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Résumé large public 
REGULATION DE LA DIFFERENTIATION DES LYMPHOCYTES T CD8+ EN CELLULES 

EFFECTRICES ET MEMOIRES : LE ROLE DE LA VOIE DE SIGNALISATION WNT/TCF-1 

L’étude du fonctionnement du système immunitaire permet de développer de nouveaux traitements 

contre les infections bactériennes et virales, mais aussi contre le cancer. Une des approches 

prometteuses consiste à renforcer ou induire une réponse immunitaire contre les cellules infectées ou 

tumorales. Les lymphocytes T sont les cellules immunitaires responsables de la mise en place d’une 

réponse immunitaire dirigée de manière spécifique contre les cellules infectées ou tumorales. Elles sont 

capables de tuer ces cellules via la reconnaissance d’antigènes infectieux ou tumoraux grâce à leur 

récepteur de surface (TCR). Les lymphocytes T peuvent être de type CD8+ ou CD4+. La variabilité de 

leur TCR leur permet de pouvoir reconnaître une multitude d’antigènes dérivés de protéines et 

présentés par des cellules spécialisées dans la présentation d’antigène appelées cellules dendritiques 

(DCs). L’interaction entre les lymphocytes T et les DCs entraîne la perte de l’état naïf des lymphocytes 

T et induit leur activation, ce qui confère aux lymphocytes T CD8+ la capacité de tuer les cellules 

infectieuses ou tumorales présentant un antigène spécifique. Le processus de différentiation des 

lymphocytes T CD8+ est un processus qui a été beaucoup étudié afin de développer des traitements 

favorisant le développement de lymphocytes T CD8+ avec la capacité de tuer les cellules ciblées ou au 

contraire pour développer des vaccins favorisant le développement de lymphocytes T CD8+ mémoires 

conférant une meilleure protection en cas de réinfection. 

Le but de mon travail de doctorat a été de caractériser in vivo la réponse des lymphocytes T CD8+ en 

utilisant un modèle basé sur les DCs. Ce système permet de simuler une infection tout en maîtrisant 

certains paramètres de « l’infection », telle que la présence ou non d’inflammation. En utilisant ce 

modèle nous avons montré que l’expression de Tcf-1, au pic de la réponse des lymphocytes T dans les 

lymphocytes T CD8+ était réduite lorsque l’infection avait lieu en présence d’inflammation. Tcf-1 est une 

protéine impliquée dans la voie de signalisation Wnt. Nous avons aussi pu montrer que l’expression de 

Tcf-1 bloquait la différentiation des lymphocytes T CD8+ et que la réduction de son expression se 

produisait via la cytokine IL-12 qui induit l’expression de STAT4. Ainsi, en inhibant l’expression de 

STAT4 pendant le processus de différentiation des lymphocytes T CD8+ suite à l’administration d’un 

vaccin, il serait théoriquement possible d’obtenir plus de lymphocytes T mémoires, conférant ainsi une 

protection supérieure dans le cas d’une réinfection. 

Parallèlement, nous avons aussi essayé de déterminer ce qui maintenait l’expression de Tcf-1 dans les 

lymphocytes T CD8+ naïfs. Nous avons ainsi bloqué la sécrétion de toutes les protéines appartenant à 

la famille des protéines Wnt. Ces protéines sont responsables de l’activation de la voie de signalisation 

Wnt, ce qui induit l’expression de Tcf-1. Malheureusement, en supprimant la sécrétion de ces protéines 

dans plusieurs populations cellulaires, nous n’avons pas pu déterminer si ces protéines étaient 

réellement responsables de l’expression de Tcf-1 dans les lymphocytes T CD8+ naïfs. 

En conclusion, mon travail de doctorat a démontré le rôle de la protéine Tcf-1 dans la différentiation des 

lymphocytes T CD8+.  



 
 

Résumé   Maxime DANILO Department of fundamental Oncology 
REGULATION DE LA DIFFERENTIATION DES LYMPHOCYTES T CD8+ EN CELLULES 

EFFECTRICES ET MEMOIRES : LE ROLE DE LA VOIE DE SIGNALISATION WNT/TCF-1 

L’établissement de nouvelles stratégies thérapeutiques est nécessaire pour contrôler et guérir certaines 

maladies, telles que les infections chroniques ou le cancer. Une approche prometteuse consiste à 

augmenter la réponse des lymphocytes T CD8+. Cependant, pour cela, une meilleure compréhension 

des réponses immunitaires conférant une protection contre une potentielle réinfection par le même 

pathogène est nécessaire. La voie de signalisation Wnt/Tcf-1 dans les lymphocytes T CD8+ spécifiques 

pour l’antigène est nécessaire pour la formation de lymphocytes T CD8+ mémoires fonctionnelles. Cette 

thèse a donc pour but d’étudier comment la voie de signalisation Wnt/Tcf-1 est contrôlée dans les 

lymphocytes T CD8+ naïves, spécifiques pour l’antigène, mais aussi au cours d’une réaction immunitaire 

primaire suite à une infection. 

Dans la première partie de cette thèse, nous avons établi que l’inflammation systémique était 

responsable de la régulation négative de la voie de signalisation Wnt/Tcf-1 dans les lymphocytes T 

CD8+ spécifiques pour l’antigène. Nous avons ensuite montré que l’IL-12 joue un rôle clé et que cette 

cytokine agit via la protéine STAT4 dans les lymphocytes T CD8+ naïves spécifiques pour l’antigène. 

Nous avons aussi établi que l’expression du facteur de transcription Tcf-1 empêchait la différentiation 

des lymphocytes T CD8+ et que la répression de Tcf-1 induite par l’inflammation est importante pour la 

différentiation des cellules T CD8+ effectrices. En effet, l’absence de Tcf-1 aboutit à la différentiation 

terminale rapide des lymphocytes T CD8+ et à un défaut dans la formation des lymphocytes mémoires. 

Dans un second temps, nous avons vérifié si l’activité de la voie de signalisation Wnt/Tcf-1 dans les 

lymphocytes T CD8+ naïfs était maintenue par la sécrétion des protéines Wnt. Pour vérifier cette 

hypothèse, nous avons analysé des souris n’exprimant pas Wntless (Wls) qui a été décrite comme étant 

une protéine requise pour la sécrétion de toutes les protéines Wnt. Cependant, la délétion de Wls dans 

les lymphocytes T, le système hématopoïétique ou les cellules stromales des organes lymphoïdes 

secondaires, n’a pas permis de mettre en évidence que la sécrétion des protéines Wnt permet la 

maintenance l’activité de la voie de signalisation Wnt/Tcf-1 dans les lymphocytes T CD8+ naïfs. 

Ensemble, ces résultats indiquent que l’extinction de la voie de signalisation Wnt/Tcf-1 est importante 

pour la différentiation des cellules effectrices, au détriment de la différentiation en cellules T 

CD8+ mémoires. La prévention de la régulation négative de la voie de signalisation Wnt/Tcf-1 par la voie 

IL-12/STAT4 dans les lymphocytes T CD8+ pendant la vaccination, pourrait donc être une nouvelle 

approche pour améliorer la formation de cellules T CD8+ mémoires.  



 
 

Summary  Maxime DANILO Department of fundamental Oncology 
REGULATION OF EFFECTOR VERSUS MEMORY CD8+ T CELL DIFFERENTIATION: THE ROLE 

OF WNT/TCF-1 SIGNALING 

The design of new therapeutic approaches is needed to control and cure certain diseases such as 

chronic infections or cancer. One promising approach is to promote CD8+ T cell responses. However, 

to do so, a better understanding of naturally occurring protective immune responses will be needed. 

These latter responses are able to induce life-long immune protection from re-infections with the same 

pathogen. Since Wnt/T cell factor-1 (Tcf-1) signaling in antigen-specific CD8+ T cells is required for the 

formation of functional CD8+ T cell memory, this thesis addressed how Wnt/Tcf-1 signaling was 

controlled in antigen-specific naïve CD8+ T cells and during a primary immune response. 

In the first part of this thesis, we established that systemic inflammation was responsible for the 

downregulation of Wnt/Tcf-1 signaling in antigen-specific CD8+ T cells. We further found that interleukin-

12 (IL-12) played a key role and that this cytokine acted via STAT4 signaling in antigen-specific CD8+ T 

cells. We also established that the expression of the transcription factor Tcf-1 normally prevented CD8+ 

T cell effector differentiation and that inflammation-induced Tcf-1 repression was important for effector 

differentiation. Indeed, the absence of Tcf-1 resulted in the rapid terminal differentiation of CD8+ T cells 

and a concomitant the defect in memory formation. 

In the second part of this thesis, we addressed whether Wnt/Tcf-1 signaling in naïve CD8+ T cells was 

maintained via the secretion of Wnt proteins. To address this hypothesis, we analyzed mice lacking 

Wntless (Wls) which is reportedly required for the secretion of all Wnt proteins. However, Wls deletion 

in T cells, in all hematopoietic cells or in stromal cells of secondary lymphoid organs did not provide 

evidence for a role of Wnt protein secretion in the maintenance of Wnt/Tcf-1 pathway activity in naïve 

CD8+ T cells. 

Together, these data indicate that the shutdown of Wnt/Tcf-1 is important for effector differentiation but 

detrimental for memory CD8+ T cells differentiation. Preventing IL-12/STAT4-mediated Tcf-1 

downregulation in CD8+ T cells during vaccination may thus be an approach to improve memory 

formation.  
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The natural course of most viral and intracellular bacterial infections in mammals involve the generation 

of a protective T cell-mediated immune response, which rapidly and specifically eliminates pathogen-

infected cells, and which protects individuals from future infections with the same pathogen. Examples 

of controlled viral and bacterial infections in humans include Influenza A and measles viruses or bacterial 

Listeria monocytogenes (L.m.) [14-16]. Mouse models used to characterize the CD8+ T cell response to 

acute infections include the Lymphocytic choriomeningitis virus (LCMV) Armstrong or WE strains and 

Listeria monocytogenes [15, 17]. 

However, the immune system sometimes fails to protect from infection. Such instances include 

impairments or failures in protecting some individuals from Influenza virus infections or infections caused 

by certain pathogens such as human immunodeficiency virus (HIV) or the hepatitis C virus (HCV) [18-

20]. T cell responses in the context of chronic infections are characterized using mouse models such as 

LCMV clone 13 infection [17]. A prerequisite for understanding why the immune system fails in 

controlling these infections is to have a clear picture of the molecular and cellular mechanisms that 

facilitate the generation of protective effector T cell responses and the formation of immune memory in 

infections that the immune system can control. Since our understanding of the complex mechanisms 

controlling T cell differentiation is still incomplete, the aim of this thesis is to gain further insights into 

these processes. 

1.1 Innate immune response 

The innate immune system provides the first line of immune defense against an infection. This system 

is relatively non-specific but acts rapidly upon exposure to infectious organisms [21]. Innate immune 

cells, such as granulocytes, macrophages and dendritic cells (DCs), natural killer (NK) cells and other 

innate lymphoid cells can recognize microorganisms and induce an innate immune response. 

An innate immune response is induced via the engagement of pattern recognition receptors (PRR) 

expressed on innate immune cells. PRRs recognize specific conserved motifs in pathogens called 

pathogen-associated molecular patterns (PAMPs) [22, 23]. PAMPs are invariant and are essential 

pathogen components such as bacterial cell wall components including lipopolysaccharide (LPS), 

lipopeptides or flagellin but also viral nucleic acids such as bacterial DNA or viral double-stranded RNA. 
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PRRs include Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-leucine-rich 

repeat-containing receptors among others [24]. TLRs are transmembrane proteins which are 

evolutionarily conserved between insects and humans [25]. There exist more than ten TLRs (Table 1) 

which are expressed by immune cells, notably on dendritic cells and monocytes/macrophages. TRL1, 

TRL2, TLR4, TRL5, and TRL6 are specialized in the recognition of common components of bacterial 

cell walls such as LPS, a cell-wall component of Gram-negative bacteria. TLRs triggered in response to 

a bacterial infection activate NF-κB or the activator protein 1 transcription factors to induce the 

production of pro-inflammatory and immune stimulatory cytokines such as interleukin (IL)-1β , IL-6, IL-

12, IL-18 and tumour necrosis factor α (TNFα) [26]. TLR3, TLR7, TLR8 and TLR9 are expressed in 

endosomes and allow the detection of viral and bacterial nucleic acids. TLR9 also recognizes bacterial 

DNA containing unmethylated CpG dinucleotides (CpG). Stimulation of TLR3, TLR7, TRL8 and TLR9 

leads to the production of type I interferons (IFNs) via the family of interferon regulatory factor (IRF) 

transcription factors [22]. 

Tissue resident macrophages and DCs are the first cells to respond to infection by the production of 

inflammatory cytokines such as IL-1β , IL-6 and TNFα [26]. This leads to the induction of an inflammatory 

response at the site of infection, which results in the recruitment of additional innate immune cells such 

as neutrophils and monocytes. Depending on the cytokine milieu, monocytes differentiate into 

Receptor Ligand Origin Localization
TLR1 Bacterial lipoproteins Bacteria Cell surface
TLR2 Peptidoglycan Bacteria Cell surface

B. fragilis lipopolysaccharide Bacteria
Heat-shock protein 70 Host
Zymosan Fungi

TLR3 Double-stranded RNA Virus Intracellular
TLR4 E. coli  LPS Bacteria Cell surface

Heat-shock protein 70 Host
Fibrinogen Host

TLR5 Flagellin Bacteria Cell surface
TLR6 Peptidoglycan Bacteria Cell surface

Zymosan Fungi
TLR7 Signle-stranded RNA Virus Intracellular
TLR8 Single-stranded RNA Virus Intracellular
TLR9 Unmethylated CpG DNA Bacteria/Virus Intracellular
TLR10 Not determined Cell surface
TLR11 Flagellin Bacteria Cell surface

TABLE 1 – Toll-like receptors and their typical ligands (adapted from Akira et al. [2] and Shah 
et al. [6]). 
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macrophages or dendritic cells [27]. DCs link the innate immune system with the adaptive immune 

response [28]. They are the main antigen presenting cells (APCs) and the only immune cell type able 

to initiate an antigen (Ag)-specific adaptive immune response. Antigen presentation requires antigen 

uptake from the environment, protein degradation in the cytosol and peptide loading onto major 

molecular histocompatibility complex (MHC) class I and II molecules on the cell surface of DCs. MHC 

class I molecules present peptides that are derived from endogenous or from exogenous proteins via 

cross-presentation. MHC class II molecules acquire short peptides generated by the proteolytic 

degradation in endosomal compartments. The MHC class II binding peptides are mainly generated from 

exogenous antigens [29]. DCs are continuously taking up material from the environment. The 

engagement of TLRs stops further Ag uptake and induces DC maturation i.e. the expression of co-

stimulatory ligands (such as CD80 or CD86) and the up-regulation of MHC class I and II molecules on 

their surface. In addition, it also induces the expression of CCR7 at the surface of DCs, which thus 

acquire the capacity to migrate to lymph nodes. This is based on CCL19 and CCL21 chemokines, which 

attract cells expressing CCR7 to lymph nodes. Further TLR engagement triggers the transcription of 

immune-stimulatory cytokines depending on the type of infection. On one hand, viral infection leads to 

the production of type I IFNs. On the other hand, bacterial infection leads to the production of IL-12 

which is the main cytokine produced by DCs. In secondary lymphoid organs (SLOs), DCs have the 

unique ability to activate naïve T cells whose T cell receptor (TCR) is specific for peptide/MHC 

complexes expressed at the surface of DCs. 

In order to mimic innate immune responses to infection, specific microbial components are used to 

stimulate innate immune responses. Agents increasing the antigenic response during vaccination are 

referred to as adjuvants. For example, CpG-B oligodeoxynucleotide, an unmethylated synthetic single-

stranded DNA molecule, directly stimulates B cells, macrophages and DCs via TLR9. DCs are then able 

to secrete cytokines such as IL-12 and type I IFNs [30-32]. Similarly, polyinosinic:polycytidylic acid 

(poly(I:C)) and LPS induce the production of type I IFNs and IL-12 via their interaction with TRL3 and 

TLR4 respectively [33, 34]. Human vaccination is also improved by the addition of microbial components 

including CpG-B or monophosphoryl lipid A which have also been shown to induce cytokines such as 

IL-12 and type I IFNs [35, 36]. 
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1.2 Adaptive immune response 

Following their development in the thymus and export to the periphery, naïve CD4+ and CD8+ T cells 

are maintained by IL-7 signaling and interactions of their TCR with self-peptide/MHC complexes [37, 

38]. Naïve T cells will permanently circulate between SLOs, the blood and the lymph. Naïve T cells are 

attracted to LN via the chemokine receptor CCR7. The ligands of CCR7, the chemokines CCL19 and 

CCL21, are produced by stromal cells in the lymph nodes and attract naïve T cells as well as matured 

DCs via a gradient of these chemokines. Naïve T cells can enter LNs based on the expression of L-

selectin (CD62L) which functions as a homing receptor and allows their entrance via the high endothelial 

venules (HEV) [39]. Once inside the LNs, T cells reside in the T cell zones while scanning APCs for 

cognate peptide/MHC complexes (Fig. 1). 

The recognition of antigen (i.e. peptide/MHC complexes) expressed by DCs by the very rare T cells 

expressing the correct T cell receptor leads to the activation, proliferation and differentiation of T 

lymphocytes. CD4+ T cells differentiate into different subtypes of T helper (TH) cells, depending on the 

type of infection and the ensuing cytokine milieu. Viral and bacterial infections, that are characterized 

by type I IFN or IL-12, mainly induce a TH1 response which is characterized by the production of IFNγ 

FIGURE 1 -  Migration and activation of naïve T cells in lymph nodes (adapted from 2009 Takada and Jameson [8]). 
Naïve T cells enter into lymph nodes via the high endothelial venule (HEV) being attracted by chemokines, CCL19 
and CCL21, produced by stromal cells, via their CCR7 receptor. They then get activated by APCs via the interaction 
between TCR and peptide/MHC complexes. 
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by CD4+ T cells. While TH1 cells have direct antiviral functions, TH cells also provide help to cytotoxic 

CD8+ T cells. The helper function depends on their production of IL-2 [40] which, together with other 

signals improves CD8+ T cell expansion and differentiation into effector cells [41]. Moreover, TH1 cells 

express CD40, which can interact with CD40 ligand (CD40L) expressed by DCs. This interaction 

licenses DCs to stimulate CD8+ T cells via their TCR and co-stimulatory signals (CD27-CD70) [42-44]. 

Another subset of CD4+ T cells, follicular helper (TFH) cells, are located in B cell follicles of SLOs and 

trigger the formation of germinal centers through the expression of CD40L and the secretion of IL-21 

and IL-4 [45, 46]. By interacting with B cells, TFH cells help B cell to survive and to differentiate into 

plasma cells able to produce Ag-specific antibodies. They also promote antibody class switch 

recombination and somatic hypermutation, which helps antibodies to acquire distinct effector functions 

and improves their affinity for antigen, respectively [47].  

CD8+ T cell response to acute infection 

Similar to CD4+ T cells, the frequency of CD8+ T cells expressing a TCR specific for a given antigen is 

very low, ranging between 1 to 100 per million of CD8+ T cells [48]. Following the encounter of 

peptide/MHC class I complex, specific naïve CD8+ T cells expand massively. A single naïve T cell can 

undergo more than 15 consecutive divisions and can give rise to more than 30’000 daughter T cells [49, 

50]. During the expansion phase, naïve antigen-specific CD8+ T cells differentiate and acquire effector 

functions. CD8+ T cells acquire the capacity to secrete cytokines such as IFN-γ, TNF-α and TNF-β. IFN-

γ can directly inhibit viral replication and induce an increased expression of MHC class I and other 

molecules involved in antigen presentation in infected cells. This increases target cell recognition by 

CD8+ T cells. IFN-γ can also activate macrophages. TNF-α and TNF-β can act synergistically with IFN-

γ in the process of macrophage activation but they can also kill targets through binding to TNF-R [51]. 

The main function of effector CD8+ T cells is to kill infected cells by inducing programmed cell death 

(apoptosis). Upon recognition of antigen on the surface of a target cell, cytolytic CD8+ T cells (CTLs) 

release specialized lytic granules. Lytic granules release perforin, which can polymerize and create 

transmembrane pores in target cell membranes and allow the entry of proteases called Granzymes. 

Granzymes (Gzm) induce apoptosis by inducing programmed caspase-dependent or -independent cell 

death [52]. In addition, effector CD8+ T cells can kill target cells using the Fas pathway. Indeed, effector 
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CD8+ T  cells (and TH1 cells) express Fas ligand, which can trigger apoptosis of cells expressing Fas 

[53]. 

 Most effector cells, representing 90-95% of the CD8+ T cell population, are relatively short-lived as they 

die after the clearance of the pathogen. They are called short-lived effector cells (SLECs). SLECs 

express low levels of CD127 (IL-7 receptor subunit-α (IL-7Rα)) and high levels of killer cell lectin-like 

receptor G1 (KLRG1). However, not all cells with a SLEC phenotype are short lived and cells with a 

SLEC phenotype are not observed in all infections (e.g. influenza) [54]. Other effector cells display a 

memory-precursor effector (MPECs) phenotype i.e. they express high levels of CD127 and low levels 

of KLRG1. Functionally, SLECs produce high amounts of GzmB but low levels of IL-2 whereas MPECs 

produce lower levels of GzmB and relatively high levels of IL-2. MPECs give rise predominantly to a 

long-lived population of memory cells that is stably maintained in the absence of antigen [55] (Fig. 2). 

Memory cells are maintained in the absence of tonic TCR signals but depend on both IL-15 and IL-7 for 

self-renewal and survival [37, 38]. 

FIGURE 2 – Kinetics of T cell-response and distribution of memory cell potential (adapted from 2012 Kaech and Cui 
[11]). During an acute viral infection, antigen-specific T cells get activated by antigen presenting cells and rapidly 
proliferate (during the expansion phase) and differentiate into cytotoxic T lymphocytes that mediate viral clearance. 
Most of these cells die over the next several weeks during the contraction phase. Only a small percentage of effector 
T cells (5-10%) survive and further develop into functional mature memory CD8+ T cells. Not all effector T cells 
have an equal potential to form memory T cells. Some cell surface markers correlate with distinct effector and 
memory T cell fates: terminal effector T cells (shown in green) are KLRG1hi CD127low and have effector functions 
and long-lived memory (and memory precursor) cells (shown in yellow) are KLRG1low CD127hi confer the long-term 
protection. However, other T cell subsets, with intermediate differentiation states, also exist that have mixed 
phenotypes, longevities and abilities to self-renew. 
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Similar to effector cells, the memory CD8+ T cell pool is heterogeneous. This heterogeneity is based on 

differences in migration capacity, self-renewal and recall potential [56]. The first memory CD8+ T cell 

subpopulations characterized were the effector memory CD8+ T cells (TEM cells) and the central memory 

CD8+ T cells (TCM cells) by Sallusto and colleagues [57]. TEM cells express high levels of CD127 and 

CD44 (activation marker) and low levels of CD62L. Absence of CD62L limits their ability to migrate to 

LNs. TEM cells recirculate and can migrate to peripheral tissues such as the lungs and intestine [58]. 

They have limited re-expansion potential but have readily available effector functions such as 

cytotoxicity [11]. On the other hand, TCM express CD62L together with CD127 and CD44. They can self-

renew and are thought to be the source of TEM [56]. In addition, as compared to TEM, TCM have a greater 

capacity to produce IL-2 and to expand following a second encounter with the same antigen [59, 60]. 

During re-stimulation, they generate both secondary memory cells as well as effector cells. 

An additional type of memory CD8+ T cells is characterized by their presence in non-hematopoietic 

tissues and their failure to recirculate. These tissue resident memory cells (TRM cells) express CD69 

(early activation marker) and CD103. CD103 is also known as αEβ7 integrin which is important for T cell 

homing to the intestinal sites [61]. They are located in mucosal tissues such as lungs, skin or intestines 

and provide direct local protection upon secondary infection of the tissue of residence and recruit other 

immune cells in an antigen non-specific fashion [62]. 

An additional memory CD8+ T cell population with a naïve-like phenotype has been described [63]. 

These cells express high levels of CD62L and low levels of CD44, similarly to naïve CD8+ T cells but 

they also express high levels of CD122 (a component of IL-15 receptor) [63, 64]. One marker which 

permits to discriminate TCM from TSCM is CD45RA in human which was originally known as leukocyte 

common antigen. Indeed, TSCM express CD45RA whereas TCM do not [65]. These cells undergo 

homeostatic proliferation in response to IL-7 and IL-15. This subset of memory CD8+ T cells has been 

termed stem cell-like CD8+ T cells (TSCM). It has the potential to give rise to multiple memory subsets 

and effector cells. 

Thus a productive immune response to acute infection generates diversity of antigen-specific effector 

and memory cells that allows rapid pathogen control as well as the long-term protection from re-infection. 
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Memory differentiation is programmed during the primary immune response to infection [66] i.e. 

dependent on the signals perceived during primary stimulation of naïve T cells. 

1.2.1 CD8+ T cell response to chronic infection and cancer 

Similar to acute infections, chronic infections are accompanied by strong CD8+ T cell responses but 

CD8+ T cell differentiation is profoundly altered. These CD8+ T cells show strong impairments in effector 

properties such as reduced ability to produce cytokines (IFN-γ, TNFα and IL-2) together with an 

increased expression of inhibitory receptors such as program cell death -1 (PD-1) and lymphocyte 

activation gene 3 (Lag3) [67]. They are also characterized by a reduced proliferative potential (Fig. 3). 

These cells are commonly referred to as “exhausted” cells [67]. While T cells in chronic infections fail to 

control viral infection, T cell exhaustion limits T cell mediated immunopathology [13]. It has been thought 

that exhausted cells are terminally differentiated and that chronic infection prevents the formation of 

memory [67]. However, exhausted CD8+ T cells expand when the inhibitory PD-1 signaling is blocked 

[68]. Also, transfer of exhausted cells into naïve recipients and re-infection leads to a secondary 

population expansion [69] suggesting that not all exhausted cells are terminally differentiated. 

Recently, a small subpopulation of virus-specific CD8+ T cells, which sustains the T cell response during 

chronic infections, has been identified by us [70] and Im and colleagues [71]. Interestingly, this 

FIGURE 3 – CD8+ T cells can adopt a spectrum of exhausted states (2015 Kahan, Wherry and Zajac [13]). CD8+ T 
cell exhaustion is characterized by the step-wise and progressive loss of effector capabilities, the sustained 
upregulation of inhibitory receptors, and the loss of self-renewal abilities, which compromise viral control. Severely 
exhausted T cells may undergo apoptosis and become deleted from the chronically infected host. 
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subpopulation has characteristics of central memory cells combined with an exhausted phenotype. This 

population thus qualifies a memory-like CD8+ T cell population in chronic infection. Importantly, this 

population is needed for T cell expansion in response to inhibitory receptor blockade. These data 

highlight that the immune response to acute and chronic infection may be governed by similar principles 

i.e. both generate less differentiated memory(-like) cells and more differentiated effector(-like) cells. 

Tumour immune responses 

It is now well established that the adaptive immune system can fight against cancer. Patient samples 

and mouse models revealed a correlation between the abundance of tumour infiltrating lymphocytes 

(TILs) at the site of tumour and overall prognosis [72]. High levels of CD8+ T cells in TILs are often 

correlated with a better prognosis in several tumour types including colorectal and ovarian cancers [73, 

74]. CD8+ T cells thus seem to play a protective role against cancer development. Indeed, most tumour 

cells express antigens which can be recognized by CD8+ T cells [75]. 

However, there are multiple mechanisms that limit the efficacy of CD8+ T cells. Tumours may resist the 

T cell response by inhibiting the immune cells or by simply blocking entry of immune cells into the 

tumour. Similar to chronic infections, tumour-specific CD8+ T cells have a reduced ability to secrete 

effector cytokines and to kill due to the expression of inhibitory receptors such as PD-1 [76]. Antibodies 

blocking inhibitory receptors, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or PD-1, 

have shown great effects as therapeutic approaches to treat cancer. It will be important to test whether 

these responses are based on the presence of memory-like CD8+ T cells. 

The above considerations show that T cells can under certain circumstances control chronic infections 

and cancer. Approaches to induce protective T cell responses (either therapeutically or prophylactically) 

may thus protect from disease. However, current vaccine approaches are relatively ineffective at 

inducing T cell responses. This suggests that our understanding of the mechanisms that induce 

protective T cell responses and memory is still incomplete and needs to be further improved. 
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1.2.2 Regulation of CD8+ T cell activation and differentiation 

Signals necessary for CD8+ T cell differentiation and activation 

The magnitude and the quality of the primary CD8+ T cell response to infection depends on several 

types of signals received by CD8+ T cells. 

The recognition of peptide/MHC complex by TCR, which represents signal 1 [77], is sufficient for T cell 

activation and expansion. However, the resulting T cells are anergic, i.e. they are dysfunctional but they 

remain alive in a hyporesponsive state [78]. This is one of the major mechanisms for T cell tolerance to 

antigens [79, 80]. In order to circumvent anergy induction, signal 1 needs to be combined with co-

stimulatory signals (signal 2). In addition to ensure functionality, co-stimulation also enhances the 

survival of activated T cells and thus the magnitude of expansion. 

Co-stimulation can be provided by multiple receptor ligand interactions including CD28 with CD80 (B7.1) 

or CD86 (B7.2). CD40/CD40L has been shown to indirectly contribute co-stimulatory signals to activated 

CD8+ T cells [42, 81]. Indeed, CD40L is expressed on TH cells and can bind to CD40 expressed on DCs. 

This provokes CD70 upregulation on DCs which binds CD27 on CD8+ T cells and improves IL-2 

production by CD8+ T cells [82]. Other molecules can also enhance T cell activation, such as ICOSL, 

expressed at the surface of APCs, which can interact with ICOS on T cells [83]. In contrast to CD28, 

which is constitutively expressed by naïve CD8+ T cells, ICOS is upregulated upon T cell priming [83]. 

Inflammatory signals (signal 3) have been extensively studied for their role in effector differentiation. 

While CD8+ T cells receiving TCR and co-stimulatory signals are activated and proliferate,  the 

acquisition of effector functions is suboptimal [84].  Inflammatory signals mediated by IL-12 and/or type 

I IFN (IFNα/β) [85, 86] represent a third type of signal that promotes the efficient acquisition of effector 

functions, which further increases clonal expansion but which also modulate effector versus memory 

cell fate decisions [87]. IL-12 and type I IFNs are mainly secreted by mature DCs [88] and plasmacytoid 

dendritic cells respectively [89]. 

Thus the magnitude and the quality of the primary CD8+ T cell response to infection is determined by 

signals generated by antigen recognition, co-stimulation as well as the cytokine milieu. 
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Inflammatory cytokines promote CD8+ T cell differentiation 

Mouse models of acute infection such as L.m. and LCMV have been extensively used to characterize 

CD8+ T cell response to infection. They helped to identify IL-12, mainly produced during L.m. infection 

and type I IFNs induced during LCMV infection [90-92] as the main inflammatory cytokines involved in 

CD8+ T cell differentiation. Inflammatory cytokines induce or repress the expression of specific 

transcription factors involved in the process of effector and memory CD8+ T cell differentiation. 

Interestingly, it seems that most transcription factors function in pairs that maintain a balance between 

memory differentiation and terminal differentiation. 

Several studies showed that IL-12 can induce SLEC differentiation by acting directly on CD8+ T cells 

[93, 94] but IL-12 also regulates memory CD8+ T cell differentiation [95]. IL-12 receptor is composed of 

IL-12 receptor β1 (IL-12Rβ1), which is associated with tyrosine kinase 2 (TYK2) and IL-12Rβ2, which is 

associated with Janus kinase 2 (JAK2). IL-12 induces the phosphorylation of signal transducer and 

activator of transcription 4 (STAT4) via JAK2 which then allows the translocation of STAT4 into the 

nucleus where it can bind to the promoter site of target genes [1, 96] (Fig. 4). Well established target 

genes of the pathway are IFNγ, IL-12Rβ2 and IL-18Rβ1 which are involved in the amplification of IL-12 

FIGURE 4 – IL-12 receptor and signal transduction (2003, Trinchieri [1]). The IL-12 receptor is composed of two 
chains, IL-12Rβ1 and IL-12Rβ2. Co-expression of both chains is necessary for the generation of high affinity IL-12-
binding sites. The IL-12Rβ2 subunit functions as the signal transducing component. Signal transduction through IL-
12R induces phosphorylation of JAK2 and TYK2 which in turn phosphorylate and activate STAT4. This then allow 
the transcription of IL-12 target genes. 
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signaling and Th1 differentiation [97-100]. Moreover, IL-12 also promotes expression of IL-2 receptor α 

(CD25) thereby enhancing T cell proliferation [101]. 

 Like IL-12, type I IFNs have also been shown to promote CD8+ T cell differentiation [102]. Interferons 

form a large family of cytokines with important biological roles like antiviral, antiproliferative, antitumor 

and immunomodulatory effects [103, 104]. IFNα and IFNβ bind to the type I IFN receptor formed by two 

subunits, interferon α receptor 1 (IFNAR1) and 2 (IFNAR2). IFNAR activates JAK1 and TYK2, which 

then activate STAT 1 and 2 proteins. The nuclear translocation of STAT1 and STAT2 induce expression 

of certain genes such as IRF7 or interferon-stimulated genes that have antiviral functions [3, 105, 106] 

(Fig. 5). Type I IFNs can also provide a third signal to CD8+ T cell via the activation of STAT4 in order 

to stimulate survival, cytolytic function and production of IFNγ [92, 107]. 

In addition to the well characterized IL-12 and type I IFNs, IL-2 also impacts CD8+ T cell differentiation. 

Indeed, high IL-2 levels promote effector differentiation, while low IL-2 signaling promotes the 

development of memory CD8+ T cells [59]. Regarding the latter, IL-2 secreted by antigen-specific 

CD8+ T cells themselves plays a major role. IL-2 signaling is mediated by the IL-2 receptor complex 

formed by the IL-2Rα (CD25), IL-2Rβ (CD122) and IL-2Rγ (common γ chain) subunits. While IL-2Rβ 

FIGURE 5 – The type I interferon signaling pathway (adapted from 2014, Ivashkiv L. B. and Donlin L. T. [3]). On 
engagement, the interferon-α receptor, composed of IFNAR1 and IFNAR2 subunits, activates Janus kinase 1 
(JAK1) and tyrosine kinase 2 (Tyk2). Phosphorylation of the receptor by these kinases results in the recruitment of 
signal transducer and activator of transcription (STATs) proteins, phosphorylation, dimerization and nuclear 
translocation of STATs. The complex composed of STAT1, STAT2 and IFN-regulatory factor 9 (IRF9) binds to IFN-
stimulated response elements (ISRE) to activate classical antiviral genes, whereas STAT1 homodimers bind to 
gamma-activated sequences (GASs) to induce pro-inflammatory genes. STAT3 homodimers indirectly suppress 
pro-inflammatory gene expression. 
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and IL-2Rγ chains can bind IL-2 and transduce signals, the IL-2Rα (CD25) increases the affinity for IL-

2 [108]. The IL-2 receptor leads to the activation of several different signaling pathways including the 

JAK1/3-STAT5 pathway, the phosphoinositide 3-kinase (PI3K)-AKT pathway and the mitogen-activated 

protein kinase (MAPK) pathway. These different pathways induce the transcription of IL-2 target genes 

such as CD25 itself (Fig. 6). 

Finally, IL-21, a cytokine related to IL-2, has also been shown to enhance the activation and clonal 

expansion of CD8+ T cells but also to promote their survival in a context of tumor development [109] and 

during chronic viral infections [110], while IL-21 can also sustain memory CD8+ T cell development [111], 

possibly via its immunosuppressive role by inducing the production of IL-10, an immunosuppressive 

cytokine [112-114]. On the other hand, it can also promote the terminal differentiation of CD8+ T cells 

by promoting the expression of the transcription factor T-bet [115]. So similar to IL-2, IL-21 has a dual 

role. IL-21 is produced by CD4+ T cells. It binds to its high affinity receptor formed by the IL-21R and the 

common γ chain. It activates JAK1 and JAK3 which will lead to the activation of STAT1 and STAT3 

which in turn activate the transcription of GzmB, Eomes or Bcl6. IL-21 can also trigger the PI3K/AKT 

and the MAPK pathways [116] (Fig. 7). 

FIGURE 6 – The IL-2 receptor and signaling (adapted from 2012, Boyman and Sprent [9]). IL-2 is secreted as a 
soluble molecule by activated T cells or dendritic cells (DCs). IL-2 binds to CD25 (IL-2Rα) which then allows the 
recruitment of CD122 (IL-2Rβ) and the common γ chain (γc). IL-2 can also bind to the CD122/γc complex directly 
but with a lower affinity for its receptor in absence of CD25. Once IL-2 binds to its receptor, it induces the 
transcription of IL-2 target genes such as CD25 through several signaling pathways such as JAK-STAT, 
phosphoinositide 3-kinase-AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. 
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Several cytokines including IL-12 and IL-21 can induce T-bet expression. T-bet and Eomes are two T-

box transcription factors playing important roles in the differentiation of CD8+ T cells into effector and 

memory CD8+ T cells [117]. Early during CD8+ T cell activation, T-bet and Eomes induce terminal 

differentiation of CD8+ T cells by inducing the expression of IFNγ, GzmB and perforin [114]. T-bet is 

induced by the combination of TCR signaling and IL-12 signaling while Eomes is mainly amplified by IL-

2 and repressed by IL-12 [114, 118]. At the memory stage, T-bet and Eomes sustain the homeostatic 

proliferation of memory cells by inducing the expression of IL-2Rβ, which allows IL-15 signaling [119]. 

Based on the analysis of T-bet and Eomes-deficient CD8+ T cells, T-bet induces the terminal 

differentiation of CD8+ T cells whereas Eomes promotes central memory formation [117, 120].  

In a similar manner, IL-12 and IL-2 promote the expression of Blimp-1 which promotes terminal 

differentiation by inducing effector functions such as GzmB and IFNγ expression [121]. But over the time 

following the clearance of an infection, Blimp-1 expression decreases during memory development 

[122]. Bcl6 is an antagonist of Blimp-1 activity and its expression inversely correlates with Blimp-1 

expression in effector and memory CD8+ T cells, meaning that Bcl6 is highly expressed in central 

memory CD8+ T cells [123]. Thus Blimp-1 and Bcl6 are a pair of transcription factors with antagonistic 

effects on cell fate decisions. 

FIGURE 7 – IL-21 signals through IL-21R and utilizes the JAK-STAT, MAPK and PI3K pathways (adapted from 2014, 
Spolski and Leonard [12]). IL-21 binding stabilizes the complex between the IL-21 receptor (IL-21R) and the 
common cytokine-γ chain, γc. This leads to the activation of Janus kinase 1 (JAK1) and JAK3, which allows the 
recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins (predominantly 
STAT3, but also STAT1 and STAT5). These STAT proteins dimerize, enter the nucleus and activate a transcription 
program that includes some of the target gene such as Prdm1, GzmB or Eomes. IL-21 binding can also activate 
the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways. 



16 
 

Another set of transcription factors regulated by IL-12 are Id2 and Id3. IL-12 promotes the expression 

of Id2 and represses Id3 expression [124]. Id2 and Id3 are both expressed in effector CD8+ T cells. Id2 

is involved in the survival of naïve CD8+ T cells differentiating in terminally differentiated cells [125] 

whereas Id3 mostly supports the survival of cells differentiating in memory CD8+ T cells [126]. Moreover, 

Id3 can also be used to identify effector CD8+ T cells starting to acquire a memory-precursor genetic 

signature [124]. 

Finally, Tcf-1 is also involved in the CD8+ T cell differentiation process. Contrary to other transcription 

factors previously described, Tcf-1 is highly expressed in naïve CD8+ T cells, downregulated at the 

effector stage of the CD8+ T cell response against infection and highly expressed again in memory 

CD8+ T cells [127]. It has been shown that Tcf-1 was necessary for the formation of functional memory 

CD8+ T cells able to re-expand upon re-infection [128-130]. The regulation of Tcf-1 expression during T 

cell differentiation has not been characterized. During T cell development, Tcf-1 can be activated by 

Notch 1 binding to the Tcf7 locus [131] 

Epigenetic modifications influence CD8+ T cell differentiation 

Transient changes in transcription factor expression lead to permanent changes in gene expression 

patterns and cell fate. The latter is based on epigenetic changes. DNA and histone modifications are 

the most commonly studied epigenetic changes. 

The chromatin structure is dynamic and differs from one gene to another depending on the state of 

activation of genes. Indeed, there are two basic states of chromatin. It can be in an open state which 

makes it accessible to DNA-binding proteins such as transcription factors or transcriptional activators or 

repressors, thus facilitating the transcription. On the other hand, the chromatin can be in a closed state 

called heterochromatin, which lacks accessibility for the transcriptional machinery and is associated with 
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gene repression [10]. Several epigenetic markers have been identified and characterized by associating 

the epigenetic modifications with the chromatin state and the transcription state (Table 2). 

Several DNA modifications have been identified that influence gene expression. Among them, covalent 

modifications of DNA such as cytosine methylation occurs mainly in clusters of CpG dinucleotides called 

CpG islands and is correlated with closed chromatin, indicating repressed gene expression. Other 

covalent modifications include the amino-terminal tails of histones (H2A, H2B, H3 and H4). Some of 

these modifications, such as acetylation of H3 lysine 9 (H3K9), methylation of H3K4, phosphorylation of 

H3 threonine 3 (H3T3) and ubiquitylation of H2BK120, are associated with an open chromatin. On the 

opposite, others are associated with a closed chromatin such as methylation of H3K27 or ubiquitylation 

of H2AK119. For example, high histone acetylation levels have been observed at the promoters of genes 

encoding cytokines such as IFNγ or effector molecules such as GzmB [132, 133]. Moreover, the induced 

hyperacetylation or hypoacetylation at these gene loci results in an increase or decrease, respectively, 

in their expression in CD8+ T cells providing evidence that histone acetylation state regulates memory 

T cell function [10]. Genome-wide analysis of trimethylation of lysine 4 of histone 3 (H3K4me3) and 

H3K27 (H3K27me3) combined with gene expression profiling showed a correlation between gene 

expression and the distribution of histone methylation. Indeed, H3K4me3 positively correlates and 

H3K27me3 negatively correlates with gene expression [134]. For example, high levels of H3K4me3 and 

low levels of H3K27me3 are observed in CD8+ memory T cells genes associated with effector functions 

such as KLRG1, Ifng and GzmB [135] suggesting that histone methylation might regulate gene 

expression in memory CD8+ T cells. 

Target Modification
Nucleotide or 
amino acid

Residue position
Chromatin 
state

Transcription 
state

DNA Methylation Cytosine (C) CpG islands Closed Repressed

Acetylation Lysine (K)
H2AK5, H2BK12, H2BK15, H3K9, H3K14, 
H3K18, H3K56, H4K5, H4K8, H4K13, H4K16

Open Active

Methylation Arginine (R) H3R17, H3R23, H4R3 Open Active
H3K4, H3K36, H3K79 Open Active
H3K9, H3K27, H4K20 Closed Repressed

Phosphorylation
Serine (S) or 
threonine (T)

H3T3, H3S10, H3S28, H2BS14 Open Active

Sumoylation Lysine (K) H2AK126, H2BK6, H2BK7 Closed Repressed
H2AK119 Closed Repressed
H2BK120 Open Active

Methylation Lysine (K)

Lysine (K)

Histones

Ubiquitylation

TABLE 2 – Chemical modifications of DNA and histones and their association with chromatin and transcription states 
(adapted from 2012 Weng, Araki and Subedi [10]). 
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Further, DNA methylation of CpG islands in genes encoding cytokines and their receptors, effector 

molecules and their regulators has been studied in memory CD8+ T cells. For example, it has been 

observed that the Ifn-γ and IL-2 promoters are highly methylated in naïve CD8+ T cells and in memory 

CD8+ T cells. On the contrary, in effector CD8+ T cells, DNA methylation levels are low and thus protein 

are highly expressed following their activation [132, 136, 137]. Similar observations have been made at 

the programmed cell death 1 (Pdcd1) gene locus encoding a regulator of cell proliferation and 

exhaustion called PD-1 in a context of both acute and chronic viral infection. Indeed, Youngblood and 

colleagues [138] showed that this locus is highly methylated in naïve CD8+ T cells and then 

demethylated during their differentiation. Moreover, the DNA methylation status being stable and 

passing from a parental cell to its descendant during memory CD8+ T cell division [136], it is clear that 

DNA methylation has a key role in the regulation of gene expression. Another piece of evidence 

indicating that DNA methylation could regulate CD8+ T cell differentiation is the fact that the Tcf7 locus, 

gene coding for Tcf-1, is significantly more methylated at day 8 after acute LCMV infection when 

compared with naïve CD8+ T cells [139]. 

Epigenetic changes can be induced by pro-inflammatory cytokines since STATs regulate the expression 

of genes by modulating histone modifications [4, 140], indicating that pro-inflammatory cytokines can 

induce epigenetic modifications. Transcription factors such as T-bet or Blimp-1 also play a role in the 

activity of the enzymes responsible for DNA and histone modification [141, 142]. 

1.3 T cell factor 1 and the canonical Wnt signaling pathway 

1.3.1 The canonical Wnt signaling pathway 

As previously mentioned, Tcf-1 is necessary for the formation of functional memory CD8+ T cells [128-

130]. Tcf-1 is a well-known nuclear effector of the canonical Wnt signaling pathway. 

The Wnt1 gene, originally named Int-1, was identified in 1982 as a proto-oncogene virally induced in 

breast tumors by Nusse and Varmus [143] and encodes for a secreted, cysteine-rich protein. The fly 

Wingless (wg) gene, which controls segment polarity during larval development [144], was later shown 

to be a homolog of Wnt1 [145]. 
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The human and mouse genomes contain 19 Wnt genes [146]. Wnt proteins (Wnts) are very insoluble 

as they are modified with palmitoleic acid. Lipid addition is mediated by porcupine (Porcn) [147, 148]. 

This lipid modification is important for Wnt secretion which depends on the seven-transmembrane 

protein Wntless (Wls) protein [149]. Wls transports lipid-modified Wnt proteins from the Golgi apparatus 

to endosomes and allows their secretion (Fig. 8). Porcn and Wls are essential for Wnt secretion by Wnt-

producing cells such as Paneth cells in the gut [7, 150]. Due to lipid modifications, Wnts are supposed 

to act only at a short distance of Wnt producing cells [151]. 

Combined observations from Drosophila and Xenopus identified three conserved signaling pathways 

commonly referred to as Wnt signaling pathways. Below, I will discuss only the so-called canonical Wnt 

pathway, which results in transcriptional responses to extracellular Wnt proteins. 

Signaling via the canonical Wnt pathway is activated when Wnts interact with heterodimeric receptor 

complexes composed by Frizzled (Fzd) and lipoprotein receptor-related protein (LRP) 5 or 6. There exist 

10 Fzd proteins which are seven-transmembrane domain proteins. The LRP co-receptors are single-

pass transmembrane proteins. In the absence of Wnts, the cytoplasmic levels of β-catenin are regulated 

by the “destruction complex”. This complex is composed of the adenomatosis polyposis coli (APC) and 

Axin scaffold proteins but also includes the serine-threonine kinases glycogen-synthase kinase 3β 

(GSK3β), casein kinase 1 (Ck1) and other proteins. β-catenin binds to Axin and APC and is then 

FIGURE 8 – The Wnt secretion machinery (2012 Clevers and Nusse [7]). Wnt proteins become lipid modified in the 
endoplasmic reticulum by the porcupine enzyme. Further transport and secretion is dependent on the Wntless 
transmembrane protein which carry Wnt proteins from the Golgi apparatus until the surface of Wnt producing cells. 
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phosphorylated by Ck1 and GSK3β. β-catenin phosphorylation leads to its ubiquitination by the β-

transducin-repeat-containing protein (βTrCP), which targets it for proteasome-mediated degradation. 

Upon Wnt binding to Fzd and LRP5/6, the destruction complex is recruited to the Wnt/receptor complex 

via Disheveled and Axin and this leads to the phosphorylation of LRP5/6 co-receptor by GSK-3β and 

Ck1. The recruitment of the destruction complex to the Wnt/receptor complex blocks the phosphorylation 

and ubiquitination of newly synthetized β-catenin. Consequently, β-catenin can accumulate in the 

cytoplasm and eventually translocate to the nucleus (Fig. 9). 

In the nucleus, β-catenin binds to members of Tcf/Lymphoid enhancer binding factor (Lef) transcription 

factor family i.e. Tcf-1 (encoded by Tcf7), Lef-1, Tcf-3 (encoded by Tcf7L1) and Tcf-4 (encoded by 

Tcf7L2). In the Wnt “off” state, Tcf/Lef interacts with Groucho/TLE co-repressors, preventing gene 

transcription. In the Wnt “on” state, the association with β-catenin converts Tcf/Lef into a transcriptional 

activator of its target genes. Known target genes include Axin2, Tcf7, c-myc or cyclin D1 [146, 152, 153]. 

Axin2 is regarded as a general transcriptional Wnt target and therefore a general indicator of Wnt 

pathway activity (Fig. 10) [7]. 

FIGURE 9 - Wnt signaling at the receptor and destruction complex level (adapted from 2012 Clevers and Nusse [7]). 
In the absence of Wnt, the destruction complex composed by Dishevelled (Dvl), Axin, Casein kinase 1 (Ck1), 
Glycogen-synthase kinase 3 (GSK3) and Adenomatosis coli (APC), resides in the cytoplasm where it binds, 
phosphorylates and ubiquitinates β-catenin (βcat) by βTrCP. The proteasome recycles the complex by degrading 
β-catenin. Wnt induces the association of the intact complex with phosphorylated LRP. After binding to LRP, the 
destruction complex captures and phosphorylates β-catenin and the ubiquitination of β-catenin by βTrCP is blocked. 
Newly synthetized β-catenin can accumulate and translocate into the nucleus. 
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Non-canonical activation of the canonical Wnt pathway 

While the canonical Wnt signaling pathway can be activated by extracellular Wnts, it is important to note 

that other factors can also use this signaling pathway. For example, growth factors such as hepatocyte 

growth factor or insulin-like growth factor can active β-catenin/Tcf-1 signaling. They do so via the 

PI3K/AKT pathway which can phosphorylate and thus inhibit GSK-3β [154]. The lipid prostaglandin E2 

can also activate the Wnt signaling pathway. Indeed, PGE2 stabilizes β-catenin by inactivating GSK-3β 

after binding to its G-protein-coupled receptor which in turn activates the PI3K-Akt signaling pathway 

[155]. The complement component C1q can also activate Wnt signaling by binding to the Fzd receptor 

and by cleaving the LRP6 co-receptor [156]. Following its binding to CD70, CD27 can also induce Wnt 

signaling by stabilizing β-catenin via TRAF-2 and TNIK [157]. Thus, in addition to extracellular Wnt 

proteins, multiple additional extrinsic factors can signal via the non-canonical Wnt pathway. 

1.3.2 Role of Wnt/Tcf-1 signaling in immune system 

Wnt signaling is involved in virtually every aspect of embryonic development. Moreover, it ensures the 

self-renewal of multiple adult tissues by regulating adult stem cells [158]. Uncontrolled Wnt signaling is 

responsible for the development of various types of cancers. For example, a mutated, and thus 

constitutively active, form of β-catenin results in aggressive T cell lymphomas in mice [159]. Increased 

activity can also be due to mutations in other pathways components. For example, mutations in APC 

leads to the stabilization of β-catenin and this leads to colorectal cancer development [160, 161]. 

FIGURE 10 – Wnt signaling in the nucleus [7]. In the absence of Wnt signals, Tcf/Lef occupies and represses its 
target genes, helped by transcriptional co-repressors such as Groucho. Upon Wnt signaling, β-catenin (βcat) 
replaces Groucho from Tcf/Lef and recruits transcriptional co-activators and histone modifiers such as Brg1, CBP, 
Cdc47, Bcl9 and Pygopus to drive target gene expression. 
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Wnt/Tcf-1 signaling and its role in T cell development 

The first evidence indicating a role of Wnt pathway components in the immune system came from the 

studies focused on T cell development in the thymus. The absence of Tcf-1 incompletely blocked 

intrathymic T cell development at multiple discrete stages [162, 163]. Tcf-1 is a Notch target and plays 

a critical role in early T-lineage specification [164]. Moreover, Tcf-1 ensures thymocyte survival once 

cells have passed the pre-TCR stage [165]. Tcf-1 is further needed for the transition from the immature 

single-positive to the CD4+/CD8+ double-positive (DP) stage [5, 166] and for ensuring DP lymphocytes 

survival [167].  T cell development is even more severely blocked in the absence of both Tcf-1 and Lef-

1 [168]. Moreover, Tcf-1 and Lef-1, together with other transcription factors, promote CD4+ lineage 

differentiation [166]. They ensure CD8+ T cell identity by repressing CD4+ lineage-associated genes 

such as Cd4 or Foxp3 in CD8+ T cells [5, 166]. 

In addition to their role in T cell development, Tcf-1 and β-catenin impact the fate of mature peripheral 

CD4+ T cells. Indeed, they promote TH2 fate by inducing the upregulation of the transcription factor 

GATA-3. They inhibit TH1 and TH17 fates by repressing IFNγ and by negatively regulating Il-17 gene 

respectively [169, 170]. β-catenin also improves the survival of regulatory T cells by upregulating Bcl-XL 

[171]. Finally, Tcf-1 and Lef-1 expression increase the differentiation of naïve CD4+ T cells into TFH cells 

[172]. Tcf-1 promotes Bcl6 expression and inhibits Blimp-1 expression, leading to the initiation of TFH 

cells [173]. 

Tcf-1 is not only impacting CD4+ T cell differentiation. Indeed, absence of Tcf-1 in CD8+ T cells did not 

impair the ability of CD8+ T cells to expand and undergo effector differentiation in response to acute 

LCMV infection. However, CD8+ T cells lacking Tcf-1 had a reduced capacity to expand upon secondary 

infection [128]. Thus Tcf-1 is required for memory formation and function in response to acute viral or 

bacterial infections. 

Chronic viral infections were previously thought to preclude the formation of memory [174]. However, 

terminally differentiated (exhausted) virus-specific T cells persist for extended periods of time in chronic 

infections. Further, transfer of exhausted cells into naïve secondary hosts and reinfection resulted in 

secondary expansion of virus-specific cells, indicating that not all cells were terminally differentiated. 

Indeed, we and others recently identified a memory-like, Tcf-1-expressing, subpopulation of virus-



23 
 

specific CD8+ T cells which sustains the immune response to chronic infection [70]. In addition to 

features of central memory cells, these memory-like CD8+ T cells have an “exhausted” phenotype. 

Importantly these cells are needed for clonal expansion to inhibitory blockade. 

Even though Tcf-1 plays a prominent role for memory formation, a role for the canonical Wnt pathway 

is less well established. We showed that CD8+ T cell differentiation and memory formation and function 

depended on the presence of a full length Tcf-1 isoform (called Tcf-1 p45). Tcf-1 p45 is able to bind β-

catenin and γ-catenin [128]. While Prlic and Bevan did not find a role for β-catenin in memory CD8+ T 

cell formation [175], re-expansion of memory CD8+ T cell was reduced in chimeras with combined 

absence of β- and γ-catenin, indicating an essential role for Wnt/Tcf-1 [130]. 

In agreement with these findings, Gattinoni et al. showed that the enforced of Wnt/Tcf-1 signaling 

blocked CD8+ T cell differentiation and generated stem cell-like memory cells in vitro [176]. Wnt signaling 

was promoted using a small molecule GSK3-β inhibitor (TWS119). However, TWS119 was 

subsequently shown to also inhibit the mammalian target of rapamycin (mTOR) pathway in an 

adenosine monophosphate-activated protein kinase (AMPK)-dependent manner [177]. It is thus not 

clear whether Wnt signaling was required for the generation of stem cell-like cells. 

Notwithstanding, we and others showed that Tcf-1 is highly expressed in naïve CD8+ T cells [127]. We 

further showed that naïve CD8+ T cells express high levels of phosphorylated LRP6, non-

phosphorylated (active) β-catenin and the Wnt/Tcf-1 target Axin2 [129], indicating that the canonical 

Wnt pathway is constitutively active in naïve CD8+ T cells. 

However, it was not known how Tcf-1 expression is maintained in naïve CD8+ T cells. As Tcf-1 itself is 

a Wnt target, one possibility was that Wnt protein secretion played a role for the maintenance of Tcf-1 

expression in naïve CD8+ T cells. If so, we wanted to identify the cellular source of Wnt proteins and to 

determine the role of Wnt protein secretion for the homeostasis and differentiation of naïve CD8+ T cells.  

On the other hand, Tcf-1 was downregulated during a primary immune response and this correlated 

with effector differentiation. However, the signals responsible for Tcf-1 downregulation and the putative 

role of Tcf-1 downregulation for effector differentiation were not known. By investigating the control of 



24 
 

Tcf-1 expression, this thesis aimed at gaining novel insights into T cell homeostasis and effector versus 

memory differentiation.  
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AIM 
 

Tcf-1 expression and canonical Wnt signal transduction are high in naïve CD8+ T cells, downregulated 

during effector CD8+ T cell differentiation and high again in memory CD8+ T cell. A first aim of this thesis 

was to determine whether Wnt protein secretion is responsible for the maintenance of Wnt/Tcf-1 

signaling in naïve T cells and to address the role of Wnt/Tcf-1 pathway activity for the homeostasis of 

CD8+ T cells. A second aim was to determine the basis for the downregulation of Wnt/Tcf-1 signaling 

during CD8+ T cell differentiation and to identify its role for CD8+ T cell differentiation. The identification 

of factors regulating Wnt/Tcf-1 pathway activity in CD8+ T cells may be useful to modify T cell effector 

differentiation and improve memory formation during vaccination.  



26 
 

 

 

 

 

 

 

 

 

RESULTS 
  



27 
 

Part I – The role of Wnt/Tcf-1 expression for effector CD8+ T 

cell differentiation 

Wnt/Tcf-1 is highly expressed in naïve CD8+ T cells whereas it is only present in a subset of CD8+ T 

cells at the peak of the primary immune response to LCMV infection. In the memory phase, the vast 

majority of CD8+ T cells express Tcf-1 [129]. We have shown that Wnt/Tcf-1 signaling is important to 

generate functional memory CD8+ T cells which are able to re-expand upon re-infection [129]. However, 

the control of Wnt/Tcf-1 signaling and its role for the initial differentiation of naïve CD8+ T cells into 

effector cells or memory-precursor cells has not been studied. To address this question, we tested the 

role of proliferation and of signal 1,2 and 3 for the regulation of Wnt/Tcf-1 pathway activity in CD8+ T 

cells. 

Homeostatic proliferation does not impact Wnt pathway activity 

in CD8+ T cells 

Acute infection is associated with extensive proliferation of antigen-specific CD8+ T cells. This raised 

the possibility that proliferation induced downregulation of Wnt/Tcf-1 signaling. Naïve CD8+ T cells 

undergo homeostatic proliferation in T cell-deficient hosts, which is due to excessive IL-7 and IL-15 

levels plus contact with self-MHC/peptide ligands [178]. This homeostatic proliferation allowed us to test 

whether Wnt/Tcf-1 signaling downregulation was due to CD8+ T cell proliferation. 

In order to follow the Wnt/Tcf-1 signaling transduction in CD8+ T cells at the single cell level, we took 

advantage of the Axin2 reporter mice. Axin2 is expressed in response to Wnt signal transduction and is 

a direct target of Tcf-1 [179]. In Axin2 reporter mice, the bacterial β-galactosidase (LacZ) gene has been 

inserted into the endogenous Axin2 locus (Axin2LacZ) [180]. β-galactosidase activity is used as a read-

out for Axin2 expression and can be measured by flow cytometry using fluorescein di-β-

galactopyranoside (FDG) substrate. Axin2LacZ expression was high in naïve Axin2LacZ CD8+ T cells (Fig. 

11). 
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We adoptively transferred 1 x 106 naïve Axin2LacZ CD8+ T cells into lymphocyte-deficient RAG-2 γc 

double knock out mice and analyzed transferred CD8+ T cells 3.5 and 8.5 days later. While transferred 

CD8+ T cells had expanded to around 3x106 cells at day 8.5 (only 10% of cells transferred intravenously 

(i.v.) can be found in the spleen after transfer [181, 182]), they did not downregulate Axin2 expression 

(Fig. 11). These data suggest that CD8+ T cell downregulation of Wnt/Tcf-1 signaling is not simply due 

to CD8+ T cell proliferation. 

TCR signal strength regulates expansion of CD8+ T cells but not 

Wnt/Tcf-1 downregulation 

Following acute LCMV infection, Wnt/Tcf-1 downregulation has been observed in antigen-specific CD8+ 

T cells. We hypothesized that this reduction was related to the TCR signal strength (signal 1) received 

by antigen-specific CD8+ T cells during their priming. 

In order to test this hypothesis, we used CD8+ T cells from OT-1 TCR transgenic mice. These CD8+ T 

cells express a TCR specific for the ovalbumin (OVA) peptide SIINFEKL (called N4). In addition to the 

native peptide (N4), there exist altered peptide ligands (APLs) called T4 and V4. In the T4 APL, the 

asparagine from the N4 peptide has been replaced by a threonine which reduces its affinity for the OT-

FIGURE 11 – Wnt/Tcf-1 signaling in transferred CD8+ T cells after homeostatic proliferation. 106 naïve CD8+ T cells 
were transferred into RAG-2 γc double knock out mice and analyzed at day 3.5 and 8.5 post transfer. Bar graph on 
the left shows the number of transferred CD8+ T cells in the spleen at day 0 (10% of input), 3.5 and 8. Bar graph on 
the right indicates the percentage of transferred Axin2+ CD8+ T cells at day 0 (before injection) and at days 3.5 and 
8.5 days after transfer. These results are representative of two independent experiments. Data are shown as mean 
± standard deviation (SD) (n=1-3). Unpaired t-test was used for statistical analyses and significant differences 
between groups are in the graphs (n=5). ns stands for not significant. 
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1 TCR. In the V4 peptide, the asparagine has been replaced by a valine, which further reduces the 

affinity. The APLs bind equally well to MHC-I molecules but they differ in their potency to stimulate OT-

1 cells. These APLs have been introduced into recombinant L.m. [183] which can be used to assess the 

role of TCR signal strength in the CD8+ T cell response. 

OT-1 mice were crossed to Axin2LacZ mice. OT-1 Axin2LacZ CD8+ T cells (CD45.1+) were transferred into 

wild type (WT) CD45.2+ C57BL/6 (B6) recipient mice, which were then infected with L.m. Seven days 

later, we confirmed that L.m. expressing the wild-type (N4) peptide induced a strong expansion of OT-

1 cells. The expansion was progressively decreased when L.m. expressed T4 or V4 APLs respectively 

(Fig. 12A). Regardless of the TCR affinity for the peptide, OT-1 cells were able to differentiate into 

SLECs (CD127- KLRG1+) even though the abundance of SLECs was decreased with decreasing affinity 

(Fig. 12B) in agreement with published data [183]. We next confirmed that Axin2LacZ expression was 

high in naïve OT-1 Axin2LacZ cells (Fig. 12C). At day 7 post infection with L.m. expressing N4 peptide, 

FIGURE 12 – Wnt/Tcf-1 pathway activity in OT-1 cells stimulated with APLs with different TCR affinities. (A) Dot plots 
show the percentages of OT-1 CD8+ T cells (CD45.1+ CD45.2-) in the spleen at day 7 after infection with L.m. 
expressing either N4, T4 or V4 peptide ligand. Numbers indicate the percentage of cells in the respective gate. Bar 
graph shows the numbers of OT-1 cells in the spleen. (B) Dot plots indicate the percentage of SLECs (CD127- 
KLRG1+) and MPECs (CD127+ KLRG1-) in the OT-1 CD8+ T cells at day 7 after L.m. infection. Numbers indicate 
the percentage of cells in the respective quadrant. Bar graph shows the percentage of SLECs in the OT-1 CD8+ T 
cell population. (C) Histograms show the expression of Axin2LacZ in OT-1 CD8+ T cells (before transfer) or at day 7 
after L.m. infection (N4, T4 or V4) in the spleen. Numbers indicate the percentage of cells expressing Axin2. Bar 
graphs show the percentage of OT-1 cells expressing Axin2LacZ. Data are shown as mean ± SD. One-way ANOVA 
test was used for statistical analyses and significant differences between significant groups are shown (n=5). ****p 
< 0.0001; **p < 0.05; *p < 0.05. 
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Axin2LacZ was downregulated (Fig. 12C) [129]. The weaker TCR ligands T4 and V4 induced comparable 

reductions in Axin2LacZ expression (Fig. 12C). Corresponding data were obtained when analyzing Tcf-1 

expression (not shown). Thus, in the context of acute infection, the downregulation of Wnt/Tcf-1 

signaling occurs independent of the strength of TCR for peptide/MHC-I. 

Systemic inflammation downregulates Wnt/Tcf-1 signaling in 

primed CD8+ T cells 

To gain further insights into the downregulation of Tcf-1 expression during a primary CD8+ T cell 

response, we next addressed the importance of antigen and co-stimulation (signal 1 and 2) versus 

inflammation (signal 3). To this end, we adopted a vaccination protocol using dendritic cell immunization 

as schematically shown in Fig. 13A. This model was established by Badovinac et al. [184]. A small 

number (104) of naïve P14 CD8+ T cells (CD45.2+) was transferred into CD45.1+ B6 mice. P14 CD8+ T 

cells express a TCR specific for the LCMV-specific Gp33-41 epitope (KAVYNFATC). Recipient mice were 

immunized using bone marrow-derived DC, which were matured using the TLR4 ligand LPS and pulsed 

with LCMV Gp33-41 peptide (termed DC33). DC vaccination was combined with systemic exposure of 

mice to the TLR9 ligand CpG-B (termed DC33/CpG) [93, 184]. 

P14 CD8+ T cells were comparably abundant at day 7 post DC33 and DC33/CpG vaccination (Fig. 13B), 

but were below detection in the absence of vaccination (data not shown) in agreement with Cui et al. 

[93]. Most P14 cells expressed high levels of Tcf-1 after DC33 but reduced levels following DC33/CpG 

vaccination (Fig. 13C). Tcf-1 downregulation did not occur with CpG alone (data not shown) (note that 

these mice received a large dose of P14 cells (106 cells) in these experiments). Thus systemic 

inflammation in the context of priming reduces Tcf-1 expression in CD8+ T cells. 

P14 cells primed with DC33 efficiently produced IL-2 upon peptide re-stimulation in vitro, expressed low 

levels of GzmB and were mostly KLRG1- CD127+, which corresponds to a MPEC phenotype (Fig. 13D-

F). In contrast, P14 cells primed with DC33/CpG produced little IL-2, expressed high levels of GzmB 

and predominantly had a KLRG1+ CD127- phenotype, which corresponds to a SLEC phenotype (Fig. 

13D-F). On the other hand, IFNγ production was comparable between P14 cells stimulated with DC33 

and DC33/CpG (Fig. 13C). Under both stimulation conditions, Tcf-1 downregulation was predominantly 
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observed in KLRG1+ CD127- (SLECs) but not in KLRG1- CD127+ (MPECs) (Fig. 13G) and this inversely 

correlated with GzmB expression (Fig. 13H). Similar to Tcf-1 downregulation, the expression of the 

Wnt/Tcf-1 target Axin2 was also downregulated in response to DC33/CpG (Fig. 14). Thus Wnt/Tcf-1 

signaling in primed CD8+ T cells is negatively regulated by systemic inflammation and this correlates 

with effector differentiation. 

FIGURE 13 – Tcf-1 expression and effector differentiation is regulated by inflammation (A) The scheme shows the 
experimental approach. Small numbers (1-2 x 104) of naïve CD8+ T cells (CD45.2+), specific for the LCMV-derived 
Gp33-41 epitope presented by H-2Db (P14 cells), were transferred into CD45.1+ C57BL/6 (B6) recipients. The day 
after, bone marrow-derived dendritic cells matured with LPS and pulsed with Gp33-41 peptide were transferred. 
Seven days later, recipient mice were sacrificed and analyzed. (B-H) Wild-type (WT) P14 cells (CD45.2+) were 
transferred into recipient mice (CD45.1+), which were vaccinated with DC33 or DC33/CpG. (B) Recipient spleens 
were analyzed for the abundance of P14 cells (CD45.2+ CD45.1-) at day 7 post vaccination. The corresponding bar 
graph depicts mean numbers (± SD) of P14 cells present in spleens. (C-H) Gated P14 cells were analyzed for (C) 
the percentage of cells expressing intracellular Tcf-1 (percentage of host CD8+ is always >95%) (D) the percentage 
of cells producing IL-2+ IFNγ+ following re-stimulation with Gp33-41 peptide, (E) the mean fluorescence intensity (MFI) 
of granzyme B (GzmB) expression, (F) the percentage of CD127+ KLRG1- (MPECs) and CD127- KLRG1+ (SLECs) 
cells, (G) the percentage of Tcf-1-expressing cells in gated MPECs and SLECs subsets and (H) the MFI of GzmB 
expression in gated MPECs and SLECs. Bar graphs show the mean ± standard error of the mean (SEM). (B) or ± 
SD (C-F). Results are representative of at least two independent experiments. Unpaired t-tests were used for 
statistical analyses and significant differences between groups are shown in the graphs (n=5). ****p < 0.0001; **p 
< 0.05; ns stands for not significant. 
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Tcf-1 downregulation following DC33/CpG vaccination depends 

on IL-12 p40 but is not impacted by IL-2 

Our data so far show that TLR9 signaling plays a key role for suppressing Wnt/Tcf-1 signaling in primed 

CD8+ T cells. It has been shown that TLR9 expression by the immunizing DCs or the responding CD8+ 

T cells is not essential for effector differentiation [185] indicating that effector differentiation depends on 

soluble factors produced by TLR9+ cells of the host. Indeed DC vaccination in the presence of CpG-B 

increased serum levels of IL-1β, IL-6, IL-10, IL-12, IFNγ [185, 186] and type I IFN (IFNα, β) [187]. Of 

particular interest, the signal 3 cytokines IL-12 and type I IFN, together with IL-2, are known to promote 

the expansion as well as the acquisition of effector functions of CD8+ T cells in vivo [60, 117, 188-191]. 

We thus tested whether these cytokines were involved in Tcf-1 downregulation induced by DC33/CpG 

vaccination. IL-12 (p40) antibody blockade almost completely prevented the downregulation of Tcf-1 

(Fig. 15A), while interferon-α/β receptor (IFNAR) blockade had no effect (Fig. 15A). The combination of 

IL-12 (p40) and IFNAR blockade had some additional effects (not significant) on Tcf-1 expression in 

FIGURE 14 – Regulation of Axin2 expression by inflammation. Wild-type (WT) and Axin2LacZ/+ P14 cells (CD45.2+) 
were transferred into recipient mice (CD45.1+), which were then vaccinated with DC33, DC33/CpG or CpG alone. 
Dot plots show the percentage of P14 cells (CD45.2+ CD45.1-) among total CD8+ T cells. Histograms show Axin2 
expression in P14 cells. Corresponding bar graphs depicts mean values (± SEM for cell numbers and ± SD for 
percentages) derived from n=3-6 mice of a representative experiment of at least two independent experiments. 
Unpaired t-test was used for statistical analyses. *p < 0.05; ns stands for not significant. 
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P14 cells (Fig. 15A). IL-12 (p40) blockade improved IL-2 production, reduced GzmB expression and 

prevented SLEC differentiation (Fig. 15B-D). Combined IL-12 (p40) and IFNAR blockade further reduced 

effector differentiation (Fig. 15D), while IFNAR blockade had no effect (Fig. 15B-D). 

Similar to IFNAR blockade, IL-2 blockade did not significantly affect Tcf-1 expression and effector 

differentiation (Fig. 16A-C). IL-2 administration (complexed with an antibody) did also not alter Tcf-1 

expression (Fig. 16A) or effector differentiation (Fig. 16B). Administration of IL-2 complexes did result in 

FIGURE 15 – IL-12 (p40) blockade prevents inflammation-induced Tcf-1 loss. WT P14 cells (CD45.2+) were 
transferred into recipient mice (CD45.1+), which were vaccinated with DC33/CpG. Mice were treated twice with anti-
IL-12 (p40) mAb on the day of DC vaccination, once with anti-IFNAR mAb on the day of CD8+ T cell injection or 
with isotype control mAbs. At day 7 post vaccination, recipient spleens were harvested and gated P14 cells 
(CD45.2+ CD45.1-) were analyzed for (A) the percentage of cells expressing intracellular Tcf-1, (B) the percentage 
of cells producing IL-2, (C) the MFI GzmB expression and (D) the percentage of CD127+ KLRG1- (MPECs) and 
CD127- KLRG1+ (SLECs) cells. Corresponding bar graphs depict mean values (± SD) derived from n=5 mice of a 
representative experiment of two independent experiments performed. Error bars indicate SD. Statistical 
significance was determined with one-way ANOVA test. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns 
stands for not significant. 
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an increased expansion of CD8+ both in presence and in absence of inflammation (Fig. 16C). We 

conclude that Tcf-1 repression in primed CD8+ T cells is chiefly mediated by IL-12 (p40). 

Tcf-1 is suppressed by direct and indirect effects of IL-12 (p40) 

and by STAT4 signaling in CD8+ T cells 

The blockade of IL-12 using Abs revealed an important role for IL-12 in Tcf-1 downregulation. Thus we 

hypothesized that IL-12 acts redundantly with IL-23. To address this possibility, we stimulated purified 

CD8+ T cells in vitro with anti-CD3/CD28 antibodies and low levels of IL-2 to sustain the proliferation of 

CD8+ T cells. Tcf-1 expression was maintained at high levels in anti-CD3/CD28-activated cells as 

compared to IL-2 alone, in agreement with our observation that DC33 vaccination does not suppress 

Tcf-1 protein in vivo. Addition of IL-12 significantly reduced Tcf-1 expression in an IL-12Rβ2-dependent 

FIGURE 16 – IL-2 blockade or IL-2 complex administration does not alter Tcf-1 downregulation. 1-2x104 P14 CD45.2+ 
cells were transferred into naïve CD45.1+ recipient mice. Recipient mice were then vaccinated with DC33 or 
DC33/CpG. Anti-IL-2 S4B6 antibody complexed with IL-2, which increases the half-life of IL-2 in vivo, or JES6, a 
blocking anti-IL-2 antibody, were injected in order to induce or block IL-2 signaling respectively 4.5 and 6 days later. 
At day 7 post DC vaccination, recipient mice were killed and spleens were analyzed. (A-B) Gated P14 cells were 
analyzed for (A) the percentage of cells expressing intracellular Tcf-1 and (B) the percentage of CD127+ KLRG1- 
(MPECs) and CD127- KLRG1+ (SLECs) cells. (C) The bar graphs depict mean numbers (± SEM) of P14 cells 
present in the spleen. Plots are representative examples from n=2-4 mice from both experiments performed. 
Unpaired t-test was used for statistical analyses. *p < 0.05; ns stands for not significant. 
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fashion (Fig. 17A), indicating that IL-12 can directly repress Tcf-1 in activated CD8+ T cells. On the other 

hand, IL-23, which shares the p40 subunit with IL-12, had no effect and the combination of IL-23 and 

IL-12 had no additional effect on Tcf-1 expression (Fig. 17A and not shown). These data show that IL-

12 can act directly on CD8+ T cells and that IL-23 plays no role. 

We next attempted to identify additional cytokines that suppressed Tcf-1. Addition of IFN-α, IFN-β or 

IFN-γ had no significant effect on Tcf-1 expression (Fig. 17B). However, IFN-α or IFN-β greatly reduced 

T cell cycling (data not shown), which may be of importance, since significant Tcf-1 downregulation in 

FIGURE 17 – Tcf-1 expression is reduced by direct IL-12 signaling in CD8+ T cells. Purified CD8+ T cells were 
activated in vitro with anti-CD3/CD28 mAbs and were analyzed 72h later. (A) Purified CD8+ T cells were stimulated 
in vitro in presence (open grey histogram) or not (open black histogram) of recombinant IL-12 or IL-23 and analyzed 
for the percentage of CD8+ T cells expressing Tcf-1. Bar graphs depict mean values (± SD) from n=2-3 wells from 
two independent experiments performed. Statistical significance was determined with unpaired t-tests. *p < 0.05; 
ns stands for not significant. (B) Purified CD8+ T cells were stimulated in vitro in presence of IL-12 (open black 
histogram) or various IFNs (IFN-β, IFN-α, IFN-γ or IL-12/IFN-β) (open grey histogram) and analyzed for the 
percentage of cells expressing Tcf-1. (C) Purified CD8+ T cells were loaded with CFSE and stimulated with 
recombinant IL-12 in presence of anti-CD3/CD28 mAbs. Proliferation of CD8+ T cells was assessed by analyzing 
CFSE dilution and proliferating cells were analyzed for the percentage of cells expressing Tcf-1. 
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vitro was only observed when cells that had divided more than 2 times (Fig. 17C). The combination of 

IFNβ with IL-12 restored cycling but did not result in a significant additional Tcf-1 downregulation as 

compared to IL-12 alone (Fig. 17B). Thus, so far only IL-12 can reduce Tcf-1 expression in activated 

CD8+ T cells. 

FIGURE 18 – Absence of STAT4 in CD8+ T cells reduces Tcf-1 downregulation. WT, IL-12Rβ2-/- or STAT4-/- P14 cells 
(CD45.2+) were transferred into recipient mice (CD45.1+), which were then vaccinated with DC33/CpG. (A) 
Recipient spleens were analyzed seven days later for the abundance of WT, IL-12Rβ2-/- or STAT4-/- P14 cells. The 
corresponding bar graph depicts mean numbers (± SD) of P14 cells present in spleens. (B-E) Gated WT, IL-12Rβ2-

/- or STAT4-/- P14 cells were analyzed for (B) the percentage of cells expressing intracellular Tcf-1, (C) the 
percentage of cells producing IL-2, (D) the MFI GzmB expression and (E) the percentage of CD127- KLRG1+ 
(SLECs). Corresponding bar graphs depict mean values (± SD) derived from n=5 mice of a representative 
experiment of two independent experiments performed. Statistical significance was determined with unpaired t-
tests. ****p<0.0001; ***p<0.001; **p < 0.01 and ns stands for not significant. 



37 
 

Our in vitro data showed that IL-12 can act directly on CD8+ T cells. To exclude the possibility that IL-

12 acts indirectly, we next used IL-12Rβ2-/- P14 CD8+ T cells in vivo using our DC33 vaccination system. 

Since IL-12 activates STAT4 [96, 192], we also tested whether STAT4 signaling in CD8+ T cells played 

a role for Tcf-1 downregulation. Following DC33/CpG vaccination, both WT, IL-12Rβ2-/- and STAT4-/- 

P14 cells expanded equally well (Fig. 18A). We observed that Tcf-1 downregulation was significantly 

less prominent in IL-12Rβ2-/- and STAT4-/- as compared to WT P14 cells (Fig. 18B). Accordingly, IL-2 

production was improved and SLEC differentiation was reduced (Fig. 18C and E). Despite reduced 

SLEC differentiation, GzmB expression was not reduced in the absence of IL-12Rβ2 or STAT4 (Fig. 

18D). Overall, these data suggest that IL-12/STAT4 signaling in CD8+ T cells downregulates Tcf-1 in 

response to DC vaccination. 

Tcf-1 downregulation following Listeria monocytogenes 

infection depends on IL-12Rβ2 and STAT4 expression by CD8+ 

T cells 

It has been reported that effector differentiation in response to Listeria monocytogenes (L.m.) infection 

was mainly driven by IL-12 and that it was largely reduced when CD8+ T cells lacked IL-12Rβ2 [190]. 

We thus verified the regulation of Tcf-1 expression in CD8+ T cells responding to L.m. infection. P14 cell 

proliferation was reduced in the absence of STAT4 but not in the absence of IL-12Rβ2 (Fig. 19A). Similar 

to DC33/CpG vaccination, infection with L.m. expressing Gp33-41 (L.m.-Gp33-41 including Ova T4) resulted 

in Tcf-1 downregulation in a significant fraction of P14 cells (Fig. 19B). When P14 cells lacked IL-12Rβ2 

or STAT4, Tcf-1 downregulation was considerably less prominent (Fig. 19B). This was associated with 

increased IL-2 production and a reduced differentiation into SLECs (Fig. 19C and E), in agreement with 

Keppler et al. [193]. Despite reduced SLEC differentiation, GzmB was not reduced (Fig. 19D). Thus IL-

12Rβ2-STAT4 signaling in CD8+ T cells contributes to Tcf-1 downregulation and effector differentiation 

in response to bacterial infection. 
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FIGURE 19 – Absence of IL-12Rβ2 or STAT4 in CD8+ T cells reduces Tcf-1 downregulation induced by L.m. infection. 
WT, IL-12Rβ2-/- or STAT4-/- P14 cells (CD45.2+) were transferred into recipient mice (CD45.1+), which were then 
infected with L.m.-Gp33-41. (A) Recipient spleens were analyzed for the abundance of WT, IL-12Rβ2-/- or STAT4-/- 
P14 cells at day 8 post infection. The corresponding bar graph depicts mean numbers (± SD) of P14 cells. (B-E) 
Gated WT, IL-12Rβ2-/- or STAT4-/- P14 cells were analyzed for (B) the percentage of cells expressing intracellular 
Tcf-1, (C) the percentage of cells producing IL-2 and IFNγ, (D) the MFI of GzmB expression and (E) the percentage 
of CD127- KLRG1+ (SLECs) cells. Corresponding bar graphs depict mean values (± SD) derived from n=5 mice of 
a representative experiment of two independent experiments performed. Statistical significance was determined 
with ordinary one-way ANOVA tests. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05 and ns stands for not 
significant. 
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Absence of Tcf-1 leads to effector CD8+ T cell differentiation in 

the absence of inflammation 

Our data so far show that inflammation negatively regulated Tcf-1 expression and promoted effector 

differentiation. This raised the question regarding the causal relationship between these events. As 

schematically depicted in Fig. 20A, inflammation-dependent suppression of Tcf-1 may be a prerequisite 

for effector differentiation (Fig. 20A, left). Conversely, inflammation may induce effector differentiation 

and this leads to Tcf-1 suppression (Fig. 20A, middle). Finally, inflammation may independently promote 

effector differentiation and inhibit Tcf-1 expression (Fig. 20A, right). To begin to discriminate between 

these possibilities we used P14 cells lacking Tcf-1 which have a reduced ability to transduce Wnt signals 

[129]. If Wnt/Tcf-1 signaling suppressed effector differentiation, Tcf7-/- P14 cells should differentiate 

more efficiently as compared to WT P14 cells. 

Indeed, in response to DC33/CpG, Tcf7-/- P14 cells expressed more GzmB, less IL-2 and differentiated 

significantly more efficiently into KLRG1+ CD127- SLECs as compared to WT P14 cells (Fig. 20B-D). 

The absence of Tcf-1 did not impact the expansion of P14 cells (Fig. 20E). Interestingly, considerable 

effector differentiation of Tcf7-/- P14 cells was observed with DC33 vaccination (Fig. 20B-D). Thus, the 

absence of Tcf-1 results in efficient effector differentiation even in the absence of systemic inflammation. 

This indicates that Tcf-1 expression counteracted effector differentiation and that inflammation-induced 

Tcf-1 suppression facilitated effector differentiation. 
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The above experiments were performed with P14 cells from mice with germ-line Tcf7 deletion, in which 

T cell development is impaired [162, 167]. We thus ensured that increased effector differentiation in the 

absence of Tcf-1 was independent of altered T cell development. To this end, we generated conditional 

FIGURE 20 – Absence of Tcf-1 facilitates CD8+ T cell effector differentiation in the absence of systemic inflammation. 
(A) Hypothetical relationships between inflammation, Tcf-1 expression and effector differentiation of primed CD8+ 
T cells. Inflammation-dependent suppression of Tcf-1 may be a prerequisite for effector differentiation (left). 
Conversely, inflammation may induce effector differentiation and this leads to Tcf-1 suppression (middle) or may 
independently promote effector differentiation and suppress Tcf-1 (right).  (B-E) P14 WT or Tcf7-/- cells were 
transferred into recipient mice (CD45.1+) that were then vaccinated the day after with DC33 or DC33/CpG. (B-D) 
Gated WT and Tcf7-/- P14 cells were analyzed for (B) the MFI of GzmB expression, (C) the percentage of cells 
producing IL-2 and IFNγ and (D) the percentage of CD127+ KLRG1- (MPECs) and CD127- KLRG1+ (SLECs) cells. 
Corresponding bar graphs depict mean values (± SD). Plots are representative example from n=5 mice of a 
representative experiment of two experiments performed. (E) Recipient spleens were analyzed for the abundance 
of WT and Tcf7-/- P14 cells 7 days later. The corresponding bar graph depicts mean numbers (±SD) of P14 cells 
present in the spleens. Unpaired t-test was used for statistical analyses. ****p < 0.0001; ***p < 0.001; **p < 0.05; *p 
< 0.05; ns stands for not significant. 
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Tcf7lox/lox mice harboring a Rosa26 driven lox stop lox EYFP (Rosa-lsl-EYPF) cassette and a P14 TCR 

transgene (Fig. 21A). Exposure to Tat-Cre fusion protein in vitro induced EYFP expression in a 

considerable fraction of naïve P14 cells. Importantly, the vast majority of EYFP+ cells had deleted the 

floxed portion of the Tcf7 gene and lost Tcf-1 protein expression, while most EYFP- cells were Tcf-1+ 

(Fig. 21B). Thus, EYFP induction can be used to track cells, in which Tcf-1 has been deleted.  

FIGURE 21 – Tcf7-deletion in naive CD8+ T cells facilitates effector differentiation after DC33 vaccination. (A) Scheme 
represents the genomic locus of Tcf7LoxLlox Rosa26Sortm1(EYFP) before and after treatment with Tat-Cre in vitro. (B-
C) Tcf7Lox/Lox Rosa26Sortm(1EYFP) P14 cells (CD45.2+) were treated with Tat-Cre in vitro and the frequency of EYFP+ 
P14 cells (Tcf7-deleted) was determined (B) after 48h of culture in vitro and (C) at day 7 post vaccination with DC33. 
(D-F) Gated EYFP+ (Tcf7-deleted) and EYFP- (non-deleted) P14 cells (CD45.2+) were analyzed for (D) the 
percentage of cells producing IL-2 and IFNγ, (E) the MFI of GzmB expression and (F) the percentage of CD127+ 
KLRG1- (MPECs) and CD127- KLRG1+ (SLECs) cells. Corresponding bar graphs depict mean values (± SD) derived 
from n=5 mice of a representative experiment of two independent experiments performed. Statistical significance 
was determined with unpaired t-tests. ****p < 0.0001; ***p < 0.001; ns stands for not significant. 



42 
 

Next, Tat-Cre treated, naïve P14 Tcf7Lox/Lox Rosa-lsl-EYFP cells (CD45.2+) were adoptively transferred 

into CD45.1+ recipient mice, which were then vaccinated with DC33. The frequency of EYFP+ P14 cells 

(Tcf7 deleted) seven days later corresponded to that of input (Fig. 21B-C), indicating comparable 

expansion of EYFP+ and EYFP- cells. We confirmed that EYFP+ cells were mostly Tcf-1- and EYFP- 

cells were predominantly Tcf-1+ (Fig. 21C). As expected, EYFP- P14 cells (Tcf-1+) were IL-2+, GzmB- 

and predominantly KLRG1- CD127+ MPEC cells. In contrast, EYFP+ (Tcf7-deleted) P14 cells were IL-2-

, GzmB+ and predominantly KLRG1+ CD127- SLECs (Fig. 21D-F). More efficient effector differentiation 

of EYFP+ (Tcf7-deleted) as compared to EYFP- P14 cells was similarly observed following DC33/CpG 

vaccination (Fig. 22). Thus enhanced effector differentiation of CD8+ T cells lacking Tcf7 is not due to a 

developmental defect as it is readily observed when Tcf-1 is deleted in naïve CD8+ T cells. Collectively, 

these data show that Tcf-1 counteracts effector differentiation and that inflammation-dependent signals 

downregulate Tcf-1 in primed CD8+ T cells to allow efficient effector differentiation. 

FIGURE 22 – Tcf7-deletion in naive CD8+ T cells facilitates effector differentiation after DC33/CpG vaccination. Gated 
EYFP+ (Tcf7-deleted) and EYFP- (Tcf7 non-deleted) P14 cells (CD45.2+) were analyzed for (A) the percentage of 
cells producing IL-2 and IFNγ, (B) the percentage of CD127+ KLRG1- (MPECs) and CD127- KLRG1+ (SLECs) cells. 
Corresponding bar graphs depict mean values (± SD) derived from n=5 mice of a representative experiment of two 
independent experiments performed. Statistical significance was determined with unpaired t-tests. *p < 0.05; ns 
stands for not significant. 
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Tcf-1 expression counteracts effector differentiation 

We showed that lack of Tcf-1 expression enhanced effector differentiation. We next addressed which 

domain in Tcf-1 was needed to repress effector differentiation. To answer this question, we used 

transgenic mice expressing the p33 or the p45 Tcf-1 isoform. The former mediates only repressor 

function while the latter can additionally mediate signal transduction via its association with co-activators 

(Fig. 23A). 

In response to DC33 vaccination, p33 Tg expression by Tcf7-/- P14 cells showed enhanced effector 

differentiation (data not shown), indicating that the repressive short Tcf-1 isoform p33 does not play a 

role in CD8+ T cell differentiation. On the other hand, p45 Tg expression in Tcf7-/- P14 cells reduced 

effector differentiation as compared with Tcf7-/- P14 cells based on IL-2 production, GzmB expression 

and CD127/KLRG1 phenotype (Fig. 23B-D). We ensured that the p45 Tg was still expressed after DC33 

activation (Fig. 23E). These data indicate that the N-terminus of Tcf-1 is needed to counteract effector 

differentiation. 
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FIGURE 23 – Enforced Tcf-1 expression represses CD8+ T cell differentiation in absence of systemic inflammation. 
(A) Scheme represents Tcf-1 isoforms expressed by mice. Tcf-1 p33 isoform is a short isoform lacking the β-catenin 
domain and Tcf-1 p45 is the full length isoform. (B-E) WT, Tcf7-/- and Tcf7-/- p45 P14 cells (CD45.2+) were 
transferred into CD45.1+ recipient mice which were then vaccinated with DC33. Gated P14 cells were analyzed at 
day 7 post vaccination for (B) the percentage of cells secreting IL-2 and IFNγ after re-stimulation with Gp33-41 
peptide, (C) the percentage of CD127+ KLRG1- (MPECs) and CD127- KLRG1+ (SLECs) cells, (D) the MFI of GzmB 
expression and (E) the percentage of cells expressing Tcf-1. Corresponding bar graphs depict mean values (± SD) 
derived from n=5 mice of a representative experiment of two independent experiments performed. Statistical 
significance was determined with one-way ANOVA tests. ****p < 0.0001; ***p < 0.001; **p < 0.05; *p < 0.05; ns 
stands for not significant. 
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Absence of Tcf-1 prevents default central memory formation 

DC immunization in the absence of systemic inflammation accelerates CD8+ T cell memory formation 

[184]. As we observed enhanced effector differentiation of DC33-stimulated Tcf7-/- CD8+ T cells, we next 

asked whether the default memory formation depended on Tcf-1 expression. WT and Tcf7-/- P14 cells 

were readily detected at day 40 after DC33 vaccination, although Tcf7-/- P14 cells were somewhat 

reduced (p=0.08) (Fig. 24A). However, cells with a CD127+ CD62L+ central memory phenotype were 

severely reduced (8 fold) among Tcf7-/- P14 cells (Fig. 24B). Functionally, Tcf7-/- P14 memory cells 

showed a greatly reduced ability to produce IL-2 and a significantly increased expression of GzmB (Fig. 

24C-D). Finally, equal numbers of flow-sorted memory P14 WT and Tcf7-/- cells were transferred into 

naïve secondary recipients, which were then challenged with LCMV clone 13 (cl13) infection. While WT 

FIGURE 24 – Tcf-1 expression is essential for default central memory formation in response to DC33 vaccination. 
WT or Tcf7-/- P14 cells (CD45.2+) were transferred into recipient mice (CD45.1+) which were then vaccinated with 
DC33. (A) Recipient spleens were analyzed for the presence of WT or Tcf7-/- P14 cells at day 40 post vaccination. 
The corresponding bar graph depicts mean numbers (± SD) of P14 cells present in the spleen. (B-D) Gated P14 
cells were analyzed for (B) the percentage of CD127+ CD62L+ central memory cells, (C) the percentage of cells 
producing IL-2, and (D) the MFI of GzmB expression. Corresponding bar graphs depict mean values (± SD) derived 
from n= 3 (E) WT and Tcf7-/- P14 cells (CD45.2+) were flow-sorted and equal numbers were transferred into 
secondary recipients (CD45.1+). Secondary recipients were infected with LCMV cl13 and the recall expansion of 
P14 cells was determined 8 days later. Bar graphs depicts mean values (± SD) derived from n= 2-8 mice of a 
representative experiment of two independent experiments performed. Statistical significance was determined with 
unpaired t-tests. ***p < 0.001; **p < 0.01; *p < 0.05; ns stands for not significant. 
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P14 cells memory cells expanded efficiently, recall expansion of Tcf7-/- P14 cells was greatly reduced 

(Fig. 24E). Corresponding results were obtained when mice had been vaccinated with DC33/CpG (Fig. 

25).  

Thus, the formation of default central memory cells, but not effector memory cells, is stringently 

dependent on Tcf-1. Deficient central memory formation in the absence of Tcf-1 may be the direct 

consequence of the increased effector differentiation during the primary immune response. 

FIGURE 25 - Tcf-1 expression is essential for default central memory formation in response to DC33/CpG 
vaccination. WT or Tcf7-/- P14 cells (CD45.2+) were transferred into recipient mice (CD45.1+) which were then 
vaccinated with DC33/CpG. (A) Recipient spleens were analyzed for the presence of WT or Tcf7-/- P14 cells at day 
40 post vaccination. The corresponding bar graph depicts mean numbers (± SD) of P14 cells derived from n=5 
mice of a single experiment performed. (B-D) Gated P14 cells were analyzed for (B) the percentage of cells 
producing IL-2 and IFNγ, (C) the percentage of CD127+ CD62L+ central memory cells and (D) the MFI of GzmB 
expression. Corresponding bar graph depicts mean numbers (± SD) of P14 cells derived from n=5 mice of a single 
experiment performed. (E) WT and Tcf7-/- P14 cells (CD45.2+) were flow-sorted and equal numbers were 
transferred into secondary recipients (CD45.1+). Secondary recipients were infected with LCMV cl13 and the recall 
expansion of P14 cells was determined 8 days later. Bar graph depicts mean values (± SD) derived from n= 3 mice 
of a single experiment performed. Statistical significance was determined with unpaired t-tests. ****p < 0.0001; **p 
< 0.01; *p < 0.05; ns stands for not significant. 
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Tcf-1 represses IL-12Rβ2 expression and establishes a 

threshold for effector differentiation 

Although STATs were discovered as activators of gene expression, our data suggest that STAT4 

represses Tcf7. We wondered whether STAT4 could directly regulate Tcf-1 expression. Inspection and 

analysis of publically available STAT4 CHIPSeq data from TH1 cells [4] revealed that STAT4 was bound 

to the Tcf7 locus and this correlated with the presence of repressive H3K27me3 marks (Fig. 26A). In 

the absence of STAT4, activating H3K4me3 marks and Tcf7 expression are moderately increased 

based on gene array data (2.25 fold) [4], suggesting that STAT4 binding has a direct and repressive 

effect on Tcf7. Conversely, it is well known that IL-12Rβ2 expression is induced by STAT4 [99, 194-

196]. Indeed, STAT4 is bound to the IL-12Rβ2 loci in TH1 cells and this correlates with the presence of 

activating H3K4me3 marks (Fig. 26B). In the absence of STAT4, repressive H3K27me3 marks are 

increased at IL-12Rβ2 locus and IL-12Rβ2 expression is strongly reduced (8.6 fold) [4]. Thus STAT4 

plays a role for Tcf7 repression and IL-12Rβ2 induction in TH1 cells. The latter improves IL-12 

responsiveness, which leads to further and reinforced Tcf7 repression and effector differentiation. To 

prevent unwanted or excessive effector differentiation, we postulated that Tcf-1 inhibits IL-12Rβ2 

expression. To address this possibility, we compared IL-12Rβ2 levels in WT and Tcf7-/- P14 cells. IL-

12Rβ2 mRNA expression was significantly increased when MPECs or SLECs lacked Tcf-1 whereas 

there was no difference in naïve CD8+ T cells (Fig. 27A). Consistent with a direct effect, inspection of 

publically available CHIPSeq data [5] revealed that Tcf-1 is associated with the IL-12Rβ2 locus in CD8+ 
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thymocytes (Fig. 26C). Thus, Tcf-1 seems to directly suppress IL-12Rβ2 expression. This suppression 

may be overcome when IL-12 induces STAT4-dependent Tcf7 repression. 

FIGURE 26 – STAT4 positively regulates IL-12Rβ2 expression and inhibits Tcf-1 expression which can inhibit IL-
12Rβ2 expression. (A-B) CHIP-Seq of STAT4 was reported by Wei et al. [4] and (C) CHIP-Seq of Tcf-1 in CD8+ 
thymocytes was reported by Xing et al. [5]. The CHIP-Seq track wiggle files were uploaded to the UCSC genome 
browser for visualization of enriched binding by the indicated transcription factors. For the select gene locus, the 
transcription start site and orientation are marked by arrows. The vertical bars over STAT4 or Tcf-1 tracks indicate 
the enriched binding peaks. (A-B) Red squares mark the enriched binding sites. (A) Pictures show enriched binding 
of STAT4 at the Tcf7 and IL-12Rβ2 locus and these data are correlated with activating H3K4me3 and inhibitory 
H3K27me3 marks. (B) Picture shows enriched binding of Tcf-1 at the IL-12Rβ2 loci. (C) Pictures show enriched 
binding of Tcf-1 at the IL-12Rβ2 locus. 
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Finally, to gain insights into T cell differentiation in the absence of Tcf-1, we assessed the expression of 

key transcription factors involved in effector or memory differentiation. Among transcription factors 

involved in memory differentiation, Tcf7-/- and WT MPECs expressed comparable levels of Bcl6, while 

Eomes was increased in Tcf7-/- MPECs (Fig. 27B). These transcription factors were either expressed at 

the same level in naïve CD8+ T cells WT and Tcf7-/- (Bcl6) or reduced in Tcf7-/- as compared to WT naïve 

CD8+ T cells (Eomes) (Fig. 27B). These expression patterns did not provide a straightforward 

explanation for deficient memory formation in the absence of Tcf-1. 

FIGURE 27 – Tcf-1 inhibits IL-12Rβ2 expression and regulates the expression of several transcription factors involved 
in CD8+ T cell differentiation. (A) IL-12Rβ2 expression was analyzed in flow-sorted naïve CD8+ T cells (CD44- 
CD62L+) and in MPECs (CD127+ KLRG1-) or SLECs (CD127- KLRG1+) at day 8 post DC33 vaccination in P14 WT 
or Tcf-1-deficient cells. (B) mRNA expression levels of indicated transcription factors were analyzed in naïve CD8+ 
T cells (CD44- CD62L+) and in MPECs (at day 8 post DC33 vaccination in P14 WT or Tcf-1-deficient cells. (A-B) 
Bar graphs depict the relative mRNA expression (± SD) of indicated genes in the indicated population relative to 
HPRT housekeeping gene expression. Statistical significance was determined with unpaired t-tests. ****p < 0.0001; 
**p < 0.05; *p < 0.05; ns stands for not significant. 
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On the other hand, Tcf7-/- MPECs overexpressed several transcription factors implicated in effector 

differentiation i.e. Id2, Blimp-1 and Tbx21 (Fig. 27B). Tcf7-/- MPECs expressed these transcription 

factors at equal or even higher levels than those observed in WT SLECs (data not shown). Thus the 

upregulation of several transcription factors implicated in effector differentiation in MPECs can account 

for the default effector differentiation of primed Tcf7-/- CD8+ T cells. We concluded that Tcf-1 was 

blocking CD8+ T cell differentiation by repressing the expression of several transcription factors involved 

this differentiation process. 
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Part II – Role of Wnt protein secretion for Wnt pathway 

activity in naïve CD8+ T cells, for CD8+ T cell 

homeostasis and differentiation in response to infection 

Wnt/Tcf-1 signaling is constitutively active in naïve CD8+ T cells based on the expression of the Wnt 

target genes Axin2 and Tcf7, the presence of phosphorylated LRP6 and the presence of active, non-

phosphorylated β-catenin [128, 129]. We hypothesized that the constitutive Wnt pathway activity in 

naïve CD8+ T cells depended on the exposure of CD8+ T cells to Wnt proteins.  

There exist 19 different Wnt genes which prevents a simple loss of function approach to study the role 

of Wnt proteins for the homeostasis of naïve CD8+ T cells. To overcome the possible problem of in vivo 

redundancy of Wnt proteins, we took advantage of mice lacking Wntless, which is required for the 

secretion of all Wnt proteins [149]. Wls deletion is embryonic lethal but a conditional allele of Wls has 

been generated by K. Basler [197]. We thus used cell type-specific Wls deletion to address the role of 

Wnt protein secretion for Wnt pathway activity in naive CD8+ T cells. In addition, we addressed whether 

Wls deletion impacted the abundance, the activation status and the function of CD8+ T cells. 

Wnt secretion by T cells is not needed to maintain Wnt/Tcf-1 

signaling pathway in naïve CD8+ T cells 

To delete Wls in T cells, we crossed Wlsflox/flox mice to mice expressing the Cre recombinase under the 

control of the CD4 promoter [198]. The Wlsflox/flox locus is depicted in Fig. 28A with the different primers 

used to verify the deletion of Wls. Wls deletion was assessed using PCR. Complete deletion of Wls was 

observed in CD4-Cre Wlsflox/flox mice (Fig. 28B). Wls deletion completely prevented Wls gene expression 

in T cells, based on two distinct primer pairs, one of which did not include the deleted region. 

Unexpectedly, we observed that Wls expression was already strongly reduced (10 fold) in Wlsflox/flox mice 
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i.e. in the absence of Cre recombinase (Fig. 28C). We thus included WT mice as controls in our 

experiments. 

FIGURE 28 – Wnt pathway activity in CD8+ T cells in Wls-deleted T cells. (A) Scheme represents the Wls locus of   
Wlsflox/flox mice and the different primers used for either PCR (P1 and P2 in red) or qPCR (Wls 1 and Wls 2 in green). 
(B-C) Naïve CD8+ T cells from either Wlsflox/flox CD4-Cre, Wlsflox/flox, Wlsflox/+ or Wls+/+ (WT) mice were FACS-sorted 
and DNA and RNA were extracted from sorted cells. (B) Image shows Wls deletion after a PCR using P1 and P2 
primers allowing to detect both the WT (1400bp) and the deleted Wls band (380bp) at the same time. (C) Bar graphs 
show the mRNA expression (± SD) of Wls gene using the two different pairs of primers Wls 1 and Wls 2, assessed 
by qPCR relative to HPRT housekeeping gene (CD4-Cre Wlsflox/flox in black, Wlsflox/flox in dark grey, Wlsflox/+ in light 
grey and WT in white). (D) Bar graphs show the mRNA expression (± SD) of Wnt reporter genes, Axin2 and Tcf7, 
assessed by qPCR relative to HPRT housekeeping gene in CD8+ T cells WT (in white), Wlsflox/flox (in dark grey) and 
CD4-Cre Wlsflox/flox (in black). Statistical significance was determined with one-way ANOVA tests. *p < 0.05 and ns 
stands for not significant. (E) Histogram shows the Tcf-1 protein expression in WT, Wlsflox/flox and Wlsflox/flox CD4-
Cre CD8+ T cells freshly isolated from the spleen. Numbers indicate the percentage of Tcf-1+ and Tcf-1- cells in the 
corresponding gates. (F) Dot plots show the percentages of both CD4+ and CD8α+ cells among total splenocytes 
in either WT or Wlsflox/flox CD4-Cre splenocytes. Numbers indicate the percentage of cells in the corresponding gate. 
(G) Contour plots show the percentage of WT, Wlsflox/flox or CD4-Cre Wlsflox/flox naïve CD8+ T cells (CD44- CD62L+) 
or activated CD8+ T cells (CD44+ CD62L-) among CD8+ T cells. Data are representative from at least 2 independent 
experiments (n=2-3). 
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In order to determine whether Wls deficiency in T cells impacted Wnt/Tcf-1 pathway activity in naive 

CD8+ T cells, we measured the expression of two Wnt target genes using quantitative PCR. The 

expression of Axin2 was not altered by the absence of Wls in naïve CD8+ T cells whereas Tcf7 

expression was reduced in Wlsflox/flox CD8+ T cells but not in Wlsflox/flox CD4-Cre CD8+ T cells (Fig. 28D). 

We further measured Tcf-1 protein expression by flow cytometry. In absence of Wls in T cells, Tcf-1 was 

highly expressed in naïve CD8+ T cells (Fig. 28E). Finally, the absence of Wls in T cells did not impact 

the abundance of both CD4+ and CD8+ T cells (Fig. 28F) and did not modify the activation status of 

CD8+ T cells (Fig. 28G). Together, these data indicate that Wls, i.e. Wnt protein secretion, in T cells is 

not responsible for the Wnt/Tcf-1 pathway activity in naïve CD8+ T cells.  

Hematopoietic Wls is not necessary for the maintenance of 

Wnt/Tcf-1 pathway activity in naïve CD8+ T cells  

Since the deletion of Wls in T cells did not impact Wnt/Tcf-1 pathway activity in CD8+ T cells, we 

extended the deletion of Wls to the entire hematopoietic system by crossing Wlsflox/flox mice with Vav-

Cre mice [199]. Wls expression was assessed by qPCR in flow sorted naïve CD8+ T cells (CD44- 

CD62L+) and B cells from spleens of Wlsflox/flox Vav-Cre, Wlsflox/flox and WT mice. Wls expression was 

absent in both CD8+ T cells and B cells from Vav-cre Wlsflox/flox mice (Fig. 29A). This confirmed the 

deletion of Wls in the hematopoietic system. 

In order to determine whether Wls deficiency in hematopoietic cells impacted Wnt/Tcf-1 pathway activity 

in CD8+ T cells, we measured the expression of Wnt target genes in naïve CD8+ T cells using semi-

quantitative PCR. 
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The expression of Axin2 was significantly reduced in both Wlsflox/flox and in Vav-Cre Wlsflox/flox CD8+ T 

cells as compared with WT CD8+ T cells. However, there was no difference between Wlsflox/flox and Vav-

Cre Wlsflox/flox CD8+ T cells (Fig. 29B). Moreover, Tcf7 expression was significantly reduced in CD8+ T 

cells in absence of Wls in hematopoietic cells whereas Lef-1 expression was increased in the Wlsflox/flox 

CD8+ T cells (Fig. 29B). However, the expression of Wnt target genes was highly variable. Indeed, out 

of 4 experiments, Axin2 expression was increased once, reduced in another experiment and was similar 

between Wlsflox/flox and WT CD8+ T cells in two experiments. 

FIGURE 29 – Wnt pathway activity in CD8+ T cells is not impacted by the absence of Wls in hematopoietic cells. (A-
B) Naïve CD8+ T cells and B cells from either WT (in black), Wlsflox/flox (in grey) or Wlsflox/flox Vav-Cre (in white) were 
FACS-sorted and RNA was extracted from sorted cells. (A) Bar graphs depict the mRNA expression of Wls (± SD), 
assessed by qPCR, in sorted CD8+ T cells and B cells relative to HPRT. (B) Bar graphs depict the mRNA expression 
(± SD) of Wnt target genes, Axin2, Tcf7 and Lef-1, assessed by qPCR in sorted naïve CD8+ T cells relative to 
HPRT. (C) Histogram shows the protein expression level of Tcf-1 in WT, Wlsflox/flox and Wlsflox/flox Vav-Cre CD8+ T 
cells freshly isolated from the spleen. Numbers indicate the percentage of Tcf-1+ and Tcf-1- cells in the indicated 
gates. (D) Contour plots show the percentage of both CD4+ and CD8α+ cells among total splenocytes from either 
WT, Wlsflox/flox or Wlsflox/flox Vav-Cre mice. (E) Contour plots show the expression in CD8+ T cells of CD44 and CD62L 
in the indicated mice. Numbers indicate the percentage of cells in the corresponding gate. Statistical significance 
was determined with one-way ANOVA tests. ****p < 0.0001, ***p < 0.001; **p < 0.05; *p < 0.05; ns stands for not 
significant. 
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Even though Tcf7 mRNA levels were reduced when Wls was deleted in the hematopoietic system, this 

did not impact Tcf-1 protein expression (Fig. 29C). Thus these data indicate that Wls in the 

hematopoietic system does not regulate Wnt target gene expression in naïve CD8+ T cells. 

The absence of Wls in the hematopoietic system did not impact the abundance of both CD8+ and CD4+ 

T cells in the spleen (Fig. 29D) and CD8+ T cells remained mainly in a naïve state (CD44- CD62L+) even 

in the absence of Wls in the hematopoietic system (Fig. 29E). Together, these data indicate a normal 

naïve CD8+ T cell compartment even in the absence of Wls in the entire hematopoietic system.  

Stromal Wls is not necessary for the maintenance of Wnt/Tcf-1 

pathway activity in naïve CD8+ T cells 

We next investigated a role of stromal Wls for Wnt/Tcf-1 pathway activity in CD8+ T cells. Stromal cells 

have been shown to produce Wnt proteins [200]. We took advantage of mice expressing Cre 

recombinase under the control of the CCL19 promoter, which is active in stromal cells of secondary 

lymphoid organs [201]. We verified the absence of Wls expression in the CD45- fraction of flow-sorted 

from Wlsflox/flox CCL19-Cre splenocytes (Fig. 30A). We next determined the expression of Wnt target 

genes in naïve CD8+ T cells. We observed a reduction of Axin2 in CD8+ T cells in absence of stromal 

Wls in secondary lymphoid organs in some but not all mice, similarly to what has been observed above. 

We did not observe differences in Tcf7 and Lef-1 expression (Fig. 30B). Finally, the abundance and the 

activation status of both CD4+ and CD8+ T cells was not different in absence of stromal Wls (Fig. 30C, 

D). Stromal Wls is thus not necessary for the maintenance of Wnt/Tcf-1 pathway activity in naïve CD8+ 

T cells or for the maintenance of a normal T cell compartment.  
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Wls deletion in T cells or in stromal cells does not impact the 

CD8+ T cell response to acute LCMV infection 

We next wanted to determine whether Wls expressed by T cells played a role for the CD8+ T cell 

response to infection with LCMV WE strain, which leads to an acute resolved infection in WT mice. We 

followed the virus specific CD8+ T cell response over time using a tetramer specific for the LCMV epitope 

(Gp33-41). Eight days after LCMV infection, Gp33-specific CD8+ T cells in the blood were equally 

abundant in Wlsflox/flox CD4-Cre, Wlsflox/flox and WT mice (Fig. 31A).  In addition, the proportions of SLECs 

and MPECs were not different in these mouse strains (Fig. 31B). At day 29 after LCMV infection, the 

abundance of antigen-specific CD8+ T cells was also similar (Fig. 31C) and the percentage of central 

memory cells (CD127+ CD62L+) was also not affected by the absence of Wls protein in T cells (Fig. 

31D). Similarly, Gp33-41-specific CD8+ T cells expressed same levels of KLRG1 and CD44 even in 

absence of Wls in T cells (data not shown). Similar results were obtained in the spleen when infected 

mice were sacrificed at day 42 post infection (data not shown). Thus, there is so far no evidence that 

Wls in T cells plays a role for the CD8+ T cell response to acute LCMV infection. 

FIGURE 30 – Absence of stromal Wls does not impact Wnt/Tcf-1 signaling in CD8+ T cells. (A) Wls expression was 
analyzed in flow-sorted CD45- splenocytes from WT (in black) and Wlsflox/flox CCL19-Cre (in white) mice. Bar graph 
depicts the relative mRNA expression of Wls in CD45- splenocytes from indicated mice relative to HPRT 
housekeeping gene. (B) Bar graphs show the mRNA expression of Axin2, Tcf7 and Lef-1 genes in flow-sorted naïve 
WT (in black) or Wlsflox/flox CCL19-Cre (in white) CD8+ T cells relative to HPRT. Indicated values are shown as mean 
± SD. (C) Contour plots show the percentages of both CD4+ and CD8α+ cells among total splenocytes in either WT 
or Wlsflox/flox CCL19-Cre splenocytes. (D) Contour plots show the percentage of naïve CD8+ T cells (CD44- CD62L+) 
and activated CD8+ T cells (CD44+ CD62L-). Statistical significance was determined with unpaired t-tests. *p < 0.05; 
ns stands for not significant. 
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We also addressed whether Wls in stromal cells of secondary lymphoid organs is important for the CD8+ 

T cell response to acute LCMV infection. Since we observed no difference between WT and Wlsflox/flox 

FIGURE 31 – Absence of Wls in T cells does not impact CD8+ T cell response during acute LCMV infection. (A-B) 
Wlsflox/flox and Wlsflox/flox CD4-Cre mice were bled at day 8 after acute LCMV infection and were analyzed by flow 
cytometry. (A) Contour plots show the percentage of LCMV Gp33-41-specific CD8+ T cells among total CD8+ T cells. 
Bar graph shows the mean percentage (± SD) of Gp33-41-specific CD8+ T cells among total CD8+ T cells (Wlsflox/flox 
in black and Wlsflox/flox CD4-Cre in white). (B) Contour plots show the percentage of SLECs (CD127- KLRG1+) and 
MPECs (CD127+ KLRG1-) among Gp33-41-specific cells. Bar graph shows the mean percentage of SLECs and 
MPECs (± SD) among Gp33-41-specific CD8+ T cells (Wlsflox/flox in black and Wlsflox/flox CD4-Cre in white). (C-D) 
Wlsflox/flox and Wlsflox/flox CD4-Cre mice were bled at day 29 after acute LCMV infection and were analyzed by flow 
cytometry. (C) Contour plots show the percentage of LCMV Gp33-41-specific CD8+ T cells among total CD8+ T cells. 
Bar graph depicts the mean percentage (± SD) of Gp33-41-specific CD8+ T cells among total CD8+ T cells (Wlsflox/flox 
in black and Wlsflox/flox CD4-Cre in white). (D) Contour plots show the percentage of central memory cells (CD62L+ 
CD127+) among Gp33-41-specific CD8+ T cells. Bar graph shows the mean percentage of central memory cells (± 
SD) among Gp33-41-specific CD8+ T cells (Wlsflox/flox in black and Wlsflox/flox CD4-Cre in white). Results derived from 
n= 2-3 mice per group of a single experiment performed. Statistical significance was determined with t-tests. ns 
stands for not significant. 
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mice, we only used Wlsflox/flox mice as controls to verify whether Wls in stromal cells was important for 

the CD8+ T cell response to acute infection. At day 8, Gp33-specific CD8+ T cells were equally abundant 

in the blood of Wlsflox/flox CCL19-Cre and Wlsflox/flox mice (Fig. 32A) and these cells were equally 

differentiated into SLECs and MPECs (Fig. 32B). Moreover, at day 26 post LCMV infection, in the early 

memory phase, the abundance of antigen-specific in the blood was similar between Wlsflox/flox CCL19-

Cre and Wlsflox/flox mice (Fig. 32C). The percentage of central memory cells (CD127+ CD62L+) was also 

not impacted by the absence of Wls protein in stromal cells (Fig. 32D). Similar results were obtained in 

FIGURE 32 – Absence of stromal Wls does not impact CD8+ T cell response during acute LCMV infection. (A-B) WT, 
Wlsflox/flox and Wlsflox/flox CCL19-Cre mice were bled at day 8 after acute LCMV infection and were analyzed by flow 
cytometry. (A) Contour plots show the percentage of LCMV Gp33-41-specific CD8+ T cells among total CD8+ T cells. 
Bar graph shows the mean percentage (± SD) of Gp33-41-specific CD8+ T cells among total CD8+ T cells. (B) Contour 
plots show the percentage of cells of SLECs (CD127- KLRG1+) and MPECs (CD127+ KLRG1-). Bar graph shows 
the mean percentage of SLECs and MPECs (± SD) among Gp33-41-specific CD8+ T cells. (C-D) WT (in black), 
Wlsflox/flox (in grey) and Wlsflox/flox CCL19-Cre (in white) mice were bled at day 26 after acute LCMV infection and 
were analyzed by flow cytometry. (C) Contour plots show the percentage of LCMV Gp33-41-specific CD8+ T cells 
among total CD8+ T cells. Bar graph shows the mean percentage (± SD) of Gp33-41-specific CD8+ T cells among 
total CD8+ T cells. (D) Contour plots show the percentage of cells with central memory phenotype (CD62L+ CD127+) 
among Gp33-41-specific CD8+ T cells. Bar graph shows the mean percentage of central memory cells (± SD) among 
Gp33-41-specific CD8+ T cells. Results derived from n= 2-3 mice per group of a single experiment performed. 
Statistical significance was determined with unpaired t-tests. ns stands for not significant. 
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the spleen when infected mice were sacrificed at day 38 post infection (data not shown). We conclude 

that Wls in stromal cells was also not important for CD8+ T cell response to an acute LCMV infection.  

Wls deletion in either T cells or stromal cells does not impact 

the CD8+ T cell response to chronic LCMV infection 

Finally, we tested whether Wls played a role for the CD8+ T cell response to chronic LCMV infection. To 

this end, we infected WT, Wlsflox/flox and Wlsflox/flox CD4-Cre mice with LCMV cl13 strain, which leads to 

chronic viral infection in WT mice. We followed the virus-specific CD8+ T cell response over time using 

tetramers specific for the LCMV epitopes, Gp33-41 and Gp276. At day 28 post infection, Gp276- and Gp33-

41-specific CD8+ T cells were equally abundant in WT, Wlsflox/flox and Wlsflox/flox CD4-Cre mice (Fig. 33A 

FIGURE 33 – Absence of Wls in T cells does not impact memory-like CD8+ T cell formation in LCMV cl13 infection. 
(A-C) WT, Wlsflox/flox and Wlsflox/flox CD4-Cre mice were analyzed at day 28 after LCMV cl13 infection and 
splenocytes were analyzed by flow cytometry. (A) Contour plots show the percentage of LCMV Gp276-specific 
peptide versus CD8+ T cells among total CD8+ T cells. Numbers indicate the percentage of Gp276-specific CD8+ T 
cells among total CD8+ T cells. Bar graph shows the mean percentages (± SD) of Gp276-specific CD8+ T cells among 
total CD8+ T cells. (B) Histograms show the expression of PD1 in Gp276-specific CD8+ T cells. Numbers indicate 
the PD1 MFI in the indicated populations. Bar graphs shows the mean PD1 MFI (± SD) in Gp276-specific CD8+ T 
cells. (C) Contour plots show the expression of CD127 and KLRG1 in Gp276-specific CD8+ T cells. Numbers indicate 
the percentage of memory-like (CD127+ KLRG1-) and effector-like (CD127- KLRG1+) cells among Gp276-specific 
CD8+ T cells. Bar graph shows the mean percentages (± SD) of memory-like and effector-like cells among Gp276-
specific CD8+ T cells. Results derived from n= 4-7 mice per group of a representative experiment of two independent 
experiments performed. Statistical significance was determined with one-way ANOVA tests. ns stands for not 
significant. 
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and not shown). These cells were all expressing high levels of PD1 indicating that LCMV infection was 

chronic and that the cells were exhausted (Fig. 33B). 

We have recently identified a memory-like CD8+ T cells subset among virus specific CD8+ T cells after 

LCMV cl13 infection. While this subset is defined by Tcf-1 expression, a subset of these cells can also 

be identified by low levels of KLRG1 and expression of CD127. We then looked at CD127 and KLRG1 

expression in Gp276- and Gp33-41-specific CD8+ T cells. We did not observe any significant difference in 

the percentage of memory-like CD8+ T cells (CD127+ KLRG1-) or effector-like CD8+ T cells (CD127- 

KLRG1+) between WT, Wlsflox/flox and Wlsflox/flox CD4-Cre CD8+ T cells, (Fig. 33C and not shown). These 

data indicate that Wls expression in T cells does not have a role for mounting a CD8+ T cell response 

against chronic LCMV infection. This indicates that either Wnt protein secretion in other cell population 

plays a role for CD8+ T cell response or that Wls is not involved at all in this process. 
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Part I – The role of Wnt/Tcf-1 expression for effector CD8+ T 

cell differentiation 

In my thesis, we aimed at better understanding the process of CD8+ T cell differentiation. Since Wnt/Tcf-

1 signaling in antigen-specific CD8+ T cells is required for the formation of functional CD8+ T cell 

memory, we addressed how Wnt/Tcf-1 signaling was controlled during a primary immune response. 

Here, we found that the downregulation of Wnt/Tcf-1 signaling was driven by systemic inflammation and 

that Tcf-1 repression was necessary to allow CD8+ T cell differentiation. We then identified IL-12 as the 

main pro-inflammatory cytokine responsible for Tcf-1 downregulation. Moreover, we also showed that 

STAT4, acting downstream of IL-12, regulated Tcf-1 expression. Tcf-1 expression counteracted CD8+ T 

cell differentiation by repressing several transcription factors involved in CD8+ T cell differentiation such 

as Blimp-1 or T-bet. Finally, we observed that Tcf-1 was necessary to form central memory CD8+ T cells 

and thus to protect against a re-infection since memory CD8+ T cells lacking Tcf-1 expression presented 

a default in their capacity to re-expand. 

IL-12 

Antibody blockade revealed an important role of IL-12 for CD8+ T cell differentiation and Tcf-1 

downregulation. The role of IL-12 for CD8+ T cell differentiation in response to DC vaccination in 

presence of CpG is actually somewhat controversial [202]. Pham et al. [203] used OT-1 cells deficient 

for IL-12Rβ1 and showed that IL-12 signals were not necessary for the differentiation of CD8+ T cells. 

On the other hand, Cui et al. [93] showed that IL-12 signaling in P14 cells deficient for IL-12Rβ2 

promoted effector differentiation of responding CD8+ T cells.  

The discrepancies between Cui et al. [93] and Pham et al. [203] might be explained by the fact that they 

used different experimental protocols. Cui et al. [93] used P14 cells whereas Pham et al. [203] used OT-

1 cells. Then, while Pham et al. [203] were purifying splenic DC from B6 mice which have been 

subcutaneously injected with B16 cells expressing Flt3L, Cui. et al. [93] generated bone-marrow derived 

DCs. These DCs might be phenotypically different and may, depending on the way they have been 

purified, secrete or induce different types and/or levels of pro-inflammatory cytokines and this could 
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explain the discrepancies observed between our results and results from other groups. Moreover, the 

dose of CpG used to induce systemic inflammation influences SLEC differentiation [203] which might 

also explain the discrepancy between Cui et al. [93] and Pham et al. [203] because Cui et al. used twice 

as less CpG than Pham et al. Finally, if Pham et al. used CD8+ T cells deficient for IL-12Rβ1, Cui et al. 

used CD8+ T cells deficient for IL-12Rβ2. While both IL-12R subunits have been shown to be important 

for IL-12 signaling, IL-12Rβ1 subunit is constitutively expressed whereas IL-12Rβ2 subunit is induced 

following infection. This could further explain the differences between the data obtained by those two 

groups. 

We also used P14 IL-12Rβ2-/- cells in our DC vaccination system. We observed that the absence of IL-

12Rβ2 in antigen-specific CD8+ T cells blocked Tcf-1 downregulation and CD8+ T cell differentiation. In 

the L.m. context, the absence of IL-12Rβ2 on CD8+ T cells also led to a maintenance of Tcf-1 expression 

and a blocking of CD8+ T cell differentiation in a reproducible manner. Thus, our data actually fit both 

groups since the neutralizing mAbs block IL-12 signaling in all cell types and not only in responding 

CD8+ T cells led to a complete blocking of Tcf-1 neutralization whereas IL-12Rβ2 deficiency in 

responding CD8+ T cells led to a strong but only partial blocking of Tcf-1 downregulation. So we 

concluded that IL-12 is necessary for CD8+ T cell differentiation, which is in accordance with Cui et al. 

[93] and that IL-12 acted directly on CD8+ T cells, in accordance with what Pham et al. [185], but acted 

also indirectly. 

We also tested whether the administration of recombinant IL-12 in combination with DC33 vaccination 

was sufficient to downregulate Tcf-1. Tcf-1 expression and SLEC differentiation were not impacted by 

the injection of IL-12 contrary to what Cui et al. published [93]. This led us to the conclusion that IL-12 

was necessary for Tcf-1 downregulation but that it was not sufficient (data not shown). However, we 

cannot exclude the possibilities that a single injection of IL-12 was not sufficient to induce the 

downregulation of Tcf-1 in vivo, that IL-12 needs to act in conjunction with other factors to repress Tcf-

1 or that IL-12 needs to be trans-presented as described for IL-15 [204] to be active.  

Type I IFNs 

The role of type I IFNs in CD8+ T cell differentiation remains controversial. Type I IFNs have been shown 

to be critical for SLEC differentiation [205] whereas others showed that they were only important for 
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expansion of CD8+ T cells [203]. However, when we blocked type I IFN signaling using IFNAR blocking 

Abs, we did not observe any effect on Tcf-1 expression or SLEC differentiation. When combined with 

IL-12 blockade, IFNAR blockade led to a minor further reduction of Tcf-1 downregulation. Moreover, the 

addition of type I IFNs in vitro did not provoke the downregulation of Tcf-1. We concluded that type I 

IFNs were not necessary for Tcf-1 downregulation and SLEC differentiation during DC vaccination. 

However, since we did not observe any effect of IFNAR blockade, we cannot exclude the possibility that 

the blockade was not efficient. To rule out a role of type I IFN, we could use P14 cells lacking IFNAR in 

our DC33 vaccination system. 

IL-2 

Since a high dose of IL-2 induced SLEC differentiation [114], we also verified a possible role of IL-2 for 

controlled Tcf-1 expression. We did not find any changes in Tcf-1 expression. However, contrary to 

published data [206], increased availability of IL-2 (using IL-2/anti-IL-2 complexes) did not induce SLEC 

differentiation. Blocking of IL-2 did also not change Tcf-1 expression. Again, contrary to published data 

[206], IL-2 blockade did not reduce SLEC differentiation and CD8+T cell proliferation. 

There are several differences in the respective protocol that may explain these differences. To increase 

the bioavailability of IL-2 in vivo, we injected IL-2 complexed with an anti-IL-2 mAb 4.5 days and 6 days 

after dendritic cell vaccination in order to increase the half-life of IL-2 in vivo. With this approach, we 

observed an increased proliferation of CD8+ T cells in accordance with previously published data from 

Boyman et al. [207]. Boulet et al. injected recombinant murine IL-2 twice daily for 7 days. The protocol 

adopted by Boulet et al. may induce vascular leak syndrome, which is associated with liver cell damage 

[9] due to an over stimulation of NK cells and the release of pro-inflammatory cytokines. Thus, enhanced 

SLEC differentiation may be explained by the release of pro-inflammatory cytokines. IL-2 complexes 

mostly expand CD8+ T cells with limited stimulation of Treg cells and lower incidence of VLS as compared 

to soluble IL-2 injection to mice [9]. 

Further, Boulet et al. stimulated antigen-specific CD8+ T cells in vivo in the absence of inflammatory 

signals. We tested IL-2 blockade in presence of systemic inflammation to establish whether IL-2 

signaling was critical for SLEC differentiation. In the absence of systemic inflammatory signals, IL-2 



65 
 

might contribute to limited SLEC differentiation. However, in the presence of systemic inflammatory 

signals, IL-2 signaling was not a main inducer of SLEC. 

Another difference between our study and the one performed by Boulet et al. is the antigen-specific 

CD8+ T cells used. Indeed, we used P14 CD8+ T cells whereas they used OT-1 CD8+ T cells. Systemic 

inflammation does not improve the expansion of P14 cells while that of OT-1 cells is improved via the 

maintenance of high-affinity IL-2 signaling [208]. Thus, IL-2 might play a different role on P14 and OT-1 

cells. 

Irrespectively, we found no difference in Tcf-1 expression when reducing or increasing the availability of 

IL-2 during the primary response of CD8+ T cells. 

The optimal re-expansion of memory CD8+ T cells depends on the presence of IL-2 during the primary 

response [209]. The source of IL-2 was thought to be CD4+ TH cells. But Williams et al. [60] and more 

recently Feau et al. [59] indicated an essential role of autocrine IL-2. We observed that DC33-primed 

Tcf7-/- P14 cells did not produce IL-2 and were unable to give rise to central memory CD8+ T cells. 

Moreover, memory Tcf7-/- P14 cells showed a clear defect in their re-expansion capacity. This could be 

explained by their reduced ability to produce IL-2. However, naïve P14 Tcf7-/- cells produced IL-2 

normally in response to stimulation by anti-CD3 and anti-CD28 antibodies in vitro (Laurène Pousse data, 

unpublished). Thus, the absence of IL-2 production following DC33 priming is likely a phenotype 

acquired during priming rather than an intrinsic defect of Tcf7-/- P14 cells to produce IL-2. 

Other cytokines regulating Tcf-1 expression 

We established a critical role of IL-12 for Tcf-1 downregulation. It seems unlikely that IL-12 is the only 

inflammatory cytokine capable of reducing Tcf-1 expression. Since IFNγ promotes naïve CD8+ T cell 

differentiation and that the differentiation is further supported by addition of type I IFNs [210], we tested 

whether IFNγ could regulate Tcf-1 expression. However, the addition of recombinant IFNγ in vitro did 

not lead to the downregulation of Tcf-1. Thus, we concluded that IFNγ was not necessary for Tcf-1 

downregulation during CD8+ T cell differentiation. 
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Moreover, members of the IL-1 family of cytokines which includes IL-1, IL-18 and IL-33, have been 

shown to influence anti-viral CD8+  T cell responses [211]. In vitro priming of CD8+ T cells has shown 

that IL-12 and IL-33 synergistically increase the effector differentiation of CD8+ T cells (production of 

IFNγ) by enforcing the expression of transcription factors T-bet and Blimp-1 and repressing Eomes, Lef-

1 and Tcf-1 [212]. Moreover, in vivo, it has been demonstrated that IL-33 signaling is necessary to induce 

CD8+ T cell differentiation and proliferation based on the reduced SLEC population observed at day 8 

after LCMV infection in absence of IL-1RL1 or IL-33 itself  [213]. We thus tested IL-33 alone or in 

combination with IL-12 in using our in vitro system in a preliminary experiment. However, IL-33 did not 

provoke the downregulation of Tcf-1 protein. The other members of the IL-1 family could also be tested 

in our DC vaccination system in order to gain further insight into CD8+ T cell differentiation process. 

IL-12 signaling 

Since IL-12 mainly signals via STAT4, we further studied the role of STAT4 for Tcf-1 downregulation 

and CD8+ T cell differentiation. Although STATs were originally characterized as activators of gene 

transcription, there have been indications that STATs can also function as transcriptional repressors. 

Indeed, STAT5 directly represses Bcl6 in various types of cancers [214, 215]. Along the same lines, 

STAT4-dependent repressive histone marks in TH1 cells have been identified on a small number of 

genes that are usually expressed in TH2 cells, suggesting a role for STAT4 as a transcriptional repressor 

[216]. We showed that STAT4-deficiency in P14 cells abolished Tcf-1 downregulation and CD8+ T cell 

differentiation, suggesting that STAT4 represses Tcf7 expression. As mentioned earlier, the analysis of 

publically available STAT4 CHIPSeq data from TH1 cells [4] revealed that STAT4 is bound to the Tcf7 

locus and that this correlates with the presence of repressive H3K27me3 marks. In the absence of 

STAT4, activating H3K4me3 marks and Tcf7 expression are also moderately increased in TH1 cells [4]. 

These data suggest that STAT4 binding has a direct and repressive effect on Tcf7 expression in CD4+ 

T cells. It will be of interest to verify whether STAT4 can also bind to Tcf7 locus in antigen-specific CD8+ 

T cells activated in the context of DC vaccination. 

Conversely, it is well known that IL-12Rβ2 expression is induced by STAT4 [99, 194-196]. Indeed, 

STAT4 is bound to the IL-12Rβ2 loci in TH1 cells and this correlates with the presence of activating 

H3K4me3 marks. In the absence of STAT4, repressive H3K27me3 marks are increased and IL-12Rβ2 
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expression is strongly reduced [4]. Moreover, the IL-12R is undetectable on most resting T cells but the 

activation through the TCR and co-stimulatory interactions induces the transcription and expression of 

both chains of the IL12R [1, 217]. However, activated TH1 cells further upregulate the IL-12Rβ2 chain in 

response to IL-12 [218]. Thus IL-12 is thought to further improve IL-12 signaling and at the same time 

repress Tcf-1, which will collectively promote effector differentiation. As excessive effector differentiation 

seems to impair memory formation, we hypothesized that Tcf-1 may counteract this IL-12 – effector 

differentiation loop. Indeed, we observed that Tcf-1 reduced IL-12Rβ2 expression in MPECs responding 

to DC33 vaccination. Thus Tcf-1 dampens IL-12R expression to prevent excessive or premature effector 

differentiation. 

Default effector differentiation in the absence of Tcf-1 

Absence of Tcf-1 resulted in increased expression of transcription factors in MPECs that mediate 

effector differentiation such as Prdm1(Blimp-1) and Tbx21 (T-bet) expression. This indicates that the 

absence of Tcf-1 results in effector differentiation by allowing the expression of transcription factors 

responsible for CD8+ T cell differentiation. To follow up on these data, it would be of interest to 

demonstrate that the absence of STAT4 in P14 cells leads to a reduced IL-12Rβ2 expression in MPECs 

and to reduced expression of transcription factors such as Blimp-1 or T-bet. This would confirm that 

STAT4 is responsible for the repression of Tcf-1 and is necessary for effector CD8+ T cell differentiation. 

Thus the default effector differentiation induced by the absence of Tcf-1 may directly impair central 

memory formation. 

Cytokines maintaining Tcf-1 expression 

We have been mainly looking for inflammatory signals responsible for Tcf-1 downregulation and thus 

for SLEC differentiation based on the view that the memory CD8+ T cell differentiation was a default 

pathway counteracted by the encounter of inflammatory cytokines [185]. However, MPEC differentiation 

is also dependent on specific cytokines produced during infection. For example, IL-10, which is known 

to limit pro-inflammatory responses, is required for optimal CD8+ T cell memory development [219]. 

Moreover, while IL-2 promotes proliferation of effector CD8+ T cells, IL-21, which is closely related to IL-

2, promotes memory CD8+ T cell formation and function [220, 221]. IL-21 acts in combination with IL-10 

to trigger STAT3 activation [123]. These cytokines may help to maintain Tcf-1 in antigen-primed CD8+ 
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T cells [222]. Indeed, Cui et al. [186] compared different adjuvants in a DC vaccination system and 

suggested that IL-10 at high levels counteracted the action of IL-12. So a different strategy to investigate 

the regulation of Tcf-1 during CD8+ T cell response is to investigate the role of IL-10 and IL-21 in CD8+ 

T cell differentiation and Tcf-1 expression in our DC vaccination system. 

Conclusion and perspectives 

An adaptive CD8+ T cell response normally controls infections with intracellular pathogens and forms a 

long-lived pool of memory CD8+ T cells that is able to protect from re-infection. Knowledge regarding 

protective immune responses to natural infections is essential for understanding why the immune 

system fails to control certain pathogens such as HIV or HCV, which lead to chronic infections and for 

the generation of vaccines that can induce protective T cell responses. Although vaccines against 

smallpox or yellow fever have been developed, the mechanism of action of these vaccines is not 

completely understood [223]. Indeed, while the humoral response has been shown to be important to 

mediate protection again yellow fever virus, CD8+ T cells are also important for the control of yellow 

fever virus replication [224]. These CD8+ T cells induce a long-lasting stem cell-like memory CD8+ T cell 

population [225]. Moreover, DC vaccination in mice has been shown to induce memory CD8+ T cells 

which mediate protection against chronic infection such as LCMV cl13 [186] and CD8+ T cell depletion 

after LCMV cl13 infection led to an increased virus titer [226]. Together, these data indicate that CD8+ 

T cells plays an important role in the vaccination process and that a better understanding of their 

mechanism of action is necessary to develop new vaccines. 

Moreover, some newly developed vaccines and T-cell based therapies generate terminally differentiated 

CD8+ T cells [227-229]. Thus, certain vaccines might not be effective because they generate effector 

CD8+ T cells rather than memory CD8+ T cells that are more protective in both viral infections and tumor 

models [230, 231]. Since Wnt/Tcf-1 signaling is essential for the formation of functional CD8+ T cell 

memory, we studied the precise regulation of Wnt/Tcf-1 signaling and its role during a primary immune 

response. 

We showed the IL-12/STAT4 axis is involved in Tcf-1 downregulation in the course of a CD8+ T cell 

response, which reduces memory formation. Our data thus identify a potential new target to increase 

memory CD8+ T cell formation: STAT4. It may be of interest to reassess specific inhibitors of STAT4 
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such as lisofylline. This inhibitor was actually used in a clinical trial in order to verify its efficacy to prevent 

type I diabetes [232], likely by inhibiting effector differentiation. However, this study has been terminated 

because the lack of participants. Based on our findings, it would be interesting to address whether 

STAT4 blockade by lisofylline improved memory formation during vaccination. 

  



70 
 

Part II – Role of Wnt protein secretion for Wnt pathway 

activity in naïve CD8+ T cells, for CD8+ T cell 

homeostasis and differentiation in response to infection 

Wnt/Tcf-1 signaling pathway is extensively studied for its role in stem cells and cancer development 

[158]. However, Wnt/Tcf-1 signaling also pays roles in immune responses [127-129]. We and others 

established that Wnt/Tcf-1 signaling was highly active in naïve CD8+ T cells [129] but the role in CD8+ 

T cell homeostasis and the source of these Wnt signals have not been defined.  

Prior studies investigated the role of a single Wnt protein [233, 234] but since 19 different Wnt proteins 

have been identified [146] there is a high chance of redundancy between them. In order to avoid this 

problem, we exploited the discovery of the Wntless protein [149] which is involved in the secretion of all 

Wnt proteins [7]. The use of Wntless-deficient mice allowed us to study the role of Wnt secretion for 

Wnt/Tcf-1 signaling in naïve CD8+ T cells. However, it has been shown that Wls is necessary for the 

proper embryonic development of mice [235] Consequently, we used a conditional Wls deletion by 

crossing Wlsflox/flox mice with mice expression a cell- or tissue-specific Cre [197].  

We then analyzed Wnt/Tcf-1 signaling in naïve CD8+ T cells after the deletion of Wls in various cell 

populations. We separately deleted Wls in T cells, in the entire hematopoietic compartment or in stromal 

cells. After verifying the deletion of Wls in the expected tissue, we concluded that Wls expression in T 

cells, the hematopoietic system or stromal cells played a role for the maintenance of Wnt/Tcf-1 signaling 

in naïve CD8+T cells. We found no evidence that the T cell compartments were altered. Moreover, since 

we only targeted Wls and not the secretion of Wnts directly, it might be of interest to either target another 

molecule involved in the secretion of Wnts such as porcupine or to study the role of one or several Wnt 

proteins. 

We further verified whether Wls in T cells or stromal cells played a role for the CD8+ T cell response to 

an acute or chronic LCMV infection. We did not observe any difference in the respective responses 

when Wls was deleted in T cells or in stromal cells. 
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However, the results we obtained had two major caveats. First when analyzing the phenotype of 

Wlsflox/flox mice in absence of Cre recombinase, we noticed that Wls expression of Wls was reduced 10 

fold in Wlsflox/flox as compared to WT mice. Since this reduction was not lethal and not associated with 

any phenotype, we concluded that the remaining level of Wls were enough to allow Wnt protein 

secretion. This mRNA level reduction can be explained by the fact that one of the loxP sites has been 

inserted into the promoter region of Wls gene. 

The second caveat is that we did not verify whether Wnt protein secretion was reduced. Even though 

we can conclude that the absence of Wls in T cells, stromal cells or in the hematopoietic system does 

not lead to a reduction of Wnt/Tcf-1 signaling activity in naïve CD8+, we cannot exclude the possibility 

that Wnt proteins can be secreted using another mechanism. 

Together these data indicate that Wls expression in T cells, hematopoietic cells or stromal cells of 

secondary lymphoid organs is not necessary for Wnt/Tcf-1 pathway activity in naïve CD8+ T cells. 

Perhaps Wls expression and thus Wnt secretion by another cell type, such as endothelial cells, is 

essential for the maintenance of Wnt/Tcf-1 pathway activity in naïve CD8+ T cells. 

Alternatively, Wls and thus Wnt protein secretion does not play a role for maintaining Wnt/Tcf-1 signaling 

in naïve CD8+ T cells and signaling is ensured by other factors. Prostaglandin E2 can induce Wnt/Tcf-1 

by inhibiting GSK-3 [236]. C1q, a protein of the complement, can activate Wnt/Tcf-1 signaling by 

cleaving LRP co-receptor [156] or hepatocyte growth factor which can directly activate β-catenin [237]. 

Further work will be needed to address these possibilities. 
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Mice 

B6 mice (CD45.2+) were obtained from Charles River. Rag2-/-/γc-/- mice were bred locally. P14 TCR Tg 

(line 237) (B6) mice were provided by A. Oxenius [238], Tcf-1 knockout (Tcf7-/-) (B6 backcross >10) was 

provided by H. Clevers [162]. STAT4-/- mice were provided by M. Löhning [239]. Wlsflox/flox mice were 

provided by K. Basler [197]. Ccl19-Cre were provided by B. Ludewig [240]. CD4-Cre transgenic [198], 

Mx-Cre transgenic [241] and Vav-cre transgenic [199] mice have been described. The following mouse 

strains were purchased from Jackson Laboratories: CD45.1+ congenic B6 mice used as recipients and 

bred in house, Tcf7-/- (p45 isoform) transgenic (Tg) and Tcf7-/- (p33 isoform) Tg (B6 backcross >10) 

[167], OT-1 TCR Tg [242], Axin2LacZ (B6) [180], IL-12Rβ2-/- (B6) [243] . P14 cells are CD8+ T cells 

expressing a LCMV Gp33-41-specific transgenic T cell receptor. P14 Tcf7-/-, P14 Axin2LacZ/+, P14 Tcf7-/- 

p45, P14 Tcf7-/- p33, P14 IL-12Rβ2-/-, P14 STAT4-/-, OT-1 Axin2LacZ, CD4-Cre Wlsflox/flox, Mx-Cre 

Wlsflox/flox, Vav-cre Wlsflox/flox and Ccl19-Cre WlsFlox/Flox mice were obtained by breeding. As controls for 

Tcf7-/- mice, we used B6 mice. 

P14 Tcf7Lox/Lox ROSA26Sortm1(EYFP) were generated by crossing commercially available 

ROSA26Sortm1(EYFP) (Jackson Laboratory) mice with P14 mice and Tcf7tm1a(EUCOMM)Wtsi/+ founder mice 

from the EUCOMM consortium which have the exon 4 from the Tcf7 gene flanked by two loxP sites. 

Mice were bred and maintained in the SPF facility, vaccinated and injected in the conventional animal 

facility of the university of Lausanne. Experiments were performed in 6 to 12 weeks old mice in 

compliance with the University of Lausanne Institutional regulations and were approved by the 

veterinarian authorities of the Canton de Vaud. 

Purification of mouse T cells and adoptive cell transfers 

Single cell splenocyte suspensions were obtained by mashing total spleens through a 40µm nylon cell 

strainer (BD Falcon). Red blood cells were lysed with a hypotonic ACK buffer. CD8+ T cells were isolated 

using mouse CD8+ T-cell enrichment kits (StemCell Technologies). One-2 x 104 WT, Tcf7-/-, Tcf7-/- p33, 

Tcf7-/- p45, Axin2LacZ, IL-12Rβ2-/-, STAT4-/- CD45.2+ P14 cells were transferred into naïve CD45.1+ B6 

mice. One-2 x 104 OT-1 Axin2LacZ CD45.1+ cells were transferred into naïve CD45.2+ B6 mice. 



74 
 

In the experiments in which we addressed memory development and functionality after peptide DC 

vaccination, WT and Tcf7-/- CD45.2+ P14 cells were enriched from DC vaccinated mice by staining total 

splenocytes with anti-CD8α (53.6.7, eBioscience), anti-CD45.2 (104, eBioscience) and anti-CD45.1 

(A20.1, eBioscience) fluorescent mAbs. CD8+ CD45.2+ CD45.1- cells were isolated by fluorescence 

activated cell sorting. The purity of sorted cells was greater than 99%. Six-10 x 103 sorted WT and Tcf7-

/- CD45.2+ P14 cells were then transferred into new naïve CD45.1+ B6 recipients. The fold expansion of 

WT and Tcf7-/- P14 cells in secondary hosts was determined relative to an estimated 10% “take” of 

transferred input cells [182]. 

In the experiments in which we transferred P14 Axin2LacZ cells into Rag2-/-/γc-/- mice to induce 

homeostatic proliferation, 1 x 106 P14 cells were transferred. 

Surface and intracellular staining and fluorescent activated cell 

sorting of mouse cells 

Splenocytes, thymocytes, bone-marrow cells and blood cells were incubated with anti-CD16/332 

(2.4G2) hybridoma supernatant before staining for 15 minutes at 4°C for multicolor flow cytometry with 

fluorescent mAbs to CD4 (GK1.5), CD8α (53-6.7), CD19 (ID3), CD44 (IM.781), CD45.1 (A20.1), CD45.2 

(104), B220 (RA3-6B2), CD62L (Mel14), CD127 (A7R34), and KLRG1 (2F1) from eBioscience, 

fluorescent mAbs to CD11c (N418), CD80 (16-10A1), CD86 (GL-1), Iab (KH74) and PD-1 (RPM1-30) 

from Biolegend and fluorescent mAb to Vα2 (B20.1) from BD Pharmingen. PE-labeled or APC-labeled 

Db Gp33-41 (KAVYNFATC), Db Gp276 (SGVENPGGYCL), Db Np396 (FQPQNGQFI) tetramers were 

purchased from TCmetrix and incubated for 30 minutes at room temperature with splenocytes or blood 

cells. Zombie Aqua Fixable Viability Kit (Biolegend) was used for the exclusion of dead cells. 

For intracellular cytokine staining, splenocytes were re-stimulated in vitro with Gp33-41 peptide (5mM) for 

5h in the presence of Brefeldin A (7 µg/mL) for the last 4.5h. They were then fixed and permeabilized 

using the intracellular fixation and permeabilization buffer kit from eBioscience and stained with mAbs 

for IFNγ (XMG1.2), TNFα (MP6-XT22) and IL-2 (JES6-5H4) (all from eBioscience). 
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Transcription factors and Granzyme B were detected using the FoxP3 transcription factor staining kit 

from eBioscience and stained with mAbs for Granzyme B (GB11, ThermoFisher Scientific) and Tcf-1 

(C63D9, Cell signaling) followed by anti-rabbit IgG PE (eBioscience) to detect Tcf-1 mAbs. 

β-galactosidase (Axin2LacZ) activity assay 

Purified CD8+ T cells or splenocytes were resuspended at 20 x 106 cells/mL in HBSS medium containing 

5% FCS. 100µL of cells pre-warmed at 37°C were incubated with 100µL of FDG at 2mM (Thermo Fisher 

Scientific) also pre-warmed at 37°C for exactly 1min at 37°C. After incubation with FDG at 37°C, cells 

were transferred into 2mL of ice-cold HBSS medium and kept on ice for 1.5 h. Cells were then washed 

in HBSS medium and surface stained as previously described. 

In vivo treatments 

Mice were injected intraperitoneally with 500µg of rat anti-mouse IL-12 p40 (C17.8) or with rat IgG2a 

isotype control (2A3) once at the time of DC vaccination and a second time 5-6h later. Mice were injected 

intraperitoneally with 2.5mg of mouse anti-mouse IFNAR-1 (MAR1-5A3) or mouse IgG1 isotype control 

(MOPC-21) once following CD8+ T cell injection. Mice were injected intraperitoneally with 250µg of rat 

anti-mouse IL-2 (JES6-1A12) or with a complex formed by 10µg of rat anti-mouse IL-2 (S4B6-1) and 

300ng of human IL-2 (Glaxo IMB) once 4.5 days after DC vaccination and a second time 6 days after 

DC vaccination. All antibodies were purchased from BioXCell. 

Lymphocytic choriomeningitis virus infection 

The LCMV cl13 and WE strains were propagated in baby hamster kidney cells and titrated on Vero 

African green monkey kidney cells according to an established protocol [244]. Frozen stocks were 

diluted in PBS. For LCMV infections, WT, CD4-Cre WlsFlox/Flox, or Ccl19-Cre WlsFlox/Flox mice were 

injected intravenously with 2 x 106 PFUs of LCMV cl13 or 2x102 PFUs of LCMV WE. Alternatively, sorted 

WT, Tcf7-/- CD45.2+ P14 cells were transferred into naïve CD45.1+ B6 hosts one day prior to infection 

with LCMV cl13. The immune response to LCMV was analyzed with flow cytometry and peptide MHC 

tetramer specific for endogenous CD8+ T cells specific for LCMV or by identifying P14 cells using 

congenic markers. Responses were analyzed as indicated in the text. 
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Listeria monocytogenes bacterial infection 

Recombinant Listeria monocytogenes strains stably expressing chicken OVA that contain H2-Kb/OVA-

derived native ligand SIINFEKL257-264 (N4) and altered peptide ligands SIITFEKL (T4) or SIIVFEKL (V4) 

were previously described [183]. Alternatively, we used another L.m. strain co-expressing the altered 

peptide-ligand T4 and the Gp33-41 peptide (KAVYNFATC) [245]. All L.m. strains were a gift from D. Zehn. 

L.m. strains were grown in brain heart infusion broth (Beckton Dickinson) to mid-log phase. Then, 

bacterial numbers were determined by measuring the OD at 600nm, and diluted stocks were injected 

intravenously in PBS. Naïve CD45.1+ or CD45.2+ mice received 2 x 103 colony-forming units (CFU) one 

day after WT OT-1, WT P14, Tcf7-/- P14, IL-12Rβ2-/-P14 or STAT4-/- P14 cells transfer. 

Generation of bone marrow-derived dendritic cells and DC 

vaccination 

Bone marrow-derived CD11c+ dendritic cells were generated after 6 days of culture with GM-CSF and 

IL-4 as described [246]. Lipopolysaccharide (100ng/mL; Sigma) was then added overnight in order to 

induce maturation of DCs. Matured DCs were pulsed with Gp33-41 (1µg/mL) (DC33) for 2h, washed with 

PBS. The resulting cell population consisted of 50-80% CD11c+ cells and were also positive for H2-IAb, 

CD80 and CD86. Based on percentage of CD11c+ cells (determined before injection), 1 x 106 DC33 

were injected intravenously one day after transfer of WT, Tcf7-/-, Tcf7-/- p33, Tcf7-/- p45, IL-12Rβ2-/-, or 

STAT4-/- P14 cells transfer. Simultaneously, DC33 vaccinated mice were injected intraperitoneally with 

CpG-B 1826 ODNs [184] (50µg). 

In vitro deletion with Tat-cre fusion protein 

ROSA26EYFP Tcf7Lox/Lox CD45.2+ CD8+ T cells were purified, as described above, washed two times 

with 2% FCS RPMI 1640 medium. 0.5 x 106 purified cells were treated in vitro in round bottom wells 

from a 96-well plate. A total of 0.5 x 106 cells was incubated in wells in presence of 25µg/mL of Tat-Cre 

recombinase (Labgene) for 1h at 37°C. After the treatment, cells were washed twice with 10% FCS 

RPMI 1640. One-2 x 104 Tat-Cre treated cells were then transferred into naïve CD45.1+ mice which 

were vaccinated with DC33, as described above, the day after. Alternatively, 0.5 x 106 Tat-Cre treated 
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cells were cultured in vitro for 48h at 37°C in V-bottom 96-well in presence of 50ng/mL of IL-2. Cells 

were harvested 48h later, washed and stained to check the efficiency of Tat-Cre treatment. 

In vitro assay/CFSE labelling 

Naïve P14 CD8+ T cells were purified, as described above, and stimulated for 3 days in vitro in flat-

bottom wells from a 96-well plate coated with 2µg/mL of purified anti-CD3 (eBioscience, 145-2C11) and 

1 µg/mL of soluble purified anti-CD28 (eBioscience, 37.51) in presence of IL-2 at 20ng/mL A total of 2 x 

105 cells in 0.2 mL of RPMI 1640 medium were placed into wells. Where indicated, cultures were 

supplemented with 10ng/mL of rIL-12 (Peprotech), IL-23 (Peprotech) and/or IFNγ (Peprotech), 5 x 102 

IU/mL of IFN-α (Millipore) or IFN-β (Millipore). Cells were harvested at the end of day 3, washed and 

stained for Tcf-1 as described above. 

Before their simulation with anti-CD3 and anti-CD28 mAbs, purified CD8+ T cells were pelleted and 

resuspended at a concentration of 10 x106 cells/mL in phosphate-buffered saline (PBS). Cells were 

labelled with 0.2µM of CFSE (Thermo Fisher Scientific) in PBS for 5-8 min at 37°C. Cells were washed 

3 times in medium containing 10% FCS and were subsequently resuspended in culture medium. 

Q-PCR 

Cells were sorted on a FACS Aria (BD Biosciences) and RNA was extracted in Trizol LS reagent (Life 

Technologies) and reverse-transcribed using SuperScript III First-Strand Synthesis System 

(ThermoFisher Scientific). Relative quantification real-time PCR (qRT-PCR) was performed with KAPA 

SYBR FAST qPCR Kit Master Mix (2X) Universal (KAPABIOSYSTEMS) on a LightCycler 480 

Instrument (Roche). Primer pairs used for detection are as follows: IL-12Rβ2 (forward 5’- 

GTGGACCAAACAATCTGACCTG -3’; reverse, 5’- AACACGGACTATGAACCTGGA -3’), Blimp-1 

(forward, 5’- CATGGAGGACGCTGATATGAC -3’; reverse, 5’- ATGCCTCGGCTTGAACAGAAG -3’), T-

bet (forward, 5’- AGCAAGGACGGCGAATGTT -3’; reverse, 5’- GGGTGGACATATAAGCGGTTC -3’), 

Id2 (forward, 5’- ATGAAAGCCTTCAGTCCGGTG -3’; reverse, 5’- AGCAGACTCATCGGGTCGT -3’), 

Bcl6 (forward, 5’- AAAGGCCGGACACCAGTTTT -3’; reverse, 5’- CCGGAGGCGATTAAGGTTGA -3’), 

Eomes (forward, 5’- GCGCATGTTTCCTTTCTTGAG -3’; reverse, 5’- GGTCGGCCAGAACCACTTC -

3’), Axin2 (forward, 5’- TGACTCTCCTTCCAGATCCCA -3’; reverse, 5’- TGCCCACACTAGGCTGACA 



78 
 

-3’), Tcf-1 (forward, 5’- AGCTTTCTCCACTCTACGAACA -3’; reverse, 5’- 

AATCCAGAGAGATCGGGGGTC -3’), Lef-1 (forward, 5’- CTGGTCAGCGCGAGACAATTA -3’; reverse, 

5’- CTTTGCACGTTGGGAAGGA -3’), Wls1 (forward, 5’- CCCCCTTTCCCTCTCGGTTCC -3’; reverse, 

5’- GGCGGCATGGAAGCCAAGGGC -3’), Wls2 (forward, 5’- ACAGATGTTGGAACAGAACTGGC -3’; 

reverse, 5’- GGCTAGACTGCTTCCCACTG -3’) and HPRT as internal control (forward, 5’- 

GATTCAACTTGCGCTCATCTTAGGC -3’; reverse, 5’- AGGTCGGTGTGAACGGATTTG -3’). 

Data analyses 

Flow cytometry measurements of cells were performed on an LSR-II or LSR-Fortessa II flow cytometer 

(BD). For cell sorting, living cells were stained in 10% FCS DMEM media and sorted on a FACS Aria 

(Beckton Fickinson). All data were analyzed using FlowJo X (TreeStar). Graphs were prepared with 

GraphPad Prism 6.0. Bar graphs depict the mean ± SEM or ± SD as indicated. Statistical analyses were 

performed using Prism 6.0 (Graphpad Software). Paired and non-paired t tests (two-tailed) or one-way 

ANOVA were used according to the type of experiments. P-values ≤ 0.05 were considered significant 

(*: p<0.05; **: p<0.001; ***: p<0.0001); p-values >0.05; non-significant (ns). 
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