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Abstract: SwissDrugDesign is an important initiative led by the Molecular Modeling Group of the
SIB Swiss Institute of Bioinformatics. This project provides a collection of freely available online
tools for computer-aided drug design. Some of these web-based methods, i.e., SwissSimilarity and
SwissTargetPrediction, were especially developed to perform virtual screening, while others such as
SwissADME, SwissDock, SwissParam and SwissBioisostere can find applications in related activities.
The present review aims at providing a short description of these methods together with examples
of their application in virtual screening, where SwissDrugDesign tools successfully supported the
discovery of bioactive small molecules.

Keywords: virtual screening; computer-aided drug design; SwissSimilarity; SwissTargetPrediction;
web-based tools

1. Introduction

Different computer-aided drug design (CADD) techniques are great assets to efficiently support
experimental screening by enriching chemical collections with compounds bearing desired properties
and therefore reducing the number of physical samples to be assayed [1]. The computed and
predicted properties are project-dependent and generally related to the pharmacodynamics or the
pharmacokinetics of the molecular structures under investigation. The pharmacodynamic properties,
that is, the ability of a small molecule to be recognized by the macromolecular target at the atomic
level, are the central notion of virtual screening (VS) approaches.

Structure-based virtual screening (SBVS) requires biostructural knowledge about the
macromolecular target and classically consists in submitting a chemical collection to ligand–protein
docking simulations towards a tridimensional structure of the target. Once reliable binding modes have
been predicted, estimated binding free energies or other approximate fitness scores, quicker to calculate
yet less accurate, constitute the traditional criteria to select compounds with a high probability to bind
to the target of interest. Many posing algorithms and scoring functions have been developed and
their comparative performance has been thoroughly reviewed [2–4]. For instance, the docking engine
behind the SwissDock web service [5] was developed for accurate physics-based estimation of binding
modes and free energies according to the full definition of the CHARMM force field [6,7]. Consequently,
the calculation time is too substantial to treat large chemical libraries. However, SwissDock is useful
for two-step SBVS strategies, where a first approximative docking is performed by a fast engine (e.g.,
AutoDock VINA [8] or FRED [9]) followed by validation of a small number of selected compounds
through slower, more comprehensive methods [10,11].

Int. J. Mol. Sci. 2019, 20, 4612; doi:10.3390/ijms20184612 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-2336-6537
http://www.mdpi.com/1422-0067/20/18/4612?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20184612
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 4612 2 of 12

Ligand-based virtual screening (LBVS) estimates the propensity of a small molecule to bind
to a target based on how much it resembles known active compounds. The similarity principle
postulates that similar small molecules are prone to have similar properties, including biological
activity [12]. Although it relies on a simple concept, diverse LBVS schemes exist, differing mainly in
the molecular description and hence in the way to estimate similarity [13,14]. Briefly, the molecular
description can be classified into 1D, 2D or 3D. 1D-descriptors are global descriptions of molecular or
physicochemical properties, such as the molecular weight for size, or the partition coefficient (log P)
for lipophilicity. They are typically employed as first estimates of the pharmacokinetic properties of
molecules. Their main application in VS is the filtering of chemical collections to build focused libraries
(e.g., drug-like collections) or to account for project-specific requirements (e.g., optimal properties to
cross the blood-brain barrier) [15]. To this end, web tools like SwissADME, which calculate numerous
descriptors linked with pharmacokinetics models, are valuable resources [16] (refer to Section 2).

2D-descriptors are derived from two-dimensional chemical structures. Many different molecular
fingerprints (FP) have been proposed [14,17] and differ in their way of mapping the existence of
chemical features into a bit string. A popular example is FP2 implemented in OpenBabel [18] and
derived from the pioneering topological (also called path-based) Daylight FP [19]. This technique
collects every possible fragment following a linear path in the chemical structures up to a given number
of bonds. The presence or absence of fragments is then hashed into a 1024-bit string. Although of
great simplicity, the FP2 technique outperforms other types of more complex methods in the LBVS
context [20].

3D-descriptors consider the conformation of the molecule, either explicitly, i.e., actual
tridimensional geometries are overlaid in the 3D-space to evaluate similarity (as for example in
ROCS [21] or Shape-IT [22]) or implicitly in the so-called non-superpositional shape-based methods as
for example in the Spectrophores [23] or the ElectroShape [24] approaches. In particular, ElectroShape
compresses the information of the molecular shape into a one-dimensional vector and is fast enough to
be reported as highly efficient and can perform for the LBVS application [25]. In brief, the technique
consists in placing centroids around the conformation and calculating the distances between them
and every atom. A float vector is built with the mean, standard deviation and cubic root of three first
moments of the distance distributions.

During the development of the ligand-based reverse screening engine behind the
SwissTargetPrediction web tool (refer to Section 2), FP2 and ElectroShape were found to be highly
complementary [26], and the similarity principle was validated for both 2D- and 3D-descriptions [27].
The current target fishing engine employs a dual quantification of similarity composed of the Tanimoto
index between FP2 binary vectors (for chemical similarity) and Manhattan-based values between ES5D
float vectors (for shape similarity). The latter is an ElectroShape vector, where the Cartesian coordinates
of each atom are complemented with an atomic partial charge and a lipophilic contribution leading
to a 18-float vector describing molecular shape, charge distribution and lipophilicity projection [25].
Those two metrics of similarity between molecules are combined by a logistic equation leading to the
so-called Combined-Score, ranging from 0 (absolutely dissimilar compounds) to 1 (identical molecules).
This Combined-Score, as well as its components (FP2 and ES5D), together with other 3D methods, are
implemented in the SwissSimilarity web tool for direct LBVS [28].

The SIB Swiss Institute of Bioinformatics is implementing the ambitious SwissDrugDesign project,
which aims at providing a comprehensive web-based in silico drug design environment, freely
accessible for the scientific community worldwide. Its ultimate objective is to offer a collection of
integrated tools covering all aspects of CADD.

As mentioned above, some of those tools were specifically developed for direct LBVS on
already-prepared libraries by using different methods to quantify molecular similarity. Other tools
can be used to perform molecular docking on the targeted macromolecule surface, to calculate
pharmacokinetic-related properties, or to provide possible targets of bioactive compounds through
reverse LBVS.
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In this short review, the SwissDrugDesign web tools and their underlying technologies are briefly
described, along with their usage in the context of virtual screening. Subsequently, we provide
examples of their application in research studies that discovered therapeutically relevant agents thanks
to the support of these web-based methods.

2. Available Resources from the SwissDrugDesign Project

The SwissDrugDesign project gathers together individual on-line tools closely related either in
principle or through actual links. The project itself does not refer to a website, while every component
tool is reachable at its own URL or by way of interoperability features (see Figure 1). SwissDrugDesign
started in 2010 with the creation of the SwissDock web-based docking engine. Since then, several other
approaches have been provided to the scientific community as free websites. Of note, all tools can be
accessed directly without registration and are cost-free for not-for-profit research and teaching.
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Figure 1. Virtual screening applications of the different on-line tools of the SwissDrugDesign project
(boxed in red). Grey arrows represent “soft” relationships, for which the output of one tool can be the
input of another tool by means of some user manipulation (e.g., copy/paste of SMILES). Red arrows
represent actual interoperability capacities. In this way, submission of the result of one tool is simply
achieved by “one-click” on the icon corresponding to the desired tool: “twins” for SwissSimilarity,
“target” for SwissTargetPrediction and “pill” for SwissADME.

SwissDock [5] (http://www.swissdock.ch, since 2010) is a freely accessible ligand–protein docking
web service and interface to predict the molecular interactions that may occur between a target protein
and a small molecule.

SwissDock is based on the EADock DSS [29] software benefiting from the most efficient features
of the EADock2 algorithm [30], which is physics-based because it follows the full definition of the
CHARMM force field [31]. The current version is fast enough to be operated through the web and
for serial docking of small chemical libraries in the context of SBVS. Using the LPDB benchmark
set of protein–ligand complexes [32], EADock DSS demonstrated a 55% success rate in reproducing
the molecular interactions between proteins and drug-like molecules, when considering only the
top-ranked solution over the entire protein surface (i.e., blind docking), and 64% when including the
five top-ranked solutions. Docking of a LPDB complex takes 24 minutes on average on the server.

The simplified interface has proven to drastically lower technical barriers and therefore gives
access to molecular docking to a larger public than just the traditional molecular modeling community.
For instance, it is possible to automatically retrieve the 3D structure of the protein from the PDB [33] and
the ligand structure from the ZINC [34] databases. In a transparent way for the user, the structures of
the protein and of the ligand are then automatically prepared for docking. The calculation is performed
on in-house servers, and the results are displayed in 3D on the results web page for easy interpretation.

http://www.swissdock.ch
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On the other hand, experts can provide manually prepared protein and ligand structures and download
the results for further visualization and analysis with their preferred programs. Results are stored and
accessible online for 7 days.

SwissParam [6] (http://www.swissparam.ch, since 2010) is a web service that provides topologies
and parameters for small organic molecules. SBVS, like other structure-based techniques for drug
discovery, frequently relies on ligand–protein docking and rapid estimation of the binding free energy.
This requires force field parameterization for all drug candidates. SwissParam is a fast force field
generation tool, able to produce topologies and parameters based on the Merck Molecular Force
Field [35] for any small tridimensional molecular structure provided in the MOL2 format. The
parameters and topologies are provided in a functional form compatible with the CHARMM [36] force
field. Output files can directly be used in CHARMM or GROMACS [37]. SwissParam results are
extensively used by SwissDock to parameterize ligands.

SwissBioisostere [38] (http://www.swissbioisostere.ch, since 2012) was the first comprehensive and
freely accessible database collecting over 4.5 million molecular substructural replacements extracted
from the literature, along with information on how frequently such replacements were applied in
the past, and the impact on the measured biological activity. This knowledge is of particular interest
for modifying small molecules, to possibly increase affinity, or to circumvent a pharmacodynamics,
pharmacokinetics, or intellectual property issue. Substitution of central cores by fragment replacements
can find application in scaffold-hopping, while modification of peripheral groups can efficiently
support lead optimization efforts. The output of SwissBioisostere can be employed by experts to build
small chemical libraries of potential bioisosteric or related structures which can be then subject to VS.

SwissTargetPrediction [27,39] (www.swisstargetprediction.ch, since 2014 with major updates in
2019) is a web tool aiming at predicting the most probable protein targets of bioactive small molecules.
Such predictions are useful to understand the molecular mechanisms underlying a given phenotype,
to rationalize possible favorable or unfavorable side effects, to predict off-targets of known molecules
and to lay a rational foundation for drug repurposing. SwissTargetPrediction is a reverse LBVS
method for target fishing relying both on 2D and 3D similarity measures [26] through a dual-scoring
logistic regression. The prediction is provided through a user-friendly web interface for proteins of
different species [40] to allow users to easily map predictions between source organisms based on target
homology. In the latest version [27], SwissTargetPrediction generates predictions by reverse screening
a collection of 376,342 compounds known to be experimentally active on a set of 3068 macromolecular
targets. Moreover, the method estimates the probability with which the query molecule, assumed to
be bioactive, will bind each predicted protein in a ranked list. It also provides the structures of the
most similar active compounds (in 2D and in 3D), that drove the prediction. This latter capability is an
important asset of the tool for drug design applications.

SwissADME [16] (www.swissadme.ch, since 2016) is a web tool that provides free access to a pool
of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness
and medicinal chemistry friendliness. SwissADME is a gateway to in-house advanced methods such
as iLOGP [41] (a physics-based model for lipophilicity) or the BOILED-Egg [15] (an intuitive graphical
classification model for gastrointestinal absorption and brain access). It is the first web interface that
enables batch calculations for hundreds of different molecules, allowing efficient pharmacokinetic
optimization as well as chemical library analysis. The latter ability is of major interest to prefilter
compound collections before actual VS. This can be applied following generally accepted properties to
consider, for example, only drug-like, non-toxic, stable and soluble compounds, excluding PAINS [42]
or other problematic moieties [43]. Additionally, other project-specific properties relating to absorption,
distribution, metabolism, excretion (ADME) or pharmacokinetics can be checked, such as, for instance,
particular parameter ranges to predict optimal brain access.

SwissSimilarity [28] (http://www.swisssimilarity.ch, since 2017) is the first online, simple yet
powerful LBVS tool for the rapid screening of small to very large libraries of drugs, bioactive small
molecules and commercially available or virtual, yet synthesizable, compounds. Direct in silico

http://www.swissparam.ch
http://www.swissbioisostere.ch
www.swisstargetprediction.ch
www.swissadme.ch
http://www.swisssimilarity.ch
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screening can be performed using different and complementary 2D and 3D approaches to support
hit finding by selecting compounds or enriching chemical collections with new molecules similar to
known active ones.

Available similarity measures are FP2 topological chemical fingerprint [18], non-superpositional
Electroshape-5D [25] and Spectrophores [23] shape-based measures, Shape-IT and Align-IT
(Silicos-IT [44]) tridimensional superimposition procedures, and finally the Combined-Score similarity
function, as those behind the SwisstargetPrediction engine.

SwissSimilarity offers four categories of small-molecule libraries that have been prepared, ready
to be screened by the above-mentioned methods:

• drug-related molecules, extracted from DrugBank [45] and further sub-divided into approved (1500
compounds), experimental (4800), investigational (500) and withdrawn drugs (160 compounds),
as well as illicit (170) and nutraceutical compounds (78);

• bioactive small molecules, including, for instance, a collection of ligands found in a complex with
macromolecular structures present in the Protein Data Bank (PDB) entries [33] and retrieved from
LigandExpo [46] (19500 compounds), the most active molecules from ChEMBL [47] (177,000) or
molecules from ChEBI [48] (28,000 compounds);

• commercially available compounds taken from ZINC [49], further sub-divided between drug-like
(10,600,000 compounds), lead-like (4,300,000) and fragment-like molecules (700,000), or grouped
by vendors (9,700,000 compounds);

• a collection of 205 million virtual compounds readily synthesizable from commercially available
reagents using a one-step click chemistry reaction [50], and filtered for chemical stability, lack of
toxicity or promiscuous characters.

As for SwissBioisostere, SwissTargetPrediction and SwissADME, query molecules can be inputted
in SMILES notation or drawn in the MarvinJS online sketcher, linked with Chemaxon Webservices (https:
//chemaxon.com). Output compounds are displayed within the web browser for easy visualization,
along with their calculated similarity to the query compound. For reporting or further analysis, the
output of the screening can also be downloaded as a CSV file, while the full report can be retrieved
as PDF or JPEG files (for an illustration, refer to Figure 2). Importantly, interoperability between
SwissDrugDesign tools is provided by dedicated buttons; each output compound can be redirected
to SwissTargetPrediction, SwissADME or SwissSimilarity itself as an input for further calculations,
through one click on the icon corresponding to the tool. Likewise, each compound appearing on
SwissTargetPrediction and SwissADME output pages can be redirected to SwissSimilarity upon a
simple click, insuring a seamless integration of these three tools.

As an illustration of the usefulness of these tools, the foundational SwissParam and SwissDock
articles have been cited 498 and 476 times since their publication in 2011, according to Clarivate Analytics
Web of Science as of September 2019. More recent tools like SwissADME, SwissTargetPrediction,
SwissBioisostere and SwissSimilarity have been cited 290, 123, 47 and 29 times, respectively. The web
traffic to our tools reached a total of 150,000 unique visitors from more than 150 countries during the
July 2018–June 2019 period. These users opened 320,000 sessions and submitted 610,000 calculations.

3. Examples of Applications in Virtual Screening Empowered by SwissDrugDesign Tools

Several screening campaigns and related medicinal chemistry studies benefitted from the
SwissDrugDesign collection of web-based CADD tools.

The RAC-alpha serine/threonine-protein kinase (AKT1) and focal adhesion kinase (FAK) play
key roles in normal cell signaling. However, it has been established that the AKT1–FAK interaction
facilitates cancer metastasis by increasing cell adhesion under increased extracellular pressure [51,52].
Blocking the AKT1–FAK interaction is therefore an attractive rational to avoid or limit metastasis
in cancer therapy. Basson and coworkers identified a seven-residues short peptide from FAK that
binds AKT1 and prevents pressure-activated cancer cell adhesion [53]. They subsequently used this

https://chemaxon.com
https://chemaxon.com
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peptide as a reference structure to virtually screen a ZINC-based library of 10,639,555 commercially
available molecules though a 3D shape-based method, using the ROCS software (OpenEye), in the
search for potential AKT1–FAK inhibitors. The authors selected one compound discovered by this 3D
virtual screening, tagged ZINC04085549, and used it as a query for both the SwissSimilarity web tool
and the http://zinc.docking.org/search/structure search engine to look for shape or chemically similar
structures in ZINC. Finally, eleven compounds were selected for an experimental assay. Two of them,
i.e., ZINC04085549 (discovered using ROCS) and ZINC4085554 (identified using the Electroshape-5D
approach within SwissSimilarity), were shown to prevent pressure-stimulated increases in the adhesion
of a colon cancer cell model. Recently, ZINC4085554 was further confirmed to inhibit the AKT1–FAK
interaction in response to increased extracellular pressure [54], suggesting a potential role of this
molecule discovered through virtual screening and its chemotype in the prevention of metastasis.

With the aim of discovering new histamine H3 receptor (H3R) effectors, an important GPCR target
for narcolepsy [55] also implied in the physiopathology of various metabolic and neurodegenerative
diseases [56], Ghamari et al. established a comprehensive workflow combining various VS
approaches using three different starting points [57]. The first one is structure-based and starts
by building pharmacophores with LigandScout [58] and using them to screen the ZINC database with
ZINCPharmer [59]. The second one is purely ligand-based and makes use of SwissSimilarity to find
similar compounds to the commercial H3R inverse agonist pitolisant [55] in the drug-like set of ZINC.
Independent screenings were performed following either 2D (FP2 fingerprints) or 3D (ElectroShape5D
or Spectrophores) similarity measures. The third starting point is a hybrid one, involving a simple
search on the ZINC website and using the structures as a small library for LigandScout. Every output
compound from all three starting points was then filtered according to SwissTargetPrediction, keeping
only those with sufficient probability to have H3R as a predicted target. At this stage, the ligand-based
route generated 64 virtual hits, the structure-based route generated one virtual hit and the hybrid route
generated 26 virtual hits. The next crucial step, prediction of ADME parameters, significantly reduced
the number of compounds to follow-up with more demanding simulations or experiments. Indeed, by
applying the drug-likeness filters of SwissADME in a consensus manner and using the BOILED-Egg
model [15] to estimate blood–brain barrier (BBB) passive crossing, the number of virtual leads dropped
to five molecules in total. Three out of these five compounds were validated with in vitro affinity
(IC50) to H3R as low as 0.49, 0.54 and 1.2 µM for ZINC69700808 (ligand-based route), ZINC90563066
(ligand-based route) and ZINC2895674 (hybrid route), respectively.

The strategy consisting in assessing a de-risked marketed drug or a late development molecule
for another medical indication, termed drug repurposing, is commonly followed nowadays [60–63].
Reverse screening target prediction, but also direct virtual screening, can play a role in laying the
rational foundation in that context. As an illustration, Hassan et al. [64] employed the 2D/3D combined
method of SwissSimilarity to search for molecules similar to the marketed acetylcholinesterase (AChE)
inhibitor donepezil, within the collection of 1516 FDA-approved drugs. Thirty-six drugs were selected
for the subsequent structure-based selection process, including consensus docking studies involving
AutoDock Vina [8], AutoDock 4 [65] and GLIDE [66]. This led to a shortlist of ten drugs to undergo
pharmacogenomics analysis. Cinitapride, risperidone, domperidone, tamsulosin and verapamil
showed a clear bias towards Alzheimer disease-associated genes in comparison to other networks.
Those five drugs were finally tested in vitro for AChE inhibition. Cinitapride showed an IC50 of
0.11 µM and non-competitive inhibition kinetics, displaying a favorable repurposing profile for
Alzheimer disease.

http://zinc.docking.org/search/structure
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(ranked #62 with a similarity score 0.847, boxed in blue) and ZINC905630066 (ranked #74 with a 
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SwissTargetPrediction and pharmacokinetic parameters estimation with SwissADME. Both 
compounds were validated experimentally in vitro as submicromolar inhibitors of the histamine H3 
receptor. 

The strategy consisting in assessing a de-risked marketed drug or a late development molecule 
for another medical indication, termed drug repurposing, is commonly followed nowadays [60–63]. 
Reverse screening target prediction, but also direct virtual screening, can play a role in laying the 
rational foundation in that context. As an illustration, Hassan et al. [64] employed the 2D/3D 
combined method of SwissSimilarity to search for molecules similar to the marketed 
acetylcholinesterase (AChE) inhibitor donepezil, within the collection of 1516 FDA-approved drugs. 
Thirty-six drugs were selected for the subsequent structure-based selection process, including 
consensus docking studies involving AutoDock Vina [8], AutoDock 4 [65] and GLIDE [66]. This led 
to a shortlist of ten drugs to undergo pharmacogenomics analysis. Cinitapride, risperidone, 
domperidone, tamsulosin and verapamil showed a clear bias towards Alzheimer disease-associated 
genes in comparison to other networks. Those five drugs were finally tested in vitro for AChE 

Figure 2. Example of LBVS by using the SwissSimilarity web tool, as in ref [57]. The left panel shows
the input of the query molecule; here pitolisant can be entered by its common name, by making use of
the import feature of Chemaxon Webservices (A). The method (here Spectrophores) and the database
to screen (here the lead-like subset of ZINC) are boxed in yellow showing the corresponding radio
button (B). Leaving the mouse over it gives an estimate of the computation time (here 12 minutes for
4,328,000 compounds). By clicking the radio button, the submission button becomes red and active (C)
and the parameters selected for screening are written in full. The user can freely click on Submit to
launch the calculation. The right panel displaying the result of the screening appears automatically
at the end of the calculation, as another web page. The authors selected compounds ZINC69700808
(ranked #62 with a similarity score 0.847, boxed in blue) and ZINC905630066 (ranked #74 with a
similarity score 0.845, boxed in green) according to subsequent analyses, including reverse LBVS with
SwissTargetPrediction and pharmacokinetic parameters estimation with SwissADME. Both compounds
were validated experimentally in vitro as submicromolar inhibitors of the histamine H3 receptor.

Besides classical hit finding activities, LBVS has successfully been employed for various related
applications. A few examples are given in the following.

PKMYT1, a membrane-associated inhibitory kinase, is an attractive research target in oncology, as
its inhibition can induce relatively tumor specific apoptosis through blocking the second checkpoint
G2 [67]. Schmidt and coworkers [68] applied an elegant structure-based strategy on eight recently
released crystal structures of PKMYT1, focused on docking (GOLD [69]) and binding free energy
analysis (AMBER [70]). Facing difficulties in unambiguously defining the binding mode of a new
diaminopyrimidine chemotype, they undertook an indirect validation of docking poses by looking
for highly similar small molecules cocrystallized with other kinases. This was achieved through dual
scoring LBVS towards the LigandExpo collection [46] with SwissSimilarity. As a result, 23 similar
cocrystallized ligands showing sufficient 2D and 3D similarity were found. Emphasis was given to
thoroughly analyzing aminopyrimidine inhibitors of Aurora A kinase, for which the experimental
binding modes in several structures [71,72] were very close to the ones predicted in PKMYT1. These
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dependable docking models, validated through chemical and shape similarity screening, allowed them
to start an in silico optimization process through QSAR and fragment-growing strategies, leading to a
series of inhibitors active on PKMYT1 at the submicromolar level and to a solid rational basis to design
more potent analogues.

Chemical and shape similarity approaches were employed by Bhunia, D. et al. for the development
of short non-toxic cell-penetrating peptides [73]. For the design of the most promising tetrapeptide
(ETWW), mainly driven by the spatial position of tryptophan residues, determining the cell surface
receptors responsible for cellular uptake was crucial and tackled by a LBVS strategy. ETWW was
submitted to SwissSimilarity and SwissTargetPrediction 2D-/3D-dual similarity searches. The outcome
of both the direct and the reverse screenings yielded diverse small organic molecules highly similar
in structure and shape to the tetrapeptide and known ligands of two important cell membrane
receptors. Moreover, the probability quantified by SwissTargetPrediction gave confidence to the
authors to select the endothelin B and the mu opioid receptors for docking studies and finally for
experimental endocytosis studies. The results validated the hypothesized mechanism. Additionally,
two pharmacokinetics classification models implemented in SwissADME [16] were employed to
evaluate if the peptide is sensitive to cell efflux and to metabolic liability. The first classifier enables
to predict if a molecule is prone to be a substrate of the permeability glycoprotein, abbreviated P-gp,
and responsible for the most important active efflux mechanism of xenobiotics through biological
membranes [74]. A support vector machine (SVM) was trained on 521 P-gp substrates and 512
non-substrates to achieve a classification accuracy of 89% on an external test set of 415 compounds. Five
other SVM-based models regard the five most important isoenzymes of cytochromes P450. These were
trained and tested on thousands of different molecules and achieved external accuracy of 91%, 87%,
81%, 87% and 86% for CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4, respectively [16]. With these
robust predictive models, Bhunia, D. et al. estimated that ETWW is not a substrate of the P-glycoprotein
efflux pump, nor of CYP450 metabolizing enzymes. These predictions were experimentally confirmed
and established the ETWW tetrapeptide as a promising drug-delivery vehicle.

As mentioned above, SwissDock was developed for accurate physics-based analysis of
ligand-protein binding and therefore is not fast enough to perform VS on large chemical libraries [5]. It
was nevertheless found to be of great value for the confirmation of prior fast dockings, in a two-step
SBVS process. An example is a drug discovery study targeting a p53 mutant, present in many cancer
tissues and responsible for malignant tumor progression [75].

A subset of ZINC [34] with more than 800,000 drug-like compounds was docked into an allosteric
site of the crystal structure of the p53 mutant R273H using the idock fast docking web service
(istar.cse.cuhk.edu.hk/idock). Top-scored molecules were re-docked into the same tridimensional
structure with SwissDock. Based on calculated binding free energies and scaffold diversity, 12
compounds were selected and their activity was experimentally validated in cell-based experiments
on wild-type and mutant p53. The results demonstrate the potential of diverse chemotypes to become
interesting candidates as mutant p53 reactivating agents.

4. Conclusions

Computer-aided drug design methods can support experimental screening of small molecules
in several ways. Accordingly, the methods included in the SwissDrugDesign project have an
important role to play in various drug discovery strategies, as exemplified in this short review.
Besides ligand-based methods especially developed for virtual screening, such as SwissSimilarity
and SwissTargetPrediction, other tools dedicated, for instance, to molecular docking (SwissDock) or
pharmacokinetics (SwissADME) can also participate in efficiently enriching small molecule libraries.
Being web based, cost- and login-free, these tools are particularity well suited for academic and
non-for-profit screening campaigns. As illustrated here, the described web-based tools have already
played a role in the discovery of bioactive compounds, confirming their effectiveness, and beyond
that, the general usefulness of CADD tools. The application examples also show that, in certain
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circumstances, non-experts can take advantage of advanced in silico methods through simplified
interfaces to obtain relevant and experimentally validated results. Extending the usage of CADD
within the life science community is indeed one of the major objectives of the SwissDrugDesign project.
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