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Abstract

Security information sharing (SIS) is an activity whereby individuals exchange information that is

relevant to analyze or prevent cybersecurity incidents. However, despite technological advances

and increased regulatory pressure, individuals still seem reluctant to share security information.

Few contributions have addressed this conundrum to date. Adopting an interdisciplinary

approach, our study proposes a behavioral framework that theorizes how and why human behav-

ior and SIS may be associated. We use psychometric methods to test these associations, analyzing

a unique sample of human Information Sharing and Analysis Center members who share real se-

curity information. We also provide a dual empirical operationalization of SIS by introducing the

measures of SIS frequency and intensity. We find significant associations between human

behavior and SIS. Thus, the study contributes to clarifying why SIS, while beneficial, is underutil-

ized by pointing to the pivotal role of human behavior for economic outcomes. It therefore extends

the growing field of the economics of information security. By the same token, it informs managers

and regulators about the significance of human behavior as they propagate goal alignment and

shape institutions. Finally, the study defines a broad agenda for future research on SIS.

Key words: security information sharing; psychometrics; economics of information security; behavioral economics, behavioral

psychology

Introduction

Security information sharing (SIS) is an activity whereby individuals ex-

change information that is relevant to analyze or prevent cybersecurity

incidents. Such information includes, but is not limited to, the identifi-

cation of information system vulnerabilities, phishing attempts, mal-

ware, and data breaches, as well as results of intelligence analysis, best

practices, early warnings, expert advice, and general insights [67].

Prior research has proposed that SIS makes every unit of security

investment more effective, such that individuals can reduce invest-

ments dedicated to generate cybersecurity in their organization. As a

result of these individual improvements, total welfare is also likely

to increase [41, 47]. Hence, SIS likely contributes to strengthening

the cybersecurity of firms, critical infrastructures, government, and

society [19, 45, 46, 48, 54].

However, these theoretical expectations hardly seem to material-

ize. Recent contributions have noted that SIS is at suboptimal levels,

implying negative consequences for the cybersecurity of organizations

and society [19]. Game-theoretic simulation suggests that individuals

may free-ride on the information provided by others while not sharing

any information themselves [47, 55]. Researchers and international
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organizations have been warning for years that individuals seem reluc-

tant to share security information, although the technical infrastruc-

ture for information exchange does exist [32, 33, 47, 73]. Legislators

have attempted to resolve this problem by creating regulation that

makes SIS mandatory.1 However, reviews suggest that despite these

attempts, individuals still seem reluctant to share security information

[16, 44, 72, 103]. They may even ‘game’ the system in an attempt to

circumvent regulation [5, 71, 72].

All these findings imply that human behavior may be significantly

associated with the extent to which SIS occurs (if at all). It is therefore

not surprising to see recent work emphasizing that the study of human

behavior is key to the understanding of SIS [19]. More specifically, this

work predicts that SIS can only be imperfectly understood unless the

human motivation to (not) participate in SIS is studied [53, 65, 98].

However, few contributions have addressed this research gap to

date. Since an excellent account of the SIS literature exists [64], we re-

frain from replicating this account here. We rather point to the fact that

this account shows that very few empirical studies on non-public SIS

exist. These few studies concentrate on analyzing incident counts and ag-

gregate data, but they do not study human behavior at the individual

level of analysis (see Ref. [64] for a tabulated overview).

Our study intends to address this gap by proposing how and why

human behavior and SIS may be associated, and by providing an em-

pirical test of this association. Following prior recommendations [6],

we adopt an interdisciplinary approach. Recently, interdisciplinary

studies were productive in showing the extent to which human behav-

ior is associated with knowledge sharing [87, 106].

We build a theoretical framework anchored in behavioral theory,

arguing that SIS is associated with human behavior. We use psychomet-

ric methods to test these associations, analyzing a unique sample of 262

members of an Information Sharing and Analysis Center (ISAC) who

share real security information. The remainder of this article is struc-

tured as follows. Section 2 develops the behavioral framework and

deducts testable hypotheses from this framework. Section 3 details the

sampling context, measures, and empirical methods. The results are

explained in Section 4. Section 5 discusses both the theoretical, empiric-

al, and practical contributions our study makes and points to some limi-

tations of our approach that open up paths for future research.

Theoretical Framework and Hypotheses

Behavioral research relativized some of the strong formal assump-

tions that neoclassical economics had ascribed to human behavior,

particularly those of rationality, perfect information, and selfish util-

ity maximization (“homo oeconomicus”). In contrast, it showed

that human beings have bounded instead of perfect rationality. They

often violate social expectations, have limited information-process-

ing capacity, use heuristics when making decisions, are affected by

emotion while doing so, and retaliate even if the cost of retaliation

exceeds its benefits [13, 27, 37, 58, 59, 89].

Moreover, humans do not necessarily maximize higher level (i.e.

organizational, societal) goals, even if it would be economically ra-

tional for them to do so. Theoretical work on SIS has suggested early

that individual and organizational interests may not always be

aligned and that the individual is not necessarily an indifferent agent

[42]. Goal-framing theory suggests that individual goals may not ne-

cessarily be congruent with higher level goal frames, implying that

the individual can defect from organizational maximization goals

[66]. Particularly in the case of collective action, the individual may

behave in ways that are not conducive to the overall group goal

[78, 79]. For the context of SIS, this research implies that individual-

ly, humans might not necessarily participate in SIS although it would

be optimal to do so for society as a whole.

Particularly, human exchange relationships are not necessarily char-

acterized by rational economic optimization, but instead by human

expectations about fairness, reciprocity, and trust [36, 37, 39, 68].

Therefore, the argument can be made that SIS may be associated with

human behavior. Indeed, prior research argues that the understanding

of SIS requires an analysis of what behavior may motivate humans to

participate in SIS and what may deter them from doing so [8, 10].

Human behavior is the result of human motivation, intention,

and volition. It manifests itself in goal-directed (i.e. nonrandom) and

observable actions [90, 93, 102]. Sharing information implies

human action from at least the side of the individual who shares.

Moreover, SIS constitutes an economic transaction by which know-

ledge resources are shared, rather than acquired [17]. Hence, SIS dif-

fers from discrete arm’s length transactions, whereby a single

individual simply trades financial means for access to information.

Instead, SIS is characterized by continued social interaction among

many individuals who mutually exchange information assets [106].

Therefore, humans are unlikely to randomly participate in SIS,

such that SIS does not occur “naturally.” Hence, theorizing is

required regarding how and why human behavior may be associated

with SIS. Applying prior behavioral research to our research con-

text, we develop testable hypotheses about five salient constructs

which may be associated with SIS. In all of these hypotheses, our

focal individual is an indifferent individual who, independently of

the motives of other individuals, ponders whether or not to partici-

pate in SIS. We believe this perspective is conservative and condu-

cive to empirical analysis since it neither requires assumptions about

the behavior of other individuals nor a dyadic research setting.

Attitude
Behavioral theory suggests that attitudes have a directive influence

on human behavior [1]. Attitude is a psychological tendency that is

expressed by evaluating a particular entity with some degree of favor

or disfavor [30]. Hence, an individual’s favorable or unfavorable at-

titude towards a particular behavior predicts the extent to which

this behavior actually occurs [2, 3].

Much empirical work has confirmed and detailed this attitude–

behavior link, particularly in the context of information systems

adoption and intention to use (see Refs [14] and [62] for extensive lit-

erature reviews). More specifically, this attitude-behavior link influ-

ences individuals’ intention to share knowledge [17]. Moreover, an

affirmative attitude towards knowledge sharing positively influences

participation rates [87]. Descriptive work has conjectured (though

not tested or confirmed) that individual attitudes about the meaning-

fulness of SIS might be associated with actual participation in SIS

[32]. Therefore, if the focal individual has a positive attitude towards

SIS, s/he should be more likely to participate in SIS. Therefore,

H1: SIS is positively associated with the extent to which the focal

individual has a positive attitude towards SIS.

1 For example, the USA created the 2002 Sarbanes-Oxley Act and the

2015 Cybersecurity Information Sharing Act (CISA). The Health

Insurance Portability and Accountability Act (HIPAA) requires organiza-

tions to report breaches of protected health information (PHI) to the U.S.

Department of Health and Human Services (HHS). In December 2015,

the European Parliament and Council agreed on the first EU-wide legisla-

tion on cybersecurity by proposing the EU Network and Information

Security (NIS) Directive.
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Reciprocity
Behavioral theory suggests that human behavior is characterized by

inequity aversion [39]. As they socially interact with others, humans

expect to receive equitable compensation whenever they voluntarily

give something to others, and they punish those unwilling to give

something in return [22, 95]. Hence, when humans are treated in a

particular way, they reciprocate, that is, they respond likewise [36].

As a result, reciprocity is a shared behavioral norm among human

beings that governs their social cooperation [38, 50].

Economic exchange relationships are therefore shaped by the

reciprocity expectations of the participants involved in this exchange

[61]. In such relationships, reciprocity is a dominant strategy that is

conducive to a socially efficient distribution of resources [7, 20].

Therefore, the extent to which the focal individual participates in in-

formation exchange is likely associated with that individual’s ex-

pectation that his/her efforts are reciprocated.

For example, reciprocal fairness is an important variable in the

design of peer selection algorithms in peer-to-peer networks. By inte-

grating reciprocal response patterns such as “tit-for-tat,” operators

can optimize peer-to-peer traffic [101]. The value of a unit of secur-

ity information is proportional to the incremental security enhance-

ment that this unit is supposed to provide to the recipient [18, 49].

Hence, whenever the focal individual shares such information units,

it creates value for the counterparty. By the above arguments, the

focal individual likely refuses to participate in future exchanges un-

less such value creation is reciprocated by the counterparty.

On the one hand, the focal individual may expect that informa-

tion sharing is reciprocated by “hard rewards,” that is, in monetary

terms, by a higher status inside the ISAC or his or her own organiza-

tion, or in terms of career prospects (transactional reciprocity). On

the other hand, the focal individual may also expect that whenever

s/he shares a unit of information, s/he receives useful information in

return, such that a continuous social interaction that is beneficial to

both parties emerges (social reciprocity). Prior research suggests that

both these types of reciprocity are associated with information ex-

change patterns between individuals [63, 80, 88]. Therefore,

H2a: SIS is positively associated with the extent to which the

focal individual expects his or her information sharing to be

transactionally reciprocated.

H2b: SIS is positively associated with the extent to which the

focal individual expects his or her information sharing to be so-

cially reciprocated.

Executional Cost
Behavioral theory suggests that humans are loss-averse, that is, they

attempt to avoid economic losses more than they attempt to realize

economic benefits. Much experimental research has confirmed this

tendency [58, 59, 92, 96, 97].

An economic exchange relationship can be fraught with signifi-

cant transaction cost, i.e. the time, material, and financial resources

that the focal individual must commit before an exchange is made

[104]. Hence, if SIS is associated with high transaction costs for par-

ticipation, the focal individual is likely to avoid the necessary re-

source commitments to finance this cost. For example, Ref. [106]

argue that when knowledge contribution requires significant time,

sharing tends to be inhibited. Consistent with their conceptualiza-

tion, we term such transaction costs “executional cost.”

As a result, in the presence of high executional cost, the focal in-

dividual likely adapts his or her behavior in an attempt to avoid

these costs. For instance, if the focal individual learns that in a given

ISAC environment, SIS is taking too much time, is too laborious, or

requires too much effort, the individual likely reduces or terminates

participation in SIS [67]. For example, an abundance of procedural

rules that govern the processing and labelling of shared information

and the secure storage and access to shared data likely stalls infor-

mation sharing activity [33]. Thus, high executional cost likely dis-

suades the focal individual from participating in SIS. Therefore,

H3: SIS is negatively associated with the extent to which the focal

individual expects information sharing to be fraught with execu-

tional cost.

Reputation
Behavioral theory suggests that humans deeply care about being rec-

ognized and accepted by others [11, 15]. Many philosophers have

argued that the desire for social esteem fundamentally influences

human behavior and, as a result, economic action [21].

Depending on the outcomes of particular social interactions with

other individuals, the focal individual earns or loses social esteem.

Hence, over time each individual builds a reputation, that is, a socially

transmitted assessment by which other individuals judge the focal indi-

vidual’s social esteem [31, 69]. For example, academic researchers strive

to increase the reputation of their department by publishing scholarly

work [60]. The desire to earn a reputation as a competent developer is a

strong motivator for individuals to participate in open source software

development although they receive no monetary compensation for the

working hours they dedicate to this development [99].

When this reasoning is transferred to the context of SIS, the focal

individual may be inclined to share information because s/he hopes

to build or improve his or her reputation among the other partici-

pants of SIS. Prior research suggests that this desire constitutes an

extrinsic motivation that may be associated with an individual’s in-

tention to share information [25, 81], and intention is a precursor of

behavior. Therefore,

H4: SIS is positively associated with the extent to which the focal

individual expects information sharing to promote his or her

reputation in the sharing community.

Trust
Behavioral theory suggests that humans simplify complex decision-

making by applying heuristics [82, 97], particularly when they attempt

to reduce the cost of information acquisition and valuation [40].

Whenever a focal individual is unable or unwilling to object-

ively evaluate information conveyed by other individuals, s/he

likely resorts to heuristics to simplify the evaluation process [24].

In the context of SIS, this implies that whenever the focal individ-

ual receives security information from another individual, s/he

cannot necessarily be sure about the extent to which (if any) this

information is valuable or useful. This assessment is associated

with significant transaction cost, for example, for due diligence

procedures that attempt to value the information received. The in-

dividual may also lack technological competence and expertise,

such that time-consuming discussions with experts are required

for proper valuation. All in all, upon the receipt of a particular

unit of information, the focal individual is faced with a complex

valuation problem which s/he may seek to simplify by applying

heuristics.

Trust is an implicit set of beliefs that the other party will behave

in a reliable manner [43]. This set of beliefs is a particularly effective

heuristic because it can reduce the transaction cost associated with

this valuation. If the focal individual trusts the information received
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is useful and valuable, s/he can simplify evaluation procedures, and

particularly so if the involved individuals interact in dense networks

with agreed standards of behavior. Therefore, trust is a facilitator of

economic organization and interaction [51, 70]. For example, mu-

tual trust among the participants of peer-to-peer networks can re-

duce transactional uncertainty [105]. Moreover, trust can mitigate

information asymmetry by reducing transaction-specific risks [9]. It

is also a significant predictor of participation in virtual knowledge

sharing communities [86].

Such trust, in turn, is positively associated with knowledge shar-

ing in both direct and indirect ways [56], whereas distrust is an obs-

tacle to knowledge sharing [4]. More specifically, trust is a

facilitator in information security knowledge sharing behavior [87].

Thus, the extent to which the focal individual trusts the information

s/he receives is valuable should be positively associated with his or

her propensity to participate in SIS. Therefore,

H5: SIS is positively associated with the extent to which the focal

individual trusts that the counterparty provides valuable

information.

Interaction Effects
By consequence, we suggest that trust negatively moderates the asso-

ciations between attitude and reciprocity on the one hand and SIS

on the other hand. We argued that trust is a facilitator of economic

exchange. In other words, trust likely reduces the focal individual’s

perceived cost of engaging in SIS, in that s/he requires fewer or lesser

alternative stimuli [66]. A neutral focal individual who has not par-

ticipated in SIS before is unlikely to participate unless s/he has a

positive attitude towards SIS. That individual must hence construct

the meaningfulness of SIS “internally,” that is, convince him- or her-

self that SIS is useful. By contrast, if the focal individual trusts that

the information s/he receives will be useful, s/he uses the counter-

party to “externally” confirm such meaningfulness of SIS. The pro-

cess of the internal construction of the meaningfulness of SIS is

therefore at least partially substituted by the external, trust-based af-

firmation of such meaningfulness. We would hence expect that the

significance of the association between attitude and SIS decreases

with the extent to which the focal individual trusts the information

s/he receives will be useful.

By the same token, since trust is a facilitator of economic ex-

change, it likely reduces the association between reciprocity and SIS.

An indifferent focal individual cannot be completely sure about the

behavior of the exchange counterparty, such that s/he requires con-

tinuous transactional or social reciprocity for SIS to perpetuate the

exchange. In the absence of any trust that the information received

is useful, SIS likely ends as soon as this reciprocity requirement is no

longer met. In contrast, whenever the focal individual trusts that the

information s/he receives will be useful, s/he has a motive to partici-

pate in SIS that is independent of such reciprocity concerns. Hence,

trust is likely to act at least partially as a substitute for reciprocity,

such that the focal individual should emphasize to a lesser extent

that reciprocity will be required if s/he is expected to begin or per-

petuate SIS. Therefore,

H6a–c: The extent to which the focal individual trusts that infor-

mation received from the counterparty is effective negatively

moderates the respective positive associations between attitude,

transactional, and social reciprocity on the one hand and SIS on

the other hand.

Methods

Sampling Context and Population
Our study focused on the 424 members of the closed user group of

the Swiss national ISAC, the “Reporting and Analysis Centre for

Information Assurance” (MELANI-net). An ISAC is an organization

that brings together cybersecurity managers in person to facilitate

SIS between operators of critical infrastructures. For a general intro-

duction to the concept of an ISAC, see Ref. [107]. For some illustra-

tive examples of ISACs across different countries, see Ref. [34]. For

a detailed description of MELANI-net, its organization, and history,

see Ref. [29]. The ISAC we study is organized as a public-private

partnership between the government and private industry; it oper-

ates on a not-for-profit basis. Membership in MELANI-net is volun-

tary. In Switzerland, there is no regulation that makes SIS

mandatory; hence, individuals are free to share or not share infor-

mation, and they can also control the group of individuals with

whom they want to share the information. This implies our study

design can capture the full range of human behavior from perfect co-

operation to total refusal.

The members of the closed user group are all senior managers in

charge of providing cybersecurity for their respective organizations.

They come from both private critical infrastructure operators and

from the public sector. They have to undergo government identifica-

tion and clearance procedures as well as background checks before

being admitted for ISAC membership. They share classified, highly

sensitive information the leaking or abuse of which may cause sig-

nificant economic damage. There is no interaction of these members

with the public whatsoever, and no external communication to the

public or any publication of SIS results is made. For all of these

members, the exchange of SIS can be assumed to be relevant, as they

manage critical infrastructures that are ultimately all connected and

operate with similar IT systems, such that cybersecurity problems

that relate to any particular individual are likely of interest to other

participants too.

Within this closed user group, individuals can contact each other

by an internal message board whenever a particular individual has

shared information about a threat that is of interest to other mem-

bers. They do so by commenting on the initial information shared in

order to establish a first contact, which then leads to further social

exchange between the two individuals. Once contact is made by a

short reply to the threat information, the individuals involved in the

conversation meet on their own initiative to share detailed security

information between them (e.g. informally over lunch, in group

meetings, or small industry-specific conferences, but always face-to-

face). Each individual decides for him- or herself if s/he wants to

meet, with whom, and in what form. They also freely decide about

the extent of the information shared (if any). MELANI-net officials

neither force nor encourage individuals to interact; both in terms of

social interaction in general and regarding the sharing of any par-

ticular unit of information.

Measures
Our study analyzes human behavior on the individual level of ana-

lysis. We therefore chose a psychometric approach to operationalize

our constructs [77]. We adopted psychometric scales from the ex-

tant literature wherever possible and kept specific adaptions to our

population context to a minimum. Table 1 explains and details all

variables, their item composition and wording (if applicable),

dropped items (if any), factor loadings, and Cronbach alphas and

cites the sources they were taken from.
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SIS is operationalized dually by the two constructs “frequency”

and “intensity.” Intensity measures the extent to which the focal in-

dividual reacts to any threat information shared by another individ-

ual and thus begins social interaction with that other individual.

Intensity is thus a reactive measure of how intensely the focal indi-

vidual engages in knowledge sharing with others upon being

informed of a threat.2 Since information sharing is not mandatory,

this measure captures the individual’s free choice to (not) engage in

exchange relationships with other individuals. In contrast, frequency

is a proactive measure; it captures how often an individual shares se-

curity information that s/he possesses him- or herself.

To capture respondent heterogeneity, we controlled for gender,

age, and education level. Further, we controlled for the individual’s

ISAC membership duration in years, because a respondent’s sharing

activity may co-evolve with the length of ISAC membership.

“Gender” was coded dichotomously (male, female). “Age” was cap-

tured by four mutually exclusive categories (21–30, 31–40, 41–50,

50þ years). “Education” was captured by six mutually exclusive

categories (none, bachelor, diploma, master, PhD, other). We also

controlled for the industry affiliation of the organization that the in-

dividual represents and combined these into five categories (govern-

ment, banking and finance, energy, health, telecom and IT, all

others).

Implementation
Data for all variables were collected from individual respondents by

a questionnaire instrument. We followed the procedures and recom-

mendations of Ref. [28] for questionnaire design, pre-test, and im-

plementation. Likert-scaled items were anchored at “strongly

disagree” (1) and “strongly agree” (5) with “neutral” as the mid-

point. Categories for the measure “intensity” were ordered

hierarchically.

The questionnaire was developed as a paper instrument first. It

was pre-tested with seven different focus groups from academia and

the cybersecurity industry.3 Feedback obtained was used to improve

the visual presentation of the questionnaire and to add additional

explanations. This feedback also indicated that respondents could

make valid and reliable assessments.

Within the closed user group, both MELANI-net officials and

members communicate with each other in English. Switzerland has

four official languages, none of which is English, and all constructs

we used for measurement were originally published in English. We

therefore chose to implement the questionnaire in English to rule

out any back-translation problems. Before implementation, we con-

ducted pre-tests to make sure respondents had the necessary lan-

guage skills. The cover page of the survey informed respondents

about the research project and our goals and also made clear that

we had no financial or business-related interest.

The paper instrument was then implemented as a web-based sur-

vey using “SelectSurvey” software provided by the Swiss Federal

Institute of Technology Zurich. For reasons of data security, the sur-

vey was hosted on the proprietary servers of this university. The

management of MELANI-net invited all closed user group members

to respond to the survey by sending an anonymized access link, such

that the anonymity of respondents was guaranteed at all times.

Respondents could freely choose whether or not to reply. As a re-

ward for participation, respondents were offered a research report

free of charge that summarized the responses. Respondents could

freely choose to save intermediate questionnaire completions and re-

turn to the survey and complete it at a later point in time.

The online questionnaire and the reminders were sent to the

population by the Deputy Head of MELANI-net together with a let-

ter of endorsement. The survey link was sent in an e-mail describing

the authors, the data, contact details for IT support, the offer of a

free report, and the scope of our study. Data collection began on 12

October 2017 and ended on 1 December 2017. Two reminders were

sent on 26 October and 9 November 2017. Of all 424 members,

262 had responded when the survey was closed for a total response

rate of 62%.

Analysis
Upon completion of the survey, sample data were exported from the

survey server, manually inspected for consistency and then con-

verted into a STATA dataset (Vol. 15) on which all further statistical

analysis was performed. Post-hoc tests suggested no significant influ-

ence of response time on any measure. There was no significant

overrepresentation of individuals affiliated with any particular or-

ganization, suggesting no need for a nested analytical design.

We performed principal component factor analysis with oblique

rotation on all items. Validity was tested by calculating item-test,

item-rest, and average inter-item correlations. Reliability was meas-

ured by Cronbach alpha. High direct factor-loadings and low cross-

loadings indicate a high degree of convergent validity [52]. The final

matrix suggested seven factors with an eigenvalue above unity. The

first factor explained 14.56% of the total variance, suggesting the

absence of significant common method variance in the sample [84].

The detailed factor-loadings and their diagnostic measures are given

in Table 2. Upon this analysis, three items were dropped (viz.

Table 1) because they had low direct and high cross factor loadings.

Finally, for any scale, individual item scores were added, and this

sum was divided by the number of items in the scale [85, 94].

The construct intensity is ordered and categorical, therefore we

estimated ordered probit models. A comparison with an alternative

ordered logit estimation confirmed the original estimations and indi-

cated the ordered probit model fit the data slightly better. The con-

struct frequency is conditioned on values between 1 and 5, therefore

we estimated Tobit models. Both models were estimated with robust

standard errors to neutralize any potential heteroscedasticity.

Consistent with the recommendation of Ref. [26], we incrementally

built all models by entering only the controls in a baseline model

first, then added the main effects, and finally entered the interaction

effects. In both estimations, we mean centered the measures before

entering them into the analysis. Model fit was assessed by repeated

comparisons of Akaike and Bayesian information criteria between

different specifications. Since all the categorical controls age, educa-

tion and industry are exhaustive and hence perfectly collinear, Stata

automatically chose a benchmark category for each of these (cf.

footnotes b to Tables 5 and 6).

2 The measure intensity is ordered and categorical in that it asks respond-

ents to provide an estimate rather than an exact percentage figure. We

preferred this approach in order to give respondents an opportunity to

provide an estimate, such that they would not be deterred by the need to

provide an exact figure. We also captured an alternative measure of in-

tensity by a Likert scale, but found that models with the ordered

categorical measure fit the data better. We also contrasted the Tobit

model that used the scale-based measure for frequency with an alterna-

tive ordered probit model that used a categorical specification of that

variable, but found that the former model fit the data much better.

3 Further detailed information about these pre-tests is available from the

corresponding author.

Journal of Cybersecurity, 2019, Vol. 5, No. 1 5

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article-abstract/5/1/tyz006/5554880 by U

niversite and EPFL Lausanne user on 31 August 2019



Table 1: Constructs, items, and scales used in the survey

Measures

(source)

Type Item Text Factor

loading

Cronbach

alpha

SIS constructs

Intensity of SIS (novel) Ordered

categorical

measure

n/a How often do you comment on shared information?
• Never
• Rarely, in less than 10% of the chances when I could have
• Occasionally, in about 30% of the chances when I could have
• Sometimes, in about 50% of the chances when I could have
• Frequently, in about 70% of the chances when I could have
• Usually, in about 90% of the chances I could have
• Every time

n/a n/a

Frequency of SIS [87] Likert scale ISKS1 I frequently share my experience about information security with

MELANI

0.8075 0.8945

ISKS2 I frequently share my information security knowledge with MELANI 0.8903

ISKS3 I frequently share my information security documents with MELANI 0.8850

ISKS4 I frequently share my expertise from my information security training

with MELANI

0.8600

ISKS5 I frequently talk with others about information security incidents and

their solutions in MELANI workshops

0.6898

Behavioral constructs

Attitude [87] Likert scale AT1 I think SIS behavior is a valuable asset in the organization Dropped 0.6761

AT2 I believe SIS is a useful behavioral tool to safeguard the organization’s

information assets

0.7751

AT3 My SIS has a positive effect on mitigating the risk of information se-

curity breaches

0.6376

AT4 SIS is a wise behavior that decreases the risk of information security

incidents

0.7849

Transactional reciprocity [100] Likert scale HR1 I expect to be rewarded with a higher salary in return for sharing

knowledge with other participants

0.8822 0.7956

HR2 I expect to receive monetary rewards (i.e. additional bonus) in return

for sharing knowledge with other participants

0.8743

HR3 I expect to receive opportunities to learn from others in return for

sharing knowledge with other participants

Dropped

HR4 I expect to be rewarded with an increased job security in return for

sharing knowledge with other participants

0.7499

Social reciprocity [63] Likert scale NOR1 I believe that it is fair and obligatory to help others because I know

that other people will help me some day

Dropped 0.8003

NOR2 I believe that other people will help me when I need help if I share

knowledge with others through MELANI

0.8464

NOR3 I believe that other people will answer my questions regarding specif-

ic information and knowledge in the future if I share knowledge with

others through MELANI

0.8714

NOR4 I think that people who are involved with MELANI develop recipro-

cal beliefs on give and take based on other people’s intentions and

behavior

0.6946

Executional cost [106] Likert scale EC1 I cannot seem to find the time to share knowledge in the community 0.6964 0.7882

EC2 It is laborious to share knowledge in the community 0.6950

EC3 It takes me too much time to share knowledge in the community 0.8626

EC4 The effort is high for me to share knowledge in the community 0.7913

Reputation [106] Likert scale R1 Sharing knowledge can enhance my reputation in the community 0.6312 0.6996

R2 I get praises from others by sharing knowledge in the community 0.6890

R3 I feel that knowledge sharing improves my status in the community 0.7922

R4 I can earn some feedback or rewards through knowledge sharing that

represent my reputation and status in the community

0.7039

Trust [87] Likert scale TR1 I believe that my colleague’s information security knowledge is

reliable

0.7510 0.8598

TR2 I believe that my colleague’s information security knowledge is

effective

0.8688

TR3 I believe that my colleague’s information security knowledge miti-

gates the risk of information security breaches

0.8460

TR4 I believe that my colleague’s information security knowledge is useful 0.8039

TR5 I believe that my colleagues would not take advantage of my infor-

mation security knowledge that we share

Dropped
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Results

Table 3 provides descriptive statistics for all variables. Table 4 speci-

fies Spearman correlations; for the sake of brevity, correlates for

controls are omitted. Tables 5 and 6 document all models and their

respective diagnostic measures. Since we handled missing data con-

servatively by list-wise deletion, the sample size of the respective

models is smaller than that of the full sample.

H1 is partially supported. A positive attitude towards SIS is posi-

tively associated with the intensity (P<0.05), but not with the fre-

quency of SIS. This may suggest that whenever the focal individual

believes SIS is an effective activity, his or her behavior is responsive

to information shared by other individuals.

H2a is fully supported. Social reciprocity is associated with both

the intensity (P<0.01) and the frequency of SIS (P<0.05). This

finding is in line with our theoretical expectation that individuals

seek equitable exchange relationships in which cooperative behavior

is rewarded. Future research may explore such social interaction

over time with a dyadic research setting, studying how exchange

patterns of repeated reciprocation develop over time.

H2b is partially supported. Transactional reciprocity is associ-

ated with the frequency of SIS (P<0.01), but not with its intensity.

This may imply that transactional rewards such as bonuses or pro-

motion motivate individuals to share knowledge they already pos-

sess with others in order to signal a high level of productive activity

vis-à-vis their superiors.

H3 is fully supported. Consistent with our theoretical expect-

ation, executional cost is negatively associated with both the fre-

quency (P<0.05) and the intensity (P<0.001) of SIS. This not only

signals that executional cost constitutes a form of transaction cost

that may deter individuals from sharing, as we hypothesized. The

negative association with intensity is much stronger, suggesting that

the negative association of executional cost is larger when the focal

individual reacts to information shared by others. In other words, in

the presence of high executional cost, individuals seem to be pun-

ished for reacting. Since our research design only accounted for the

presence of executional cost, more research is required to identify

the institutional or organizational sources of this cost.

H4 is not supported. Contrary to what we hypothesized, we

find no support for the claim that an individuals’ expectation to in-

crease his or her status or social esteem is associated with SIS. Our

measure of reputation is neither significantly associated with the in-

tensity nor with the frequency of SIS. This negative result may be

due to the fact that Ref. 106 introduced their measure of reputation

(which we use in our empirical study) in the context of public know-

ledge sharing among private individuals who vie for public social es-

teem. In contrast, we study a population of security professionals in

the context of a private setting in which sensitive and classified in-

formation is shared. This may imply that, insofar as security infor-

mation sharing is concerned, future research should propose

alternative measures of reputation that are congruent with this

context.

Table 2: Final set of factor loadings after oblique rotationa

Item Loading on oblimin-rotated factor Uniqueness

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

ISKS1 0.8075 0.27

ISKS2 0.8903 0.19

ISKS3 0.885 0.20

ISKS4 0.86 0.21

ISKS5 0.6898 0.44

AT2 0.7751 0.32

AT3 0.3412 0.6376 0.38

AT4 0.7849 0.31

NOR2 0.8464 0.23

NOR3 0.8714 0.18

NOR4 0.6946 0.36

HR1 0.8822 0.16

HR2 0.8743 0.19

HR4 0.7499 0.41

EC1 0.6964 0.49

EC2 0.695 0.45

EC3 0.8626 0.21

EC4 0.7913 0.32

R1 0.6312 0.49

R2 0.689 0.51

R3 0.7922 0.29

R4 0.7039 0.44

TR1 0.751 0.36

TR2 0.8688 0.21

TR3 0.846 0.26

TR4 0.8039 0.29

Eigenvalue 3.786 2.951 2.502 2.329 2.24 2.142 1.851

Proportion of

variance explained (%)

14.56 11.35 9.62 8.96 8.62 8.24 7.12

Cumulative

variance explained (%)

14.56 25.91 35.53 44.49 53.11 61.34 68.46

aBlank cells represent factor loadings smaller than 0.30.
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H5 is partially supported. The extent to which the focal individ-

ual trusts the information received will be useful is positively associ-

ated with the frequency (P<0.01), but not with the intensity of SIS.

This may imply that a focal individual who has such trust would be

more willing to share knowledge s/he already possesses. In this re-

spect, more research is required regarding the relationship between

initial trust among individuals and the evolution of such trust as ex-

change relationships unfold.

As regards the interaction effects, we find that H6a is partially

supported. The extent to which the focal individual trusts the infor-

mation received will be useful negatively moderates the relationship

between attitude and the intensity (P<0.05), but not the frequency

of SIS. This may imply that trust can function as a partial substitute

for attitude, in that the focal individual needs to convince him- or

herself to a lesser extent that SIS is useful in general if that individual

trusts the particular information s/he is about to receive is useful.

H6b is not supported. The extent to which the focal individual

trusts the information received will be useful neither moderates the

positive association of social reciprocity with the intensity of SIS nor

that with the frequency of SIS. This may imply that, unlike in the

above case for H6a, the focal individual’s trust that any particular

unit of information is useful cannot function as a substitute for the

importance of social reciprocity in the exchange relationship as

such.

H6c is fully supported. The extent to which the focal individual

trusts the counterparty provides valuable information negatively

moderates both the association of transactional reciprocity with the

frequency (P<0.01) and with the intensity (P<0.05) of SIS. In line

with our theoretical reasoning, this result may suggest that trust can

help the focal individual to convince him- or herself that the ex-

change relationship is equitable (since the information s/he is about

to receive is trusted to be useful), such that the focal individual has

to rely less on the expectation that s/he will be compensated by mon-

etary or career benefits whenever s/he participates in exchange

relationships.

Finally, the fact that we find partial support for H1, H2b, H5,

and H6a suggests that a differentiation of the theoretical construct

SIS into different measurement constructs is productive. Future re-

search may further develop the measures of frequency and intensity

we have proposed here or develop yet other detailed

operationalizations.

As regards our control variables, we find no significant associ-

ation of respondents’ demographic heterogeneity, length of member-

ship in MELANI-net, or industry affiliation with SIS. The latter

non-finding also alleviates concerns of overrepresentation of a par-

ticular industry or firm among the responses. For the controls “age,”

“industry,” and “education,” a benchmark category was automatic-

ally selected during estimation for every control (viz. footnotes b to

Tables 5 and 6).

The only significant association we find relates to the control

“education” in the model for the frequency of SIS. Since the educa-

tion category “other” is used as the benchmark, the results suggest

that in comparison to individuals with an education captured by

“other,” the remaining individuals in all other education categories

share significantly less in terms of frequency (P<0.01, respectively),

whereas no association with intensity is presented. Since all other

categories capture academic degrees and the case of no education,

this may imply that individuals who have a non-academic education

(e.g. vocational training) share knowledge they possess more often

with other individuals, probably because they are industry practi-

tioners who wish to propagate information they possess throughout

and across industries to strengthen organizational practice.

Discussion

Building on prior research in the field of the economics of informa-

tion security, and adopting a behavioral framework to organize our

theoretical reasoning, we have proposed how and why human be-

havior should be associated with SIS. To the best of our knowledge,

this study is the first that associates the self-reported sharing of sen-

sitive information among real individuals inside a private

Information Sharing and Analysis Center (ISAC) with the behavior

of these individuals. We also provide a dual empirical

Table 4: Correlations among dependent and independent variablesa

Frequency Intensity Attitude Reciprocity

(social)

Reciprocity

(transactional)

Executional

cost

Reputation Trust

Frequency 1

Intensity 0.3547*** 1

Attitude 0.2436*** 0.2742*** 1

Reciprocity (social) 0.2602*** 0.2750*** 0.3798*** 1

Reciprocity (transactional) 0.1836** 0.0456 �0.0901 0.000 1

Executional cost �0.2238** �0.1694* �0.0976 �0.0314 0.1533* 1

Reputation �0.0226 0.0968 0.1227 0.3069*** 0.0270 0.1148 1

Trust 0.2279** �0.0101 0.2471*** 0.0269*** �0.1321 �0.1857* 0.1042 1

aSpearman correlations.

*P< 0.05; **P< 0.01; ***P< 0.001.

Table 3: Descriptive statistics on all variables

Variable Obs Mean SD Min Max

Frequency 240 2.68 0.78 1 5

Intensity 228 2.34 1.20 1 7

Attitude 208 4.10 0.53 3 5

Reciprocity (social) 195 3.88 0.60 1.66 5

Reciprocity (transactional) 195 2.16 0.75 1 4

Executional cost 208 3.14 0.65 1.25 5

Reputation 190 3.46 0.47 1.5 5

Trust 190 3.82 0.55 1.25 5

Gender 260 1.04 0.20 1 2

Age category 261 2.87 0.86 1 4

Education category 260 2.58 1.25 1 6

Membership duration 260 7.05 5.35 1 18

8 Journal of Cybersecurity, 2019, Vol. 5, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article-abstract/5/1/tyz006/5554880 by U

niversite and EPFL Lausanne user on 31 August 2019



operationalization of SIS by introducing the measures of SIS fre-

quency and intensity. Finally, our study confirms that interdisciplin-

ary approaches which attempt to integrate thinking from economics

and psychology are useful when SIS is studied [6].

Our study also contributes to prior work that has both theoretic-

ally predicted and descriptively noted that SIS, while beneficial, is

underutilized [16, 32, 33, 44, 47, 72, 73, 103]. We provide some

first empirical evidence on the association of particular human

behaviors with SIS among individuals in a private ISAC setting. The

study also contributes to understanding the theoretical prediction

that actual SIS may not reach its societally optimal level [41, 47] by

suggesting that human behavior may be at the core of this problem.

At the same time, we would caution regulators and researchers to

infer that SIS should be mandated (i.e. that individuals should be

forced to share) as a consequence of this problem. Adjusting sanc-

tion levels for failure to comply with mandatory SIS could be diffi-

cult, if not impossible [65]. Moreover, regulation that attempts to

solve the “sharing dilemma” in SIS should try to fix causes, not

symptoms [19]. Our study has collected cross-sectional data, and

hence we cannot establish causal relationships between human be-

havior and SIS. Nevertheless, the negative and significant associ-

ation between executional cost and both the frequency and intensity

of SIS that we identify confirms prior research that finds that institu-

tions shape human interaction and behavior. Institutions are formal

and informal rules which govern human behavior by rewarding de-

sirable actions and making undesirable actions more expensive or

punishable [12, 75, 76]. The organization of an ISAC is shaped by

both internal institutions (i.e. rules voluntarily agreed to among

ISAC participants and organizers) and external institutions (i.e. rules

imposed onto them by government and regulatory authorities).

Since high executional cost can be attributed to both effects, legisla-

tors, and regulators should be careful to predict the impact and con-

sequences of intended regulation for the executional cost of SIS. The

association between executional cost and SIS that our study identi-

fies suggests that humans are likely to assess the economic conse-

quences of external institutions in terms of executional costs and

adapt their behavior accordingly. Moreover, we find that both social

and transactional reciprocity are positively associated with both the

frequency and the intensity of SIS. Since reciprocity is a social norm,

it cannot be enforced by formal regulation and constraint, and the

attempt to do so may induce individuals to comply with the letter ra-

ther than the spirit of the law by sharing irrelevant, non-timely, or

false information [23].

We believe that the future study of these issues opens up prom-

ising paths for research that can both explain why individuals at-

tempt to circumvent SIS regulation and suggest more conducive

institutions. In this way, our study provides a stepping stone on

which future research can build. The extant literature has docu-

mented well that actual SIS, while considered highly useful in gen-

eral, is at low levels, and that individuals attempt to circumvent

regulation that makes SIS mandatory [5, 32, 33, 71, 72]. Our study

adds to these findings by suggesting that this economic problem of

Table 5: Models for intensity of SIS (ordered probit estimation)a,b

Baseline Main effects Full model

Coefficient (robust standard error) Coefficient (robust standard error) Coefficient (robust standard error)

Attitude 0.4973 (0.1609)** 0.3627 (0.1672)*

Reciprocity (social) 0.3481 (0.1549)* 0.4045 (0.1526)**

Reciprocity (transactional) 0.2254 (0.1138)* 0.1860 (0.1118)

Executional cost �0.3949 (0.1198)*** �0.4833 (0.1314)***

Reputation 0.0083 (0.1905) 0.0932 (0.1895)

Trust �0.2250 (0.1577) �0.1847 (0.1501)

Attitude � trust �0.6544 (0.2874)*

Reciprocity (social) � trust 0.1969 (0.2431)

Reciprocity (transactional) � trust �0.4561 (0.2119)*

Gender 0.2045 (0.3712) �0.1507 (0.4480) �0.2106 (0.4788)

Age 21–30 �0.0920 (0.3434) �0.1286 (0.4063) �0.1361 (0.4204)

Age 31–40 0.0567 (0.2031) 0.0896 (0.2220) 0.1139 (0.2293)

Age 41–50 �0.0001 (0.1762) �0.0138 (0.1777) 0.0096 (0.1820)

Education none �0.2253 (0.4789) �0.7976 (0.5208) �0.7239 (0.6388)

Education Master/Diploma �0.3512 (0.4649) �0.8990 (0.4964) �0.8336 (0.6368)

Education Bachelor 0.0206 (0.4635) �0.3347 (0.4924) �0.3198 (0.6202)

Education PhD �0.4581 (0.4984) �0.8959 (0.5322) �0.9997 (0.6382)

Membership duration 0.0257 (0.0134) 0.0184 (0.0165) 0.0184 (0.0164)

Government �0.1539 (0.2729) �0.2662 (0.3125) �0.2945 (0.3082)

Banking and Finance �0.0672 (0.2098) �0.1598 (0.2527) �0.1515 (0.2472)

All other industries �0.0472 (0.2473) �0.1649 (0.2977) �0.1576 (0.2982)

Energy 0.0283 (0.2931) �0.0650 (0.3260) �0.1007 (0.3217)

Health �0.3250 (0.2638) �0.2498 (0.3260) �0.2958 (0.3528)

Log pseudolikelihood �318.98 �249.82 �246.50

Pseudo R2 0.0214 0.0773 0.0896

Wald v2 (df) 16.10 (14) 55.43 (20)*** 64.02 (23)***

Observations 225 188 188

AIC k BIC 677.97 k 746.29 551.65 k 635.80 551.02 k 644.87

aTwo-tailed tests.
bAge category “above 50,” education category “other” and the telecommunication/IT industry serve as the respective control variable benchmarks.

*P< 0.05; **P< 0.01; ***P< 0.001.
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underutilization is difficult to resolve unless regulators and law-

makers consider the association of human behavior and SIS out-

comes. At this time, we speculate that a liberal institutional

environment that attempts to make individuals comply by

“nudging” them is probably more conducive than the attempt to

enforce compliance by coercion [91]. We leave it to future research

to either corroborate or refute this speculation, suggesting that ir-

respective of any particular institutional arrangement, human be-

havior is significantly associated with SIS and hence likely

responds to changes in institutional configuration. All in all, our

study suggests that future research can productively employ behav-

ioral theory and methods as it attempts to further develop SIS re-

search by considering the human interaction that precedes actual

acts of sharing.

In a broader sense, our work develops prior conceptual ideas

that human aspects matter at least as much as technological ones

when SIS is concerned [19]. Our empirical approach takes the

technological context as a given and focuses on identifying associa-

tions between human behavior and SIS. Cybersecurity managers in

organizations can benefit from these results as they attempt to make

individuals comply with organizational goals. Our results suggest

that both the frequency and the intensity of SIS are associated with

human behavior. Managers should therefore be careful to study

these associations when they define organizational goals and accept

that individual human behavior does not necessarily comply with

these unless appropriate goal alignment is provided [57, 66]. For ex-

ample, managers may facilitate an individual’s participation in SIS

by reducing the executional cost of information exchange, or they

may provide the focal individual with intelligence on counterparties

to help them assess the likelihood with which information sharing

may be reciprocated.

Our study is pioneering in the sense that it studies real human

beings and their self-reported behavior in the context of a real ISAC.

Nevertheless, it merely studies a single, centrally organized ISAC in

a single country. Hence, future research should generalize our ap-

proach to alternative models of ISAC organization and explore di-

verse national and cultural settings by replicating our study with

different ISACs and nation-states. We believe our approach is con-

ducive to such generalization since neither our theoretical frame-

work, nor any one of our behavioral constructs, nor the empirical

measures we used to operationalize these are context-specific to any

particular national or cultural context. Our measures and the theory

in which they are grounded rather represent fundamental aspects of

human behavior which, in our view, should apply globally. Thus, fu-

ture work could complement our study with data from different

ISACs, such that a transnational continuum of sharing intensities

and frequencies could be constructed. This continuum would allow

researchers to identify commonalities and differences in information

exchange patterns and use these insights to propose expedient policy

options.

Table 6: Models for frequency of SIS (Tobit estimation)a,b

Baseline Main effects Full model

Coefficient (robust standard error) Coefficient (robust standard error) Coefficient (robust standard error)

Attitude 0.2797 (0.1214)* 0.1895 (0.1111)

Reciprocity (social) 0.1807 (0.1195) 0.2150 (0.1046)*

Reciprocity (transactional) 0.2734 (0.0824)** 0.2361 (0.0816)**

Executional cost �0.1872 (0.0911)* �0.2336 (0.0962)*

Reputation �0.1827 (0.1243) �0.1121 (0.1232)

Trust 0.2689 (0.1058)* 0.2964 (0.1036)**

Attitude � trust �0.3490 (0.2311)

Reciprocity (social) � trust 0.2055 (0.1813)

Reciprocity (transactional) � trust �0.3839 (0.1378)**

Gender 0.4851 (0.1681)** 0.2412 (0.1791) 0.1837 (0.1773)

Age 21–30 0.1852 (0.2131) 0.2595 (0.2387) 0.2057 (0.2378)

Age 31–40 �0.0365 (0.1567) 0.0218 (0.1528) 0.0051 (0.1513)

Age 41–50 0.0294 (0.1222) 0.0040 (0.1264) 0.0171 (0.1243)

Education none �0.6274 (0.1705)*** �0.9126 (0.2210)*** �0.8152 (0.2441)**

Education Master/Diploma �0.6063 (0.1462)*** �0.8749 (0.2291)*** �0.7984 (0.2671)**

Education Bachelor �0.5872 (0.1531)*** �0.8089 (0.2062)*** �0.7678 (0.2324)**

Education PhD �0.5392 (0.2667)* �0.8892 (0.2976)** �0.9345 (0.3181)**

Membership duration 0.0277 (0.0112)* 0.0211 (0.0118) 0.0213 (0.0112)

Government �0.1629 (0.2039) 0.0130 (0.2373) �0.0097 (0.2288)

Banking and Finance �0.0613 (0.1694) 0.0328 (0.2142) 0.0304 (0.2064)

All other industries �0.5292 (0.1947)** �0.4016 (0.2430) �0.3748 (0.2395)

Energy 0.1054 (0.2236) 0.2191 (0.2485) 0.1867 (0.2399)

Health �0.0909 (0.2115) 0.0767 (0.2787) 0.0465 (0.2759)

Constant 2.6652 (0.2705)*** 3.0954 (0.3520)*** 3.0939 (0.3577)***

Log pseudolikelihood �274.73 �202.46 �197.92

Pseudo R2 0.0538 0.1370 0.1564

F (df) 4.10 (14, 223)*** 5.25 (20, 168)*** 5.25 (23, 165)***

Observations (left k right censored) 237 (12 k 1) 188 (10 k 1) 188 (10 k 1)

AIC k BIC 581.47 k 636.96 448.93 k 520.13 445.84 k 526.75

aTwo-tailed tests.
bAge category “above 50,” education category “other” and the telecommunication/IT industry serve as the respective control variable benchmarks.

*P< 0.05; **P< 0.01; ***P< 0.001.
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Finally, the ISACs that exist as of today have evolved from trade

associations, government agencies, and public–private partnerships.

However, the evolution of such historical trajectories is subject to

technological change [74]. We therefore believe that novel technolo-

gies could facilitate human interaction in future ISAC configura-

tions. For example, since the cost of reputation losses upon security

breaches can be interpreted as privacy risk [19], insights from priv-

acy research and secure distributed computation and interaction

[35] might be used to construct distributed ISACs with safe real-

time participation. Future research may use our study to consider

the impact of such novel technological approaches on human behav-

ior to prevent unintended consequences.

From a broader perspective, our study design has some limita-

tions that point to opportunities for future research.4 First, both as

regards the level and the unit of analysis, our study focuses on the in-

dividual. This implies that interactions between the individual and

the organizational and institutional contexts within which the focal

individual acts are beyond the scope of this study. Nevertheless, our

setting may be expanded both theoretically and empirically to

incorporate such multilevel interactions. For example, the

organizational-level performance implications of SIS could be

studied, in that future research would analyze the association of in-

dividual behavior with organizational results, such as increased

cybersecurity or increased financial performance.

In particular, future research may analyze the extent to which

different organizational processes, cultures, and risk management

approaches are associated with SIS by way of human behavior. For

example, critical infrastructure providers who face significant risks

of business interruption and going concern if their cybersecurity is

compromised may emphasize more than other organizations that

SIS is desirable and hence direct their employees to act accordingly.

Thus, organizational policy may moderate the association between

human behavior and SIS. Future research could build on our ap-

proach by developing more complex multilevel study designs that

can incorporate such additional sources of variance.

Finally, our study design is cross-sectional, implying that we can

only claim association, but not causation. While we believe this is

acceptable given the pioneering nature of this study, controlled

experiments are required to establish causality. We encourage future

work to introduce such methods. Further, future studies could also

ethnographically analyze human interaction within an ISAC over

time, log how and why behavior changes, and infer how this behav-

ioral evolution operates on SIS outcomes.
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