Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2011, Article ID 813870, 15 pages
doi:10.1155/2011/813870

Review Article
Spatiotemporal Analysis of Multichannel EEG: CARTOOL

Denis Brunet,>2 Micah M. Murray,>? and Christoph M. Michel®2

! Functional Brain Mapping Laboratory, Departments of Fundamental and Clinical Neurosciences, University Medical School,
University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland

2EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), 1211 Geneva, Switzerland

3 The Functional Electrical Neuroimaging Laboratory, Department of Clinical Neurosciences and Department of Radiology,
Vaudois University Hospital Center, University of Lausanne, 1011 Lausanne, Switzerland

Correspondence should be addressed to Denis Brunet, denis.brunet@unige.ch
Received 7 September 2010; Accepted 10 November 2010
Academic Editor: Sylvain Baillet

Copyright © 2011 Denis Brunet et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes methods to analyze the brain’s electric fields recorded with multichannel Electroencephalogram (EEG)
and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these
fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations.
Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results.
Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in
the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic
variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed
inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides
providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional
display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers

as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way.

1. Introduction

The traditional analysis of the electroencephalogram (EEG)
and event-related potentials (ERPs) focuses on waveform
morphology over time at certain electrode positions. Scalp
sites of interest are selected and the time course of the
potential recorded at any site is analyzed using a variety of
signal processing tools in the time and frequency domains.
While this approach has provided many important insights
into normal and pathological neuronal activity, it disregards
another important dimension that multichannel EEG offers:
the spatial characteristics of the electric fields at the scalp
and the temporal dynamics of these fields. Any distribution
and orientation of the active neurons at a given moment in
time will generate a certain electric field on the scalp surface
due to volume conduction [1]. While different generator
configurations can lead to the same scalp fields, the inverse
is not true: different scalp fields must have been generated
by different configurations of generators in the brain [2, 3].

Consequently, analyzing the electric field topography, that
is, the configuration of the potential isocontour maps on
the scalp, and looking for topographical differences allows to
detect moments when different neuronal populations were
active in the brain, being it in time, between experimen-
tal conditions or under given pathological circumstances.
Besides this direct neurophysiological interpretability, the
analysis of the topography of the electric fields has another
important advantage as compared to the analysis of wave-
forms: it is completely reference independent. The recording
reference does not influence the topography of the scalp
electric field and thus does not influence global topographic
measures [4—6]. This is not true for methods that analyze the
EEG or evoked potential waveforms. There is no point that
records zero potential over time [4]. Consequently, changing
the reference electrode changes the waveform shapes at each
recording electrode. Therefore, any statistical comparison
of amplitudes at a given electrode between conditions will
change when the reference has changed, making the results
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ambiguous [7-9]. By contrast, the map topography does
not change when changing the reference. Only the zero
line is shifted, but not the landscape of the potential
map [3]. Consequently, all analysis methods based on map
topography are reference independent and unambiguous.
This important argument for the spatial analysis of the EEG
is illustrated in Figure 1.

With the program CARTOOL, which exists now since
over 14 years with constantly increasing capabilities, we
wanted to provide an analysis tool for those researchers
and clinicians who are interested in such reference-free EEG
mapping techniques. It started with dynamic displays of EEG
maps and calculation of some basic quantitative topographic
measures. Soon after, standard data preprocessing tools were
implemented, such as interpolation of electrodes, filtering,
averaging, rereferencing. The next versions implemented
spatial analysis methods for spontaneous and event-related
EEG, most importantly the spatial microstate segmentation,
initially proposed by Lehmann and collaborators [11],
and subsequently advanced by cluster analysis and fitting
methods. Also, other statistical topographic analysis methods
were implemented. With the development of distributed
inverse solutions and the advancement of computer power,
source estimations in realistic head models were integrated.
Important aspects of the software are the 3-dimensional
visualization of the data as well as the fast display of
the temporal dynamics of the scalp electric fields and the
corresponding estimated sources. For that, the software
puts particular emphasis on interactive manipulation and
synchronization of the different windows by the user, using
mouse and keyboard commands.

In the following we will describe some of the main
methods for the spatial analysis of the scalp electric fields and
how they are implemented in CARTOOL. Not all methods
will be covered here, but they will give an impression of
how multichannel EEG and ERP data can be analyzed in
a comprehensive way. More details regarding the different
spatial analysis methods can be found in the book “Electrical
Neuroimaging” [12].

2. Data Preprocessing

Topographic analysis of the electric field at the scalp very
crucially depends on the quality of the data at each channel.
Contamination by bad or noisy electrodes can lead to steep
local gradients that have no neurophysiologic basis, which
can in turn obfuscate interpretability of results (particularly
those of source localization). Artifacts on one particular
channel are not always easy to detect if only EEG waveforms
are displayed. In contrast, contaminated channels are readily
seen on time series of EEG maps because they behave
differently from the neighboring channels and appear as
isolated “spots” in the maps (Figure 2; see also [13]).
CARTOOL provides various options to display EEG
maps in 2D and 3D and with dynamic color scaling
(Figure 3). Maps can be displayed in series over time
or as animated movies. Electrode positions and electrode
names can be displayed and marked both on the maps
and on the waveforms. After clicking on bad channels, an
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interpolation tool is available that interpolates these channels
using any of several different types of interpolation methods
(surface spline, spherical spline or 3D spline) [14]. The
3D spline interpolation accounts for the real geometry of
the head and is recommended if the real position of the
electrodes is available. The interpolation toolbox also allows
transforming the individual data of different subjects with
different electrode positions to a common coordinate system
for further statistical processing across subjects.

Once the data are cleaned from bad electrodes and inter-
polated, several standard preprocessing tools are available in
CARTOOL, such as:

(i) filtering using 2nd-order Butterworth filters with
—12 dB/octave roll-off,

(i) DC removal and Notch filter, envelope filter by
rectifying absolute or squared values.

(iii) downsampling by a Cascaded Integrator Comb filter
followed by a high-pass FIR and decimation,

(iv) recalculation against any type of single or combined
electrode reference including current density (i.e.,
2nd spatial derivative),

(v) exporting single or multiple tracks before or after
applying the above preprocessing steps.

For evoked potential analysis, single or averaged epochs
can be calculated for any combination of triggers or markers
with or without baseline correction. Automatic artifact
detection and epoch rejection using amplitude windows is
available. CARTOOL puts a lot of emphasis in a flexible
visualization of the EEG tracks during evoked potential
analysis for manual determination of artifacts. During the
evoked potential analysis, a trigger validation file is generated
that can later be used to more rapidly redo the averaging with
the same epochs.

In addition to the epoching according to defined triggers,
CARTOOL allows to set markers according to specific
characteristics in certain channels. This allows, for example,
one to set markers at the onset of a motor response recorded
with the EMG or at the peak of epileptic spikes.

Finally, a file calculator tool has been implemented in
CARTOOL that allows applying preset as well as user-defined
mathematical operations to different files in a batch-mode
processing.

3. Global Topographic Measures

In the default display mode, CARTOOL always shows two
global topographic measures together with the waveforms
and the maps (Figure 3). These two global measures are
the Global Field Power and the Global Map Dissimilarity
[5]. They are considered as additional measures and can
be treated in the same way as the different tracks of the
electrodes. The Global Field Power (GFP) is the standard
deviation of the potentials at all electrodes of an average-
reference map. It is defined as
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FiGURre 1: The reference issue in EEG: EEG waveform analysis is reference-dependent while topographical analysis is not. (a) Statistical
comparison of evoked potential waveforms of two conditions (illusory contours versus no contours from [10]) for each electrode and each
time point. Left: All electrodes referenced to the nose, right: all electrodes referenced to the Average Reference. Note the change of the results
in time as well as in space. (b) Scalp potential map (seen from top) referenced to different electrodes. Top: color maps. Middle: same maps
displayed with isopotential lines. Bottom: same maps displayed in relief with the zero level indicated. Note that the topography of the maps

does not change, only the zero line and thus the color codes change.

where u; is the voltage of the map u at the electrode i, U is
the average voltage of all electrodes of the map v and N is the
number of electrodes of the map u. Scalp potential fields with
pronounced peaks and troughs and steep gradients will result
in high GFP, while GFP is low in maps which have a “flat”
appearance with shallow gradients. GFP is a one-number
measure of the map at each moment in time. Displaying this
measure over time allows to identify moments of high signal-
to-noise ratio, corresponding to moments of high global
neuronal synchronization [15, 16]. GFP can also be used to
normalize data across subjects by dividing each map (i.e.,
the voltage at each electrode) by the mean GFP over time.
General intra individual differences of the surface potential,

for example due to difference in skull conductivity, can
thereby be adjusted.

The Global Map Dissimilarity measure (GMD) is a
measure of topographic differences of scalp potential maps.
It is defined as

1 N
GMD = NZ

i=1
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where u; is the voltage of map u at the electrode i, v; is the
voltage of map v at the electrode i, 7 is the average voltage
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FIGURE 2: Artifact detection by inspecting the potential maps. The left panel shows spontaneous EEG recorded from 204 electrodes. Some
artifacts, like the one encircled, are easy to see in the traces and such epochs can be eliminated. However, other artifacts are not easy to see
in the traces but are readily detected in the maps by isolated “islands” of potential of a certain electrode. In this example a mid-frontal and a
right frontal electrode are artifact contaminated. They generate steep gradients in the electric field and consequently produce strong sources
in the inverse solution (here LAURA). Interpolating these electrodes using spline interpolation eliminates the bad electrodes and the sources

caused by these artifacts disappear.

of all electrodes of map u, v is the average voltage of all
electrodes of map v, and N is the total number of electrodes.
In order to assure that only topography differences are taken
into account, the two maps that are compared are first
normalized by dividing the potential values at each electrode
of a given map by its GFP. The GMD is 0 when two maps
are equal, and maximally reaches 2 for the case where the
two maps have the same topography with reversed polarity.
Figure 2 in [17] illustrates the definition of the GMD.

The GMD is equivalent to the spatial Pearson’s product-
moment correlation coefficient between the potentials of the
two maps to compare [18]. The calculation of the GMD
is a first step for defining whether different sources are
involved in generating the electrical activity at the scalp
for the two processes/populations being compared. If two
maps differ in topography independently of their strength,
it directly indicates that the two maps were generated by a
different configuration of sources in the brain. As will be
described later, all statistical topographic analysis methods in
CARTOOL that compare topographies between conditions
or groups use GMD (or the spatial correlation) as the basic

measure of map similarity. GMD can also be used to compare
topographies between successive time points. The display
of the GMD across time then allows defining periods of
map stability and moments of map changes. It is generally
observed (particularly in evoked potentials) that GMD is
inversely correlated with the GFP: GMD is high when GFP
is low [19]. This observation indicates that maps tend to
remain rather stable in topography during high GFP and
change the configuration when GFP is low.

4. Microstate Segmentation

The display of the GMD across time has a very characteristic
behavior which is similar for spontaneous EEG and for
evoked potentials: the topography of the maps remains
stable for several tens of milliseconds and then abruptly
switches to a new configuration in which it remains stable
again. This leads to periods of low GMD interrupted by
sharp GMD peaks (Figure 3). This highly reproducible
observation of periods of stable map topography has led
to the concept of functional microstates first described by
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FiGure 3: Example of a basic display window in CARTOOL. The individual tracks are displayed together with the Global Field Power and the
Global Map Dissimilarity on the left. Tracks can also be displayed in 3D on the head surface as shown on the top right. Electrode positions
and maps can be displayed in 3D or 2D. Maps can be shown at a single time point at cursor position, as animation over time or as time series

of maps within a selected window.

Lehmann et al. [11, 20]. The microstates correspond to
a period of coherent synchronized activation of a large-
scale neuronal network. Lehmann et al. proposed that the
functional microstates represent the basic building blocks
of information processing, the “atoms of thought”, being it
spontaneous or evoked by a stimulus [21]. This corresponds
well to the proposal that neurocognitive networks evolve
through a sequence of quasistable coordination states, rather
than a continuous flow of neuronal activity [22-25]. With
respect to the ERPs, each successive microstate represents
a certain information processing step that leads from
perception to action [26]. While several parallel activations
are possible and are most likely occurring in each step, there
nonetheless seems to be a certain sequence of information
processing, probably related to the integration of the
information at different complexity levels [27].

In light of this interpretation of the observed sequential
periods of map stability, different methods have been pro-
posed to objectively and automatically define the different
microstates and to statistically evaluate the specificity of cer-
tain microstates under given experimental conditions. CAR-
TOOL has implemented these methods in the “microstate

segmentation” and “map fitting” modules. The microstate
segmentation is based on cluster analysis using either a
modified k-means cluster analysis [28] or an atomize and
agglomerate hierarchical cluster analysis with or without
GFP normalization [17], followed by some temporal post-
processing steps. The k-means cluster analysis is a classical
pattern recognition method used in many applications in
different fields. It is an iterative procedure, starting with
an initial guess of maps and terminating when successive
iterations differ negligibly. Because of these iterations the
result of the k-means cluster analysis can slightly vary
from one run to the other. In contrast, the hierarchical
cluster analysis that we devised specifically for microstate
segmentation does not iterate and thus gives unique results.
It is a modified agglomerative hierarchical clustering in a way
that clusters that greatly contribute to the global explained
variance are retained even if they are present for a short
period of time only. More detailed explanation of the two
methods can be found in [9].

The cluster analysis can be applied to one data file
or to different files of different experimental conditions
and/or populations (Figure 4). The result is a certain number
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FIGURE 4: Illustration of the microstate segmentation in CARTOOL. The two windows on the top show the segments resulting from the
k-means cluster analysis of the grand-mean ERP of two conditions. The segments are marked under the Global Field Power curves. Different
colors indicate different segments. The cluster maps of these segments are displayed on the right. Note that in the beginning the same
segments are found for the two conditions, while different segments explain the later components. Fitting the cluster maps to each single
subject ERP statistically tests this finding. This is illustrated here by showing that more subjects have map number 5 (green) in condition
1 and map number 6 (purple) in condition 2. Duration, explained variance and other parameters are computed for each segment and can
then be statistically compared using CARTOOL or any other statistical package.

of prototype maps (also called cluster maps) that best
represent the whole data set. For defining the optimal
number of cluster maps, CARTOOL proposes two criteria:
a cross-validation criterion and the Krzanovski-Lai criterion
[17]. The cross-validation is derived by dividing the global
explained variance by the degrees of freedom, the latter
depending on the number of electrodes. The Krzanovski-
Lai criterion is determined by the L-corner of the dispersion
curve, which is a quality measure of the clustering, meaning
the optimal clustering is set when an additional cluster does
not lead to a significant gain of the global quality (for details
see [9]).

The cluster maps are finally fitted back to the original
data and each time point is labeled with the cluster maps
it correlated best with (in terms of GMD). In order to
ensure a certain degree of continuity in time of the different
a final relabeling step is performed which satisfies two
requirements: (1) the correlation between the measurement
and the cluster map should be high, and (2) the majority
of the neighboring measurements should belong to the
same microstate. Standard smoothing techniques, well-
known in statistics, are used to fulfill this compromise
between goodness of fit and smoothness [28]. CARTOOL

allows adjusting these smoothness parameters. In addition,
small segments can optionally be rejected. The result of
the microstate segmentation is displayed color-coded under
the GFP curve with each color representing a different
cluster map. Additional options are available to sequentialize
clusters and to merge highly correlated clusters.

Another method that has been proposed to define the
most dominant evoked component topographies in a dataset
is based on an independent component analysis (ICA, [29]).
It has been shown that both ICA and cluster analysis lead to
rather similar results and thus have compatible underlying
assumptions [30, 31]. However, the main limitation of ICA
is that it assumes that global brain activity is generated by
a superimposition of a number of independent processes.
While this assumption might be valid in the case of artifacts
such as eye movements or cardiac activity, it is difficult to
accept for brain activity, where the principal organization
relies on distributed neural networks with tightly linked
cross-talk between the different areas. In such systems, the
different components are dynamically coupled and cannot
be separated in independent components. ICA would fail to
uncover such processes, while the cluster analysis does not
require such independence.
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The cluster analysis of ERPs is usually applied to the
group-averaged files. All experimental conditions/popula-
tions are entered into the cluster analysis, and the optimal
number of clusters for the whole data set is determined [27,
32]. The cluster maps are then fitted to the data by calculating
the spatial correlation (the GMD, see above) between each
cluster map and each time point of the data. Each time
point is then labeled with the cluster map with which it
correlates best. It is interesting to note that this fitting
procedure results in stable periods that are represented by the
same cluster map even though no temporal constraint is a
priori imposed, thus directly and empirically confirming the
microstate model. The labeling procedure and the display of
the results of this labeling as color-coded segments under the
GFP curves allows the experimenter to generate hypotheses
about the specificity of certain microstate maps for certain
experimental conditions/populations (Figure 4).

It is important to emphasize that the microstate segmen-
tation on the grand mean data allows hypothesis generation
and is not the final result. Changing the number of clusters
might change the results at this level by proposing more or
less map differences across time or between conditions. A
second statistical step is needed to confirm these hypothe-
ses and define those microstates that remain statistically
significant. The “microstate fitting” module of CARTOOL
allows to perform this test. The fitting procedure is the
same as for the grand mean, but now the cluster maps
are fitted to the individual ERPs of each subject and
each condition/population [32] (Figure 4). Several different
parameters are then computed that describe the goodness
of fit, the number of maps that each cluster explained, the
onset and the offset of each cluster map, and so forth [17].
Spreadsheets are generated with these values that can directly
be read into any statistical software package as well as into
Excel, but that can also directly be used in the statistical
analysis module in CARTOOL. Only microstates that are
significantly different after this statistical fitting procedure
are considered as stable. Users will realize that in most cases
increasing the number of clusters beyond the one proposed
by the cross-validation or other optimization criterion will
not lead to new microstates that survive the statistical
tests.

The microstate segmentation using the cluster analysis
can also be applied to spontaneous EEG. It leads to a
reduction of the data to a stream of microstates of cer-
tain durations, on average around 80-100 msec [33]. It is
important to note that in the spontaneous EEG polarity
inversion caused by the intrinsic oscillatory activity of the
generator processes is ignored. Numerous studies in healthy
subjects as well as in patients with different pathologies have
shown that a very limited number of map topographies
are needed to explain extended periods of spontaneous
EEG, and that these few configurations follow each other
according to certain rules [34]. We have shown that these
different microstates are correlated with well-known fMRI
resting states [35]. Analysis of the temporal structure of
the microstate transitions showed that the microstates have
fractal properties, that is, that their temporal structure is
scale invariant over a large time scale [36].

5. Statistical Analysis Using CARTOOL

CARTOOL offers a variety of parametric and non-
parametric statistical EEG mapping analysis procedures
(Figure 5). Non-parametric tests are based on Monte-Carlo
bootstrapping methods, while the parametric tests use paired
or non-paired t-tests. At present, only univariate statistics are
implemented in CARTOOL, but multivariate analysis proce-
dures are currently under evaluation before formal inclusion.
The univariate analysis can be applied to the potential at
each electrode and each time point as a comprehensive
exploratory analysis of the data [10, 37, 38]. It is important
to note, however, that this analysis is reference-dependent
and does not tell us whether topographic or amplitude
differences underlie the observed effects (Figure 1). Also
the problem for corrections of multiple testing is ill posed.
CARTOOL offers Bonferroni corrections as well as the
application of the restriction that effects last a certain
minimal duration [39]. In order to separately assess strength
and topographic differences, CARTOOL proposes statistical
analyses using the global variables described above, that is,
the GFP and the GMD.

Testing for differences in GFP at each time point is
straightforward using the parametric or nonparametric tests.
In order to test for differences in topography, CARTOOL
implemented what has been called a “topographic ANOVA,
or TANOVA [17, 40]. Since GMD is a single measure of
difference between the maps of two conditions, mean and
standard error of topography for each condition/population
cannot be calculated. The way to overcome this problem is to
perform a non-parametric randomization test based on the
GMD values. This is done in the following way: (1) assigning
the maps of the single subject in a randomized fashion
to different experimental conditions, (2) recalculating the
group-average ERPs, and (3) recalculating the resulting
GMD value for these “new” group-average ERPs. The
number of permutations that can be made with a group-
average ERP based on n participants is 2". The GMD value
from the actual group-average ERPs is then compared with
the values from the empirical distribution to determine the
likelihood that the empirical distribution has a value higher
than the GMD from the actual group-average ERPs. In a
within-subject design, the permutation of the maps is done
within the subjects, while the permutation is done across
subjects in group comparisons. In the example shown in
Figure 5, the TANOVA is performed between two conditions
for each time point. The figure illustrates the simplicity of the
analysis of the global parameters GFP and GMD compared to
the electrode-wise statistics (besides the fact that the latter are
reference independent). However, it is important to note here
that a latency shift of one condition with respect to the other
could lead to strong and long topographic differences that are
in fact not due to different areas being activated by the two
conditions, but by activations of the same areas at different
moments in time. The comparison of the TANOVA result
with the microstate segmentation is therefore important.

The statistical analysis can also be performed on the
values that result from the microstate fitting procedure.
Again, only univariate statistics are currently implemented.
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Figure 5: [llustration of the statistical analysis in CARTOOL. The same data as in Figure 2 are used and the segmentation result and the maps
of the eight microstates (labeled consecutively) are again shown in the window on the top. The second window on the left shows the test of
the Global Field Power (GFP). Black bars indicate time points with P < .05. The third window on the left shows the t-test for each electrode
and each time point. The bottom window shows the test of topographic differences using the TANOVA method. Finally, the window on the
right shows the different parameters from the map fitting methods, showing which segments have significant differences in subjects. Note
that in this case the topographic analysis corresponds to the two time periods that were significant in the complex electrode-wise ¢-tests,
while the GFP test reveals an early effect that was not significant at the single electrode level.

For multivariate analysis the spreadsheets have to be read
into other statistical packages. Ongoing developments are
underway for the implementation of multivariate statistics
[41, 42] as well as other topographic analysis methods such
as the test for ERP component stability recently proposed by
Koenig and Melie-Garcia [16].

6. Frequency Analysis of Multichannel EEG

Quantitative analysis of spontaneous EEG has tradition-
ally relied on Fourier-transformation based spectral anal-
ysis. Thereby, the power of the different frequencies or
frequency bands is compared between different condi-
tions/populations. In multichannel data, power maps are
often used and statistical maps of power differences are
calculated. This approach has been very successful and
helped to characterize vigilance changes, sleep stages, drug
effects and various neurological and psychiatric disorders
[43]. More recently, time resolved frequency analysis has
been applied to spontaneous EEG using wavelet procedures
[44]. CARTOOL has implemented these frequency analysis
methods using FFT as well the S-transform. Windows can
flexibly be defined with variable amount of overlap.

However, frequency power maps have two important
problems. First, they are reference-dependent. In contrast
to potential maps in the time domain, power maps in the
frequency domain change when the position of the recording
reference changes [45, 46]. Second, power maps ignore the
phase differences between the electrodes. Only the amplitude
is considered. Therefore, source localization of power maps
is not possible [47]. Ignoring the phase relationship between
electrodes is unfortunate, because they are determined by the
configuration and interaction of the intercerebral sources.
In order to perform source localization in the frequency
domain, the inverse solutions have to be calculated for the
complex data derived from the FFT. Consequently, inverse
solutions in the frequency domain are initially complex [48].
An efficient way to perform distributed source localizations
of a large number of EEG epochs in the frequency domain
is to first compute average cross-spectral matrices [49].
Another, more simplified way is to approximate the power
maps by maps where all electrodes have a common phase.
This method has been called FFT-approximation [47]. It is
based on the calculation of the first principal component of
the data in the complex plane. The results are single-phase
approximated potential map for each frequency that can be
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subjected to source estimation methods. It has initially been
developed for single equivalent dipole localization methods,
because a single dipole cannot account for phase differences
between electrodes. However, distributed source estimation
algorithms can also be applied to these maps in order to
localize the distribution of all sources that are oscillating in
phase. The FFT-Approximation method is implemented in
CARTOOL.

7. Source Localization

While the analysis of the scalp potential maps as described
up to now has the advantage, as compared to waveform
analysis, to be reference independent and considers the
whole brain electrical activity, it does not provide any direct
conclusions about the number, location and orientation of
the intracranial generators [50]. Inverse solution methods
are required to estimate these sources.

A major breakthrough in the spatial analysis of mul-
tichannel EEG/MEG was the development of distributed
inverse solution methods that allow the estimation of
the 3-dimensional distribution of neuronal activity in the
whole brain at each moment in time [3, 51, 52]. The
stability and reliability of these methods are impressive,
and they have been validated by several direct comparisons
with intracranial recordings, lesion studies and other neu-
roimaging methods [53]. The advancement in this field
has tremendously boosted the use of electrophysiological
methods in experimental and clinical studies because of
the major advantages that the high temporal resolution
provides. CARTOOL has implemented some of the major
distributed linear inverse solutions, namely the weighted
minimum norm solution (WMN) [54], the low resolution
electromagnetic tomography (LORETA) [55] and the local
autoregressive average (LAURA) [56] and EPIFOCUS [57].
CARTOOL calculates the inverse matrices for these different
source models. It is well known that the regularization
parameter can strongly influence the inverse solutions. It
cannot only eliminate, but also create “ghost sources” in
case of overfitting the data [58]. CARTOOL uses the L-
curve method [59] to find the optimal regularization value
for a given data file. This optimal value is used as default
display, but the user has the possibility to toggle through
stronger and weaker regularizations that are also stored
in the inverse matrix. The inverse matrices are multiplied
online with the EEG data and displayed for each time
point using different display options. Currently, the so-called
SMAC (Spherical Model with Anatomical Constraints) head
model [60] as well as a more complex head models based
on local spheres are available, both applied either to the
individual MRI (if available) or to template MRIs. In the
SMAC model, the full head is transformed to a sphere
through a non-linear warping function based on the surface
of the scalp. The mean radius of the scalp, skull and
brain are then used for a 3-shell model. Depending on
brain size, between 3000 and 5000 solution points are then
defined in regular distances within the gray matter. This
also includes deeper brain structures such as the amygdala,
hippocampus and thalamic structures, as long as they are

recognized as grey matter. The forward problem is then
solved with an analytical solution using this “realistic” (i.e.,
individual) head model without any constraints on dipole
orientation. The LSMAC model (Locally Spherical Model
with Anatomical Constrains), on the contrary, does not
need this initial spherization step. Instead, at each electrode
locus, an adaptive local spherical model is used. To do so,
and sequentially under each electrode, the thicknesses of
the scalp, skull and brain are estimated. These thicknesses
are then used in a 3-shell spherical model with the local
radiuses, allowing the real geometry between solution points
and electrodes to be accounted for. The SMAC and LSMAC
methods are illustrated in Figure 6.

The results of the inverse solutions (norm or vectors) are
displayed 3-dimensionally in the real (i.e., untransformed)
MRI (Figure 7). Slices in all orientations can be shown as
well as the solutions on surface-rendered images. The inverse
solution results can be stored as matrices for further statisti-
cal processing (source waveform analysis), or as volumes for
fusioning with other neuroimaging results or for importing
into other image analysis tools such as SPM.

It is worthwhile to note that the segmentation of the brain
surface and the grey matter is implemented in CARTOOL
including manual correction tools to exclude incorrect classi-
fication of grey matter or exclude structures as brainstem and
cerebellum if desired. Alternatively, already segmented brains
can be read into CARTOOL if preferred, such as standard
template brains. Also the warping transformations as well
as the distribution of the solution points are done within
CARTOOL. Thus, the whole source localization process can
be performed within CARTOOL, starting with the original
EEG and the original MRI.

Besides source reconstruction in the individual MRI,
CARTOOL can also use template brains such as the MNI
brain. In this case the solution space remains the same for
all subjects, allowing group studies on the source level. In the
case of the MNI brain, all solution points are labeled with
their Talairach coordinates as well as their anatomical labels.
Time periods of interest (e.g., the microstates) or regions of
interest (ROI) can be created and the mean current density
within these segments or ROI can be stored for further
statistical analysis [61]. Finally, the source waveforms can be
stored and further treated in CARTOOL like scalp electrode
traces.

8. Additional Implementations

Several other analysis tools are available in CARTOOL.
In addition to the analysis of scalp EEG, CARTOOL also
allows to visualize and analyze intracranial EEG, to read and
fusion 3D images of different imaging modalities, to create
and work with 3D regions of interest, and to convert and
manipulate MR images.

The analysis of intracranial recordings includes the color-
coded mapping of grids as well as along depth electrodes
(Figure 8). Intracranial electrodes are directly fused with the
patient’s MRI if the exact positions are available. Depth
shifting tricks allow the experimenter to see the potentials of
the depth electrodes within the MRI.
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(a) (b)

FiGUre 6: Illustration of the two head models used for the inverse solution calculation in CARTOOL. The SMAC model (a) uses 3-shell of
constant radiuses for the scalp and skull, which is in average a good approximation, but can be locally inaccurate for some electrodes. Due to
the spherization step, the geometrical relationship between the inverse space and the electrodes is also slightly incorrect. The LSMAC model
(b) uses the local radiuses of the scalp and skull, under each electrode locus, to generate different sets of 3 shells spherical model. Therefore,
the forward problem is geometrically correct for each electrode.
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mapped on the grid for one moment in time.

CARTOOL can read any type of 3D volumes in Analyze
format. In case of functional images (fMRI or PET) the
activation areas are displayed as colored blobs within the
MRI. Several different volumes can be overlapped and thus
results of different imaging modalities (including the inverse
solutions) can be displayed within the same MRI. MRIs
can also be manipulated and converted in various ways and
stored as new volumes.

A large palette of 3D display tools is available in
CARTOOL that allows flexible visualization of the data. Any
3D object can be inserted into another one by a single
click, allowing the merging of different information instantly,
while retaining the spatial coherence of the objects. Different
windows can easily be synchronized, allowing the user to
visualize the dynamic behavior of the data on traces, maps
and inverse solutions simultaneously (Figure 9).

9. Ongoing Developments

CARTOOL is constantly implementing new analysis meth-
ods that appear as useful and have been published. Con-
cerning the statistical analysis, multivariate methods will
soon be implemented. The TANOVA described above can
easily be extended to multivariate measures [42]. Also

tests of topographic consistency across subjects based on
randomization tests of GFP are promising and will be
implemented soon [16].

Concerning microstate segmentation, De Lucia et al.
[31, 62] proposed a variation of the cluster analysis described
above to apply to single-trial ERP data. The method proposes
to model the overall electrical response, that is, the event-
related and the ongoing activity, as a mixture of Gaussians,
in an N-dimensional space, where N is the number of the
electrodes. The computation is initialized by a K-means
algorithm, which iteratively improves the estimation of
means, covariances and priors of the Q Gaussians until the
likelihood reaches a plateau. For each time point and trial
it then provides Q conditional probabilities that relate the
topographies to the clusters. Like in the labeling procedure
described above, each time point and trial is then labeled
with the cluster with which it has highest conditional
probability. The method has been shown to reliably identify
specific component maps in the single trial ERPs despite the
clear dominance of the ongoing spontaneous EEG activity.

An important new development in the field of EEG/MEG
analysis is the measure of connectivity between different
brain areas as a way to understand the organized behavior of
different brain regions [63]. The use of EEG data to examine
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Figure 9: lllustration of the synchronization of windows in CARTOOL. Synchronization within the same dataset allows dynamic animations
in time. Synchronization across datasets allows comparison of different conditions in time and in space.

the functional connectivity has a long history [64, 65] and
a variety of techniques have been used, most prominently
the calculation of cross-correlation or phase synchronization
between pairs of scalp electrodes or sensors [66]. Also graph-
theory-based tools from the study of complex network have
been proposed [67]. The problem with such analysis on the
scalp surface is that the interpretation with respect to the
sources that generated the connectivity between electrodes
is ambiguous because of the spreading of electromagnetic
signals from the cortex to the sensors. More appropriate
is the use of connectivity measures in the inverse space.
A popular method that is often applied to MEG data
(but can also be used for EEG) is the so-called dynamic
imaging of coherent sources (DICS), proposed by [68]. This
method uses a beamformer spatial filter to identify coherent
sources in the brain for specific frequency bands. Like other
spectral coherence methods, DICS does not give information
of the direction of information flow. Several alternative
methods have therefore been proposed that are based on
the Granger causality theory and multivariate autoregressive
models such as Partial Directed Coherence [69] or the
Directed Transfer Function [70]. Applying these methods to
the data in the inverse space after applying the distributed
linear inverse solutions described above will allow estimating
the flow of electrical information in large-scale neuronal
networks in real time. Such methods will be implemented in
future versions of CARTOOL together with other promising

distributed inverse solutions and head models that currently
emerge in the literature.

10. Software Details

CARTOOL is not an Open Source project; however the
program is distributed freely to any nonprofit research group.
Users need to register only once and will then be informed
of any updates of the software. They are asked to cite the use
of CARTOOL in the Methods and Acknowledgements sections
of their papers. Currently about 650 users from all over the
world have registered and downloaded CARTOOL.

CARTOOL runs only on Windows platforms (ranging
from Windows 95 up to Windows 7) as a standalone
compiled executable program, included with its complete
documentation within a single installation program. It is
fully written in C++ in order to attain the highest speed
and compactness in memory use. The advanced display
is completely done in OpenGL, so it needs an OpenGL
accelerated graphic card, and as much memory as possible
for the most demanding operations. Matlab is not needed to
run CARTOOL.

Interoperability is achieved mainly by exchanging inter-
mediate results through files. Considerable efforts have been
put in reading and writing standard files with a maximum of
convenience for the user. For example, most of the operations
can be done by Drag & Drop in CARTOOL, the landing of
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the drop usually conditioning the actions to be undertaken
on the files.

Help is provided at different levels. A thorough Reference
Guide, describing all the options and technical details for
all processes, is included in the distribution in the form of
compiled HTML (10 MB chm file). In addition a CARTOOL
Community group (Google Sites) has been built in order to
offer a central access for the users, which includes a User’s
Guide, collaboratively edited as a Wiki, a Discussion Forum
for all questions and announcements, some FAQs, and a
few shared files. Finally, it is worth noting that CARTOOL
updates, including Beta releases, can be easily assessed online
through a Google Docs repository.

Here are the main internet addresses for CARTOOL:

http://brainmapping.unige.ch/cartool

http://cartoolcommunity.unige.ch/

Files formats read by CARTOOL include formats pro-
duced by the EEG systems form the companies Biologic,
Biosemi, Brain Products, Deltamed, EGI, and Neuroscan.
Also EDF format and standard text files can be read.
Concerning MRI, Analyze and AVS formats are read. A
complete list of file formats is included in the Reference
Guide of Cartrool.
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