the apparent simplicity of this part 

of the platform. Or maybe because this is the most interesting part of the exercise as 

interactions take place between groups (unlike in the other stages: individually or within 

groups). Discussion within some groups also got a little heated as they debated over which 

measures to propose in the second stage of the exercise. However, all groups managed to finish 

the tasks within the specific time frame. Interestingly, one student, in particular, expressed that 

“collaboration is hard” when being asked to explain what they learn from this exercise. In 

addition, some students raised questions and showed interest in the approach used for the 

decision-making process.  

6.4 Conclusion 

In this chapter, we presented how the evaluation of the collaborative decision support platform 

was carried out with students majoring in environmental topics. The role of students in this 

exercise was to evaluate the prototype as well as to learn the process of risk management 

through the selection of alternatives for risk reduction. It allowed them analyse the presented 

problem, propose and select a solution by working together with other students towards a 

common goal. Students brought their own experiences and background knowledge as they 

come from different specialized majors. Conflicting interests and values between different 

groups were observed in the course of the exercise. For example, structural measures were 

more favoured by the “geologist” group while the “environmental protection associations” 

group favoured non-structural ones. To achieve the most appropriate and sustainable solution, 

all potential alternatives should be considered and compared against each other in terms of 

economic, social and environmental criteria. This exercise reflected the real inter-disciplinary 

situation in which the involvement of various experts, decision makers and the community is 

crucial to achieve a sustainable and combined risk management strategy, particularly in the case 

of the areas such as the ones studied in the CHANGES project where limited funds are available 

and weak links of interaction activities exist among risk management stakeholders. 

Overall, the analysis of the feedback shows that the prototype is quite supportive and useful as a 

decision support instrument with good performance in carrying out its intended task. However, 

aspects such as user-friendliness, interactivity and practical aspects of the platform could be 
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further improved for its application in practice. In general, this feedback is also in accordance 

with the preliminary feedback given by stakeholders during the dissemination meetings carried 

out in three case studies of the CHANGES project in 2014. As students suggested, provision of 

manual documentation and video demonstrations would be helpful in familiarising with the 

platform. Nevertheless, students’ learning seems to benefit from the evaluation of the platform. 

Students with GIS experience responded positively and showed great interest in active learning 

with such interactive tools, compared to the rest which had limited or no GIS experience. 

However, this can be improved by giving training to those who are not familiar with GIS 

applications, if such innovative and interactive hands-on exercises were to be developed for 

relevant courses at the university. Nonetheless, all students agreed that this exercise reflected 

the real situation and improved their understanding of the decision-making process in risk 

management. This feedback provided an important input not only in further improving the 

research but also as a potential application of the platform for active learning with students. 

Some of the improvements are considered in the adaptation and application of the platform for 

environmental risk-related exercises with Bachelor students, which is a current and continued 

research work.        
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Chapter 7: General conclusion and perspectives 

To obtain preliminary inputs and identify encountered issues in decision making for risk 

mitigation activities, in this research, stakeholder meetings and field visits were carried out in 

three case study areas of Europe.  Based on the observations obtained from study areas, several 

issues were identified: 1) the limited financial funds; 2) the (in several but not all cases) 

outmigration problem in the mountainous areas and 3) the lack of coordination activities 

between authorities dealing with risk management. For example, in Italian study area, large-

scale and high cost structural mitigation works have been implemented due to the desire to 

reverse outmigration in the area and in order to protect the existing small settlements. This 

shows the needs to consider other important criteria and weigh the benefits of alternatives 

against long-term maintenance and residual risk consequences for the future development. 

Effectiveness and sustainability is particularly relevant and important in these areas. There is a 

need to make efficient use of the available resources and to identify the most efficient option in 

a long-term perspective by taking into account the existing socio-economic, environmental 

objectives and cost-benefits of each option during the decision-making process with all involved 

stakeholders.  

In this case, participative decision support tools could assist stakeholders: 1) in providing 

necessary information with informed choices; 2) in encouraging the participation and 

collaboration of stakeholders in decision making and 3) in producing a wide range of 

appropriate and innovative cost-effective, sustainable risk management solutions. Despite the 

presence of various applications in the study areas, there was no decision support platform 

which serves the purpose of analysing risk, formulating and selecting risk management 

solutions interactively and collaboratively through a web-GIS based platform. This highlighted 

the importance and possible application of such a decision support platform in study areas, 

which assists stakeholders in analysing consequences of potential hazard events and achieving 

the common goal of risk reduction for selection of measures within existing constraints. This 

contributes to answer some of the initially identified research questions such as:  

1) What are the encountered difficulties in taking more informed decisions, looking 

through the lens of a long-term perspective in risk prevention and mitigation? 

2) How to identify the most efficient option, making good use of available resources and 

encouraging the involvement of various stakeholder groups? 
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Therefore, in this research, a collaborative web-GIS based decision support framework (Figure 

7.1) is proposed for collaborative risk management of natural hazards (especially for floods, 

debris flows and landslides), aiming to answer the following research questions:  

3) How to facilitate and integrate the involvement of stakeholders in risk management and 

decision making? 

4) How to potentially enhance collaboration and coordination activities between 

responsible stakeholders in risk management? 

A prototype platform is realized based on open-source software architecture, offering a high 

degree of replicability and mobility in other study areas. It can be easily adapted and applied, 

benefiting from the uses of open-source technologies. Unlike desktop-based applications, the 

users need not install additional plug-ins or GIS software. This platform can not only be 

regarded as a centralized sharing of risk related data and information but also as a decision 

support tool in understanding the process of risk management, starting from analysing the 

impacts of natural hazards to the selection of risk reduction measures for decision making with 

involved stakeholders.  

En-tête
Risk Analysis Decision-Making (MCE)

Results

DATA

Risk estimation

Scenarios of 
measures

Database

Cost criteria

Social criteria

Environmental criteria

Experts

 (sectoral and planners)

Experts

 (sectoral and planners)

Mayor, Civil Protection, 

Public representatives, Experts, ....

Mayor, Civil Protection, 

Public representatives, Experts, ....

….….

….….
….….

Figure 7.1. An overview of the collaborative decision support framework with involvement of different stakeholder groups. 
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This decision support framework is composed of two main parts: risk analysis and risk 

reduction. The purpose of the first part is to assist risk managers in analysing the impacts and 

consequences of a certain hazard event in a considered region. This is an important input to the 

decision-making process for the selection of risk management strategies with all involved actors 

and stakeholders. For this work, a prototype tool is achieved which allows users to calculate and 

produce risk curves interactively based on the inputs information of hazards, objects and 

vulnerability. This tool calculates risk as a whole according to the extent of the input layers, for 

example, at a local or regional scale. The more interactive and spatial-query-based risk 

calculation is also possible with the integration of an additional option for defining a study zone. 

For example, by drawing a polygon zone in the mapping interface for an area of interest. This 

functionality is already included in an on-going research project for risk management of natural 

hazards in Switzerland, in which semi-qualitative hazard intensity maps are used for risk 

estimation. There are several functionalities for further improvements such as integration of 

additional vulnerability curves, batch processing mode for different return periods of hazards, 

calculation of the total annualized risk under the risk curve than a staircase-shaped approach, 

and possibility of implementing WPS services for risk calculation. Nevertheless, this risk 

analysis tool served as an initial and essential point for obtaining stakeholders’ feedback as well 

as for the possibility of implementing a full-scale risk analysis tool based on the needs of 

stakeholders to where it could be potentially adapted and applied. Moreover, integrating this 

process in a decision support platform made it more beneficial to the stakeholders for the 

follow-up decision-making process.  

For the second part of the framework, the aim is to facilitate, integrate and encourage the 

involvement of different stakeholders in a collaborative, decision-making process for the 

identification and selection of potential risk management measures. This would enable a more 

transparent and better informed decision-making process with the use of available risk 

information. An innovative two-phase collaborative framework is proposed, which allows both 

horizontal and vertical interactions between stakeholders in different organizations. The 

prototype is presented to the local and regional stakeholders of the study areas, to understand 

its potential use and benefits in supporting coordination and collaboration activities between 

stakeholders. Stakeholders from three study sites provided favourable responses in this 

framework and platform, especially in Poland and Romania. Generally, stakeholders found it 

useful, innovative and supportive while addressing several aspects of the platform to be 

improved for the application of a full-scale system in practice. For example, this included active 
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engagement of stakeholders, interactive real-time exercises with stakeholders and integration 

of additional supportive tools. Some of these improvements are already considered in the 

continued and on-going research works. The additional functionalities are also possible for 

future research works such as a toolbox of risk mitigation measures, comparison of ranking 

outcomes by different MCE approaches, sensitivity analysis, and so on.  

Furthermore, this collaborative prototype was tested and evaluated with university students to 

collect feedback on the conceptual framework as well as the technical aspects of the platform. 

Through the role-playing exercise with students, conflicting interests and values between 

different groups of stakeholders were observed. This reflected the real world situation in which 

the involvement of various stakeholders is key to achieve an integrated and coordinated risk 

management strategy. In general, feedback results show that the prototype is supportive and 

useful with good performance in carrying out its tasks. However, user-friendliness, interactivity 

and practice aspects could be further enhanced. This evaluation exercise further leads to the 

analysis of how the use of such interactive tools during the exercises with real case examples 

could assist students in studying and understanding risk management, which is a continued 

research work of an on-going innovative teaching project at the university. This research work 

is further adapted for learning purpose in environmental risk course and tested with Bachelor 

students of the spring semester 2016.  

Based on the obtained evaluation feedback with stakeholders and students, possibilities and 

application of the platform are identified, attempting to answer the last research question:  

5) What is the possibility of applying a decision support tool based on open-source 

solutions in study areas? 

 We have seen that there are certain benefits in applying a collaborative framework in risk 

management, allowing different stakeholders to collaborate through a centralized and 

interactive web-GIS decision support platform. The greater benefits lie in having the possibly to 

choose the most suitable and efficient option, considering the sharing of limited resources 

(Prenger-Berninghoff et al., 2014). However, there are also some practical concerns raised by 

stakeholders regarding the applicability of such a collaborative platform in a real life setting. 

Because of the complex nature of the decision-making process and institutional framework of 

the area where the platform is applied, levels of stakeholders’ participation in the decision-

making process could be greatly varied from place to place. The final decisions are thus yet to be 
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made by the main decision makers, while the tool could only provide necessary information to 

facilitate and support the process of decision-making.  This applies the same in encouraging 

stakeholders to participate, coordinate and collaborate activities between each other in the risk 

management process. The potential solutions such as legal enforcement, positive incentives and 

demands of formal collaborations between organizations are essential to successfully achieve 

such a collaborative and integrated framework, while the application of the platform is one of 

the possible solutions which attempts to potentially promote and enhance collaboration 

activities between responsible stakeholders. Another concern is that it might not always be 

possible to involve all stakeholders via web in the endangered areas. This could be due to the 

lack of internet access or technical capacity of the stakeholders to be able to use the platform. 

These limitations are beyond the ability of a decision support tool, despite its usefulness, 

support and reproducibility.  

Even though there exist such limitations, stakeholders mentioned that it is a useful, supportive 

decision-making instrument which reflects concepts of risk governance, enhances collaboration 

with the participation of different stakeholder groups and reduces the resources (e.g. time and 

cost) needed to take a decision. It is important that the platform can be used from multiple 

locations at multiple scales with multi-users. For the further possibilities in applying such 

decision support tools, in Poland, planning stakeholders stated that this platform could also be 

adapted for the purpose of evaluating different planning proposals. In Romania, emergency 

management stakeholders mentioned their interests in adapting the platform to take into 

account the Romanian legislation and structure of the national emergency management system. 

In Italy, it was mentioned that the platform could be simplified and adapted to the specific needs 

of stakeholders, and addition of cost-benefit analysis including quantification of both economic 

and social aspects would be an asset in the decision support platform. The next steps for the in-

practice application could include organization of instructional training courses, performing of 

concrete exercises with stakeholders for evaluation, improvement and adaptation in a certain 

study area, engagement of stakeholders for active participation, and additional improvements 

on the developed framework and platform such as integration of relevant (existing) data from 

other platforms in the study area and a cost-benefit analysis tool to supplement the process of 

multi-criteria evaluation for the selection of available options.   
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decision support platform
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Figure 7.2. Illustration of the potential future perspectives and applications linked to the presented PhD research work. 

Future research directions (Figure 7.2) linked to the presented research include:  

 Extraction and integration of OpenStreetMap data for rapid damage assessment when a 

complete inventory is not available for affected elements at risk; 

 Integration of simulation and qualitative approaches to deal with lack of data based on 

expert and local knowledge of the territory; 

 Possibility to integrate field data collected using mobile applications, for the purposes of 

establishing an inventory of events and performing further analysis on the collected 

data to identify hot spot locations; 

 Possibility to integrate simulations for evaluation of measures depending on the 

considered intervention types; 

 Possibility to integrate spatial MCE approaches for consideration of the spatial 

component in a more explicitly way;  



A collaborative web-GIS based decision support platform for risk management of natural hazards 

 

  123 

 

 Application of the platform for teaching in risk management with students using real 

case examples and 

 Adaptation of the framework and platform according to the certain approaches and 

institutional framework of a certain study area to where it is applied.  

To conclude, in this research, a collaborative web-GIS based decision support framework was 

achieved, fulfilling three main research objectives:  

 To carry out a systematic and integrated risk management approach,  

 To potentially enhance collaboration activities between stakeholders and  

 To explore the possibility and application of decision support tools.  

The first objective is achieved through the proposed web-GIS framework, allowing stakeholders 

to perform an integrated approach systematically, starting from risk analysis to the decision-

making process. With a centralized and participative approach, the second objective is further 

achieved, encouraging the involvement of different stakeholders in various phases of the risk 

management framework. This allows in potentially enhancing coordination and collaboration 

activities between stakeholders. During the dissemination meeting with stakeholders in study 

areas, they have mentioned that this is an innovative idea which allows the participation of 

different stakeholder groups in the selection of coordinated risk management strategies. The 

possible application of the proposed collaborative framework is further demonstrated through 

the preliminary and in-depths evaluation of the prototype with stakeholders and university 

students, which contributed in achieving the third research objective, along with initial 

observations and inputs obtained from the study areas through semi-structured interviews, 

field visits and stakeholder meetings.  

This PhD research highlighted the importance of a systematic, integrated and collaborative risk 

management approach with involvement of multi-stakeholders, through the application and 

demonstration of a collaborative decision support prototype platform in case studies of the 

CHANGES project. This research work offered the possibility to carry out risk analysis, 

formulation and selection of measures within an integrated framework, bridging across 

responsible stakeholders and their respective organizations in risk management for improved 

communication and exchange of decision support information. Besides, using open-source 

standards and solutions, it contributed to the open-source research community in this field of 
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natural hazards and risk management, making it possible to reproduce and adapt based on the 

specific needs. 
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Appendices 

Appendix I: Supplementary materials (Chapter 4) 

 

Figure S1. The import interface of the hazard component. The user can enter layer information such as name, description, 
hazard type, return period and the indication of whether the imported hazard map reflects the current situation or a 
possible future situation after the implementation of certain measures (for risk reduction module of the platform). 
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Figure S2. The interface of the vulnerability component with “data ranges” option. The user can enter vulnerability curve 
information such as name, description, hazard type, elements-at-risk type, vulnerability type (e.g., physical) and the 
indication of whether the vulnerability curve corresponds to the current situation or a possible future situation after 
implementing certain measures. 
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Figure S3. The interface of the vulnerability component with “CDF function” option. The user can enter basic vulnerability 
curve information as illustrated above, however, with the selection of input option as “function” instead of “data ranges”. In 
the prototype, CDF is implemented and the user can give parameter values to generate the respective vulnerability curve 
(e.g., for different classes of a certain elements-at-risk). 
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Figure S4. The interface of the loss component illustrating the selection of hazard input parameters for calculation of a loss 
scenario. The user can select an existing hazard map depending on the selected hazard type (e.g., debris flow). If available, 
its corresponding spatial probability information can be given, either in the form of map or input value (0 to 1). 
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Figure S5. The interface of the loss component illustrating the selection of elements-at-risk input parameters for calculation 
of a loss scenario. The user can select an existing elements-at-risk map depending on the selected type (e.g., buildings). If 
available, the user can enter additional information such as amount (e.g., building value) and class (e.g., material type), by 
querying attribute information of the selected elements-at-risk layer. 
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Figure S6. The interface of the loss component illustrating the selection of vulnerability input parameters for calculation of a 
loss scenario. If vulnerability information is available, the user can select the available information based on its data type 
(either data ranges or function). Then, the user can match the vulnerability data of the selected curve with existing classes 
(e.g., material types) of the selected elements-at-risk layer accordingly, to retrieve the corresponding vulnerability value of a 
certain level of intensity on each affected object. 
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Figure S7. The interface of the risk component illustrating the selection of loss scenarios for calculation of an annualized risk 
scenario. At least three or more loss scenarios with different return periods are required, and the user can enter related 
information such as name, description, hazard, elements-at-risk and vulnerability type of the calculated risk scenario. 
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Appendix II: Supplementary materials (Chapter 5) 
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User Feedback Form 

Name (optional)  

Profession  

 

Section 1: Mention in few words (or phrases) of your understanding on this platform. 

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1) Extremely Bad  (2) Bad  (3) Fair  (4) Good   (5) Excellent 

No. Questions 
Rating 

Key 

1. Do you find the platform useful?  

2. Do you find the platform innovative?  

3. Is the user interface of the platform clear and easy to follow?  

4. Is the platform practical to use?  

5. Rate the supporting ability of the platform in collaborative decision making.  

 

Section 2: In your opinion, which aspects of the platform should be improved and why? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Section 3: Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Thank you very much for your kind support in filling this feedback form. Please don’t 

hesitate to contact Ms. Zar Chi AYE, Marie Curie fellow (CHANGES project) (email: 

zarchi.aye@unil.ch) for more detailed information about the development of the 

prototype or any other questions or comments you may have.  

 

mailto:zarchi.aye@unil.ch
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Appendix III: Supplementary materials (Chapter 6) 

Role description sheet 

Geologists  

The main role of geologists is to identify the hazard. They take part in the creation of the hazard 

map. They are usually part of the authorities or consultancy agencies. Along with geo-engineers, 

they take part of the process to designing structural mitigation measures. They participate in 

the verification that those structures have a positive impact on the risk level.  

Spatial planners 

Planners are in charge of the spatial planning. They have to integrate the information related to 

natural hazards in their plans. At the communal level, spatial planning rules building 

authorizations. The spatial planning document related to natural hazards at local level is the 

hazard map. However, natural hazards are just one thing that planners have to take into account 

when they elaborate their strategies.  

Environmental protection associations 

The role of the environmental protection associations is mainly to verify that the 

implementation of mitigation measures does not harm the nature. Moreover, they make 

proposal on the re-naturalization of the area and the return of the river/streams to their 

original beds for example. They have the right to appeal against the building of any structure. 

They are present mainly at a regional level and their direct influence in the local community is 

limited, although it is relevant for the safety debate.  

Mayor 

The role of the mayor is to protect the population. The mayor is the main actor in term of 

decision making. Based on input given by experts, regional authorities and population, he/she 

must make choices regarding risk mitigation. His/her actions should prevent, using the suitable 

measures (structural or non-structural, and limit the damages caused by natural hazards. The 

mayor is elected. This means that he can be in a favourable (majority in the municipal council) 

or unfavourable (coalition or opposition in the municipal council) position. Therefore, his/her 

choices can be influenced by the political context as well as the population’s opinions in the 

perspective to be re-elected.  

Public representatives (community leaders) 

Public representatives make the link between the population and the authorities. They have to 

make sure that the decisions of the later are beneficial for the first. They are concerned about 

the safety of the people and goods. Therefore, they are pushing the authorities to take actions. 

However, they have to pass along the concerns and complains related to the creation of 

mitigation measures. As mitigation measures are partially paid by public taxes, they can 

disagree with a budget. They can also disagree if the mitigation works have an important visual 

impact on the landscape.  
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Scenario sheet 

Background 

We will analyze the Cucco village, which is part of the Malborghetto-Valbruna municipality in 

North-Eastern Italy. This study area was affected by debris flows triggered by a severe rainfall 

event in August 2003. 14 houses were damaged because of the breaching of the existing 

mitigation barrier (Figure 1). After this event, new mitigation measures were placed by the Civil 

Protection. A small retention basin with a 10m depth retention dam was constructed, following 

by a channel leading to the downstream Fella River (Figure 2).  

 

Figure 1. Debris flow event that occurred in Malborghetto-Cucco in August 2003 (Source: Civil Protection of FVG). 

 

Figure 2. The new mitigation measure works after the 2003 event (Source: Google Earth). 

This debris flow event is estimated to have a return period of 500 years according to the rainfall 

data analysis. The potential future debris flow scenario is modelled based on forward-

prediction modelling with latest DEM data obtained in June, 2008 in order to identify remaining 

risk and assess the effects of existing mitigation measures in the area (Hussin et al., 2014). This 

study area is one of the case study areas of EU CHANGES project and the data used for this 

exercise are the research outcomes of the project (www.changes-itn.eu). 

http://www.changes-itn.eu/
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Stage 1: Identification of areas at risk (30 minutes) 

Introduction 

Within this first stage, we will identify where the areas at risk in Cucco village are. This can be 

done by overlaying two layers of given debris flow hazard and building footprints maps of Cucco 

and visualizing the areas being touched by debris flow as shown in Figure 3.  

 

Figure 3. Overlay of debris flow and building maps of Cucco village. 

Task  

Your task is to visualize and identify the areas exposed to debris flow in the area.  Follow the 

instructions below to achieve your task and please fill the given feedback form of this stage. 

 Instructions  

1 Log-in to the platform: http://changes-itn.unil.ch:8080/main_login.php 

2 Select the workspace “cucco” 

3 Visualize the debris flow hazard and buildings maps. 

4 Identify areas at risk   

5 Explore the map interface and all of its tools 

 Location search box  

 3D Google Earth  
 Legend and layer view panel (i.e. left of the map panel) 
 Data view panel (i.e. south of the map panel) 

 

http://changes-itn.unil.ch:8080/main_login.php
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Stage 2: Formulation of alternative scenarios (45 minutes) 

Introduction 

After identifying the areas at risk in Cucco, the next step is to determine the possible mitigation 

measures to protect those areas at risk (Figure 4). Potential risks can be reduced based on the 

contributing factors such as hazard, vulnerability and exposure of elements-at-risk through the 

implementation of effective risk management strategies. Structural measures are defined as 

“any physical construction to reduce or avoid possible impacts of hazards, or application of 

engineering techniques to achieve hazard-resistance and resilience in structures or systems” 

(UNISDR, p. 28). Non-structural measures are “any measures not involving physical 

construction that uses knowledge, practice or agreement to reduce risks and impacts, in 

particular through policies and laws, public awareness raising, training and education” 

(UNISDR, p. 28). Examples of structural mitigation measures include dams, slope stabilizations, 

hazard-resistant constructions, maintenance and planning of defense works and so on. Non-

structural measures concern non-physical actions such as insurance, relocation, land planning 

early-warning systems and risk awareness training, etc.  

 

Figure 4. An example sketching of ‘relocation’ measure within an alternative scenario called ‘alternative_example’. 

Task 

For this exercise, the class is divided in three expert groups as follows: 

 Group 1 (Geologists) 

 Group 2 (Spatial planners) 

 Group 3 (Environmental Protection Associations)  

The task of your group is to design your own alternative scenario of mitigation measures to 

reduce the risk in the area. A combination of measures is possible within an “alternative” 

scenario (both structural and/or non-structural measures). You can design your alternative 

scenario based on these following provided measures (but not limited to):  
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 Structural measures 

o Adjustments to the (design) of the existing structure  

o Structural adjustments to the houses  

 Non-structural measures 

o Relocation of houses 

o Natural regeneration  

o Early warning system 

Follow the below instructions to create your alternative scenario and please fill the given 

checkpoint feedback form for this stage. 

 Instructions  

1 Log-in to the platform: http://changes-itn.unil.ch:8080/main_login.php 

2 Select the workspace “cucco” 

3 Add debris flow and buildings layers to the map. 

4 Create your own alternative scenario by each group (for example: “alternative_1” for group 1).  (Hint: 

Alternative Management of Risk Reduction module). There are three possible categories of scenario: 

 Only spatial (i.e. a scenario with mapping of measures) 
 Only non-spatial (i.e. a descriptive scenario without mapping of measures) 
 Both  

Please select ‘Both’ category for this exercise. Select the option ‘Sketch’. Projection (EPSG: 3004). 
Bounding box information (minx: 13.42; miny: 46.5; maxx: 13.43; maxy: 46.51). 

5 Add (sketch) the measures within your alternative scenario and fill in the attribute information (Hint: 

creation and editing feature tools of the map interface). The measures with geometry information (place, 

area, length…) can only be designed with the representation of points, lines and polygons. 

If you want to change the style of your alternative, please create a new style without changing the 

default style (Style Tool  Styles  Add). 

6 Try out the chat functionality to interact with other groups. (Hint: The first group which initiated the 

chat needs to send the URL link to the other groups through email). 

Stage 3: Selection of alternative scenarios (45 minutes) 

Introduction 

The alternatives proposed by different expert groups need to be evaluated and ranked in order 

to choose one alternative with all involved stakeholders. It is important to engage experts, 

decision makers and the community in the decision making process in order to achieve a 

sustainable and appropriate risk management. The decision making process can benefit from 

using Multi-Criteria Evaluation (MCE) methods. These methods consider different alternatives 

of a problem with the aim of addressing trade-offs between alternatives with inclusion of 

additional important criteria than the traditional cost-benefit analysis (Munda, 2004). It also 

allows to represent the different conflicting views of involved stakeholders and facilitate the 

http://changes-itn.unil.ch:8080/main_login.php
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decision making process (Kiker et al., 2005). In the prototype platform, Compromise 

Programming (CP) method (Zeleny, 1973; Simonovic, 2010) is used to calculate the ranking of 

alternative options.  This method identifies alternatives which are the closest to the ideal 

solution by means of distance (measures of closeness). The alternative with the minimum 

distance value to the ideal situation is considered as the “best compromise solution”. 

The ranking procedure is conducted as followed. First, the criteria (Table 1) that will be used for 

the ranking are defined by experts (for this exercise, Pierrick Nicolet was our expert). In this 

exercise, five criteria are defined by a moderator (in real life an expert) to evaluate the 

performance of the alternatives proposed by each expert groups: 

Table 1. Criteria that will be used to do the ranking. 

 Name Description  

Criteria 1 Cost The total cost of the alternative  

Criteria 2 Efficiency (buildings) The effectiveness of the alternative to the buildings 

Criteria 3 Efficiency (persons) The effectiveness of the alternative to the persons 

Criteria 4 Local agreement The agreement of the local population 

Criteria 5 Land disruption The lesser effects of the alternative on the nature  

 

After defining the criteria, each of the alternative that will be compared in the ranking receive a value for 
each criterion. This is also done by an expert (again Pierrick in our case). There are three alternatives 
considered here (Table 2).  

Table 2. Alternatives considered in this part of the exercise. 

 Description  

Alternative 1 A larger retention basin  

Alternative 2 An Early warning system combined with structural adjustments to the houses 

Alternative 3 Relocation of the population and natural regeneration 

 

Table 3 (the performance matrix) shows the values that Pierrick assigned for each alternative 

and criterion.  The assigned values depend on the types of criteria, however, they vary ranging 

from 1 (Extremely Low) to 9 (Perfect).  
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Table 3. Performance matrix - Pierrick's criteria values for each alternative. 

 Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 

Alternative 1 4  7 5 5 3 

Alternative 2 8 5 7 7 5 

Alternative 3 2   9 9 3 9 

Task 

For this exercise, the class is divided in four stakeholder groups as follows: 

 Group 1 (Public representatives) 

 Group 2 (Mayor and municipality council)  

 Group 3 (Geologists and spatial planners) 

 Group 4 (Environmental Protection Associations) 

The task of each group is do rank the alternatives by assigning weight to the criteria (Table 1). 

In other words, you have to decide depending on the role of your group, you have to classify the 

importance of the criteria for you (with a scale of 1: the least important to 5: the most important 

criteria). The output will be the ranking of the alternatives. If you play with the weights you will 

see that the ranking changes. When your group is satisfied with its ranking of alternative, you 

have to start a negotiation process with the other groups in order to achieve a final ranking of 

the alternatives on which every groups agree.   

Follow the below instructions to achieve your task and please fill the given checkpoint feedback 

form for this stage.  

 Instructions  

1 Log-in to the platform: http://changes-itn.unil.ch:8080/main_login.php (Hint: interface is different 

depending on your group role) 

2 Select the workspace “cucco” 

3 Observe the criteria and alternatives 

4 Observe the performance evaluation matrix (Alternatives Vs Criteria) 

5 Assign your weights to visualize the ranking outcomes of alternatives (Hint: double click in the weight 

grid to edit and click “Show Rank” button for visualization of the results) 

6 Try changing weights to observe any changes in ranking outcomes of alternatives 

7 Click “Save Results and Weights” when you are satisfied so that it will be saved in the system, and other 

groups can be able to visualize it 

http://changes-itn.unil.ch:8080/main_login.php
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8 

9 

Observe the weights and ranking outcomes of yours in comparison with other groups 

Negotiate using the chat function with the other groups to achieve a final agreement.  

Final Feedback  

 Filling of two feedback forms: 

o Exercise feedback  

o User Evaluation feedback 

 Wrap-up discussion  
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Feedback on the first stage 

Name   

Major of master  

GIS experience  Not at all  Little  Fair  Good  A lot 

 

Where are the areas at risk? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1) Not at all (2) Slightly (3) Moderately  (4) Quite (5) Absolutely (X) I don’t know 

No. Questions 
Rating 

Key 

1. How easy was it to find the maps you needed to visualize?  

2. How easy was it to find the layer and legend view panel?  

3. How helpful is the location search box?  

4. How helpful is the 3D Viewer for visualization of the area?  

5. Overall, are you satisfied with the map interface and its tools?   

 

In your opinion, which aspects of this interface and visualization tools should be 

improved and why? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________ 
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Feedback on the second stage 

Role  

 

Explain why your alternative scenario should be considered as the most appropriate. 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1) Not at all (2) Slightly (3) Moderately  (4) Quite (5) Absolutely (X) I don’t know 

No. Questions 
Rating 

Key 

1. How easy was it to create and visualize your alternative scenario?  

2. How easy was it to sketch measures in the map interface?  

3. How useful is the “create” and “editing” feature tools?  

4. 
How useful would be if there was the possibility to add more attribute 

information of the measures?  
 

5. How helpful would it be if a toolbox of mitigation measures was available?  

6. Overall, are you satisfied with this part of the interface and its tools?   

 

In your opinion, which aspects of this interface should be improved and why? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________ 
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Feedback on the third stage 

Role  

 

Comment on the results of your weights and ranking outcomes.  

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1) Not at all (2) Slightly (3) Moderately  (4) Quite (5) Absolutely (X) I don’t know 

No. Questions 
Rating 

Key 

1. How easy was it to find criteria (and alternatives) information?  

2. How easy was it to find evaluation (matrix) information?  

3. How easy was it to understand information given by evaluation (matrix)?  

4. How understandable is the weighting scale?  

5. How user-friendly is the visualization interface of ranking outcome?   

6. How helpful is the pie-chart visualization (criteria weights)?  

7. How helpful is the bar-chart visualization (ranking of alternatives)?  

8. How helpful is the comparison of ranking outcomes with other groups?  

9. How transparent is the decision making process?  

10. Overall, are you satisfied with this part of the interface and its tools?  

 

In your opinion, which aspects of this interface should be improved and why? 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________ 
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Exercise Feedback 

Name   

Role-playing experience YES / NO 

 

Explain in few words of what you learned from this exercise. 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1)Not at all (2) Slightly (3) Moderately  (4) Quite (5) Absolutely  

No. Questions 
Rating 

Key 

1. Is this exercise interesting?  

2. Is this exercise useful for your learning and understanding?  

3. Is this exercise helpful in understanding of how real world situation works?  

4. Does this exercise stimulate your interests in risk management topic more?  

5. Would you like to do further exercises involving interactive tools?  

 

In your opinion, which aspects of this exercise should be improved and why?  

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 
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User Evaluation Feedback 

Name   

 

Explain in few words of the purpose of this prototype platform. 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 

Please use the following rating keys to answer the questions listed in the table.  

(1)Not at all (2) Slightly (3) Moderately  (4) Quite (5) Absolutely 

No. Questions 
Rating 

Key 

Is this prototype platform … 

1. … innovative?  

2. … interactive?  

3. … useful?  

4. … practical?  

5. … supportive as a decision support tool?  

6. … easy to use?  

How … 

7. … useful is the left navigation panel to find the information needed?  

8. … often the prototype have errors and need to refresh?  

9. … successful is the prototype in performing its intended task?  

10. … helpful is the chat functionality for interaction between users?  

11. … are you satisfied with the prototype, in overall?  

 

In your opinion, which aspects of the prototype should be improved and why? 

_______________________________________________________________________

_______________________________________________________________________
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_______________________________________________________________________

_______________________________________________________________________ 

Additional comments and suggestions (optional). 

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________

_______________________________________________________________________ 
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Appendix IV: Background of the system 

This application is a web-GIS based collaborative decision support application, running on 

different web browsers of desktop computers including Mozilla Firefox, Google Chrome and 

Internet Explorer. The purpose of this application is to assist risk managers and decision-

making authorities in analysing the consequences of natural hazards such as floods, debris flows 

and landslides as well as in formulating and selecting of possible risk management measures 

collaboratively and interactively.  

A prototype version of this web application is realized using open-source geospatial software 

solutions and technologies, backed up by Boundless framework and its client-side development 

environment. The open-source code of the developed prototype application is available and 

deposited in the repository: https://bitbucket.org/zaye/. The tutorial demonstration for 

various components of the application is available on YouTube at: 

https://www.youtube.com/playlist?list=PLGKCWCiTPytyK8Mniv9d2kebsHQBRQnU3. This 

prototype was mainly tested with Google Chrome on Windows and can be accessible at: 

http://changes-itn.unil.ch:8080/main_login.php through authorized user accounts. For this 

moment, the platform is accessible only within the local network of the University of Lausanne. 

Otherwise, it can be connected through the university’s VPN network (https://crypto.unil.ch).  

This documentation briefly presents a high-level overview, background architecture and data 

model design, available components (functions) and respective user interfaces of the prototype 

application. For the background concepts and methods applied in this application, please see 

the section 4.2 and section 5. 4 of Chapter 4 and 5 respectively. 

System overview 

The system is composed of the following modules: 

Data Management: This module acts as an essential input to the risk analysis module. It 

includes three main components: hazards, elements-at-risk and vulnerability, to provide the 

necessary data for the calculation of loss and risk scenarios. Within this module, the user can 

upload hazard intensity (.tiff format) maps, elements-at-risk (.zip format including .shp file) 

maps and vulnerability (.csv, .xls and .txt formats), along with the relevant metadata 

information. For the vulnerability component, the user can also create the vulnerability curve 

directly in the system (e.g. a CDF function) by entering the specific input parameters of the 

function. 

https://bitbucket.org/zaye/
https://www.youtube.com/playlist?list=PLGKCWCiTPytyK8Mniv9d2kebsHQBRQnU3
http://changes-itn.unil.ch:8080/main_login.php
https://crypto.unil.ch/
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Risk Analysis: This module is one of the main modules of the application and results obtained 

from this module are applied in the decision-making process for formulation and selection of 

risk management alternatives, when the resultant risk level is not acceptable. It contains two 

main components: loss and risk. Within this module, the user can generate loss scenarios based 

on three types of input parameters (i.e. hazards, elements-at-risk and vulnerability). Then, a risk 

curve (with annualized risk) can be produced using these generated loss scenarios for different 

return periods of the hazard event.  

Alternative Management: This module allows the user to formulate risk management 

alternatives (i.e. a combination of risk reduction measures), which are then used for the re-

calculation of risk and decision-making process. Within this module, the user can propose 

(sketch) preliminary alternatives interactively in the map interface or can upload the alternative 

map (in .zip format including .shp file). For the calculation of new risk for each alternative, the 

user is required to provide new (updated) maps and information (i.e. hazards, elements-at-risk 

and vulnerability) within the data management module, and then, risk can be recalculated using 

new input information in the risk analysis module. These obtained results can then be applied in 

the decision analysis module for comparison of alternatives.  

Decision Analysis: This multi-criteria evaluation module serves as an important module of the 

application. In this module, the results of risk analysis and alternative management modules are 

used to compare alternatives in terms of decision criteria such as social, economic and 

environmental criteria. Each participating user can indicate his/her preferences on the decision 

criteria. Based on the performance values (of alternatives against criteria) and preference 

information (of the criteria), a ranking of alternative is produced, allowing the user to choose 

the best compromise alternative.   

User Management: This module allows an admin user to create and manage user accounts, 

binding to a certain working space (study area). Depending on the nature (role and 

responsibility) of different stakeholders in a certain study area, there are three levels of users: 

 Expert-L1: This user has the same privileges as an admin user, except that he/she 

cannot access to the user management module. For example, representatives from one 

or different sectoral planning authorities.  

 Expert-L2: This user has less privilege than the Expert-L1, with a read-only access to 

data management and risk analysis modules. His/her participation is enabled in 
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alternative management and decision analysis modules, however, with a certain access 

to certain functionalities. For example, spatial planners. 

 Decision-maker: This user has the most limited privileges amongst all users, providing 

access to only a simple user interface of the system, mainly for the decision analysis 

module. The interface is simplified due to his/her limited technical capacity and level of 

GIS knowledge in using the system. For example, mayor of the municipality and public 

representatives.  

System architecture 

The architecture of the prototype is based on the three-tier client-server model (see the section 

3.2.2 of Chapter 3), backed up by the Boundless (formerly OpenGeo) framework (Figure 1). 

Boundless provides a robust and flexible architecture with modular components for managing 

and publishing geospatial data, built on open-source geospatial software and standards. For the 

prototype implementation, only open-source components are specifically chosen due to its cost, 

flexibility and community support. The thin-client approach is applied so that only a browser is 

sufficient and no additional complex software is needed to install on the client side. 

 

Figure 1. Architecture of the system (Source: taken from Chapter 3) 
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Including OGC standards like WMS, WFS and WCS, a number of open-source software solutions 

are integrated in different layers of the architecture:  

 Database: PostgreSQL/PostGIS for storage and management of spatial and non-spatial 

data, 

 Application server: GeoServer and GeoWebCache for publishing and caching map 

layers/titles, and 

 User Interface: GeoExt and OpenLayers for building flexible user interfaces in the web 

browser.  

Please refer to section 3.2.2 of Chapter 3 for more information about these applied open-source 

components and standards.  

To build and deploy the prototype web platform, the Boundless SDK is used, which is a client-

side development environment of OpenGeo suite. It offers the tools for creating JavaScript-

based web applications with customizable components and data utility classes. Its GXP template 

is used to develop the prototype, which is configured to work with GeoExt, ExtJS 3.4 and 

OpenLayers 2. Bootstrap framework is also used for customized HTML and CSS templates of the 

application. Server-side and general-purpose scripting language such as PHP is used to connect 

to the database through SQL queries and perform necessary operations on the server-side. In 

order to programmatically configure GeoServer through its REST interface, PHP-cURL library is 

used. This is useful and important, especially in performing GeoServer operations such as 

creating a new workspace or adding an existing PostGIS table as a new feature type.     

For the set-up of the development environment, we use Ubuntu 12.04.1 LTS server, running on 

a standard desktop-PC with Intel Core 2 Quad CPU Q9650 3GHz and 4GB RAM.  

Data model 

Within the system, it is designed that an admin user can create a workspace for each study area. 

Each workspace corresponds to a schema in the database, meaning all related data of a study 

area are stored accordingly in the specific schema of the database. The background data model 

of a schema is illustrated in Figure 2, in this case, a workspace called demo. This schema is 

created automatically (with default non-spatial tables) in the database upon the creation of a 

new workspace (study area) in the system. There are two main parts in the schema: the lower 

part represents data structure of the data management and risk analysis modules (see section 
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4.7 of Chapter 4 for further explanation) and the upper part represents the alternative 

management and decision analysis modules (see section 5.5.2 of Chapter 5 for further 

explanation). There are also additional tables:  

 cost and cost_values to store associated cost data of a certain alternative,  

 users to manage users in the workspace and  

 additionalmaps to store associated data of additional maps such as administrative units 

and land use/cover maps.   

This main data model (Figure 2) does not show spatial tables (i.e. no tables with geometry 

attributes). Because spatial tables are created dynamically in the database during the runtime 

upon the user’s actions, i.e. when uploading a new building (vector) layer as an elements-at-risk 

object or creating a new alternative. For example, when a user creates a new alternative 

scenario to design risk reduction measures (with sketch option), in the system, this following 

sequence happens: 

 a new table (e.g. alternative_1) is created with default attributes such as id, name, 

description and geometry to record the information of each sketched measure (feature), 

 a new record is added in the alternatives table with its associated information such as id, 

name, description, category, option and mapping index to record the information of the 

newly created table (i.e. alternative_1 from the previous step). 

The relationship between the dynamically created spatial table (i.e. alternative_1) and the 

default non-spatial alternatives table is made through an attribute called mapping_index, which 

stores the name of the dynamically created spatial table, in this case, alternative_1. Therefore, 

alternatives table is non-spatial and it only stores the information of all created alternative 

scenarios. The same approach applies to other tables such as hazards, elements-at-risk and loss 

scenario. The relations between these default non-spatial tables (i.e. hazards, elements-at-risk, 

loss scenario and alternatives) and dynamically created spatial tables (i.e. for example, 

df_major_max_5px, buildings_fella, fella_scenario_major_max and alternative_1) are illustrated in 

Figure 3. Note that attribute (column) names of some spatial tables (i.e. vector layers uploaded 

directly by users such as buildings and alternatives) could be different from the ones illustrated 

in Figure 3, depending on the user’s uploaded data. While loss tables (such as 

fella_scenario_major_max) might have less attribute columns, according to the input choices of 

users in the application’s loss interface (see section 4.2.2 of Chapter 4 for the workflow).
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Figure 2. Global data model of the schema (in this case, demo). The lower (dotted line in pink colour) part of the model represents the background data structure of the data management 

and risk analysis modules (see 4.7 of Chapter 4), while the upper (dotted line in blue colour) part represents the alternative management and decision analysis modules (see 5.5.2 of 

Chapter 5).   
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Figure 3. Illustration of relationships with dynamically created spatial tables in the data model (schema). The 
‘mapping_index’ attributes of the main non-spatial tables (on the left) store names of the spatial tables (on the right) to 
create a link between them. For example, ‘mapping_index’ attribute of the ‘alternatives’ table stores the value 
‘alternative_1’ to create a connection with the newly created alternative table.  

Apart from the main schema (data model) of a workspace, there are also some important tables 

in the public schema of the database for managing users and workspaces in the system. Figure 4 

shows the relationship between these tables. The users table stores all the users’ information 

such as user name and password while the workspace table stores the information of all created 

workspaces in the system such as name, description and scale of the study area. 
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Figure 4. Data model of the public schema. 

Functionality 

This application is composed of different modules for user management, uploading and 

management of input data, risk analysis, formulation and selection of management alternatives. 

Figure 5 shows the main interface of the prototype web platform for the admin and expert 

users. The interface is divided into various panels: 1) main navigation panel on the left with 

access to three main components (i.e. data management, risk management and user 

management); 2) map view panel in the centre (with layer navigation and legend panel on the 

left) with basic tools for zooming, searching locations, styling, drawing and editing features of 

layers, etc.; and 3) data view panel in the bottom to show feature information of the respective 

(vector) map layers. The data management tab includes tools for the upload and visualization of 

raster and vector maps as well as for the creation of vulnerability curves, serving as essential 

input for risk analysis. The risk management tab contains tools for risk analysis, creation and 

selection of different risk reduction measures. The user management tab has a tool for creating, 

assigning and managing user accounts and roles.   
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Main header of the web platformMain header of the web platform

Left navigation panel to access 
various “modules” and its 

components

Left navigation panel to access 
various “modules” and its 

components

Center map panel for visualization of map layers, 
legend and respective windows

Center map panel for visualization of map layers, 
legend and respective windows

Data view panel of the map layersData view panel of the map layers

 

Figure 5. The main interface of the application for admin and expert users within a selected workspace called “demo” 

The application also has a simple interface for decision-maker users, as illustrated in Figure 6, 

mainly for the selection of alternatives. It allows users: 

 to visualize defined alternative and criteria, 

 to assign weights (preferences) on the decision criteria, 

 to visualize ranking information based on their assigned weights and 

 to compare different rankings of alternatives for all participated users.   
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Main header of the web platformMain header of the web platform

Dashboard and map panels for visualization of spatial and non-spatial informationDashboard and map panels for visualization of spatial and non-spatial information

 

Figure 6. The simplified interface of the application for decision-makers users within a selected workspace called “demo” 

The respective user interfaces of these functions can be further seen on YouTube through the 

following demonstration videos: 

 Data management (https://youtu.be/FCScR_s5cbk),  

 Risk analysis (https://youtu.be/pJc-K5zI85E),  

 Alternative management (https://youtu.be/0c05LU0hbyQ) and 

 Decision analysis (https://youtu.be/F1mmVw1sr3w). 

 

 

 

 

 

 

 

 

 

 

https://youtu.be/FCScR_s5cbk
https://youtu.be/pJc-K5zI85E
https://youtu.be/0c05LU0hbyQ
https://youtu.be/F1mmVw1sr3w
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Appendix V: Implementation of the system 

In this section, snippets for some functionalities of the application are described, as an example, 

to have an idea of how the prototype development was carried out. For the complete coding of 

the whole prototype application, open-source code is available and deposited in the repository: 

https://bitbucket.org/zaye/.  

Retrieving the list of available hazard layers  

Figure 1 shows the user interface of the “Hazards” component, which allows users to: 1) view 

the list of all uploaded hazards; 2) add a certain hazard layer into the map for visualization; 3) 

update the associated layer information; and 4) add (upload) or delete a certain hazard layer to 

and from the system.  

 

Figure 1. The user interface of a grid panel which shows the list of all uploaded hazard layers in a certain workspace. 

The following JavaScript code (in ExtJS 3.4) is extracted to show how a data store (i.e. in this 

case, a grouping store) of the illustrated grid panel is configured to load/fetch records 

dynamically from the remote database through a PHP script.  

### JavaScript code of the datastore           

var xg = Ext.grid;       

this.haz_store = new Ext.data.GroupingStore({ 

  url: 'hazardInfo.php', 

  sortInfo:{field: 'return_period', direction: "ASC"}, 

https://bitbucket.org/zaye/
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  groupField:'haz_type', 

  reader: new Ext.data.JsonReader({ 

    totalProperty : 'totalCount', 

    root          : 'rows', 

    successProperty: 'success', 

    idProperty    : 'id', 

    fields: [ 

       {name : 'haz_id', type : 'int'}, 

       {name : 'haz_type', type : 'String'}, 

       {name : 'layer_title', type : 'String'}, 

       {name : 'return_period', type : 'int'},  

       {name : 'mapping_index', type : 'String'},                       

       {name : 'file_name', type : 'String'} 

     ]  

  }) 

});  

 

this.haz_store.reload({  

    params:  

       {ws: workspace, 

       task: 'load'}  

}); 

 

### JavaScript code of the grid panel with the configured datastore           

var hazGrid = new xg.GridPanel({ 

    id: 'hazGrid', 

    store: this.haz_store, 

    colModel: new Ext.grid.ColumnModel({ 

       columns: [ 

         {header: "Hazard", dataIndex: 'haz_type'}, 

         {header: "Hazard ID", dataIndex: 'haz_id', hidden: true}, 

         {header: "Layer Title", dataIndex: 'layer_title'}, 

         {header: "Return Period", dataIndex: 'return_period'},           

         {header: "Mapping Index", dataIndex: 'mapping_index', hidden: true},             

         {header: "Uploaded File Name", dataIndex: 'file_name'}, 

            { 

              xtype: 'actioncolumn', 

              items: [ 

              { 

                 icon: 'src/gxp/theme/img/silk/map.png',   

                 tooltip: 'Visualize the hazard map',                                 

                 handler: function(grid, rowIndex, colIndex) { 

                   // to load the layer into the map 

     // here comes the respective codes 

                 } 

              }, 

              { 

                 icon: 'src/gxp/theme/img/silk/table_edit.png',   

                 tooltip: 'Edit Data', 

                 getClass: function(v, meta, rec) {           

                     if( role == 'expert-L2') {                                                                       

                       return 'x-hide-display'; 

                     } 

                 }, 

                 handler: function(grid, rowIndex, colIndex) { 

    // to edit the layer information 

                    // here comes the respective codes 

                 } 

              }]        

            } 

          ], 

          defaults: { 

              sortable: true, 

              menuDisabled: false, 

              width: 5 

          } 

    }),          

    view: new Ext.grid.GroupingView({                

       forceFit: true, 

       groupTextTpl: '{text} ({[values.rs.length]} {[values.rs.length > 1 ? "Items" : "Item"]})' 

    }),                      

    frame:true, 

    width: 700, 

    height: 450, 

    title: 'Avaiable Hazard Maps', 

    iconCls: 'icon-grid', 

    fbar: ['->', { 

       text:'Add New', 

       iconCls: 'add', 

       hidden: role == 'expert-L2' ? true : false, 

       handler : function(){  

// to show a window to upload the raster map to GeoServer and database                   

        // here comes the respective codes            

       }, 

       scope: this 

      },{ 
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        text:'Delete', 

        iconCls: 'delete',   

        hidden: role == 'expert-L2' ? true : false, 

         handler: function(){ 

           // to delete the selected records from the database and GeoServer 

   // here comes the respective codes            

         } 

     }] 

}); 

The list of all hazard layers from the “hazards” table of a certain schema (workspace) in the 

database is retrieved using the following PHP script (extracted from the file hazardInfo.php).  

### PHP code to retrieve data from the database  

<?php 

    $workspace = $_POST['ws']; 

    $task = $_POST['task'];  

         

    $dbconn=pg_connect("host=localhost port=5432 dbname=geoserver user=opengeo password=opengeo");   

    if (!$dbconn){ 

        echo "An error occured.\n"; 

        exit; 

        } 

         

    if ($task == 'load') { 

$query = "SELECT haz_id, haz_type, layer_title, return_period, mapping_index, file_name FROM 

".$workspace.".hazards";        

        $arr=array(); 

         

        If (!$rs = pg_query($dbconn,$query)) { 

            Echo '{success:false,message:'.json_encode(pg_last_error($dbconn)).'}'; 

        } 

        else { 

                while($obj = pg_fetch_object($rs)){ 

                $arr[] = $obj; 

            } 

            Echo '{success:true,rows:'.json_encode($arr).'}'; 

        } 

    } 

?> 

 

Editing features of the vector layer 

For editing of features in the application (Figure 2), we use an existing plugin called 

“FeatureEditor”, which is available as a part of the GXP template4 and built upon OpenLayers, 

ExtJS and GeoExt. To use this plugin in the application, it can be figured as follows in the main 

“app.js” file of the application.  

### Declare plugins to use 

/** 

 * Add all your dependencies here. 

 * 

 * @require plugins/FeatureManager.js 
 * @require plugins/FeatureEditor.js 

 * @require plugins/FeatureEditorForm.js 

*/ 

 

### Add plugins in the tools section of the main viewer application 

{ 

   ptype: "gxp_featuremanager", 

   id: "manager", 

   paging: true, 

   maxFeatures: 500, 

   autoSetLayer: true, 

   autoLoadFeatures: true 

}, { 

   ptype: "gxp_featureeditor", 

   featureManager: "manager", 

   autoLoadFeature: true, 

                                                           
4 See http://suite.opengeo.org/opengeo-docs/sdk-api/ and http://suite.opengeo.org/opengeo-
docs/webapps/gxp/index.html for the application development with Boundless SDK GXP template 

http://suite.opengeo.org/opengeo-docs/sdk-api/
http://suite.opengeo.org/opengeo-docs/webapps/gxp/index.html
http://suite.opengeo.org/opengeo-docs/webapps/gxp/index.html
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   snappingAgent: "snapping-agent", 

   supportNoGeometry: false, 

   splitButton: false, 

   showSelectedOnly: false 

} 

 

Figure 2. The user interface for editing of features in the vector layer (using FeatureEditor plugin). 

Adding a PostGIS table with PHP/cURL 

PHP with cURL functions are used for REST configuration of the GeoServer instance (see Figure 

3.9 of Chapter 35). For example, the following script adds a PostGIS table (i.e. in this case, a 

dynamically created alternative table by the user) to GeoServer as a new feature type, so that 

this layer can then be visualized in the web-GIS application through a WMS GetMap request.  

### PHP code to publish the created PostGIS table to the GeoServer  

// Initiate cURL session 

$service = "http://localhost:8080/geoserver/"; // replace with your URL 

$request = "rest/workspaces/".$workspace."/datastores/postgis/featuretypes"; // to add a new featuretype 

 

$url = $service . $request; 

$ch = curl_init($url); 

 

// Optional settings for debugging 

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string 

curl_setopt($ch, CURLOPT_VERBOSE, true); 

curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages 

 

//Required POST request settings 

curl_setopt($ch, CURLOPT_POST, True); 

$passwordStr = "username:password"; // replace with your username:password of GeoServer 

curl_setopt($ch, CURLOPT_USERPWD, $passwordStr); 

 

//POST data 

curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content-type: application/xml")); 

$xmlStr = 

"<featureType><name>".$tab_name."</name><latLonBoundingBox><minx>".$minx."</minx><maxx>".$maxx."</maxx><min

y>".$miny."</miny><maxy>".$maxy."</maxy><crs>EPSG:4326</crs></latLonBoundingBox></featureType>"; 

curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr); 

 

                                                           
5 For REST configurations with cURL, see 
http://docs.geoserver.org/latest/en/user/rest/examples/curl.html.  

http://docs.geoserver.org/latest/en/user/rest/examples/curl.html
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//POST return code 

$successCode = 201; 

 

// Execute the curl request 

$buffer = curl_exec($ch); 

  

// Check for errors and process results 

$info = curl_getinfo($ch); 

if ($info['http_code'] != $successCode) { 

   $msgStr = "# Unsuccessful cURL request to "; 

   $msgStr .= $url." [". $info['http_code']. "]\n"; 

   Echo '{success:false,message:'.json_encode($msgStr).'}'; 

} else {                     

   $msgStr = "# Successful cURL request to ".$url."\n"; 

   Echo '{success: true, mpIndex:'.json_encode($mapping_index).',message:"The sketch layer has been created    

and added to the map. You can now start drawing the measures using CREATE and EDIT feature tools of the map 

center panel!"}'; 

} 

 

// free resources if curl handle will not be reused 
curl_close($ch);  
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Abstract. Adaptation to complex and unforeseen events re-

quires enhancing the links between planning and prepared-

ness phases to reduce future risks in the most efficient way. In

this context, the legal–administrative and cultural context has

to be taken into account. This is why four case study areas of

the CHANGES1 project (Nehoiu Valley in Romania, Ubaye

Valley in France, Val Canale in Italy, and Wieprzówka catch-

ment in Poland) serve as examples to highlight currently im-

plemented risk management strategies for land-use planning

and emergency preparedness. The focus is particularly on

flood and landslide hazards. The strategies described in this

paper were identified by means of exploratory and informal

interviews in each study site. Results reveal that a dearth or,

in very few cases, a weak link exists between spatial plan-

ners and emergency managers. Management strategies could

benefit from formally intensifying coordination and cooper-

ation between emergency services and spatial planning au-

thorities. Moreover, limited financial funds urge for a more

efficient use of resources and better coordination towards

long-term activities. The research indicates potential bene-

fits to establishing or, in some cases, strengthening this link

through contextual changes, e.g., in organizational or admin-

istrative structures, that facilitate proper interaction between

1Marie Curie ITN CHANGES – Changing Hydro-

meteorological Risks as Analyzed by a New Generation of

European Scientists

risk management and spatial planning. It also provides sug-

gestions for further development in the form of information

and decision support systems as a key connection point.

1 Introduction

According to global and European reports (EEA, 2010;

UNISDR, 2011), in past decades the number of disasters

caused by natural hazards has demonstrated an increasing

trend fueled by changing contexts in socioeconomic, envi-

ronmental and climatic patterns. Particularly in the target

study areas of the CHANGES project2 (Fig. 1), it is evident

that damages have occurred in recent years due to extreme

events resulting from hydrometeorological hazards. This is

made apparent through examples such as the flash floods that

struck in August 2005 in the catchment of the Targaniczanka

stream (tributary of Wieprzówka River, Poland) that repeated

in the spring of 2010. Evidence is further found in the French

2The CHANGES project specifically focuses on hydrometeoro-

logical hazards, in particular floods and landslides. All case study

sites that were part of the project were selected because of (more or

less regularly) appearing floods and landslides. This is the one char-

acteristic that all case study sites have in common and supports the

ability to make a cross-country comparison in light of these types

of hazards.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Figure 1. Location of study areas.

case study site through flood events caused by peak discharge

of the Ubaye River in May 2008 (Barcelonnette Basin in

Alpes-de-Haute-Provence) and in the Romanian case study

with the flash flood event in 2005 that affected the Nehoiu

Valley in Buzău County, which resulted in substantial eco-
nomic damages. Finally, within the Italian case study, evi-
dence is given through the intense flash flood event in the
Fella Basin (Val Canale in the Friuli Venezia Giulia region)
that occurred in August 2003 and caused hundreds of mil-
lions of Euros in damages and even human casualties. Since
the CHANGES project deals with hydrometeorological haz-
ards, this paper will examine, in particular, risk management
strategies related to flood and landslide hazards.

Changing contexts in a long-term and short-term perspec-
tive should be managed within an integrated risk manage-
ment framework that accounts for both temporary manage-
ment strategies and permanent preventive measures to reduce
the impact of natural hazard processes (Fuchs et al., 2012).
Both long-term and short-term risk management strategies
are equally important. An integrated or comprehensive risk
management approach, however, calls for coordinating and
weighing up different risk management options and then
choosing the best combination of measures and practices
available in order to achieve the most efficient strategy. For
clarification, this paper considers a strategy to be a broader,
more goal- or vision-based agenda. A policy is considered
to be less broad and serves more as a guideline for action
used to work towards achieving the strategy. Measures and
practices are considered to be the actions actually employed
following the guidance of the policies, which work towards
the achievement of the main goal or strategy.

Figure 2. The phases of the disaster risk cycle (Jha et al., 2013).

Furthermore, an integrated approach suggests not only a
combination of long-term and short-term measures but also
the interaction between the actors involved towards policy
agreements for the successful implementation of risk strate-
gies. This has also been stressed by the European Commis-
sion, which underlines the requirement of “linking the ac-
tors involved in developing and implementing measures that
can have significant impacts on disaster prevention” (Euro-

pean Communities, 2009, p. 6). Within this paper, short-

term risk mitigation refers to emergency management (pre-

paredness and response) measures aimed to minimize the

impact of a disaster, to be prepared for a crisis situation

and to be able to immediately respond. In contrast, exam-

ples for long-term measures include permanent technical

(structural/nonstructural) measures as well as spatial plan-

ning, which is inherently a future-oriented activity that can

implement long-term prevention measures (Fig. 2). The co-

ordination of short-term and long-term management strate-

gies is not an easy task, mainly due to the often existing

void between crisis management and risk prevention (Neu-

vel and Zlatanova, 2006) or the disconnection of actors in-

volved (Sapountzaki et al., 2011). It also often implies a

conflict of objectives since, for instance, regulations related

to regional planning and development include several other

aims besides prevention of natural hazards (Holub and Fuchs,

2009). Moreover, the legal framework and the political–

administrative system significantly determine how risk re-

sponses are designed and by which institutions they are im-

plemented (Greiving and Fleischhauer, 2012). In addition,

cultural beliefs play an important role how risks are per-

ceived, evaluated and managed (Angignard et al., 2013).

When we refer to “coordination” we mean its most basic

sense, i.e., information sharing and exchange. However, co-

ordination towards long-term activities also requires cooper-

ative efforts between actors involved. That is, by enhancing

the interaction and sharing of resources between risk man-

agers for the evaluation and selection of risk management

Nat. Hazards Earth Syst. Sci., 14, 3261–3278, 2014 www.nat-hazards-earth-syst-sci.net/14/3261/2014/
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strategies towards achieving a common goal (Himmelman,
2002).

In this paper, we consider the need for connections be-
tween long-term and short-term management strategies with
a specific focus on spatial planning and emergency prepared-

ness. This consideration was realized through analysis of a

variation of different cultural contexts, including different

legal and administrative settings within the four case study

areas of the CHANGES project. The analysis was completed

through data collected via stakeholder meetings and expert

interviews. Stakeholder meetings were carried out to estab-

lish initial contacts. These meetings enabled collection of

preliminary data from discussion and responses to a series

of pre-prepared questions. Translation was provided by a

native speaker during both this preliminary phase and the

semi-structured expert interviews, which comprised the sec-

ond phase. Expert interviews were attempted with one in-

terview partner at a time; however, in some cases, inter-

views were held with two or more persons. During this

phase, an interview guide was used and provided for a mix-

ture of both closed and open-ended responses. Interviews

were conducted with the following interview partners: de-

cision makers in municipal offices (including mayors and

local crisis management teams), volunteer and professional

fire brigades, civil protection, regional and district level cri-

sis management offices, spatial planners, and sectoral plan-

ners (e.g., representatives from water authorities, geolog-

ical surveys, and environmental protection agencies). The

highly valuable input from these interview partners in addi-

tion to supporting literature serves as the basis for the anal-

ysis of in-practice examples for spatial planning and emer-

gency preparedness management and their existing and po-

tential connections.

Section 2 gives a brief background of what is meant by

risk management strategies within the research. Subsections

are divided into a focus on spatial planning and emergency

preparedness containing explanation and examples of these

strategies within each of the case study sites. Section 3 pro-

vides the connection between spatial planning and emer-

gency preparedness in the context of the case study sites,

focusing explicitly on points for establishing and strength-

ening coordination for risk management strategies. Section 4

concludes the paper with final reflection on the key points for

coordination and what remains to be investigated in further

research.

2 State of the art of risk management strategies

Risk management strategies utilize and apply resources to-
wards the ultimate goal of reducing disaster risks and the
overall threats imposed by extreme events, thus achieving
disaster risk reduction (DRR) (Paul, 2011). The efforts to
achieve this goal are made throughout all phases of the dis-
aster risk management (DRM) cycle (Fig. 3), which includes

Figure 3. Short-term and long-term activities within the disaster
management cycle.

the phases of prevention (often interchanged with mitigation
in DRR research), preparedness, response and recovery (Jha
et al., 2013). Within and across all phases at all administra-
tive levels, DRM activities and processes are conducted for
the design and implementation of strategies to improve the
understanding of disaster risks; to reduce losses; and to con-
trol, avoid and transfer risks (IRGC, 2009; UN, 2009; IPCC,
2012). In this research, focus is placed on the first two phases
of the DRM cycle, which are defined as follows based on

Alexander (2002, p. 5):

– Prevention: actions taken and decisions made to reduce
the threat (potential for tangible and intangible losses)
of disaster consequences in the future, typically divided
into structural and nonstructural measures.

– Preparation: given the preeminence of a threat, actions
taken and decisions made to reduce the impact of the
impending disaster.

The activities and processes conducted by emergency man-
agement and spatial planning practices constitute key com-
ponents of DRM. Overlaps between these two components
exist especially in terms of actions taken and decisions made
within emergency preparedness (a part of overall emergency
management) and regional and/or urban planning practices.
In practice, the emphasis on what actions are taken and de-
cisions made varies depending on the consideration for and
importance placed on short-term and/or long-term strategies.

Often, and from what has been revealed from the
CHANGES case study research, greater action and policy
attention is given within phases that require a limited win-
dow of available time for decision making. These are namely

www.nat-hazards-earth-syst-sci.net/14/3261/2014/ Nat. Hazards Earth Syst. Sci., 14, 3261–3278, 2014
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the response and recovery phases as opposed to the preven-
tion and preparation phases. This pattern applies also within
the latter two phases, where often the more immediately re-
quired actions for preparedness are given greater attention
than actions for prevention. Reasons for this emphasis within
the case study findings vary including limited financial re-

sources, inability to target preventive actions due to uncer-

tainty of the location in which the hazard will occur (e.g., es-

pecially for flash flooding), interinstitutional conflicts regard-

ing responsibilities and abilities to construct structural miti-

gation measures, among other reasons. This focus can lead

to a common pattern of risk management strategies, which

tends to be highly disaster reactive. In consequence, this pat-

tern reduces the realization of measures for prevention and

preparedness which dramatically diminish potential losses as

compared to measures taken later in response and recovery

phases, especially for long-term planning strategies (Pelling

and Schipper, 2009; UNISDR, 2009; EEA, 2012). Neverthe-

less, some in-practice examples from case study analysis re-

veal that long-term-focused strategies are pursued, for exam-

ple, where long-term land-use planning strategies are well

enforced.

Risk management strategies for both emergency prepared-

ness and spatial planning are dependent upon the “place” or

national, regional and local context (e.g., including the insti-

tutional, social, geographic and physical characteristics) in

which they are developed (Cutter et al., 2003). This context is

especially important to consider, as one management practice

in one case study is not necessarily suitable for application in

another. Thus, taking a case study approach to understand-

ing emergency preparedness and spatial planning at regional

and local levels is crucial for consideration of the different

case-specific contexts and the respective in-practice connec-

tions between these two components of DRM. For each case

study presented in this paper, examples are provided which

demonstrate the types of measures employed for both spa-

tial planning and emergency preparedness, with focus on the

importance of encouraging their connections in risk manage-

ment strategies. The benefit of strengthening this connection

is especially pertinent for the nature of the threats caused by

multiple and sudden onset hazards such as flash floods and

landslides, as dealt with in the CHANGES project. There-

fore, the need for continuous adaptation to complex and un-

foreseen environments requires enhancing the links between

planning and emergency preparedness while acknowledging

the roles, needs and values of the involved parties (Comfort

and Kapucu, 2006; Garcia and Fearnley, 2012). This inte-

grated approach can have strong implications both in long-

term and short-term perspectives to strengthen the resilience

of a community before, during and after a disaster strikes.

The subsections following this section provide a brief

elaboration on the roles of spatial planning and emergency

preparedness practices within DRM strategies in general.

The subsections then delve explicitly into the details of these

strategies within each case study site. More precisely, the

sections offer specific examples and results from the analysis

of field site visits and commentary from interview partners

in each case study, contributing to the understanding of these

practices at a more local level.

2.1 Role of spatial planning for risk management

Spatial planning is undeniably one of the major contributors
to DRR. By regulating the long-term usage of space, it can
determine the distribution of people and development struc-
tures and decide on the location, the type and the intensity of
a planned development. An appropriate allocation of the dif-
ferent land uses can thus influence exposures to natural haz-
ards and minimize or prevent damages to life and property
(Sutanta et al., 2010). Consequently, planners can either in-
crease or decrease risk through decisions on how and where
to build houses, infrastructure and facilities. They have cer-
tain instruments at hand, which clearly affect risk reduction
activities, but their effectiveness depends to a certain extent
from the national planning system they are embedded in. Al-
though spatial planning in general has competences in all
phases of the disaster risk cycle, its main competences lie
in the prevention phase.

Within the prevention phase one can distinguish between
structural and nonstructural mitigation measures. Especially
in regard to nonstructural mitigation, spatial planning has
notable competences, e.g., in terms of reducing the damage
potential with zoning instruments that regulate future devel-
opment. Its main characteristic or the main task of land-use
planning instruments consists in guiding new development
away from hazardous areas, i.e., leaving hazard-prone areas
free of development, as well as determining and restricting
future land uses. Non-structural measures also involve the re-
location of existing developments into a safer area (Greiving,
2004). For an enforcement of restrictions of land use, haz-
ard maps are needed which serve to display hazardous areas
and thus help to designate areas with settlement restrictions
in local land-use plans (Schmidt-Thomé, 2005; Greiving and
Fleischhauer, 2006).

Concerning structural mitigation measures, at the local
planning level, authorities can influence building permissions
through their legally binding land-use plans. Building stan-
dards can be used that aim at specific regulations to pro-

tect settlements and infrastructure (Schmidt-Thomé, 2005).

Spatial planning instruments ensure building code compli-

ance and an efficient quality of construction (Sapountzaki et

al., 2011). Such building standards can be traditional build-

ing codes, flood-proofing requirements, requirements regard-

ing the retrofitting of existing buildings, etc. (Burby et al.,

2000). Examples include the prohibition of a basement or the

strengthening of the outside wall (Schmidt-Thomé, 2005).

In regard to reactive, short-term activities, the role of spa-

tial planning is rather small (Schmidt-Thomé, 2005). How-

ever, it can still have a supporting role. For instance, it has

to consider the needs and interests of emergency response

Nat. Hazards Earth Syst. Sci., 14, 3261–3278, 2014 www.nat-hazards-earth-syst-sci.net/14/3261/2014/
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units. The development of evacuation plans and the location
of emergency shelters are always related to current and fu-
ture urban development (Sapountzaki et al., 2011), which is
why spatial planning has to ensure that any inhabited area or
industrial facility is reachable in an appropriate time in case
a disaster strikes. It also has to anticipate potential adverse
impacts on roads and response stations and thus plan for an
appropriate accessibility with different means of transport
(Schmidt-Thomé, 2005; Greiving and Fleischhauer, 2006).

In the four case study sites of the CHANGES project, spa-
tial planning as a risk prevention instrument is regarded with
different degrees of importance. Whereas authorities in three
sites (the French, Italian and Romanian study areas) rather
rely on structural mitigation measures, authorities in the Pol-
ish case study site underline the essential role of nonstruc-
tural mitigation in the form of restrictive land-use planning.

In Poland, flood and landslide prevention is directly linked
with local land-use planning. In the Polish study area, the
Wieprzówka catchment in the Małopolska voivodeship, in-

terviewed mayors highlighted the importance of nonstruc-

tural mitigation measures, whereas the number of structural

mitigation measures in the municipalities concerned is negli-

gible. Therefore, the main activities addressing risk reduction

consist of regulatory zoning in terms of determining, restrict-

ing or prohibiting future uses and developments. The reason

for a rather reserved implementation of structural mitigation

measures can be the limited financial means which are not

sufficient to stabilize all landslides and to protect all areas at

risk, as stated by local authorities in Stryszawa municipal-

ity. It was also argued by public authorities in the municipal-

ity of Andrychów that implementing structural measures re-

quired a better identification and understanding of the areas

at risk. However, the uncertainty about (a) which and how

many areas are at risk and (b) what the probability of fu-

ture events is results in a limited amount of structural miti-

gation measures. For instance, floods in this area occur sud-

denly and there is neither much time for preparation nor is

it easy to predict which zones or places might be hit. Due

to the difficulty in assigning the best places for structural

measures, local authorities rely on land-use planning compe-

tences to reduce the risk. Another obstacle to implementing

structural measures is the distribution of legal competencies.

River banks are commonly known places where structural

measures are needed. However, they are under the adminis-

tration of separate authorities and local authorities are un-

able to do anything without an agreement with the respon-

sible water board. As regards landslides, an online informa-

tion system for landslide assessments called SOPO (“System

Osłony Przeciwosuwiskowej”) is currently under construc-

tion in the Polish Carpathians. The first available results give

hope for better identification of areas at risk for urban plan-

ning purposes and simultaneously impose a task of formulat-

ing adequate land-use regulations.

The situation in the Italian Fella River catchment is dif-

ferent. After heavy rainfalls in 2003, which caused severe

flooding and landslides, several mitigation works have been

completed in the towns of Malborghetto and Ugovizza by

the civil protection agency of the Friuli Venezia Giulia re-

gion as an immediate reaction to the disaster. Officials of

Malborghetto explained that, due to the existing problem

of continuous outmigration from the valley, structural mea-

sures were considered as an effective and necessary option

to prevent both having to relocate people and having people

leave. Furthermore, according to a representative of the river

basin authority, 90% of the events in the Fella River catch-

ment occur at more predictable places or even at the same

ones. This is why civil protection can more easily identify

the most affected areas and better anticipate disasters. The

authors conclude that the importance of spatial planning re-

lated risk management activities is rather low. Nonetheless,

spatial planning can currently contribute in terms of pro-

hibiting new construction in hazard-prone areas thanks to the

so-called “Piano stralcio di assetto idrogeologico” (PAI), a

legally binding plan providing one map each for hydrologi-

cal, geomorphological and avalanche hazards. The PAI pro-

motes a risk-reduction-oriented spatial planning by display-

ing areas exposed to hazards in four different levels (mod-

erate, medium, elevated, highly elevated) (Fig. 4). In addi-

tion, the map for geomorphological hazards also shows the

elements at risk, i.e., a parameter for vulnerability, and ex-

isting structural defence works. Contents and prescriptions

of a PAI need to be considered in all planning documents,

i.e., their provisions are legally binding for local authorities

as well as for the private sector (Galderisi andMenoni, 2006).

In the Fella catchment, the PAI has been adopted but not yet

approved. Nonetheless, the current available version already

has to be used in local spatial planning.

In the town of Nehoiu in Buzău County, Romania, the lack

of funds is clearly the biggest problem. The insufficient bud-

get immensely limits actions at the local level. Nonetheless

the focus lies on structural mitigation measures, as dams and

other built structures are considered to be most effective in

the short term. In fact, several interview partners in the Ne-

hoiu town offices indicated that there is no possibility to con-

sider a long-term perspective because of the need to first try

to manage short-term problems. Within this case study, the

role of spatial planning in risk management is rather low and

its use as a risk prevention tool is not fully taken into account.

Planning decisions at the local level are often based on lo-

cal knowledge and experiences, as commented by an urban

planner in Nehoiu town. For instance, current planning prac-

tices merely prohibit construction in areas where the land-

slide risk is known or a landslide already exists. According

to a representative of the local planning department, in areas

where a potential risk of landslides exists, building permits

are usually granted. Moreover, planners seem to judge exist-

ing risks differently. While earthquakes, for which informa-

tion is available on a small scale, are regarded as rather se-

rious threats, floods and landslides seem to be undervalued.

Reasons can be existing structural mitigation measures like
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Figure 4. Geomorphological hazard map – PAI, commune of Malborghetto-Valbruna, Italy (Autorità di bacino dei fiumi dell’Alto Adriatico,

2012). The map comprises all types of mass movements: rapid flows, falls, topplings, surficial slides and rotational/translational slides. Red

areas indicate a highly elevate geomorphological hazard, orange areas indicate high geomorphological hazard, yellow areas indicate medium

geomorphological hazard, and violet lines and points indicate structural defense measures in development.

dams and dykes that cause a false sense of security. Illegal
building also constitutes a problem and adds to an increasing
risk. The purpose of regulatory zoning as a risk mitigation
measure is known and its benefits are acknowledged; still, the

commune is both limited in its actions in this regard and con-

siders structural measures to be even more effective. Reasons

for this approach may be the lack of hazard- and risk-related

information that could be used in land-use planning (espe-

cially hazard and risk maps) as well as a lack of acceptance

of the population for a more preventive planning approach,

which influences current planning decisions and activities.

In regard to the importance of structural versus non-

structural measures, the situation in Barcelonnette, a com-

mune in the Ubaye Valley, is in a way similar to the one

in the Fella River catchment. In general, structural mea-

sures are considered as very effective and practical. Since

the commune is already quite densely populated and de-

veloped, the zoning option and the designation of retention

areas do not seem to be feasible, at least not in regard to

protecting already existing developments. Thus, structural

measures like the elevation of a dyke have proved to work

and are also accepted by the population. However, it has

to be stressed that, in the year 1995, the French govern-

ment implemented a very strong and influential risk preven-

tion instrument which has essential effects for nondeveloped

areas: the “Plan de Prévention des Risques Majeurs”, PPR

(Risk Prevention Plan)3. The PPR (Fig. 5) is an instrument
designed for the prevention of any type of risk, including,
among others, floods, landslides, rock falls, earthquakes and
avalanches (European Communities, 2000; Mancebo, 2009),
and determines where building is allowed (white zone), not
allowed (red zone) or allowed under certain conditions fol-
lowing specific regulations (blue zone). The PPR is therefore

3France has a well-elaborated framework of natural hazard man-
agement due to the long tradition of hazard mapping and risk man-
agement instruments and the prevention of risks has always received
great attention.
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particularly important in terms of prohibiting new develop-
ment in risky areas (red zone) or adapting building struc-
tures to present risks (blue zone). In order to protect existing
structures such as the departmental road and houses along the
Ubaye River, structural measures are necessary, however.

While in Italy and France comparably strong and sepa-
rate prevention instruments provide for compulsory consid-
eration of hazards or risks, respectively, in spatial planning,
in Poland and Romania the obligation of taking hazards into
account exists, but the realization differs. In the former two
cases, maps with comparably clear delineations of the hazard
or risk levels exist. In the latter two cases only information
about the extent and the intensity of hazards is used. In the
case of the Romanian site, decisions are often based entirely
on local knowledge and experiences. Despite the compulsory
use of spatial planning as a tool for risk prevention, it is not
equally considered as effective as structural mitigation mea-
sures. However, there are opportunities for planning to be the
more efficient strategy in the long run.

2.2 Role of prevention and preparedness for emergency

management

Typically, activities for emergency management aim at safe-
guarding people and assets exposed to particular threats
while incorporating the “organization and management of
resources and responsibilities for addressing all aspects of
emergencies, in particular preparedness, response and ini-
tial recovery steps” (UNISDR, 2009, p. 13). Overall, emer-
gency management requires fast or near-real-time provision
and absorption of information for hazard and vulnerability
identification. Communication is based upon the coordina-

tion of different organizations such as government agencies,

local administrations, nongovernmental and volunteer forces

(Comfort and Kapucu, 2006; De Leoni et al., 2007), in which

local volunteers and crisis management teams are often the

first responders (Fischer, 2008). Despite the short-term focus,

emergency activities comprise all four stages of the DRM cy-

cle (Lindell, 2013). Consequently, effective emergency man-

agement includes preventive actions that protect passively

against casualties and damage at the time of hazard impact.

Such extended management perspective represents a proac-

tive resilience approach to strengthen the communities’ ca-

pacity before, during and after a disaster strikes. This is op-

posed to a reactive resilience approach that focuses on emer-

gency response to reduce casualties and damage when an

event takes place (Adger et al., 2005).

By taking into account the imminent probability of the

event and the limited time for decision making, activities

for emergency management mainly rely on the implementa-

tion of emergency plans and early warning systems (Mens

et al., 2008). The former define a chain of actions, actors

and resources that are required in order to be better prepared

and to better respond in case of specific risk scenarios (Pi-

atyszek and Karagiannis, 2012). The latter encompass the

monitoring and identification of triggering factors for hazard

events, which may be citizen- and technically based (Gar-

cia et al., 2013). The overall aim is the activation of warning

messages for the implementation of either active or passive

temporary measures that reduce vulnerability and risk conse-

quences (Rogers and Tsirkunov, 2010; Verkade and Werner,

2011). Examples of active temporary measures are the oper-

ation of protection works like dams or the allocation of sand-

bags to increase the height of levees. Instead, examples of

passive ones correspond to the reallocation of building furni-

ture and appliances to higher floors or the evacuation to safe

areas (Holub and Hübl, 2008).

However, in case of sudden-onset hazards such as flash

floods and debris flows, time is a crucial restriction to acti-

vate warning messages and to support the implementation

of emergency plans at the time of hazard impact. In this

case early warning can only benefit people and movable ob-

jects and not stationary objects such as infrastructure (Hübl,

2000). In addition, long-term and short-term changes con-

tribute considerably to the risk levels regarding the tempo-

ral and spatial distribution of buildings and people exposed

(Aubrecht et al., 2013). Consequently, there is an imperative

need to enhance communication and coordination activities

beyond emergency response while accounting for the interac-

tion between different actors involved in risk prevention and

preparedness. This holds especially true for spatial planners

and emergency managers if one considers their essential need

to share common critical data, particularly for mountainous

environments, where hazards often occur unexpectedly and

rapidly.

When comparing the emergency management structures

within the four case study areas of the CHANGES project,

the mayor has the legal responsibility for disaster manage-

ment at the municipality level. Regional and national levels

provide support for lower tiers of emergency management.

This support depends on the spatial extent and intensity of

the event as well as the exhaustion of local resources for

event management (Gaetani et al., 2008; Dworzecki, 2012).

Moreover, competences of emergency management at the re-

gional level integrate activities to promote risk prevention,

monitoring and forecasting activities that respect the national

principles. In the French site, such competences are based

upon the “seven pillars of French prevention policy”. These

pillars include, among others, the understanding of phenom-

ena, unexpected events and the risks they pose, monitor-

ing and reducing vulnerability (MEEDDM, 2011). In Friuli

Venezia Giulia, a functional center at the regional level sup-

ports local administrative levels for forecasting, warning,

coordination of emergency plans and response. This center

is structured according to the national legislations (law no.

225/1992, legislative decree no. 112/1998, law no. 401/2001

and law no. 100/2012) and further adapted according to re-

gional legislations. In the Romanian site, emergency com-

mittees operate according to the government emergency ordi-

nance 21/2004 for the implementation of national strategies
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Figure 5. Plan de Prévention des Risques Naturels of Barcelonnette, France (RTM, 2006). Red areas indicate high risk, blue areas indicate
medium risk and white areas indicate low or no risk. The three risk classes are based on a matrix comprising three hazard classes and four
classes of potential consequences (exposed elements/vulnerability). The hazard comprises the probability of occurrence of an event, and the
exposed elements can be defined as the entirety of persons, goods and infrastructures likely to be affected by a hazard.

at lower administrative levels into emergency plans and by
planning exercises to maintain awareness and to inform cit-
izens. For the Polish site, these competences for crisis re-
sponse plans and programs are stipulated within the act of
26 April 2007 on crisis management (2007).

In addition to the above legal framework and with refer-
ence to preparedness activities, all case studies receive warn-
ing information from meteorological services. Overall, mon-
itoring and warning systems are more specialized and au-
tomatic in the French and Italian sites as compared to the
Polish and Romanian sites. Despite the differences, there is
a common interest to develop early warning systems based
on modeling approaches and triggering thresholds while in-
corporating local knowledge and citizen-based approaches.
Such approaches are still technically based but give focus to
the active engagement and communication with people ex-
posed to risk (Basher, 2006).

Additionally, in all study sites, emergency plans are rec-
ognized as key instruments to support preparedness and re-
sponse activities. In the French and Italian cases in partic-
ular, there are available platforms to manage and update

emergency plans, whereas in the Polish site information sys-
tems are devoted to support crisis management. Moreover,
the implemented systems support comprehensive databases
to collect and share data on the occurrence and damages of
flood and landslides. In contrast, in the Romanian site, re-
gional (county level) emergency authorities acknowledged
the need for developing a platform and tools to support their
activities. Such integrated platforms could also support the
scientific identification of dangerous areas by sharing and

combining it with local knowledge on past hazard events.

In practice, the competences of emergency management

for each study site are generally driven by the level of in-

volvement of regional and local authorities in prevention and

preparedness activities as opposed to response and recov-

ery phases. In this regard, the interaction with private and

volunteer organizations is considered as a relevant aspect to

support proactive resilience approaches. The Italian site is

an example of strong community involvement in volunteer

activities. The Friuli Venezia Giulia model of volunteer ac-

tivities follows a historical tradition of fire brigades that was

enhanced after a devastating earthquake in 1976 (Bianchizza
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et al., 2011). For the Romanian site, different categories of
stakeholders in Buzău County (e.g., the regional environmen-
tal protection agency as well as local and regional bodies of

emergency management) identified the need to promote and

adapt voluntary activities to the local context. In the Polish

and French sites, the local-level involvement in emergency

activities is limited to fire brigades that are the first respon-

ders in case of emergency.

The overall risk management focus also varies according

to the distribution and coordination of funding as well as

other types of financial means not only to support prepared-

ness and response but also to promote instruments to prevent

losses. In the Italian site, after the 2003 event, a large sum

of approximately EUR40 million was spent on remediation

works in the form of restoration works and recovery from

damages to affected infrastructures (both private and busi-

ness structures), among others. Additionally, a large sum of

money was spent on structural mitigation measures such as

check dams and channels (Fig. 6). Consequently, large in-

vestments were made in prevention measures. However, in

general, two-thirds of the annual costs of the Italian civil

protection system (around EUR1.7 billion) is used to refund

payments accrued during previous disasters (Gaetani et al.,

2008), i.e., for recovery. In the French site, it became appar-

ent that attention is paid to both prevention and preparedness.

One of the reasons may be that the French system for natural

disaster indemnification combines the solidarity idea behind

mutualization – related to an existing risk and through pay-

ment of premiums – with the national solidarity principle by

guaranteeing indemnification granted by the state (Consor-

cio de Compensación de Seguros, 2008). Therefore, the state

also has a financial interest to provide for the best prevention

and preparedness possible in order to reduce and minimize

potential damages before a disaster strikes. In contrast, in the

Romanian site, the limited operative resources and lack of

funds focus most efforts on the preparedness and response

phase regardless of the importance of prevention activities,

as recognized by interview partners. In the Polish site, the

limited funds are distributed among the preparedness and re-

sponse instruments that are in place (i.e., early warning and

information systems for crisis management). In general and

in looking beyond the scope of the case study findings, other

preventive measures in addition to zoning regulations are

rarely implemented at local level due to difficulties in own-

ership rights and distribution of responsibilities. As a result,

municipal authorities must deal with the future risks arising

in emergency situations rather than taking preventive actions

in advance4.
Section 2 focused on the role of spatial planning and

emergency management for risk management in general and
provided examples from the case study sites as well as an

4These results corroborate statements found in the literature and
experiences made in other case-study-related research works (e.g.,
Fleischhauer et al., 2006; Sapountzaki et al., 2011).

Figure 6. Structural debris flow mitigation measures in
Malborghetto-Valbruna, Italy.

explanation for the respective focus of risk management
strategies. The next section will highlight currently exist-
ing connections between the two. It will also provide reflec-
tions on how these links could even be further developed and
strengthened.

3 Coordination of emergency preparedness and

long-term spatial planning activities

As stated above, disaster risk management includes activities
before, during and after a disaster occurs. At the same time a
question that is often raised is whether the focus should be on
pre-disaster measures in terms of risk prevention or on post-
disaster measures, i.e., emergency response. Sapountzaki et
al. (2011) argue that emergency planning often plays a larger
role than prevention planning. This can be regarded as a con-
cern as generally both should be considered equally impor-
tant: the former because it primarily ensures the prevention
or at least the reduction of adverse consequences from a dis-
aster. Preventing a disaster in the first place should be the

primary goal. However, the latter is just as essential because,

due to the residual risk, a well-functioning emergency sys-

tem is vital for any society (Neuvel and Zlatanova, 2006).

Moreover, risk levels vary markedly on different temporal

and spatial scales. On the one hand, this is due to long-term

socioeconomic development that can be regarded as the ba-

sic goal. Therefore, permanent constructive mitigation mea-

sures and land-use regulations should be implemented. On

the other hand, short-term fluctuations in the frequency and

magnitude of events call for emergency plans and temporal

measures such as immediate support and evacuation (Fuchs

et al., 2012). Neuvel and Zlatanova (2006) further mention

the need for investments that address both risk prevention

and crisis response to make a society more resilient to dis-

asters. However, this requires effective coordination not only

among different disciplines and policy areas but also across

all phases of the disaster risk cycle (European Communities,

2009) of all risk management approaches involved.

In this regard, attention has to be paid to the inter-

linkages between spatial planning and emergency manage-

ment, especially within the prevention and preparedness

phases. Neuvel and Zlatanova (2006) note that, although
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emergency management units and spatial planners work in
different environments and time frames, they are concerned
with similar safety issues. As mentioned above, spatial plan-
ning is involved in emergency management and vice versa. In
spatial planning, integrated risk and hazard maps are essen-
tial to enable the inclusion of a DRR strategy into land-use
plans (Sutanta et al., 2010). Disaster hot spot locations can
be identified with the practical knowledge inputs of emer-

gency managers, such as safety recommendations provided

by fire departments (Neuvel and Van den Brink, 2009). The

information obtained from emergency response units can

provide more insight into useful risk reduction measures

as well as what interests need to be considered if emer-

gency management concerns are addressed (e.g., areas re-

quired for emergency response and spaces for shelter, evac-

uation routes, accessibility of residential and industrial areas

by emergency response units in case of a disaster, allocation

of response stations, etc.) (Greiving and Fleischhauer, 2006).

At the same time, spatial planning authorities have informa-

tion on planned development in hazard exposed areas as well

as on vulnerable zones and elements, which should be com-

municated to emergency services for inclusion in the emer-

gency management plan. In general, spatial information in

the form of maps and models is appreciated by both entities,

i.e., spatial planning and emergency management authorities.

Accordingly, there are essential links between spatial plan-

ners and emergency managers to achieve better preparedness

and response activities in risk management. Linking all ac-

tors within an integrated response strategy towards disasters

throughout the whole disaster management cycle (Greiving

et al., 2012) can be regarded as a key prerequisite for success-

ful disaster reduction. Consequently, it is not only important

to coordinate risk management activities at the same tempo-

ral scale but also to support cooperation between the different

actors involved and promote the sharing of resources.

However, Sapountzaki et al. (2011) recognized that actors

involved in risk management are hardly connected to each

other. Young (2002) refers to this problem as the “problem

of interplay”. The problem of interplay constitutes a particu-

larly crucial factor for the mitigation of spatial risks (Greiv-

ing and Fleischhauer, 2006). Institutions should not be re-

garded as individual arrangements but rather be seen as part

of a wider network, since they interact with other arrange-

ments both vertically and horizontally (Young, 2002). The

existence of disconnected actors can partly stem from a his-

torically fragmented administrative system. Often there are

no linkages among the actors involved, which means that ac-

tivities and information transfer run parallel and there is no

real exchange (Greiving et al., 2012). In addition, funding

is also often fragmented. As a result, the – mostly limited –

resources are used in a rather ineffective and inefficient man-

ner (Greiving et al., 2012), thus reducing key success factors.

Neuvel and Zlatanova (2006) found that models and systems

developed by emergency units are hardly used by spatial

planning authorities. Moreover, spatial planning authorities

use systems with information on the location of vulnerable

assets, which can be of importance for emergency services.

Whereas regional and local planners strongly focus on the lo-

cation of urban development or safety measures for construc-

tion projects, emergency managers mainly focus on organi-

zational aspects, such as surveillance, coordination, commu-

nication and logistics (Caragliano and Manca, 2007). Nev-

ertheless, the physical characteristics of an area greatly in-

fluence the possibilities for emergency management. There-

fore, alignment of information and actions among risk actors

can increase the coherence of safety measures (Neuvel and

Van den Brink, 2009). This potential alignment of emer-

gency services and spatial planning has been examined in

the CHANGES case study sites.

In France, risks are rather managed in a whole system. Pro-

cedures addressing risk assessment and management have

become more integrated and tend to cover the whole disaster

risk cycle. Interviews conducted in the Ubaye Valley provide

the impression that risk prevention and emergency prepared-

ness and response are considered equally important. What

must be additionally considered is that the emergency sys-

tem in France “has moved toward an integrated risk manage-

ment policy partly to become a key element of local planning

and local policies” (Renda-Tanali andMancebo, 2010, p. 10).

There are two examples of this which clearly demonstrate the

positive approaches which should be further investigated in

future research.

During the preparation or the revision of a “Plan Local

d’Urbanisme” (PLU), the commune can consult the “Ser-

vice Départemental d’Incendie et de Secours”, SDIS (De-

partmental Fire and Rescue Service), which provides techni-

cal advice which addresses specific requirements attached to

the project in question. These requirements concern prescrip-

tions regarding minimum constraints for the accessibility of

emergency services, the protection against fire risks and the

consideration of major risks, including floods and forest fires.

The prescriptions must be respected during the realization of

future local planning projects within these zones. According

to the first paragraph of article L.126.1, Code de l’Urbanisme

(Urban Planning Code), the prescriptions of the SDIS rate as

“servitudes” (easements) and shall be annexed to the regula-

tions of the PLU.

In general, the mayor has responsibilities in all phases of

risk management (see Fig. 3). There are several informative

and regulatory instruments dedicated to natural risks. Besides

the PPR as a regulatory instrument for risk prevention, may-

ors make use of a local document for emergency prepared-

ness and response called “Plan Communal de Sauvegarde”

(Communal Safeguard Plan, or PCS). The plan governs ac-

tions and measures to be taken during and after a disaster

(Renda-Tanali and Mancebo, 2010). It intends to combine all

local documents contributing to preventive information and

the protection of people. According to article L731-3 of the

Inner Security Code (Code de la sécurité intérieure) the PCS

is only obligatory for communes that are endued with a PPR.
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No direct link with local planning documents is found in the
legislation, which means that the PCS does not – necessarily
– take into account information included in a SCot (“Schéma
de cohérence territoriale”) or a PLU, nor does a PLU have
to consider the contents of a PCS. In the French case study
site of the CHANGES project, it was expressed by urban
planners that the consideration of the PCS during the elab-
oration of a PLU is regarded as useful. Since the document
integrates different kinds of information, it could be a valu-
able source of information for local planning practices. Con-
versely, knowledge about elements at risk (sensitive build-
ings and infrastructures exposed to hazards) is vital for the
elaboration of a PCS (DDSC, 2009). However, according
to the “Guide pratique d’élaboration” (Practical Guide for
Elaboration) of the PCS, spatial planning documents do not
constitute any of the sources mentioned to be consulted for
information, although spatial planning usually disposes of
this vulnerability-related information, “since such facts as the
current distribution of population, the location of settlement
areas, or technical infrastructure is basic information which
is already needed for any kind of spatial planning activity”
(Greiving, 2006, p. 186). In this context, linking the PCS and
planning documents can be seen as an asset in aligning pre-
vention, preparedness and response activities.

Consequently, potential linkages and possibilities for coor-
dination between emergency management and spatial plan-
ning are apparent, but it seems that so far coordination only
takes place in the form of technical advice provided from an
emergency management authority towards local planning. It
appears that no information is exchanged in the other direc-
tion, which means that a two-way communication process
does not take place. There are, however, opportunities to es-
tablish such links, especially in the preparedness phase.

In many Italian regions the main actor in regard to emer-
gency preparedness and response is the “Protezione Civile”
(civil protection). In their review of the Italian national civil
protection system, the OECD (2010, p. 11) concluded that
“Italy has implemented a coherent, multi-risk approach to
civil protection that fully integrates scientific research and

technological expertise into a structured system for forecast-

ing and early warning of natural disasters”. The National De-

partment of Civil Protection is a system coordinated by the

prime minister and benefits from its position under direct au-

thority of the Italian government (OECD, 2010). This shows

the great importance that is attached to emergency response

operations and recovery. Similarly, the observations and in-

terviews from the CHANGES research allow one to reach the

conclusion that risk management approaches seem to be very

disaster reactive, especially in regard to funding. A great part

of the governmental budget is dedicated towards emergency

response and recovery activities (see Sect. 2.2).

Spatial planning as a tool for risk prevention has a less

prominent role, and planning requirements for construction

and buildings are often set aside (OECD, 2010). However,

with the PAI (Piano stralcio di assetto idrogeologico) (see

Sect. 2.1), Italy has quite a powerful risk prevention in-

strument in regard to planning activities. The problem is

not the existing planning instruments themselves but a need

for better implementation of prevention policies. Another

prerequisite is the reinforcement of urban planning codes,

e.g., through robust enforcement measures that may include

thorough inspections, higher incentives for retrofitting and

stronger penalties and efficient sanctions in the case of le-

gal violations (OECD, 2010). In particular, illegal build-

ing is still a widespread problem throughout Italy – with

the exception of the Valle d’Aosta region. In the year 2003

alone, 40 000 illegal buildings were constructed (Fiorillo et

al., 2007). It is evident within the Italian case study that there

is a stronger focus on emergency management as opposed

to spatial planning. However, in considering how to move

towards equilibrium, attention must be paid to the links be-

tween these two approaches.

It is noted by Galderisi and Menoni (2006, p. 103) that

only “very few regional planning acts specify the links be-

tween general planning tools and civil protection tools”. As

a further problem these authors state that even though risk

management instruments exist for all phases of the disaster

cycle, they do not create an effective sequence of actions and

coordination of activities5. Furthermore, the OECD (2010)
highlighted that the NCPS (National Civil Protection Ser-
vice) has no responsibilities in prevention policies and that
it would be beneficial if the NCPS had more competencies

related to these policies. After all, it is virtually assigned rel-

evant capabilities and experiences in prevention strategies.

Bignami’s (2010) reflections lead in the same direction. He

recognizes the need for a broader role for the modern civil

protection by contributing to the determination of long-term

choices. The author asserts this also for territorial structures,

provided there is collaboration with authorities dedicated to

land use, construction standards and the realization of public

buildings. He continues to explain that a closer collabora-

tion between spatial planners and civil protection services is

needed in order to benefit planning practices.

In Friuli Venezia Giulia, there are geo-information sys-

tems to support exchange of information between civil pro-

tection and municipalities. Such platforms are particularly

for the implementation of emergency plans (RiMaComm,

2013). In addition, there are initiatives to support exchange

of information between civil protection and the regional

technical services. The geo-information system SIDS (i.e.,

5A common pitfall, according to the UNHCR (2003, p. 12), is
the fact that “everyone wants coordination, but no one wants to be
coordinated”. There are a couple of reasons why coordination ef-
forts fail or why they are difficult to implement. Among others, this
regards the problem that actors involved, their information and their

processes are not necessarily always transparent or accessible for

everyone (UNHCR, 2003). This problem also hints at the impera-

tive to share information, make it generally accessible and provide

for transparency in order to ensure a better understanding of the

overall system everyone is part of.
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Territorial Informative System for the Soil Defense) is cur-
rently used to share information regarding the database of hy-
draulic structures and protection works. It also allows the ge-
ological survey to validate hydrometeorological events that
are reported to the civil protection agency. However, despite
efforts to exchange information between regional services,
there is limited coordination between authorities involved in
civil protection and spatial planning. Current practices could
maybe benefit from the common use of already existing sys-

tems, such as the SIDS. Expert interviews further revealed

the fact that the civil protection agency of Friuli Venezia Giu-

lia gives some specific opinions and guidelines to the munic-

ipalities regarding spatial planning but that the municipali-

ties usually prepare the plan themselves, without consulting

the civil protection agency. Municipalities are not obliged to

ask the civil protection agency for advice but study the sit-

uation themselves. That means this link is neither formally

nor legally stipulated. Furthermore, the municipalities gen-

erally have other studies at hand which they can make use

of when elaborating land-use plans, which means that they

have other sources than the civil protection agency. A repre-

sentative of a fire department in Moggio Udinese (Province

of Udine) criticized the missing coordination in the concrete

case of a construction of a new bridge, which turned out to

be too narrow for fire trucks. In short it was expressed that

emergency planning is handled rather separately from spa-

tial planning and that there is no real coordination, let alone

cooperation.

Especially in light of the public debt crisis and government

budget reductions, better coordination of activities and the

best possible use of resources are required (OECD, 2010).

There is an urgent need to identify the best option available.

An example from this can be seen when looking at the many

structural mitigation measures whose construction was con-

sidered most effective. However, at the same time, all these

constructions were also very expensive. Bearing in mind that

the study area is characterized by outmigration, such a costly

investment might indeed be the most effective one at the time

of decision making, but it might not be the most efficient one

in the long run. One has to weigh immediate benefits with

future development and long-lasting purposefulness. There-

fore, by identifying parallel organizational areas of compe-

tence as well as opportunities for resource sharing, and also

by comparing different alternatives, shrinking funds can be

used more effectively.

In the Polish case study site, the main activities in re-

gard to risk management seem to equally focus on regula-

tory zoning and emergency preparedness and response. In

regard to the coordination of activities between spatial plan-

ning and emergency management, no according legal regu-

lation exists. At the Sucha Beskidzka district office and pro-

fessional fire brigade it was expressed that there is only a

limited flow of information with planning authorities. Infor-

mation is at most exchanged with sectoral planning authori-

ties, e.g., about places where protective work is needed. This

was also confirmed in interviews with urban planners, who

state that generally there are very few connections with crisis

management units.

In order to distribute the sparse financial means most ef-

ficiently, different risk reduction options should be weighed

against each other in a cooperative approach, which currently

appears to be difficult, as there does not even seem to be

a strong level of coordination between different authorities

involved in risk management. Furthermore the assignment

of tasks and the allocation of responsibilities and property

rights are sometimes difficult and questionable. The geo-

information system ARCUS 2005 (Fig. 7) which is currently

used to exchange information between local and regional ad-

ministrative bodies involved in emergency management is

a good example of vertical coordination, since it displays

the availability of resources in case of a disaster, including

emergency appliances and tools, as well as personal forces.

It has been licensed to many administrative units in Poland,

including the municipalities and districts in the Małopolska

voivodeship. It is a software tool that is employed for emer-

gency management purposes using elements of geographic

information systems (GIS) and serves as a database. It allows

for simultaneous illustration of all entities’ resources and also

prepares tables with data to be illustrated in the GIS applica-

tion (Choryński, 2013). There is also a degree of horizon-

tal exchange with different local authorities. However, this

system is not being used by spatial planning authorities and

consequently neither is the information it contains. Yet it was

observed that such a system may be quite beneficial as a po-

tential tool to exchange information. Recorded incidents and

crisis situations related to natural hazards could help iden-

tify hot spot locations. Providing spatial planners access to

such systems could be a good opportunity to enhance their in-

formation about the nature of hazardous establishments and

particularly endangered areas in their municipality or the re-

gion. This information could then also be used by planning

experts for the development of spatial plans. Conversely, spa-

tial planning could provide information about vulnerable ob-

jects, which could be fed into the system. In the Polish case

study site, similar to the Italian site, there is hardly any co-

ordination or cooperation between emergency management

units and spatial planning bodies. Additionally, there is also

no formal obligation to establish such links and develop ac-

cording processes.

In Buzău County in Romania, the interview partners ex-

plicitly acknowledged the importance of prevention. The

problem again is the missing realization. It was stated in

expert interviews at the Emergency Situation Inspectorate

(ISU) that – based on statistical evidence – prevention is ap-

parently 8 times less expensive in the long-term than emer-

gency response and that prevention is even more important

than recovery. Still, more investments are made in emergency

response than in long-term risk prevention. However, con-

cerning cooperation between planning and emergency enti-

ties, Buzău County provides some positive approaches. For
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Figure 7. ARCUS 2005 system (Choryński, 2013). The map displays selected resources of the municipality marked with the flag, in this case
the municipality of Smiegiel in the Wielkopolska (Greater Poland) region in Poland. This involves elements such as infrastructure, hospitals,
pharmacies, volunteer fire brigade stations, petrol stations, accommodation, clinics and primary health care, etc.

instance, the ISU in Buzău is directly involved in urban plan-
ning. ISU officers give their opinion on local spatial plans

and also check the plans. The legal basis of this type of coor-

dination can be found in the law 350 of 6 July 2001 on spatial

planning and urbanism, which states that urban planning doc-

uments must be approved by a so-called “Comisia tehnica

de amenajare a teritoriului si de urbanism” (technical com-

mittee for spatial planning and urbanism), which, in order to

improve the quality of decisions regarding local sustainable

development, provides advice, technical expertise and con-

sultancy (law 350 of 6 July 2001, article 37 (1)). ISU has a

member within this technical committee who is responsible

for checking the document and looking for specific issues

related to mandatory protection against fire. That member

may also signalize whether issues related to natural hazards

(landslides, floods, earthquakes) are either missing from the

documentation or are only partly or insufficiently addressed.

Additionally, ISU elaborates a prevention plan based on the

urban plan and integrates all different plans into the County

Spatial Plan, among others the evacuation plan and the flood

prevention plan. Hence, there seems to be a two-way infor-

mation exchange between spatial planning and emergency

services, which has also been confirmed in the interviews.

Furthermore it has been expressed that, although a system

for the management of emergency situations already exists,

a platform is needed which involves several services, such

as the spatial distribution of events, the modeling of proba-

bilities, better visualizations and maps, etc. This would not

only be helpful in terms of emergency management but also

in terms of better long-term planning at the county level.

One of the effects that evolve from a lack of coordination

between long-term and short-term risk management strate-

gies is the fact that actors involved do not cooperate. Ad-

verse consequences resulting from an inefficient choice can

be minimized by implementing cost–benefit analyses or by

underlining the need for comparing different alternatives and

sharing common resources. Thus, duplication of measures

and a misuse of funds can be reduced or even avoided. This

might ensure investment in the implementation of what are

the most effective measures, and therefore a more efficient

use of funds (Fig. 8).

In this respect, the implementation of a web-based deci-

sion support platform, as being developed by the CHANGES

project for instance, could help integrate all the available risk

information and support the decision-making process in the

selection and implementation of different alternatives with

the most relevant actors involved in risk management. It is

not within the scope of this paper to further describe the sys-

tem developed within the CHANGES project. We will there-

fore hint at a forthcoming publication by Aye et al., which
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Figure 8. Effects of improved coordination between emergency
preparedness and spatial planning actors and identified problems
(uncertainty in natural hazard prediction, multitude and complexity

of concerns of local authorities, rigorous spatial planning measures,

lack of funds) impeding effective risk reduction, benefitting from

improved coordination.

will focus on the web-based collaborative decision support
platform and its potential use in the case study sites in more
detail.

Neuvel and Zlatanova (2006), for instance, believe in the
clear benefits of the use of effective open standard GIS sys-

tems. Those systems constitute an important instrument to

support decision makers in both risk prevention and emer-

gency response (Greene, 2002). How actors use each other’s

data can be made more efficient through the implementation

of a common spatial information system. Such a system can

link different actors involved and may ensure improved ac-

cess to and exchange of information as well as better coordi-

nation of risk prevention and emergency response activities

(Neuvel and Zlatanova, 2006).

While web-based support systems facilitate the exchange

of information and promote effective decision making, they

are merely a support tool that could be used to assist the

decision-making process. There are, however, more impor-

tant root causes which need to be addressed and solved in

order to allow for better coordination and cooperation in

general.

4 Conclusions

This paper has discussed the roles and competences of spa-
tial planning and emergency management in risk reduction,
while highlighting furthermore the fact that risk management
activities of spatial planning and emergency management are
interrelated and require sufficient coordination and coopera-

tion. In this context, the examination of four case study sites

revealed several issues that would be worth addressing in

the future in order to strengthen or even improve the respec-

tive regions’ and/or municipalities’ risk reduction efforts. It

would be interesting to examine whether the findings are also

valid in the case of other extreme events. This could maybe

be a possible next step for future studies.

In regard to existing coordination, it can be stated that

there are a few positive examples of approaches in the case

study sites that show links between spatial planning and

emergency preparedness to a certain extent. These can be

summarized as follows:

– In the Romanian case study, processes are institutional-
ized and have a formal, legal basis; coordination is facil-
itated through the comprehensive role of the ISU which
encompasses both civil protection units and firefighting

units and consolidates several competencies under one

roof, but missing legal enforcement sometimes reduces

the success of certain measures (especially in regard to

land use decisions).

– In the French case study, already existing practices that
try to link emergency management services and local
planning (e.g., the responsible unit for emergency man-
agement gives an opinion on the content of spatial plan-
ning documents) could benefit from a more effective in-

formation exchange.

– In the Italian and Polish case studies there is almost no
coordination or exchange of information between the
two actors, which is why there is considerable merit in
reconsidering formal communication processes and in-
stitutionalizing such processes.

Better exchange of information can be enabled through
geo-informational systems that are shared by several bod-
ies and entities and which allow access to risk-related in-
formation at a spatial and temporal scale (see Sect. 3). In
many places, computer information systems, web platforms
or other databases exist that are predominantly used for emer-
gency related activities, while spatial planners have limited
access or use their own systems (e.g., GIS software). User
groups could be extended to enable sharing of common, crit-
ical data and information. The need for such a system was
stressed in the Romanian case study in particular, since it is
regarded as a major support. Further research should, how-
ever, still focus on testing and validating such prototype tools
and systems in order to address the needs of the actors in-
volved and adapt them to different contexts.
A few more general problems were additionally identified

that impede an effective implementation of risk reduction

strategies and which could benefit from better coordination

between the actors involved (see Fig. 8):

– Uncertainty in natural hazard prediction issues in-
evitable challenges to decision makers (especially in the
case of the Polish case site, where uncertainty inhibits
structural measures): Coordination between long-term
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and short-term strategies is crucial for finding the most

effective solution when there is uncertainty regarding

hazard and exposure location, since coordinated activi-

ties help in finding the best alternative.

– Existence of various concerns at local level: Risk miti-
gation is one of many concerns public authorities have
to deal with. Although mayors stated that prevention of
risks is considered as crucial, problems such as touristic
development, outmigration, economic development and
progress usually also constitute main concerns. Effec-
tive coordination would be helpful in finding the most

effective solution for the several urgent objectives, in-

cluding risk mitigation, and would help in legitimizing

the final decision.

– Rigorous spatial planning measures stand in the way
of more development-oriented strategies: Certain spatial
planning measures hinder development, which is why
a focus on structural measures or a response-oriented
system might be favored (e.g., in the Italian case, re-
location of sites to less hazardous areas may inten-
sify existing trends of outmigration and hinder touris-
tic development). Consideration of all existing socioe-
conomic and environmental objectives may imply the
need for compromising competing objectives. There-
fore coordination between different actors and a coor-
dinated decision-making process are required in order
to align desired goals and existing restraints.

– A lack of funds limits risk prevention policies and
requires a purposeful allocation of available financial

means: Coordination is crucial in this case in order to

choose the most efficient option possible, while cooper-

ation supports the sharing of limited resources.

Solutions to these problems can be found in changes of

existing structures (both administrative and legal). These are

essential in (a) demanding more formal coordination (b) fa-

cilitating cooperation processes and (c) promoting legal en-

forcement. The latter is particularly important in cases where

there is a lack of trust between public authorities and citi-

zens. For example, in the Romanian case site there is a lack

of acceptance by the population of a more preventive plan-

ning approach and a common cultural norm of breaching the

spatial planning law. In this context an improved raising of

awareness and the provision of risk information might be a

clear asset as well. Such information could enhance aware-

ness about the actual risk situation and avoid a false sense of

security. This also holds true for the information or educa-

tion of planners, who are dealing with planning-related risk

prevention in the first place and therefore need to be able to

effectively use and understand risk information and correctly

value the risk situation.

In conclusion, it can be said that many improvements are

still needed in order to create a risk management process in

which long-term and short-term strategies are dealt with in a

more comprehensive manner and by applying a cooperative

approach.
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ABSTRACT 

 

Impacts of natural disasters have increased worldwide in the past decades. 

Earthquakes are one of the disasters that have been studied for real-time analysis and crisis 

management. Disaster-related losses have been examined by the damage extent of the houses, 

infrastructures, fatalities and injuries converted to financial losses. Web-GIS technologies 

provide a wide range of solutions to map these damages, analyze data and publish the results 

on the web. Open-source tools and data have been widely used today because they stay free 

and facilitate access to data especially significant in developing countries. This research 

presents a web-GIS prototype using open-source geo-spatial technologies such as Postgis, 

GeoServer, Geoexplorer and OpenStreetMap (OSM) to evaluate the rapid impact of naturally 

produced disasters like earthquake for the estimation of total damages. For this purpose, 

expert knowledge such as earthquake intensities and vulnerability inputs are imported into 

the system. Moreover, OSM data for building information are also extracted for the analysis 

and the loss of the damage is then rapidly estimated and visualized in the platform. This work 

is part of a project for catastrophe modeling based on open-source data and software. We 

hope that applying open-source data, techniques and solutions will decrease the time and 

efforts needed for rapid disaster and catastrophe management. 
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1. INTRODUCTION   
  

Generally, disaster crisis occurs due to a complete mixture of human actions and 
natural hazards that directly results in vital changes during a short period of time such as 
death, disease, displacement including damages to infrastructure and economic loss [1]. 
During the past decades, hazard events, namely as earthquakes, droughts, floods, storms and 
fires have produced significant loss of people, properties and environment. By understanding 
the past hazard events and anticipating of the future events, risk of disasters can be 
minimized. As a result, disaster assessment should be a repetitive and remaining process [2] 
including underlying causes, dynamic pressures and unsafe conditions and this refers to a 
relationship between disasters, hazards and vulnerability [3]. Different types of assessments 
are based on different types of disasters and available resources. The initial assessment needs 
to be carried out quickly and when more information is available, this can be improved [2]. 

 
During the past years, more than 1,100 dense earthquakes have occurred, causing more 

than 1,500,000 casualties and collapsing buildings of more than 90% [4]. Recently, available 
fundamental information immediately after an earthquake is its magnitude, depth and 
epicenter provided by U.S. Geological Survey (USGS) data. However, estimation of damage 
patterns are not an easy process and it requires more detailed on-site information [5]. Besides, 
hazard map production is a long process and includes a lot of efforts, and therefore, hazard 
maps cannot be available quickly and freely. Moreover, elements at risk and vulnerability 
information require an extensive and a massive database. In this regards, open data such as 
OpenStreetMap (OSM) and USGS data, including shake maps can be integrated directly in 
the web-GIS application and this will reduce the time and efforts needed for the analysis. 
These data will be used to estimate damage and loss of the event. 
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Web-GIS systems support disaster assessment of an earthquake immediately and 

facilitate the analysis. Unlike the desktop systems, web-GIS offers user authentication, more 
interactive communication, fast data visualization and no specific needs in terms of data 
transferring. The huge amount of building data can be added to the system over the internet 
once an online visualization and analysis can be completed quickly afterwards; however a 
desktop application like Quantum GIS (QGIS) requires data transfer from one system to 
another. On the other hand, web-GIS applications make it convenient for users to access from 
any location using Internet without any extra installation. Moreover, the main reason that 
there is a lack of web-GIS systems for disaster management is that risk and disaster analysis 
except hazard analysis typically are not complicated and they can be simply calculated in any 
desktop GIS however web-GIS systems assist all stakeholders to communicate with each 
other easier and produce and maintain a huge database that can be accessed from anywhere. 
 

Web-GIS platforms, spatial data infrastructures, geo-visualization tools and GUI 
(Graphical User Interface) in the field of risk management have been applied in several 
related works (see [5], [6], [7], [8] and [9] among others). In addition, different GIS prototype 
systems (academic work [5]  and commercial technologies [8], [10], [9] and [11] ) have been 
proposed. Despite the variety of systems, there is no system which challenges the application 
of open data like OSM in planning of rapid disaster assessment, combined with loss and risk 
estimation based on available information through the application of a web-GIS platform.  
 

In this work, web-GIS technologies play a fundamental role in both rapid disaster 
assessment and loss estimation mainly for earthquakes. This prototype application calculates 
loss of damage by importing data from OSM and adding other information such as 
earthquake intensity, vulnerability and the value of the buildings. The application is 
implemented based on the open source framework, namely OpenGeo (Boundless). OpenGeo 
includes of Postgis, GeoServer, and Geoexplorer. 

 
Section 2 of this paper begins with the methodology for rapid disaster assessment and 

conceptual framework of the system. In section 3, the background architecture and 
implementation are proposed, and section 4 is devoted to describing the data which were used 
to test the application and discuss an initial result of the development. In the last part, the 
conclusion of this study and future works for the catastrophe management and modeling 
platform are reported.  
  
 
2 The Conceptual Framework  

 

The central goal of this study is to develop an integrated system for catastrophe 
management in case of earthquakes, focusing on rapid disaster impact assessment. The entire 
system plans to improve rapid assessment when there is a lack of information and data. The 
functions of the system are related to four main phases:  

1. Hazard 
2. Elements-at-risk 
3. Vulnerability  
4. Loss 

 
Intensity can be defined as a major disturbance created by a disaster. Dealing with 

earthquakes, general information does not give an indication about the frequency. Generally, 
the hazard is stated in terms of the incidence rates of intensity values [12]. Additionally, 
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vulnerability is the characteristics in terms of the ability to resist and improve the effect of a 
hazard [3]. Vulnerability functions are extremely hazard-related. For example, some 
buildings can be very vulnerable to earthquakes and less to other hazards like floods [12]. 
Likewise, the loss computation for events like earthquakes is problematic because of the 
lacking vulnerability information of buildings (objects at risk) or hazard intensity. Due to the 
uncertainties of this process, loss can be known as a probability distribution in the shaking 
area. This methodology contains modules that permit building information such as area and 
prices to be added for objects at risk (i), to estimate damage and loss, primarily using the 
shaking intensity (I(xi)) at the location of the object (i) within the database. Using a 
probabilistic approach, the loss of the ith object for one simulation is defined by:  
 
  Lossi = P(0/1)i × fVi(I(xi, RND))  × Wi                                                           (1) 
 
P(0/1): Probability of an object i to be affected (yes or no) depending on the knowledge; 
fVi(): Vulnerability function of the considered object depending on the intensity I; 
I(xi, RND):Intensity function depending on the location xi and a random value RND [0-1];  
Wi: Value of the objects at risk (mainly buildings).    
 
The total loss is calculated as: 
 TL = ∑ Lossi          (2) 
   

Figure 1 (the loss assessment flowchart) allows the end users to visualize and 
understand an integrated rapid disaster assessment framework. 
 
 
3. Implementation  

 

The main features of the platform (Figure 2), contain: 1. Top panel that focuses on user 
management and documentation. The user management module is used for creating, 
assigning and managing user accounts and permissions.  2. Main panel that is divided to Map 
view, Layer view, Legend and Data view in a table format. The map view panel is located in 
the center with tools for zooming, searching locations, styling, drawing and editing features; 
and Data view panel is located in the south to visualize feature information about the 
particular (vector) layer on the map. The main features of the loss calculation module are 
added to the top bar of Map view for sketching a new shake map layer as well as for 
calculating loss.  

The GIS system is designed to process multiple events with different magnitudes for 
different epicenters. Considering the spatial data stored in the geodatabase component, the 
system has been structured to obtain earthquake information such as magnitude, epicenter, 
intensity, and vulnerability and OSM data. Likely, it is possible to have a preliminary 
assessment of the damage. For this reason, the vulnerability data has been imported in terms 
of probabilistic percentage or damage function for different buildings.  

 
 

3.1 Architecture  

 
The geo-spatial analysis and visualization plays a fundamental role in disaster and post-

event management. For this purpose, the geospatial technologies have been combined into the 
architecture as a geo-visualization interface. The information and maps are stored and 
managed within a spatial database, therefore, it is possible to visualize and request data 
through a map viewer using Open Geospatial Consortium (OGC) web services and 
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GeoServer. The designed global architect (Figure 3) is implemented by using free open 
source software (FOSS) as a client-server architecture (Three-tier architecture). The platform 
consists of the three main layers including client, server and database layer. Followings are 
the main components: 

1. Geo-database (PostgreSQL and Postgis) 
2. Geographic user interface including map interface (ExtJS, OpenLayers and 

Geoexplorer) 
3. Open-source server for sharing/publishing of geo-spatial data (GeoServer) 
4. User management with SQL [13]  
5. Data analysis and processing with PHP 

 
The user sends a login request to the Apache web server using the user interface of the 

web browser. The request passes through the PHP to SQL server and login is succeeded upon 
validation. Afterwards, the requests to the GeoServer are handled (e.g. in case of layer query, 
visualization of different layers, etc.). The data are analyzed and processed on the server side 
and sent back to the client side through HTML pages. Lastly, the results are displayed in the 
forms of maps and tables using OpenLayers and OGC web services in Geoexplorer that is the 
main view of the platform. 

  
 

3.2 Procedures 

 
The disaster assessment method includes four main phases (Table 1). Once the user 

enters into the system, the first phase is to provide the information about earthquake, 
importantly epicenter, depth and magnitude. Then, the expert can update the intensity of each 
earthquake by uploading a shape (.SHP) file or drawing on the map canvas in the platform 
that can be added directly to database for further analysis(Phase 1 in table 1). Next, OSM data 
are uploaded to the system as a SHP file layer. This data are generated in Quantum GIS 
(QGIS) and imported into the system. OSM data are not a complete set of building data, 
therefore, Postgis can help to complete all buildings to overlay to the desired area and form to 
polygons by using different functions such as ST_Overlaps, ST_MakePolygon, ST_Union, 
etc (Phase 2 in table 1). 
 

Before moving into the calculation phase, vulnerability information is required to be 
linked to the building data. These data are derived from a table in CSV file mentioning the 
type of the building and damage probability. Similarly, it can be defined by the probability of 
the damage area (Phase 3 in table 1). The value of each building is being calculated and 
added to the system for the final phase (area is multiplied to price per square meter). 
Consequently, the user can select an earthquake layer, a building layer and vulnerability type 
after naming the calculation process (Phase 4 in table 1). As a result, the loss is computed in 
overall as well as for every building. Besides, the computed loss can be visualized as a map 
layer in the system. These procedures are the basic steps in the existing system, however, it is 
planned to enhance more detailed data and information on how the system can simulate and 
estimate intensity and vulnerability information for an improved analysis.  

 
 

3.3 Data Model and GeoServer 

 
Geodatabase is designed to integrate and incorporate geo-spatial data delivered as  an 

input to the system, including the data linked to earthquake (e.g., magnitude, epicenter and 
intensity) and specific data connected to the area of interest (such as building information,  
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OSM data and vulnerability tables). The FOSS technologies chosen to develop this 
component were PostgreSQL and Postgis. 

 
The GeoServer component, in connection with Geodatabase (Postgis), is provided to 

process spatial analysis and visualization. This module delivers a complete and up-to-date 
description of the different layers including earthquake intensity layer, building layer and 
maps of expected financial loss in that area.  Consequently, the results are stored and 
visualized through GeoServer and OGC services such as Web Map Service (WMS) and Web 
Feature Service (WFS).  
 
 
4. Study Data and Results    

 

As an example, the 2015 Nepal earthquake, which is the largest earthquake to occur 
during the last 50 years in this country, is applied to this study [14]. In April 2015, a massive 
earthquake of 7.8 M occurred in Nepal as a result of faulting between the India plate and 
Eurasia plate. At least 8,702 people were killed, 22,493 injured [15], 500,717 buildings were 
destroyed and 269,190 damaged in this earthquake and during the M 7.3 aftershock on May 
12, 2016 [16]. Nepal is one of the countries in the world with the lowest GDPs and the main 
source of economy is agriculture and tourism. Reports indicate that the losses caused by this 
recent earthquake could considerably set back the economy of Nepal [17]. Figure 4 displays 
the location of the recent earthquake and the aftershocks in Nepal [18]. The shake map of 
data for earthquake of 7.8 M was imported into the system by drawing the area in a polygon 
format. These data can also be downloaded from USGS website as different formats such as 
vector or raster [19]. Figure 5 indicates the shaking intensity caused by the 7.8 M Nepal 
earthquake [17].  And figure 6 demonstrates the buildings that are overlaid with the central 
administrative unit. An approximated shake intensity map was sketched into the system by an 
expert and the building layer of the country was uploaded as a SHP file to the system [20]. 
The building information is a huge file, hence we decided to limit the study to a specific 
administrative unit of Nepal that was most affected by the earthquake called as Central unit. 
The map of administrative units for Nepal was downloaded as a vector layer [21].  
 

After adding all the layer maps, the update of the building information needed to be 
updated. The price per square meter in [year] in Nepal was estimated between 350 to 615 US 
dollars [22]. By having the area of each building in the database, the price of each house 
could be roughly estimated. Finally, the loss of each building and overall loss for the whole 
region were calculated. Table 2 indicates the total number of houses that were exposed in the 
event as well as the overall loss. This is the preliminary result of the system based on open 
data and expert knowledge. Therefore, authors do not recommend others to use this result. 
According to the government, the earthquake destroyed 160,786 houses and more than 3 
million houses were damaged [23]. The result of this study shows that 3.1 million houses 
were exposed to the earthquake and 124,000 of the houses were exposed to the higher risk or 
in the absence of other information, the maximum loss shows that 124 000 buildings were 
destroyed.  

  
  
5. Conclusion  
  

This work presented the prototype development of an open-source web-GIS platform, 
which aims to help various experts dealing with rapid disaster impact assessment in the case 
of natural hazards especially earthquakes. Even though different tools were developed in this 
field, their practice is restricted due to the complex design of the systems, flexibility and 
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usability. Unlike existing complex systems, the conceptual framework is based on a simple 
and generic approach, allowing the experts to interactively work through a web-GIS mapping 
interface and facilitating the analysis by using open-source data such as OpenStreetMap and 
USGS data. Due to its flexible and generic structure, it can be applicable not only in a certain 
study area (we proposed recent earthquake in Nepal) but also in any other regions by just 
uploading data through the server and adding expert knowledge.   
 

There are many challenges in developing a web-GIS system and the most important 
ones are lack of information and data. In order to utilize GIS and other geo-Spatial 
technologies, a variety of spatial data are required. The elements-at-risk information is critical 
for disaster impact assessment and in this study, OSM data are used. Though these data are 
not a complete set, they provide a basic set of information and then more information can be 
added based on expert and local knowledge of the study area. Besides, the estimation of loss 
by using open data (e.g., OSM, USGS, Numbeo and GADM database) do not involve 
extensive collection and can be performed rapidly with a modest budget. The more accurate 
loss estimation requires an extensive inventory at additional cost to the end user and can be 
employed in future works. In addition, stories of the house, lifelines like water supply and 
transportations were not considered in this study and will be applied in further stages of this 
system. This paper presented the initial implementation and the background framework of a 
web-GIS system for rapid impact assessment and demonstrated a preliminary result of the 
case study area in Central Nepal for the recent earthquake on April 2015 while several 
aspects of the platform could be improved better for applying in real practice to fulfill the 
lack of information, the user requirements and skilled knowledge of the earthquake experts.  
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Table 1: The main steps of the loss calculation in the platform 

 

 
 
 
 
 

Phase 1: Earthquake data  

Input Data Tools Output 
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  Upload SHP file or sketch  

 

 

 
Earthquake map 

Phase 2: Building data  

Input Data Tools Output 
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Upload SHP file 

 

Buildings map 

Phase 3: Vulnerability data 
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1. Value of  buildings  
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Table 2: Overall Loss for different intensity layers of the shake map 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intensity Zones Number of Houses 
exposed in the area  

Loss 
Price: Minimum  
cost per  square 
meter 350 $ 

Loss 
Price: Maximum  
cost per  square 
meter 615 $  

VIII 124 000 2.1 3.6 
VII 957 000 12.2 21.3 
V and VI  2 000 000 13.3 23.3 
Overall 3 100 000 27.6  Billions 48.2 Billions 
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Figure 1 The loss assessment process 
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Figure 2 The main interface of the web platform with admin privilege 
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Figure 3 Architecture of the Web-GIS platform 
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Figure 4 Magnitude 7.8 Earthquake in Nepal & Aftershocks (Source: [17]) 
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Figure 5 Shaking intensity map of Earthquake 7.8 M (Source of Data: [17]) 
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Figure 6 Overlay of buildings with central administrative unit in the map view of the system 
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Abstract

This paper presents a decision support framework to assist technicians, responsible for the inspection and

maintenance of protection works, in a first-level inspection to evaluate the functional conditions of check

dams. We followed a user-centred design approach by engaging technicians in the Fella basin (north-eastern

Italian Alps) since early design stages. First-level inspections can be carried out by regular technicians or

skilled volunteers to identify possible degradations in the status of the structure itself or surrounding area.

Technicians-in-charge evaluate the functional status of inspected check dams based on available reports.

Therefore, the conceptual design of our decision support framework incorporates four modules for managing

the inspection reports: 1) Registered users, 2) Inspection planning, 3) Available reports, 4) Evaluation of

reports. The framework was developed on a web-GIS platform using Opengeo Suite. In this paper, we show

the full implementation of the evaluation module for the evaluation of check dam inspection reports. Feedback

from potential users was collected during a testing workshop organized in the study area. Participants

perceived the evaluation module as useful and innovative and highlighted aspects to refine its capabilities.

The conceptual design of the decision support framework can be further adapted to evaluate inspections

reports of other type of hydraulic structures.
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1. Introduction5

Decisions about inspection and maintenance planning of mitigation structures against debris flows such

as check dams are usually under the responsibility of specialized technical agencies. Thereby, Technicians-in-

charge decide about the functional status of such structures based on tier-level inspections (Rudolf-Miklau &

Suda, 2013). Tier-level inspections start with a prescreening level, hereafter referred as first-level inspections.

Technicians-in-charge generally assign inspectors to fill in reports and take pictures as complementary data to10

the inspection. More frequent or larger coverage of inspection campaigns can be possible by involving skilled

volunteers in support of regular inspector technicians. However, using visual inspections requires systematic

evaluation procedures to support maintenance decisions about the inspected structures (Dirksen et al., 2013).

Moreover, the use of such inspections for proactive inspection and maintenance strategies require efforts for

coordination and collaboration between the different management organizations (Prenger-Berninghoff et al.,15

2014; Watson, 2004) that may benefit from the use of the collected data.

The use of web Geographic Information Systems (GISs) and decision support systems (DSSs) has be-

come increasingly prevalent for the management of environmental resources and related hydraulic structures

(Matthies et al., 2007). The increasing availability of open-source data, web-based applications and geospatial

technologies (e.g. Botts et al., 2008) has simplified the exchange, processing and visualization of geospatial20

information that is relevant for decision-making (e.g. Chang & Park, 2004; Frigerio et al., 2014; Gkatzoflias

et al., 2013; Turconi et al., 2014). One of the advantages of web-based applications is it makes information

interoperable between management organizations (e.g. Awad et al., 2009), which has increased the prefer-

ence of web-based over desktop-based applications (e.g. Nogueras-Iso et al., 2005). Web applications further

facilitate the use of a variety of data sources and technologies following standard formats for data collection25

and processing (Horsburgh et al., 2011). Moreover, a growing community of open-source research has fa-

cilitated the application of web-GIS technologies into the development of decision support frameworks, for

example in the field of natural hazards and water management (Aye et al., 2015b, 2016; Delipetrev et al.,

2014; Stefanovic et al., 2015).

Despite potential advantages of DSSs and web-GIS applications, differences in expectations and expertise30

level of the variety of intended users have created a gap between design and use (Bhargava et al., 2007).

Laitenberger & Dreyer (1998) stated that users tend to use a system according to the extent they believe it is

useful to perform their activities and the system is appropriate for the context of use. Dı́ez & McIntosh (2009)

suggest that factors influencing the use and usefulness of DSSs include users participation and perception of

the system, user computer experience, quality in use, top management support and training or support to35

adopt the system.

McIntosh et al. (2011) summarise the challenges for developing DSSs into engagement, adoption, cost

and technology, testing and validation. Thereby, engagement challenges require having strategies according

to available resources to work collaboratively with users since early stages of the development. Adoption

challenges require starting with simple implementations, developing tools incrementally and having a strategy40
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to facilitate the future adoption of the designed application. Cost and technology challenges require re-using

software components to overcome up-front development and ensuring funding for the long-term maintenance.

Finally, testing and validation challenges are not only about using the designed application but also about

analysing the support capabilities, for example in decision-making.

To address design challenges, user-centered design approaches (UCD) are being widely considered in45

software engineering (McIntosh et al., 2011; Wallach & Scholz, 2012). UCD originates from the usability

aspects of designing software user interfaces (Gould & Lewis, 1985). Therefore, ISO/IEC. 9241-14 (1998)

standards define usability by the extent to which a designed product can be used to achieve specified goals

in a context of use (effectiveness), optimizing the resources expended (effectivity) and generating a positive

attitude towards the use of the product (satisfaction). An extended view of usability can be the quality50

in use of a designed product for its intended purpose (Bevan, 1999). In so doing, UCD aims at better

understanding usefulness, usability and appropriateness requirements by engaging users since early design

stages (van Velsen et al., 2008). In this paper, we present a prototype of a decision support framework

for assisting technicians in evaluating check dam inspection reports. We evaluate the usefulness of such

framework following a UCD approach as implemented in a pilot study area.55

2. User requirements for the evaluation of first-level inspections

The Fella basin, located in the northeastern Italian Alps of Friuli Venezia Giulia Region (FVG), was

chosen as pilot study area due to the existing collaborations between potential users and scientists. After

severe floods and landslides occurred in 2003, Civil Protection of FVG implemented several mitigation

measures such as check dams as an immediate reaction to the disaster (Prenger-Berninghoff et al., 2014). In60

addition, for planned inspection and proactive maintenance of implemented works, Civil Protection suggested

skilled volunteers in support of technicians to carry out first-level inspections in the Fella basin. Consequently,

technicians-in-charge required systematic inspection procedures to use volunteers reports for decision making

on check dams maintenance.

Preliminary research included a data-collection exercise with technicians and volunteers to better under-65

stand the context of use and issues about the quality of first-level inspections Cortes Arevalo et al. (2014).

We focused on the inspection of check dams due to its relevance, number and often remote location in

the mountain basin of the pilot study area. Potential decision-makers are technicians who are in-charge of

planning inspection and maintenance of mitigation works. In our study, skilled volunteers are mainly Civil

Protection volunteers from the municipalities of the pilot study area. Such volunteers traditionally received70

the training on formative, informative and safety procedures Protezione Civille della Regione FVG (2009)

and were further interested in supporting inspection campaigns.

Technicians-in-charge further required the decision support for getting an indication from collected reports

about the functional level of inspected structures. Therefore, a decision support framework for systematically

evaluating reports became an important prerequisite for increasing frequency and amount of inspections75
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with the support of skilled volunteers. Figure 1 and Table 1 illustrate the modules we proposed for

such framework: 1) Registered users, 2) Inspection planning, 3) Available reports, 4) Evaluation of reports.

The workflow-input information to the framework are inspection reports that are collected either by skilled

volunteers or regular technicians to be systematically evaluated by technicians-in-charge. The workflow-

outputs are functional levels (e.g. best, medium, worst), each corresponding to a course of action.80

Table 1: Modules comprising the decision support framework

Module Capabilities Implementation stage

Registered Users • Login of technicians-in-charge.

• Explore the database of available inspectors

among technicians and skilled volunteers.

Mock-up interface

Inspection

planning

• Create and assign an inspection plan to an in-

spector.

• Select maximum number of structures to inspect

(e.g. 10) according to available structures and

technician-in-charge.

• Define a period to carry out the inspection plan.

Mock-up interface

Available Reports • Submit first-level inspection reports.

• Visualize available reports of structures in-

spected for each section of the form:

i) Inspector

ii) Structure to inspect

iii) Inspection conditions

iv) Functional conditions

A) Damage level, B) Obstruction level and

C) Erosion level

v) Human infrastructure

vi) Synthesis advice

Mock-up interface

Evaluation of

reports

• Systematic aggregation of first-level inspection

reports into indices representing the structure

status.

• Categorizing the indices into functional levels ac-

cording to rules defined by technicians.

Core functionalities

4



Figure 1: Workflow describing the input and output information for the decision support framework. *Volunteer icon (Civil

Protection of FVG region, Italy)

3. Conceptual design and system architecture of the Web-GIS platform

The conceptual design tracked a modular architecture consisting of four modules (Figure 1), each of

them providing a group of capabilities for the framework. We focused on the evaluation module as a proof-of-

concept for using inspection reports in decision-making. Registered users, inspection planning and available

reports were implemented as a mock up interface within the web-GIS platform for illustrating the conceptual85

design.
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Figure 2: Conceptual design for a) registered users, b) inspection planning, c) available reports and d) Evaluation of reports
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3.1. Conceptual design

Table 1 summarizes the modules comprising the conceptual design. The first module (Registered users)

accounts for capabilities to explore user details, inspections and reports (Figure 2a). The second module

(inspection planning) considers capabilities for creating inspection plans (Figure 2b). The third module90

(available reports) accounts for capabilities to submit or load reports in the database (Figure 2c). The

report module comprises a sub-tab for each section in the form. It accounts for capabilities to report using

rating options, add comments and photo records. The last module (evaluation of reports) focuses on the

responses of the inspection form to get an indication of the functional status, which are represented by the

three parameters referred in Table 1. Responses of other sections are only available as background informa-95

tion for the inspection. The module implements a step-wise approach (Figure 2d) to aggregate the reports

of inspected structures into indices that are further categorized as functional levels, each corresponding to

a course of action. Component sections and figures in the inspection form were adapted from existing pro-

cedures in FVG (Servizio Forestale FVG, 2002) and neighbouring regions (Provincia Autonoma di Bolzano,

2006).100

3.2. System architecture of the Web-GIS platform

The platform uses a typical multi-tier client-server architecture of web-based applications (Figure 3).

State of the art applications integrating decision support and geospatial capabilities have system architecture

that often comprises a back-end tier including the relational database, a middle tier for managing geospatial

data and a front-end tier for managing specialized services and other software components of the user105

interface (Aye et al., 2015a; Delipetrev et al., 2014). In the client or front-end-side, visualization functions

and requests to the server side are provided through the user interface (browser). According to Zhao et al.

(2012), basic data processing can be performed in the client-side to minimize requests to the server and

improve user interactions. Instead, complex processing and submission/retrieval should be carried out in the

server-side. In this work, data processing (i.e. evaluation of collected reports) is mainly in the client-side as110

proof of concept of the core-capabilities for decision support.

The implementation is based on the Boundless (OpenGeo Suite) framework. Figure 3 illustrates the

system architecture that is running on Debian as operating system and Tomcat 7 as web-server. Data

storage is done through the database management system (DBMS) and application server. On the server-

side, OpenGeo Suite allows interoperability between Tomcat server and the DBMS. The DBMS comprises the115

relational tables to store first-level inspection reports and GIS data. Figure A.1 in Appendix A illustrates

the conceptual design of the data model. A Geoserver instance is deployed in the server as part of middle

tier to connect the geo-spatial components of the database with the web-GIS user interface. In the client-

side, we use the software development kit (SDK and GXP template) of OpenGeo Suite, which also includes

plug-ins and mapping tools to explore the geospatial data. SDK deploys the mapping application that can120

be extended and customized from the GXP template using JavaScript libraries such as ExtJs, GeoExt and
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OpenLayers. The possibility to develop such customized plugins facilitates the re-use of available mapping

tools and functionalities (Aye et al., 2015b).

Figure 3: System architecture of the web-GIS platform based on Opengeo Suite. *Volunteer icon (Civil Protection of FVG

region, Italy)

The user interface uses JavaScript libraries and open source projects for creating charts and data visual-

izations (e.g. Dygraphs ) as well as providing photo gallery capabilities (e.g. JQuery Gallery master ). ExtJs125

3.4 provided options to create and update temporary stores in the client-side (browser). The logic behind the

user interface includes the model and knowledge base implementation (Figure 3), which at this development

stage demonstrates the evaluation module. Although a strict Model-View-Controller (MVC) architecture

is not fully supported in ExtJS 3.4, the scripts coded follows the MVC pattern to support its migration
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and to facilitate further development stages. Figure 4 presents the components of the MVC paradigm:130

Model (data stores), View (outputs) and Controllers (Functions) which is being increasingly supported in

web technologies (Mikkonen & Taivalsaari, 2007).

Figure 4: MVC components and illustration of the local client and server stores (adapted from Sencha, 2014)

After login to the platform, technicians-in-charge (users) can access the modules (Figure 5) through

a plug-in the top toolbar of the view. The four modules of the framework are available in a drop down

menu and are deployed in the central tab-panel next to the map tab. The right tab-panel deployed the help135

content and subtabs of the modules sharing the map-view for mapping interaction. Left tab-panel provided

an overview of the users selections on each module. User interaction triggers actions and/or displays outputs

to follow the steps of the evaluation module.

4. Conceptual design and system architecture of the Web-GIS platform

The decision support framework starts when registered users such as technicians of Civil Protection140

or technicians-in-charge for the management of mitigation works login to access the web-GIS platform.

Registered users should assign a functional level to available inspection reports that are collected either in

a paper-based form (as carried out in this study) or through a complementary mobile application to be

designed as future research. The evaluation module comprises a method to aggregate available inspection

reports into indices that are further categorized in a functional level based on rules defined by technicians.145

To that end, the evaluation module includes five steps that technicians should go through once an

inspection report has been filled in for a given check dam. The inspection form is based on linguistic rating

scales mainly to report about three parameters indicating the functional status. Those parameters are: A)

Damage level, B) Obstruction level and C) Erosion level. Each parameter is inspected by means of four
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Figure 5: Web-GIS platform interface indicating a) Registered user; b) Decision support prototype; c) Drop down list to access

the modules; d) Content in the left, central and right tab-panel. The central tab-panel includes the tools for mapping interaction

sub-questions, which were agreed with technicians-in-charge (Cortes Arevalo et al., 2014). When reported150

ratings become available, the evaluation module systematically aggregates them into indices at parameter

level by means of multi-criteria Technique for Order of Preference by Similarity to Ideal Solutions (TOPSIS)

method with fuzzy inputs (Chen & Hwang, 1992).

In addition, the module provides options to allow users formulating rules for categorizing the aggregated

indices in one of the three levels, each corresponding to a course of action. The highest functional level (green)155

corresponds to no required actions. The medium level (yellow) denotes the need for a routine maintenance

or additional information to validate functional level. Finally, the lowest level (red) indicates that a second

level inspection or a more detailed engineering procedure is required before making the decision about the

maintenance. In Cortes Arevalo et al. (2016) further details about the methodology behind this module

are provided. Screenshots of an example report, hereafter listed, illustrates all steps through the platform160

interaction.

4.1. Select a structure to evaluate (check dam)

Figure 6 illustrates the database of structures (spatial layers) and available information about their

properties, dimensions and photo record as presented in the right tab-panel. When available, inspectors

can also visualize the images from photo records or previous inspections, which can be filtered according165

to the inspection ID (i.e. a unique identifier of the inspection report). The functional level is the actual

field to be updated after getting the output of the evaluation module. For illustration purposes, Figure 6

10



also highlights the location of the pilot study area with the location of check dams inspected during the

workshop.
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Figure 6: a) Exploring available databases of structures and b) Selecting one of the structures (CD) inspected in the workshop

to continue with next steps. The layer of the study area location was added to the figure for illustration purposes

Figure 7: Setting reference weights for the index calculation at parameter level. User sets weights by interacting with tabs: a)

Sub-questions to compare b) compare sub-questions c) check of the consistency of comparisons and d) get weights
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4.2. Reference weights170

For a selected structure, for example check dam 3 (CD3 in Figure 6), options are given so that users

can compare the relative importance of sub-questions at parameter level (Figure 7a). Figure 7b illus-

trates the pairwise comparisons of sub-questions in A) parameter Damage level using the Analytic Hierarchy

Process (AHP) method (Saaty, 1987). The AHP method allows checking the consistency of a comparison

(Figure 7c). By doing the comparisons, technicians can derive the weights that will be used in the ag-175

gregation of reported ratings (Figure 7d). Weights should be set for sub-questions on each A, B and C

parameter. Technicians can base their comparisons, for example, on the design criteria when building the

structure. For the evaluation workshop, the relative importance was set equal for all questions to evaluate

the outcomes of the module based on the quality of input reports (Cortes Arevalo et al., 2016).

4.3. Select/submit first-level inspection report180

A mock up report coming from the inspection module was automatically listed to access the evaluation

module (Figure 8). At the current development stage, users should select that report to type the data

collected from the paper-based form directly into the user interface of the next step (Figure 9). The

connection to the DBMS, based on specific requests of users, will be matter of a future development to load

available reports that will be systematically evaluated in the following steps.185

Figure 8: Selecting between available first-level inspect reports to evaluate

4.4. Derive indices

By interacting with this step, users can first aggregate the reported ratings into three indices at parameter

level (Figure 9a). Indices are calculated by means of the TOPSIS multi-criteria method with fuzzy terms

(Chen & Hwang, 1992). The fuzzy terms are the ratings reported for the structure inspected. The equal
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weights defined in Section 4.2. are used for aggregating the ratings into indices. A completeness ratio is190

calculated to highlight when participants report unspecified conditions.

Then, users can use the plot in Figure 9b to compare the reported ratings (bars in the plot) against the

reference best and worst possible conditions (upper and lower lines in the plot). To go to the advised action,

users should finally set rules to define a status of the structure that is acceptable. For example, to be assigned

in the worst level (red), the aggregated index for the report has to be smaller than an acceptable minimum195

index and has to be larger or equal than the worst acceptable rating condition. The rules (acceptable index

and worst rating) were fixed for the testing workshop but can still be modified by the user. Figure 9

presents the evaluation for an example report of parameter A (Damage level). The same process is repeated

for all parameters.

4.5. Overview of potential actions200

The last step gives an overview of the outputs and functional level assigned for parameter A, B and C

(Figure 10). The green color indicates that, according to the reported ratings, the structure was at the

best functional level and no action needs to be carried out. The medium level (yellow) indicates that one of

the expert-based rules was not true and additional information needs to be considered coming from photo

records or previous inspection reports. The worst level (red) indicates that the structure may have been at205

the worst functional level and thus, a second level inspection needs to be carried out towards maintenance

planning.

5. Workshop and feedback of the evaluation module (use case)

To introduce the web-GIS application and obtain feedback about the usefulness of the evaluation module,

a workshop was organized in the study area with ten participants. Participants comprised of four technicians210

of FGV that had participated in the user requirement stage (Section 2). Six newcomers participated: a

mixed group of two technicians of FVG, two technicians of neighboring regions and two last-year students

of geosciences.

During the first day, attendants carried out individual inspections for three check dams in the Fella basin

(Figure 6) that were collected in a paper-based format. The field inspections were carried out to use real215

data for using the module. The first-day program (inspection session) was finalized with the introduction of

the decision support framework. During the second day, participants interacted with the evaluation module

by using one of the reports collected during the inspection session. At the end, feedback was collected in a

questionnaire form.

Participants rated their levels of agreement with statements in the feedback questionnaire using a Likert220

rating scale from -3 (full disagreement) to +3 (full agreement); which is a scale used for getting indication

about users attitudes (e.g. Arciniegas et al., 2013; Inman et al., 2011). When preferred, participants provided
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Figure 9: Outputs from the evaluation module: a) Index and a completeness ratio indicating the reported ratings. b) Report

plot to compare ratings with reference conditions. c) Functional category of the parameter according to expert-based rules
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Figure 10: Overview of the derived indices and functional level for each parameter

comments to explain their judgments. Participants rated the following statements about the usefulness of

the evaluation module for one of the check dam inspections that they carried out themselves (Figure 11a):

a) In the Get Index tab, the completeness ratio is a useful indicator for the quality of volunteers ratings225

b) In the Plot report tab, the calculated indices (e.g. 70) for parameters A, B and C are useful and

informative to support decision advice

c) In Plot report tab, the plot is useful and informative to understand the weighted- aggregation of rating

scores into indexes for parameters A, B and C

d) The comparison plot for different combinations of rating options is clear enough to support your230

decision advice for the part A, B and C

e) In the evaluate index tab, the level assigned to the structure for parameters A, B and C, as indicated

with the red, yellow, green color represents my preferences for the decision advice

16



Figure 11: Agreement level about the outputs of the evaluation module, the usefulness and appropriateness for future application

adoption. The difference in participants number is because one participant did not fill in the feedback form
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We also asked participants about the appropriateness of the decision support module and future appli-

cation adoption. To that end, participants rated their agreement to the following statements (Figure 11b):235

a) The information provided is sufficient to follow each step (evaluation module)

b) The web-management application is useful

c) The web-management application is innovative

d) The user interface is clear and easy to follow

e) I would recommend my colleagues to use the evaluation module to support the interpretation of vol-240

unteer inspections

We finally ask them about additional comments or capabilities to the module. According to Figure 11a,

the most appreciated aspect of the evaluation module was the report plot and the possibility to define a

functional level based on expert-based rules. Although the evaluation module was considered useful and

innovative (Figure 11b), participants found some features not straightforward to understand, e.g., the245

completeness ratio, calculated indices and evaluation plot. That is probably due to lack of documentation

beforehand to the testing session and the needs for improvement in the user interface. In Table 2, we list the

comments that participants provided to refine the prototype. A full implementation of the system together

with users manual will allow for a more extensive evaluation of the platform.
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Table 2: Overview of participants comments for refining the evaluation module

Aspects to improve Participants comments

Information provided • Clarify the instructions to interact with the different steps, special atten-

tion to the explanation about the weights

User interface • The user interface is not clear enough yet

• The user interface may benefit from the support of professionals

Appropriateness • It is a nice idea

• The evaluation of the indexes (weights) should be optional and it should be

located at the end of each step. As default the weights should be equal and

modified only for a choice about the priority of the intervention (second

level inspection)

• The weights should be adjusted when the questions are not to be compiled

Future application

adoption

• To test the outcome of the evaluation module, it would be useful to have

the statistical analysis of the different structure types

• To make a more comprehensible and simple interface. Maybe with a step-

by-step tutorial to help technicians that will be in charge of using the

program

• To give feedback to volunteers that will compile the form

6. Discussion and conclusions250

This study proposed a decision support framework implemented into a web-GIS platform to assist tech-

nicians in managing first-level inspections reports about protective structures in the mountain basin of the

pilot study area. At the current development stage, we introduce an evaluation module to test how to get

an indication of the functional status of check dams based on the field reports. Following a UCD approach,

the outcomes of the user requirement stage lead to the conceptual design, implementation and usage of the255

decision support framework. Therefore, collaborations with responsible technicians of the FVG Region, local

municipalities as well as other stakeholders were important not only to understand user requirements but

also to evaluate its first implementation.

The module architecture of the Web-GIS platform facilitated the development of the core-capabilities

for decision support and the conceptual design of the complementary modules. The system architecture260

was developed using GXP library backed up by OpenGeo Suite SDK, which facilitate the re-use of available

mapping tools and extension of functionalities. The interfaces scripts were coded based on the logical MVC

that will support and facilitate the upgrading of the platform to a more recent version following such logic.

To test the functionalities of the platform, a proof-of-concept evaluation module was implemented. The
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testing workshop focused on users perception about the usefulness for decision support. The weighing pro-265

cedure to aggregate questions in the inspection reports was met with scepticism (Section 4.2). The pair-wise

comparisons included the Consistency Ratio (CR) that were proposed by Saaty (1987) as indication of the

consistency of comparisons (Figure 7c). Such ratio should be used only to warn users about inconsistencies

but not to limit the experts choices. Moreover, weighted aggregation should be used with caution because

can change the outputs considerably especially if inspectors err by overestimating or underestimating de-270

fects (Cortes Arevalo et al., 2016). Participants suggested that the weighting option should be optional and

located at the end of the evaluation process. For a more extensive evaluation of the platform, participants

also required the evaluation of inspection reports from a larger number of structures to support statistical

analysis of the module outcomes.

This is an initial prototype for the development of a full-scale system later on by transferring knowledge,275

theory and concept behind this decision support framework. Workshops to evaluate a full-scale system will

require longer interaction with the Web-GIS platform focusing on a comprehensive evaluation of usability

(Bastien, 2010; Hornbk, 2006). Thereby, qualitative evaluation methods (e.g. questionnaires) can be further

combined with quantitative indications (e.g. data log analysis) to explain user interaction van Velsen et al.

(2008). Future developments will consist of a full implementation of all the modules of the platform (Table 1)280

that could be further extended to other type of hydraulic structures, for example culverts. Consideration

should also be given to include into the web-GIS platform a crosschecking feature to compare the outputs

of the evaluation module with complementary information, such as photo record of the inspection and

previous reports for the same structure. In addition, the overview of derived indices (Figure 10) should

be provided for all check dams reports that were evaluated. Further options should consider sorting the285

structures according to the functional level of all three parameters and visualizing in the map the functional

level assigned for each parameter. Future research may also consider a mobile application to extend the

capabilities of the report module into a portable device to support data-collection and to provide feedback

to inspectors.

To conclude, the web-GIS decision support framework consists of a systematic procedure for the eval-290

uation of first-level inspection reports that facilitates the use of inspections collected by skilled volunteers

or technicians. The platform can be further developed as a tool to support coordinated and collaborative

efforts between different management organizations involved in preparedness and prevention with interest in

inspection and maintenance planning. For example, that is the case of Civil Protection, technical agencies

and basin authorities in FVG. Thereby, the framework can also complement spatial data infrastructures295

that centralize relevant information about the inspected structures and other preventive works or hydraulic

structures besides check dams.
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Appendix A.

Figure A.1: Conceptual design of the data model behind the web-based application
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