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strict strong Nash equilibrium outcomes of each pre-
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not vice versa, that is, there are strict core allocations

that cannot be implemented in strict strong Nash

equilibrium. This result is extended to a more general

set of preference domains that satisfy strict core non‐
emptiness and a minimal preference domain richness

assumption.
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1 | INTRODUCTION

In a classical Shapley–Scarf housing market (Shapley and Scarf, 1974), each agent is endowed
with an indivisible object, such as a house, wishes to consume exactly one house, and ranks all
houses in the market. The problem then is to (re)allocate houses among the agents without
using monetary transfers and by taking into account agents' preferences and endowments.

A common solution concept for Shapley–Scarf housing markets is the strict core solution,
which assigns the set of allocations where no group of agents has an incentive (via weak
blocking) to deviate by exchanging their endowments within the group. When agents' pre-
ferences are strict, the strict core solution exhibits a remarkable number of positive features: it
is non‐empty (Shapley and Scarf, 1974), always a singleton, and coincides with the unique
competitive allocation (Roth and Postlewaite, 1977). In addition, it can be easily calculated by
the so‐called top trading cycles (TTC) algorithm (due to David Gale). Furthermore, the TTC
mechanism that assigns the unique strict core allocation for any housing market is strategy‐
proof (Roth, 1982), and it is the unique mechanism satisfying individual rationality, Pareto
efficiency, and strategy‐proofness (Ma, 1994).

Multiple‐type housing markets are an extension of Shapley–Scarf housing markets, which
were first introduced by Moulin (1995).1 In multiple‐type housing markets, there are multiple
types of indivisible objects, each agent is endowed with one object of each type and wishes to
consume exactly one object of each type. Multiple‐type housing markets are often described with
houses and cars as metaphors for indivisible object types. While these and related housing market
models appear to be rather stylized, they give valuable insights into many real‐world applications
such as dynamic resource allocation problems (Monte and Tumennasan, 2015), the assignment
of student presentations (Mackin and Xia, 2016), and the assignment of medical resources (Huh
et al., 2013). A more familiar example for most readers would be the situation of students'
enrollment at many universities where courses are taught in parallel sessions (Klaus, 2008).

Konishi et al. (2001) were the first to analyze multiple‐type housing markets. They demonstrated
that when increasing the dimension of the classical Shapley–Scarf housing market model by adding
other types of indivisible objects, most of the positive results obtained for the one‐dimensional single‐
type case disappear: even for additively separable preferences, the strict core may be empty and no
individually rational, Pareto efficient, and strategy‐proof mechanism exists. One of the reasons for
this is that, in contrast to single‐type housing market problems, multiple‐type housing market
problems cannot be transformed into well‐behaved coalition formation games (Banerjee et al., 2001;
Bogomolnaia and Jackson, 2002; Quint and Wako, 2004); for example, an agent may exchange his
house within a trading coalition S1 but exchange his car with a different trading coalition S2.

There has been very little work on multiple‐type housing market problems since Konishi
et al.'s (2001) negative results. The following papers considered different solutions for different
sub‐domains of preferences.

For separable preferences, Konishi et al. (2001) and Wako (2005) suggested an alternative
solution to the strict core solution by first using separability to decompose a multiple‐type
housing market into “coordinatewise submarkets” and then determining the strict core in each
submarket. Wako (2005) called the resulting outcome the commoditywise competitive alloca-
tion and showed that it is implementable in strong Nash equilibria. Klaus (2008) called the

1There are many other extensions, such as the multi‐demand models of Pápai (2001, 2007), Ehlers and Klaus (2003),
and Manjunath and Westkamp (2021).
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mechanism that always assigns this unique allocation the coordinatewise core rule, and
showed that it satisfies individual rationality, constrained efficiency,2 and strategy‐proofness.

For a very general domain of lexicographic preferences, Sikdar et al. (2017, 2019) extended the
TTC algorithm and defined a new mechanism: the multiple‐type top trading cycles (MTTC) me-
chanism, and they showed that the MTTC mechanism determines a strict core allocation; hence,
the strict core for general lexicographic preferences is non‐empty. Strict core stability implies
individual rationality and Pareto efficiency of the MTTC mechanism. However, they demonstrated
that the MTTC mechanism is not strategy‐proof and that the strict core may be multi‐valued.

1.1 | Our contributions

Takamiya (2009) considered the more generalized model of indivisible goods allocation in-
troduced by Sönmez (1999) that contains Shapley–Scarf housing market problems as special
case. In particular, Takamiya's results imply that for Shapley–Scarf housing market problems
and for individually rational and Pareto efficient mechanisms, the set of strict strong Nash
equilibrium outcomes of the preference revelation game equals the strict core (we state this
result as Corollary 1).

Similarly, we examine the relationship between strict strong Nash equilibrium outcomes of
the preference revelation games and strict core allocations for multiple‐type housing markets.
Takamiya's (2009) results do not translate into our higher‐dimensional model. First, multiple‐
type housing market problems may have an empty strict core, even if preferences are separable.
Then, a promising subdomain that guarantees the non‐emptiness of the strict core is the domain
of lexicographically separable preferences. However, lexicographically separable preferences do
not satisfy the domain richness condition Takamiya (2009) needs for his main result.

We prove that, for lexicographically separable preferences, the set of all strict strong Nash
equilibrium outcomes of each preference revelation game that is induced by a strictly core
stable mechanism is a subset of the strict core, but not vice versa, that is, there are strict core
allocations that cannot be implemented in strict strong Nash equilibrium (Theorem 1). This
result is extended to a more general set of preference domains that satisfy strict core non‐
emptiness and a minimal preference domain richness assumption (Theorem 2). Throughout
the paper, we motivate our approach and discuss some comparative statics aspects of our
results via various examples.

2 | THE MODEL

2.1 | Multiple‐type housing market problems

Let N n= {1, …, } be a finite set of agents. A non‐empty subset of agents S N⊆ is a coalition. We
assume that there exist m 1≥ (distinct) types of indivisible objects and n (distinct) indivisible
objects of each type. We denote the set of types by T m= {1, …, }. Note that form = 1, our model
equals the classical Shapley–Scarf housing market model (Shapley and Scarf, 1974).

2There exists no other strategy‐proof mechanism that Pareto dominates the coordinatewise core rule.

FENG AND KLAUS | 3



Throughout this paper, we focus on the multiple‐type extension of the Shapley–Scarf housing
market model as introduced by Moulin (1995), where N n= 3  ≥ and T m= 2  ≥ .3

Each agent i N is endowed with exactly one object of each type t T , denoted by oi
t. Hence,

each agent i's endowment is a list o o o= ( , …, )i i i
m1 . The set of type‐t objects is O o o= { , …, }

t t
n
t

1 , and
the set of all objects is O o o o o o o= { , , …, …, , , …, }

m
n n n

m
1
1

1
2

1
1 2 . In particular, O n m= ×  .

For each agent i, an allotment xi assigns one object of each type to agent i, that is, xi is a
list x x x O= ( , …, ) Πi i i

m
t T

t1   , where x Oi
t t is agent i's type‐t allotment. Alternatively, we

sometimes denote an allotment as a subset of objects, x x x O= { , …, }i i i
m1  , and refer to a subset

of an allotment as a partial allotment. We assume that each agent i has complete, antisymmetric,
and transitive preferences Ri over all possible allotments, that is, Ri is a linear order over OΠt T

t .
For two allotments xi and y x,i i is weakly better than yi if x R yi i i, and xi is strictly better than yi if
[x R yi i i and not y R xi i i], denoted x P yi i i. Finally, since preferences over allotments are strict, xi is
indifferent to yi only if x y=i i. We denote preferences as ordered lists, for example, R x y z: , ,i i i i

instead of x P y P zi i i i i. The set of all preferences is denoted by ℛ, which we will also refer to as the
strict preference domain.

A preference profile specifies preferences for all agents and is denoted by a list R =

R R( , …, ) ℛn
N

1  . We use the following standard notation R R R R R= ( , …, , , …, )i i i n− 1 −1 +1 to
denote the list of all agents' preferences, except for agent i's preferences. Furthermore, for each
coalition S we define R R= ( )S i i S and R R= ( )S i i N S− \ to be the lists of preferences of coalitions
S and N S\ , respectively.

In addition to the domain of strict preferences, we are considering several preference
subdomains based on agents' “marginal preferences”: assume that for each agent i N and
for each type t T , i has complete, antisymmetric, and transitive preferences Ri

t over the set
of type‐t objects Ot. We refer to Ri

t as agent i's type‐t marginal preferences, and denote by ℛt

the set of all type‐t marginal preferences. Then we can define the following two preference
domains.

Definition 1 (Separability). Agent i's preferences R ℛi  are separable if for each t T
there exist type‐t marginal preferences R ℛi

t t such that for any two allotments xi and yi,
if for all t T x R y, i

t
i
t
i
t , then x R yi i i. ℛs denotes the domain of separable preferences.

Before turning to our next preference domain, we introduce some notation. We use a bijective
function π T T:i → to order types according to agent i's “(subjective) importance,” with π (1)i

being the most important and π m( )i being the least important object type. We denote by πi an
ordered list of types; for example, by π = (2, 3, 1)i we mean that π π(1) = 2, (2) = 3i i , and
π (3) = 1i . So for each agent i N and each allotment x x x= ( , …, )i i i

m1 , by x x x= ( , …, )i
π

i
π

i
π m(1) ( )i i i

we denote the allotment after rearranging it with respect to the object‐type importance order πi.

Definition 2 (Lexicographic separability). Agent i's preferences R ℛi  are lexicographically
separable if they are separable with type‐t marginal preferences R( )i

t
t T and there exists an

object‐type importance order π T T:i → such that for any two allotments xi and yi,
if x P yi

π
i
π

i
π(1) (1) (1)i i i or if there exists a positive integer k m − 1≤ such that x =i

π (1)i

3One‐agent and two‐agent multiple‐type housing market problems are rather trivial cases due to the fact that no trade
or pairwise trade are the only possibilities. The real complexity of the model, however, arises from the possibility that
agents are simultaneously trading in different coalitions.
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y x y, …, =i
π

i
π k

i
π k(1) ( ) ( )i i i , and x P yi

π k
i
π k

i
π k( +1) ( +1) ( +1)i i i , then x P yi i i. ℛl denotes the domain of

lexicographically separable preferences.

Remark 1 (Representation of lexicographically separable preferences). Note that any
lexicographically separable preference relation R ℛi l is uniquely determined by agent i's
marginal preferences R( )i

t
t T and an object‐type importance order πi. For example, consider

a situation with T H ouse C ar= { ( ), ( )} and N = {1, 2, 3} with each agent i's endowment
equal to o H C= ( , )i i i . Assume that agent i has lexicographically separable preferences
R H C H C H C H C H C H C H C H C H C: ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )i 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 . Then,
agent i's type importance order is π H C: ,i , and his marginal preferences are
R H H H: , ,i

H
1 2 3, and R C C C: , ,i

C
1 2 3. Hence, agent i's preferences Ri can alternatively

be written as R R R π= ( , , )i i
H

i
C

i .
For an even more compact description of agent i's lexicographically separable preferences,

we can also rely on the strict ordering of objects that is induced by the object‐type importance
order together with his marginal preferences: R H H H C C C: , , , , ,i 1 2 3 1 2 3.

An allocation x partitions the set of all objectsO into agents' allotments, that is, x x x= { , …, }n1

is such that for each t T , x O=i N i
t t  and, for each pair i j x x, i

t
j
t≠ ≠ . For simplicity,

sometimes we will restate an allocation as a list x x x= ( , …, )n1 . The set of all allocations is denoted
by X , and the endowment allocation is denoted by e o o= ( , …, )n1 . Given x , we define
x x x x x= ( , …, , , …, )i i i n− 1 −1 +1 to be the list of allotments of all agents except for agent i's allotment
and x x= ( )S i i S to be the list of allotments of coalition S.

We assume that when facing an allocation x , there are no consumption externalities and
each agent i N only cares about his own allotment xi. Hence, each agent i's preferences over
allocations X are essentially equivalent to his preferences over allotments OΠt T

t . With some
abuse of notation, we use notation Ri to denote an agent i's preferences over allotments as well
as his preferences over allocations, that is, for each agent i N and for any two allocations
x y X x R y, , i if and only if x R yi i i.

4

A (multiple‐type housing market) problem is a triple N e R( , , ); as the set of agents N and the
endowment allocation e remain fixed throughout, we will simply denote problem N e R( , , ) by
R. Thus, the strict preference profile domain ℛN also denotes the set of all problems.

2.2 | Solutions/mechanisms and their properties

Note that all following definitions for the domain of strict preferences ℛ can alternatively be
formulated for any subdomain ℛ̂ ℛ⊆ .

A solution is a set‐valued function F : ℛ 2N X→ that assigns to each problem R ℛN a
(possibly empty) set of allocations F R X( ) ⊆ . A mechanism is a function f X: ℛN → that
assigns to each problem R ℛN an allocation f R X( )  , and for each i N f R, ( )i is agent i's
allotment under mechanism f at R.

We next introduce and discuss some well‐known properties for allocations, solutions, and
mechanisms. First we consider a voluntary participation condition for an allocation x to be

4Note that when extending strict preferences over allotments to preferences over allocations without consumption
externalities, strictness is lost because any two allocations where an agent gets the same allotment are indifferent to that
agent.
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implementable without causing agents any harm: no agent will be worse off than at his
endowment.

Definition 3 (Individual rationality). An allocation x X is individually rational if for each
agent i N , x R oi i i. A solution/mechanism is individually rational if for each problem
R ℛN , it assigns only individually rational allocations.

Next, we consider a well‐known efficiency criterion.

Definition 4 (Pareto efficiency). An allocation y X Pareto dominates allocation
x X if for each agent i N , y R xi i i, and for at least one agent j N , y P xj j j. An
allocation x X is Pareto efficient if there is no allocation y X that Pareto dominates it.
A solution/mechanism is Pareto efficient if for each problem R ℛN , it assigns only
Pareto efficient allocations.

Next, we define an incentive property for mechanisms that models that no agent can benefit
from misrepresenting his preferences.

Definition 5 (Strategy‐proofness). A mechanism f is strategy‐proof if for each problem
R ℛN , each agent i N , and each preference relation R ′ ℛi  , we have
f R R R f R R( , ) ( ′, )i i i i i i i− − .

Next, in order to introduce the standard cooperative solutions of the weak and the strict
core, we introduce two blocking notions: for problem R ℛN , an allocation x X is strictly
blocked by coalition S N⊆ if there exists an allocation y X such that

(1) at allocation y agents in S reallocate their endowments, that is, for each i S and each
t T , y oΠi

t
j S j

t  ; and
(2) all agents in S are strictly better off, that is, for each i S , y P xi i i.

An allocation x X is weakly blocked by coalition S N⊆ if there exists an allocation y X such
that (1) and

(2′) all agents in S are weakly better off, with at least one of them being strictly better off, that
is, for each i S , y R xi i i, and for some j S , y P xj j j.

Given the blocking notions above, we can restate individual rationality and Pareto efficiency as
follows. An allocation is individually rational if it is not weakly or strictly blocked by any singleton
coalition i{ } and an allocation is Pareto efficient if it is not weakly blocked by the set of all agents N .

We now introduce the first type of (possibly empty‐ or multi‐valued) solution to multiple‐
type housing market problems that we will consider: core solutions.

Definition 6 (Strict/weak core‐stability). An allocation is a strict/weak core allocation if
it is not weakly/strictly blocked by any coalition; the set of all strict/weak core allocations
is the strict/weak core. Given a problem R ℛN , let R RSC( ) WC( )∕ denote its strict/weak
core. A mechanism f is strictly/weakly core stable if for any problem, it assigns only strict/
weak core allocations.
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Note that for all problems R R Rℛ , SC( ) WC( )N ⊆ , and that all strict core allocations
satisfy individual rationality and Pareto efficiency. So, if a mechanism is strictly core stable,
then it is individually rational and Pareto efficient as well. Furthermore, for some problems
R Rℛ , WC( )N may be empty.5

We next focus on the domain of lexicographically separable preferences (ℛl) and extend
Gale's famous TTC algorithm to multiple‐type housing market problems. More specially, we
adapt the MTTC introduced by Sikdar et al. (2017, 2019) to ℛl.

6

Definition 7 (The multiple‐type top trading cycles [MTTC] algorithm/mechanism).

Input. A multiple‐type housing market problem R ℛl
N .

Step 1. Building step. Let N N(1) = and U O(1) = . We construct a directed graph G (1)
with the set of nodes N U(1) (1)∪ . For each o U (1) , we add an edge from the object to
its owner and for each i N (1) , we add an edge from the agent to his most preferred
object in O (according to the linear representation of Ri we explained in Remark 1). For
each edge i o N O( , ) × we say that agent i points to object o.

Implementation step. A trading cycle is a directed cycle in graphG (1). Given the finite number
of nodes, at least one trading cycle exists. We assign to each agent i in a trading cycle the object
that he pointed to, and denote the object assigned to him in this step by a (1)i ; we denote the
corresponding set of objects assigned through trading cycles by A (1). If agent i N was part
of a trading cycle, then his partial allotment x a(1) = { (1)}i i ; otherwise, x (1) =i ∅.

Removal step. We remove all objects that were assigned through trading cycles from set O
and set U O A(2) \ (1)≔ , which are the objects that have not yet been allocated. For each
agent i N , we derive the set of feasible continuation objectsU (2)i by removing all objects
inU (2) that are of a type that is already present in agent i's partial allotment x (1)i . Since
m 2≥ , no agents are removed in this step and we let N N(2) ≔ . Go to step 2.

In general, at step q ( 2)≥ we have the following.

Step q. If U q( ) (or equivalently N q( )) is empty, then stop; otherwise do the following.

Building step. We construct a directed graphG q( ) with the set of nodes N q U q( ) ( )∪ . For
each o U q( ) , we add an edge from the object to its owner and, for each i N , we add
an edge from the agent to his most preferred feasible continuation object in U q( )i

(according to the linear representation of Ri we explained in Remark 1).

Implementation step. A trading cycle is a directed cycle in graph G q( ). Given the finite
number of nodes, at least one trading cycle exists. We assign to each agent i in a trading
cycle the object that he pointed to, and denote the object assigned to him in this step by
a q( )i ; we denote the corresponding set of objects assigned through trading cycles by

5See Konishi et al. (2001, Example 2.3) for details.
6The preference domain that Sikdar et al. (2017, 2019) consider is larger than ours.
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A q( ). If agent i N was part of a trading cycle, then his partial allotment x q( ) =i

x q a q( − 1) { ( )}i i∪ ; otherwise, x q x q( ) = ( − 1)i i .

Removal step. We remove all agents that have received a (complete) allotment and denote
the set of remaining agents by N q( + 1). Next, we remove all objects that were assigned
through trading cycles from set U q( ) and set U q U q A q( + 1) ( ) ( )≔ ⧹ . For each agent
i N q( ) , we derive the set of feasible continuation objects U q( + 1)i by removing all
objects inU q( + 1) that are of a type that is already present in agent i's partial allotment
x q( )i . Go to step q + 1.

Output. The MTTC algorithm terminates when all objects in O are assigned (it takes at
most n m⋅ steps). Assume that the final step is step q*. Then, the final allocation is
x q( *) = x q x q{ ( *), …, ( *)}n1 .

The MTTC mechanism, fMTTC, assigns to each problem R ℛl
N the allocation x q( *)

obtained by the MTTC algorithm.

Sikdar et al. (2017, Theorem 1) proved that fMTTC is strictly core stable but not strategy‐
proof on the domain of lexicographically separable preferences ℛl

N . We illustrate
the MTTC mechanism with Example 3 in Appendix A in the online supplementary
materials.

2.3 | Preference revelation games

We now formulate a natural preference revelation game for the domain of lexicographically
separable preferences (ℛl). Given a multiple‐type housing market problem represented by
R ℛl

N and a mechanism f X: ℛl
N → , the preference revelation game induced by f is the

strategic game ( )R f RΓ ( ) = ℛ , ,f l
N , where ℛl is each agent's strategy space, f is the outcome

function, and each agent i evaluates outcomes with Ri.
Finding suitable solutions of strategic games is an important task in game theory. The

most studied solution concept is the Nash equilibrium. However, Nash equilibria may not be
Pareto efficient (e.g., in prisoner's dilemma or tragedy of the commons situations). To re‐
establish Pareto efficiency, Aumann (1959) introduced strong Nash equilibria, a strength-
ening of Nash equilibria that requires an equilibrium strategy profile to be robust against
coalitional deviations (see footnote 7). By requiring Pareto efficiency for each coalition,
Dubey (1986) introduced an even stronger refinement of the set of Nash equilibria: strict
strong Nash equilibria.

Definition 8 (Nash/strict strong Nash equilibria). Let R ℛl
N be a multiple‐type

housing market problem and consider the preference revelation game RΓ ( )f .
A strategy profile R* ℛl

N is a Nash equilibrium of RΓ ( )f if for each agent i N and

each strategy ( ) ( )R f R f R R R f R R′ ℛ , ( *) = *, * ′, *i l i i i i i i i i− − . We denote the set of Nash

equilibria by RNash(Γ ( ))f and the set of Nash equilibrium outcomes by f R(Nash(Γ ( )))f .

8 | FENG AND KLAUS



A strategy profile R* ℛl
N is a strict strong Nash equilibrium7 of RΓ ( )f if for each coalition

S N⊆ and each strategy list R′ ℛS l
S , [for each agent ( ) ( )i S f R R R f R R, ′, * *, *

i S S i i S S− − ]

implies [for each agent ( )i S f R R f R R, ( ′, * ) = *, *
i S S i S S− − ]. We denote the set of strict strong

Nash equilibria by RsNash(Γ ( ))f and the set of strict strong Nash equilibrium outcomes

by f R(sNash(Γ ( )))f .

Note that R RsNash(Γ ( )) Nash(Γ ( )) ℛf f l
N⊆ ⊆ .

Given a preference revelation game RΓ ( )f , we say that agent i plays a truth‐telling strategy if
he truthfully reports his preferences Ri. If all agents play truth‐telling strategies, then
R R= ( )i i N is a truth‐telling strategy profile at RΓ ( )f . Note that if f is strategy‐proof, then truth‐
telling is a weakly dominant strategy for each agent and the truth‐telling strategy profile is a
weakly dominant strategy Nash equilibrium.

3 | RESULTS

3.1 | Motivating examples

As mentioned in the introduction, for Shapley–Scarf housing markets with strict preferences, the
unique strict core allocation can be obtained by a unique individually rational, Pareto efficient, and
strategy‐proof mechanism (Ma, 1994), the TTC mechanism. Later, Sönmez (1999) considered a
generalization of Shapley and Scarf's (1974) housing market problems, generalized indivisible goods
allocation problems (see Appendix C in the online supplementary materials), and showed that,
whenever the preference domain satisfies a certain condition of richness and if there exists a me-
chanism satisfying individual rationality, Pareto efficiency, and strategy‐proofness, then for any
problem having a non‐empty strict core, the strict core must be essentially single‐valued8 and the
mechanism must choose a strict core allocation. Takamiya (2003) showed the following converse
result: whenever the preference domain satisfies a certain condition of richness and if the strict core
solution is essentially single‐valued, then any selection from the strict core solution is strategy‐proof.

However, for multiple‐type housing market problems, these results do not hold anymore: Konishi
et al. (2001) (Sikdar et al., 2017, respectively) showed that on the domain of separable preferences
(lexicographically separable preferences, respectively), no mechanism satisfies individual rationality,
Pareto efficiency, and strategy‐proofness. Note that neither the domain of separable preferences nor
the domain of lexicographically separable preferences satisfies the domain richness condition of
Sönmez (1999) (see Appendix C in the online supplementary materials).

The following example shows that on the one hand an individually rational and Pareto
efficient mechanism can pick an allocation at which no agent has an incentive to misrepresent
his preferences, while on the other hand the strict core may be multi‐valued (without being
essentially single‐valued).

7The set of strict strong Nash equilibria is a refinement of the set of strong Nash equilibria: a strategy profile R* ℛl
N is

a strong Nash equilibrium of RΓ ( )f if for each coalition S N⊆ and each strategy list R′ ℛS l
S , [for each agent

i S f R R R f R R, ( ′, * ) ( *, * )i S S i i S S− − ] implies [for some agent j S f R R f R R, ( ′, * ) = ( *, * )j S S j S S− − ]. For a discussion of existence
of strict strong Nash equilibria we refer to Remark 2.
8The strict core is essentially single‐valued if each agent is indifferent between any two strict core allocations.
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Example 1 (Non‐manipulability and a multi‐valued strict core). Consider R ℛl
N with

N T H ouse C ar O H H H C C C= {1, 2, 3}, = { ( ), ( )}, = { , , , , , }1 2 3 1 2 3 , each agent i's endowment
H C( , )i i , and

R H C

R H C

R H C

H H C C

H H C C

H H C C

: , , , , , ,

: , , , , , ,

: , , , , , .

1 1 1

2 2 2

3 3 3

2 3 3 2

3 1 1 3

2 1 1 2

Applying the MTTC algorithm to R, at step 1, the trading cycle H H2 3 23 2→ → → →

forms; the trading cycle at step 2 is H1 11→ → ; the trading cycle at step 3 is C1 3→ →

C3 11→ → ; and at step 4, we have C2 22→ → . The final outcome is the strict core
allocation x H C H C H C= (( , ), ( , ), ( , ))1 3 3 2 2 1 .

Note that at problem R, no agent has an incentive to misrepresent his preferences: agent 3
has no incentive to misreport his preferences because he receives his best allotment. Agent 1
cannot obtain his best house H2 by misreporting his preferences (it is traded in step 1 between
agents 2 and 3). Given that, he receives the best possible allotment and has no incentive to
misreport his preferences. Finally, agent 2 already obtains his best house, and if he tries to
obtain his best car by misreporting his preferences he cannot obtain his best house; thus,
he has no incentive to misreport his preferences. Finally, the strict core is not unique:
H C H C H C(( , ), ( , ), ( , ))1 3 3 1 2 2 is also a strict core allocation.

Recall that for multiple‐type housing market problems with lexicographically separable
preferences, no mechanism satisfies individual rationality, Pareto efficiency, and strategy‐
proofness (Sikdar et al., 2017). Hence, strict core stability and strategy‐proofness are also not
compatible. Thus, in our context, strategy‐proofness, or truth‐telling being a weakly dominant
strategy Nash equilibrium in the corresponding preference revelation game, is a very strong
requirement. Therefore, we next consider implementation through a different equilibrium
concept: strict strong Nash equilibrium.

For generalized indivisible goods allocation problems, Takamiya (2009) studied the re-
lationship between coalitional equilibria and the strict core. Takamiya's main result implies
that for Shapley–Scarf housing market problems and for a preference revelation game induced
by an individually rational and Pareto efficient mechanism f , the set of strict strong Nash
equilibrium outcomes equals the strict core.

Corollary 1 (Takamiya, 2009). For each Shapley–Scarf housing market R ℛN and each
individually rational and Pareto efficient mechanism f f R R, (sNash(Γ ( ))) = SC( )f .

The following example shows that Corollary 1 does not extend to multiple‐type housing
markets with lexicographically separable preferences.

Example 2 (Corollary 1 does not extend to Rl
N). Consider R Nℛ , = {1, 2, 3},l

N
T H ouse C ar O H H H C C C= { ( ), ( )}, = { , , , , , }1 2 3 1 2 3 , each agent i's endowment H C( , )i i , and

R H C

R H C

R H C

H H C C

H H C C

H H C C

: , , , , , ,

: , , , , , ,

: , , , , , .

1 1 1

2 2 2

3 3 3

2 3 3 2

1 3 1 3

1 2 1 2
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Applying the MTTC algorithm to R, at step 1, the trading cycle H H1 2 12 1→ → → →

forms; the trading cycle at step 2 is H3 33→ → ; the trading cycle at step 3 is C1 3→ →

C3 11→ → ; and at step 4 we have C2 22→ → . The final outcome is the strict core
allocation x H C H C H C= (( , ), ( , ), ( , ))2 3 1 2 3 1 . There is another strict core allocation x′ =

H C H C H C(( , ), ( , ), ( , ))2 2 1 1 3 3 . In Appendix A in the online supplementary materials we
show that x f R{ } = (sNash(Γ ( )))f

MTTC MTTC R x xSC( ) = { , ′} .

Based on Corollary 1 and Example 2, one could now conjecture that for each multiple‐type
housing market R ℛl

N and each individually rational and Pareto efficient mechanism f ,
we have f R R(sNash(Γ ( ))) SC( )f ⊆ . That conjecture is almost correct; however, we need to
strengthen individual rationality and Pareto efficiency to strict core stability (see Example 6 in
Appendix A in the online supplementary materials).

3.2 | Main results

We show that for lexicographically separable preferences, if a mechanism is strictly core stable,
then any strict strong Nash equilibrium of the corresponding preference revelation game will
induce a strict core allocation. However, for some lexicographically separable multiple‐type
housing markets, there exist strict core allocations that cannot be implemented in strict strong
Nash equilibrium.

Theorem 1. Let f be a strictly core stable mechanism on ℛl
N . Then, for each problem

R ℛl
N and the corresponding preference revelation game ( )R f RΓ ( ) = ℛ , ,f l

N , the set of strict
strong Nash equilibrium outcomes is a subset of the strict core, that is, f R(sNash(Γ ( )))f

RSC( )⊆ . Furthermore, there exist problems R ℛl
N such that f R R(sNash(Γ ( ))) SC( )f  .

We would like to emphasize that the strict core stability of f is key for this result. Clearly, if
for some preference profiles the strict core is empty, then a strictly core stable mechanism f

cannot exist. Thus, in this first result, we restrict the preference domain toℛl
N with the intent to

generalize Theorem 1 later on.

Proof. Let f be a strictly core stable mechanism on ℛl
N . First, let R ℛl

N and assume, by
contradiction, that f R R(sNash(Γ ( ))) SC( )f  . Let R′ ℛl

N be such that R R′ sNash(Γ ( ))f
and f R x R( ′) = SC( )∉ . Hence, x can be weakly blocked by a coalition S and there exists an
allocation y such that (1) for each i S and each t T , y o{ }i

t
j
t
j S

  , and (2′) for each i S ,
y R xi i i, and for some j S , y P xj j j.

Now we consider the profile ( )R Rˆ , ′ ℛS S l
N

−  such that each agent i S ranks
allotment yi as his best allotment; for each i S , we then have that R yˆ : , …,i i that is, each
agent i, for each object type t , ranks yi

t as best type‐t object. We want to show that
coalition S has an incentive to deviate from R′S to R̂S. To this end, we first prove the
following claim.

Claim 1. For each i S , we have ( )f R R yˆ , ′ =i S S i− .
Let ( )z f R R= ˆ , ′S S− . Suppose that for some agent j S , z yj j≠ . We show that z is not a

strict core allocation at ( )R Rˆ , ′S S− , that is, ( )z R RSC ˆ , ′S S−∉ .
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At ( )R Rˆ , ′S S− , for each agent i S , y R zˆi i i because yi is his best allotment. Since z yj j≠ ,

y P zˆj j j. Therefore, at ( )R Rˆ , ′S S− , allocation z can also be weakly blocked by coalition S via

allocation y. Thus, ( ) ( )f R R R Rˆ , ′ SC ˆ , ′S S S S− −∉ , which contradicts that f is strictly core

stable.
Strictly speaking, by Claim 1, we now only know that ( )f R R yˆ , ′ = ′S S− such that

y y′ =S S. However, since allotments to agents in N S⧹ play no role in our proof, it is

without loss of generality to assume that y y′ = . Hence, when coalition S deviates from

R′S to R̂S, by Claim 1 and without loss of generality, ( )f R R yˆ , ′ =S S− . Thus, since f R( ′) is

weakly blocked by S via y, for each i S , ( )f R R R f Rˆ , ′ ( ′)i S S i i− and for j S ,

( )f R R P f Rˆ , ′ ( ′)j S S j j− ; contradicting that R′ is a strict strong Nash equilibrium.

Example 2 exhibits a problem R ℛl
N such that f R R(sNash(Γ ( ))) SC( )f  (recall that

in Example 2 there is a unique strict strong Nash equilibrium outcome while multiple
strict core allocations exist). □

Remark 2 (Existence of strict strong Nash equilibria: an open problem). The existence of
(strict) strong Nash equilibria has been proven for specific classes of games, such as
congestion games (Holzman and Law‐Yone, 1997), cost‐sharing games (Epstein et al., 2009),
and continuously convex games (Nessah and Tian, 2014). However, in general, (strict) strong
Nash equilibria need not to exist.9

Question: Let f be a strictly core stable mechanism on ℛl
N . For each problem

R ℛl
N , do we have f R(sNash(Γ ( )))f ≠ ∅?

For Shapley–Scarf housing markets and the TTCmechanism, truth‐telling is a strict strong
Nash equilibrium. Thus, for higher‐dimensional multiple‐type housing markets, one could
conjecture that for fMTTC, MTTC allocations can always be implemented in strict strong Nash
equilibrium. Example 4 (Appendix A in the online supplementary materials) shows that the
MTTC allocation cannot always be implemented truthfully in strict strong Nash equilibrium:
an implementation of the MTTC allocation in strict strong Nash equilibrium might require
some agents to (possibly mutually) change their object type sequences. We neither found a
systematic way for agents to change their object type sequences to show existence of strict
strong Nash equilibria, nor did we manage to construct a counter‐example.

3.3 | A more general result

Note that the proof of Theorem 1 did not use many properties of the lexicographically separable
preference domain. It turns out that our result can easily be extended to other preference domains.
Consider a subdomain of preferences ℛ̂ ℛ⊆ that satisfies the following two assumptions.

9Hoefer and Skopalik (2013) pointed out the following technical difficulty of finding strong Nash equilibria: “a strong
Nash equilibrium must be the optimal solution of multiple non‐convex optimization problems.”
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Assumption 1 (Strict core existence and minimal preference domain richness). Preference
domain ℛ̂ ℛ⊆ satisfies:

(a) strict core existence if for each problem R ℛ̂
N , RSC( ) ≠ ∅; and

(b) minimal preference domain richness if for each allocation x X , each agent i can
position xi as his best allotment, that is, for each x X , there exists a profile R̂ ℛ̂

N
such that for each i N R x, ˆ : , ….i i

Assumption 1 is simple and reasonable. Assumption 1(a) allows us to focus on the solution
of the strict core, and for that the strict core should always be non‐empty. Assumption 1(b) is a
very weak preference domain richness condition that is different from the one used by Sönmez
(1999, Assumption B) and weaker than the one imposed by Takamiya (2009, Condition A). We
discuss the preference domain richness conditions of Sönmez (1999) and Takamiya (2009) in
Appendix C in the online supplementary materials.

Remark 3 (Preference domains satisfying Assumption 1). The domains of weak and strict
preferences for Shapley–Scarf housing markets and the lexicographically separable
preference domain for multiple‐type housing markets all satisfy Assumption 1. There are
various larger lexicographic domains, for example, those of Monte and Tumennasan
(2015; generalized lexicographical preferences) and Sikdar et al. (2017; lexicographical
preferences), that satisfy Assumption 1. Hence, our Theorem 1 applies to these settings as
well (see the following Theorem 2).

We now show that Theorem 1 can be extended to any preference domain ℛ̂ ℛ⊆ satisfying
Assumption 1.

Theorem 2. Let ℛ̂ satisfy Assumption 1 and let f be a strictly core stable mechanism on
ℛ̂

N
. Then, for each problem R ℛ̂

N and the corresponding preference revelation game
R f RΓ ( ) = (ℛ̂ , , )f

N
, the set of strict strong Nash equilibrium outcomes is a subset of the strict

core, that is, f R R(sNash(Γ ( ))) SC( )f ⊆ . Furthermore, there exist problems R ℛ̂
N such

that f R R(sNash(Γ ( ))) SC( )f  .

Proof. The proof is the same as that of Theorem 1 since in that proof the only properties
of the preference domain that were (implicitly) used were strict core existence and
minimal domain richness. □

We discuss the role that assumptions in Theorems 1 and 2 play in Appendix B in the online
supplementary materials.

4 | CONCLUSION

We consider multiple‐type housing market problems when agents have lexicographically se-
parable preferences ℛl; or alternatively, preferences are drawn from a preference domain ℛ̂
that guarantees strict core existence and that satisfies a minimal preference domain richness
condition (see Assumption 1). We show that if a mechanism is strictly core stable, then any
strict strong Nash equilibrium outcome of its corresponding preference revelation game is a
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strict core allocation (Theorems 1 and 2). The converse statement is not true, that is, there exist
problems with strict core allocations that cannot be implemented in strict strong Nash equi-
librium (Example 2). We also demonstrated the necessity of two crucial assumptions (strict core
non‐emptiness and strict core stability of mechanisms) in our results (Examples 5 and 6 in the
online supplementary materials).

Comparing our results to Takamiya's result for Shapley–Scarf housing markets, Corollary 1
(see Appendix C in the online supplementary materials for the generalized individual goods
allocation model considered in Takamiya, 2009), our results (Theorems 1 and 2) have two
differences with respect to his main result.

First, we show that not all strict core allocations may be implementable through strict
strong Nash equilibria of the preference revelation game, while Takamiya (2009) showed full
implementation for Shapley–Scarf housing markets. The main reason for our partial im-
plementation versus his full implementation result is that our preference domains are less rich
than the ones he considers. Neither separable nor lexicographically separable preferences sa-
tisfy Takamiya's preference domain richness condition (Takamiya, 2009, Condition A, see
Appendix C in the online supplementary materials). For example, for multiple‐type housing
market problems with lexicographically separable preferences, no agent can protect an allot-
ment by positioning it as his first best and his endowment as his second best allotment
(an argument that is crucial in Takamiya's proof).

Second, we require strict core stability for our mechanisms while Takamiya (2009) only
required individual rationality and Pareto efficiency. In Takamiya's model, each agent only
demands one object. Thus, each agent will trade within only one coalition. Therefore, once the
induced allocation (the equilibrium outcome) is individually rational and Pareto efficient, no
coalition can block it.10 However, the same is not true for multiple‐type housing market
problems because each agent may trade different objects with different coalitions. That is, a
multiple‐type housing market problem cannot be easily transformed into a coalition forma-
tion game.
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