
Citation: Rotzinger, D.C.; Qanadli,

S.D.; Fahrni, G. Imaging the

Vulnerable Carotid Plaque with CT:

Caveats to Consider. Comment on

Wang et al. Identification Markers of

Carotid Vulnerable Plaques: An

Update. Biomolecules 2022, 12, 1192.

Biomolecules 2023, 13, 397. https://

doi.org/10.3390/biom13020397

Academic Editor: Koen

Vandenbroeck

Received: 2 January 2023

Revised: 3 February 2023

Accepted: 19 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Comment

Imaging the Vulnerable Carotid Plaque with CT: Caveats to
Consider. Comment on Wang et al. Identification Markers of
Carotid Vulnerable Plaques: An Update. Biomolecules 2022,
12, 1192
David C. Rotzinger 1,2,* , Salah D. Qanadli 2,3 and Guillaume Fahrni 1,2

1 Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of
Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland

2 Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
3 Riviera-Chablais Hospital, 1847 Rennaz, Switzerland
* Correspondence: david.rotzinger@chuv.ch; Tel.: +41-21-314-44-75

We read with great interest the review by Wang et al. entitled “Identification Markers
of Carotid Vulnerable Plaques: An Update”, recently published in Biomolecules [1]. We
congratulate the authors for their comprehensive discussion of the state-of-the-art regarding
carotid plaque vulnerability. They approached histological and biochemical aspects, and
non-invasive assessment by various imaging methods was covered. Given cerebrovascular
disease’s burden on global healthcare, being the second cause of mortality, second only
to ischemic heart disease according to the World Health Organization Global Health
Estimates [2], being able to understand and detect carotid plaque vulnerability is key to
supporting decision-making in clinical practice.

Although we acknowledge that the review is broad, we would like to comment on the
strengths and limitations yielded by cervical computed tomography (CT), as the available
evidence may need a more tempered interpretation as to its clinical impact. Here, we will
focus on selected aspects, including intraplaque hemorrhage (IPH), spectral CT, and plaque
calcification. However, we acknowledge that there are many more vulnerability features,
most of which have been discussed by Wang et al.

1. Hounsfield Unit Thresholds

The authors describe CT numbers of intraplaque material to help better characterize
non-calcified components. While CT is a quantitative imaging modality and can therefore
help standardize diagnostic criteria, the <25 Hounsfield units (HU) threshold proposed
to discriminate IPH is based on a single retrospective study by Saba et al. [3] and is still
vastly debated in the literature [4]. As the authors themselves stated [3], their study was
preliminary, and the results are yet to be duplicated with different CT systems, acquisition
protocols, radiology, and pathology teams. Distinguishing IPH from other non-calcified
plaque subtypes, especially lipid-rich non-calcified (LRNC) components on CT, is a non-
trivial challenge because both IPH and LRNC have low, overlapping CT numbers < 60 HU.
From there, attempting to discriminate IPH—which is considered to have CT numbers
lower than 25 HU—seems a bold target, given the numerous factors that can influence
attenuation measurements, especially in small regions of interest. Partial volume averaging,
tube potential, the density of intraluminal contrast, slice thickness, and reconstruction
filter can significantly influence CT numbers, and using absolute thresholds to characterize
plaque may be problematic [5–9]. Additionally, CT numbers of blood products range from
40 to about 60 HU, 40 HU being the expected value for circulating blood and 60 HU for
clotted blood [10]. Consequently, the underlying rationale for hemorrhage lowering the
HU value of non-calcified plaque to under 25 HU remains unsolved.
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Notably, other groups could not replicate the findings by Saba et al. For example,
Yang et al. performed another retrospective study assessing carotid plaque with histopatho-
logical analysis and found IPH to have a median [IQR] CT number of 52 [43–65] HU when
associated with plaque ulceration and 57 [44–66] HU when not associated with ulcera-
tion, about twice the advocated threshold of < 25 HU [11]. In a smaller cohort, Li et al.
found lower CT numbers for LRNC (37.1 ± 15.1 HU) than for IPH (58.4 ± 21.6 HU), so
precisely the opposite of what Saba et al. suggested, again seriously undermining the
<25 HU threshold’s validity and reproducibility to determine IPH [12]. Likewise, using
T1-weighted MRI as the reference standard, U-King et al. measured 47 ± 15 HU in plaques
with IPH and 43 ± 14 HU in plaques without [13]. Furthermore, in an imaging study with-
out histopathological analysis, Saba et al. showed that plaques with CT numbers < 25 HU
are associated with stroke, but without presenting evidence that IPH actually occurred in
those plaques [14]. This is in line with studies pointing out the significant overlap of IPH
and LRNC CT numbers [13,15]. Reasons for the discrepancy are currently unclear but may
include differences in study population characteristics, different handling of samples, or
the fact that various stages of IPH might exhibit variable attenuation. The endpoint might
be that low HU values are indicative of high-risk plaque in general, including LRNC, rather
than a specific surrogate marker of IPH. As a consequence, the statement that “The com-
bination of the modern MDCTA and analysis software can ( . . . ) accurately differentiate
IPH and LRNC, and avoid radiation and side effects related to contrast agents” [1] does
not hold true and calls for nuance.

2. Role of Spectral CT

To further expand the CT-related discussion presented by Wang et al., we want to
mention a relatively new technique: spectral CT. Contrary to conventional multidetector
CT, which integrates the sum of energy reaching the detector during a projection, spectral
CT can discriminate X-ray energy levels to a certain extent. Systems capable of separating
two spectral strata were introduced about 15 years ago under the term “dual-energy CT”
(DECT) and have since shown to be helpful both in increasing patient safety and diagnostic
performance. For carotid plaque characterization, DECT-derived virtual non-contrast can
help determine plaque ulceration, as shown by Yuenyongsinchai K. et al. [16]. Interestingly,
the same study found IPH to be predictive of 30-day stroke recurrence using a 150 HU cutoff.
DECT also proved helpful in mitigating calcium blooming artifacts [17–19], differentiating
LRNC from other non-calcified plaque components [12], selecting the antiplatelet regimen
following acute carotid stenting in tandem occlusions [20], and improving image quality
over conventional CT angiography [21,22]. Finally, photon counting CT, the most advanced
implementation of spectral CT, by providing improved spatial resolution, better spectral
separation, and lower noise, is showing promise in determining fibrous cap and non-
calcified plaque components [23,24].

3. Calcification as a Vulnerability Marker

Another critical topic mentioned in the review but deserving further discussion is
carotid plaque calcification. On several occasions, including in the MRI and CT imag-
ing chapters, the authors mention calcification as a feature of vulnerable plaque. This
can be true but also misleading. Our understanding of calcium accumulation along the
atherosclerosis progression, involving different inflammatory stages and eventually heal-
ing, has recently made notable progress for atherosclerotic carotid disease and coronary
artery disease [25]. Calcium build-up occurs due to inflammation-dependent mechanisms
involving macrophages that lead to calcium deposition within the plaque’s necrotic core,
leading to microcalcifications that are believed to be associated with plaque vulnerabil-
ity, but are usually not detectable with non-invasive imaging, e.g., CT [26]. 18F-Sodium
Fluoride (18F-NaF) imaging is an exception to the latter statement, and recent research
has demonstrated that 18F-NaF can specifically detect microcalcification with a resolution
beyond that of CT [27,28]. Observations have shown that these microcalcification foci often
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amalgamate into larger calcium chunks, eventually becoming detectable on CT and MRI,
and visible as dot-shaped calcium deposits often referred to as “spotty calcification”. The
latter has proven predictive value for the occurrence of ischemic stroke [26,29]. As the
inflammation resolves, more calcium is deposited in the healing process, and the plaque
undergoes remodeling. At this stage, the term “macrocalcification” is usually used, as
deposits can become the dominant plaque component, mixed plaque eventually progress-
ing to calcified plaque, and is supposed to be stabilizing the plaque. Unlike LRNC, large
calcification is considered a plaque stability maker [30,31]. Consequently, while small
foci of calcium within carotid plaque represent a sign of vulnerability, massively calcified
plaque is more likely to indicate healed, stable plaque. Additionally, both calcium density
and distribution within the plaque play a role. In a DECT study with a 12-month follow-up,
higher plaque density (calcium concentration measured with material decomposition in
g/L) was also associated with more stable plaque [32]. Other investigations, including
patients with recent neurovascular symptoms [33] and endarterectomy specimens [34],
looked into calcium distribution and size. The former concluded that plaques with IPH
more frequently exhibited multiple calcifications, particularly when located superficially
relative to the lumen. The latter looked into the number and location of calcium foci within
the plaque and found that multiple calcifications were associated with both IPH and LRNC.
In contrast, basal calcification acted as a protective factor for IPH. On the other hand, some
groups found that a high level of carotid artery calcification is not necessarily indicative of
lower vulnerability, indicating that plaque vulnerability related to calcium build-up is still
insufficiently understood [35].

4. Conclusions

When imaging carotid arteries with CT, scrutinizing plaques in search of vulnerability
criteria can add incremental value in patient assessment; however, determining plaque
components and vulnerability features solely based on attenuation values can be mislead-
ing. The absolute < 25 HU threshold advocated in the literature to determine IPH lacks
validation. There is contradictory evidence that IPH presents with CT numbers about twice
as high, up to 58 HU, highlighting an urgent need for further research aiming to distinguish
non-calcified plaque components with CT. Furthermore, the mere presence of calcium in
atherosclerotic plaque does not necessarily imply associated inflammation and vulnerabil-
ity. Here, it is critical to distinguish small, multiple calcium foci within the non-calcified
plaque that indicate vulnerability from extended calcification—especially when dense and
in basal distribution—that suggests the opposite, namely healed, stable plaque.
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