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Abstract
Background: In several countries, children's math skills 
have been declining at an alarming rate in recent years and 
decades, and one of  the explanations for this alarming situa-
tion is that children have difficulties in establishing the rela-
tions between arithmetical operations.
Aim: In order to address this question, our goal was to 
determine the predictive power of  previously taught opera-
tions on newly taught ones above general cognitive skills and 
basic numerical skills.
Samples: More than one hundred children in each school 
level from Grades 2 to 5 from various socio-cultural environ-
ments (N = 435, 229 girls) were tested.
Methods: Children were assessed on their abilities to solve 
the four basic arithmetic operations. They were also tested on 
their general cognitive abilities, including working memory, 
executive functions (i.e., inhibition and flexibility), visual 
attention and language. Finally, their basic numerical skills 
were measured through a matching task between symbolic 
and nonsymbolic numerosity representations. Additions and 
subtractions were presented to children from Grade 2, multi-
plications from Grade 3 and divisions from Grade 4.
Results and Conclusions: We show that addition predicts 
subtraction and multiplication performance in all grades. 
Moreover, multiplication predicts division performance in 
both Grades 4 and 5. Finally, addition predicts division in 
Grade 4 but not in Grade 5 and subtraction and division 
are not related whatever the school grade. These results are 
examined considering the existing literature, and their impli-
cations in terms of  instruction are discussed.
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INTRODUCTION

In several countries, such as the United States, Australia or France, children's math skills have been declin-
ing at an alarming rate in recent years and decades (OCDE, 2019). Numerous explanations have been 
provided, noticeably low investment in teachers' training (e.g., Luft & Cox, 2001) or teachers’ dislike for 
mathematics (e.g., Ruffell et al., 1998). More specific explanations are also given and one of  them is that 
children have lost the “sense” of  arithmetical operations (Villani et al., 2018). In some school system 
such as the French one, this could be because the 4 operations are introduced one after the other in the 
curriculum, whereas a simultaneous introduction in Grade 1 could allow children to better understand 
the relation between them (Villani et al., 2018). The aim of  the present paper is to address this question 
and to determine the predictive power of  previously taught operations on the acquisition of  new ones. 
This will be done using regression models in each of  the Grades from 2 to 5. Because general cognitive 
skills can be responsible for the dependence between academic skills (e.g., Tikhomirova et al., 2020), we 
neutralized working memory capacities, executive function skills (i.e., a composite score of  inhibition and 
flexibility), visual attention and language abilities in our analyses. Performance on arithmetical tasks can 
also be related to more basic skills in numeracy (Sasanguie et al., 2012) and this is the reason it was also 
considered in our model.

The approach that we adopted was inspired by Geary et al. (2017) who sought to determine the vari-
ables influencing performance in mathematics. The authors followed 167 children from the first year of  
primary school to the third year of  secondary school. Children were subjected each year to two series of  
tests assessing their general cognitive abilities and their specific numerical skills. The results showed that 
the effect of  general cognitive abilities, particularly that of  working memory, was strong in the very early 
stages of  schooling, then lessened and stabilized. In contrast, mathematical performance in a given school 
year became the best predictor of  mathematical performance in the following years. Amongst mathemati-
cal skills, knowledge of  numbers and arithmetic skills were the best predictors at all school levels, followed 
by fraction processing in older pupils. A similar approach was also used by Lin (2021) in the domain of  
arithmetic word problems. The author showed that language comprehension, working memory, attention, 
mathematics vocabulary and mathematics computation were unique predictors of  word-problem solving 
in elementary school children.

As already stated, we adopted the same approach as Geary et al. (2017) or Lin (2021) in a cross-sectional 
design involving children from Grades 2 to 5 and applied it to mental arithmetic and, more precisely, 
addition and subtraction in the early school years, then multiplication and later division from the middle 
of  primary school. Our goal was to determine the role of  prior arithmetic skills on children's acquisition 
of  new arithmetical skills once the effects of  general cognitive abilities and basic numerical skills were 
neutralized.

Continuities in arithmetical operation learning

Arithmetic skills develop throughout elementary school and beyond. This development depends on 
several variables. First, cognitive maturation leads to an increase in general abilities such as attention, 
memory and language, allowing children to process more and more complex operations. Second, pupils 
formally learn arithmetic principles and procedures at school. They start with addition and subtraction, 
followed by multiplication and lastly division. Numerous studies have been devoted to mental arithmetic, 
but they rarely involve the four operations altogether and are rarely conducted over more than 2 years. 
For example, Xu et al. (2021) examined the development of  addition, subtraction and multiplication in 
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aCQUISITION OF NEW aRITHMETIC SKIllS 729

a longitudinal study involving children in Grades 2 and Grade 3. Other studies have assessed the four 
arithmetic operations together, but their goal was not to examine the relation between operations (e.g., 
Martens et al., 2011; Zhao et al., 2014).

Each of  the four operations mobilizes three types of  knowledge. Declarative knowledge corre-
sponds to chunks of  specific content, such as numerical facts (e.g., 2 × 3 = 6 or 6 + 6 = 12), which are 
stored in memory networks of  associations between operands and answers (Ashcraft, 1992). Procedural 
knowledge is general, abstract, modular, relatively immune to interference and activated by specific goals 
(Anderson, 1993). For example, the process of  decomposition into tens in order to add up numbers (e.g., 
46 + 23 is 40 + 20 and 6 + 3 = 60 + 9 = 69) is general because it can be applied to a large number of  addi-
tions, is abstract because it contains variables that are instantiated by the values supplied by the operands, 
is activated by a specific goal (i.e., solving the addition) and is modular because it is independent from 
other procedures and is therefore relatively immune to interference (Roussel et al., 2002). Finally, concep-
tual knowledge refers to general properties of  the operations (Crooks & Alibali, 2014) and “reflects the 
understanding of  why a procedure works” (Scheibling-Sève et al., 2020, p. 294). For example, solving 
7 × 6 by retrieving the results of  6 × 7 requires the conceptual knowledge of  commutative properties 
(Baroody, 1999).

Learning arithmetic involves the progressive mastering of  these three types of  knowledge, which, 
through practice, conduct to mutual enrichment. For example, declarative knowledge of  arithmetic facts 
could be created by repeated application of  counting procedures to specific problems (e.g., Logan & 
Klapp, 1991). Still, the concomitant and mutual progression of  declarative, procedural and conceptual 
knowledge as well as their relations is not yet well understood. It is nevertheless possible to evaluate their 
respective contribution to the acquisition of  new arithmetic knowledge by examining the contribution 
of  a specific arithmetic operation to the performance of  operations subsequently learnt. The results of  
earlier work show that acquired mathematical skills at any given point during schooling constitute the 
best predictors of  subsequent acquired learning and progress (Geary et al., 2017). This statement should 
generalize to the evolution of  performance in arithmetical operations but, as already stated, doubts are 
expressed nowadays on children's abilities to articulate their knowledge and construct the sense of  these 
operations in light of  one another (Villani et al., 2018). An investigation of  these questions is therefore 
needed.

Concerning addition, skill acquisition is initially based on counting (e.g., Bagnoud et al., 2021; Groen 
& Parkman, 1972). More precisely, from the age of  3 to 4 years, children are able to determine the cardi-
nal of  small quantities by subitizing (Benoit et al., 2004) and by counting one by one (Fuson, 1988). 
They therefore use declarative knowledge, such as a still limited verbal chain (Van Rinsveld et al., 2020), 
procedural knowledge, such as object pointing (Camos et al., 1999), and conceptual knowledge related 
to counting principles (Briars & Siegler, 1984; Gelman & Gallistel, 1978). Children grasp very soon the 
meaning of  addition and subtraction as corresponding to increase and decrease of  quantities, although in 
a restricted range of  problem situations (i.e., change problems; Riley et al., 1983). Performance in addi-
tion and subtraction do not initially differ and remain strongly correlated throughout schooling (about 
r = .80 according to Dowker, 1998; see also Xu et al. (2021) for a study in Grade 2 and 3). As attested by 
rare longitudinal studies, addition and subtraction procedures evolve in parallel with age and experience 
(Artemenko et al., 2018; Carpenter et al., 1998). An important achievement occurs at the age of  around 5 
to 7 years when children understand the commutativity principle of  addition and the inverse relationship 
between addition and subtraction (Bryant et al., 1999). From that moment onwards, they can rely on addi-
tions to solve subtractions, for example using 3 + 4 = 7 to solve 7–3 = 4. Therefore, our first hypothesis 
(H1) is that, from Grade 2, subtraction performance will heavily depend on addition performance. Stated 
more operationally, performance on subtraction should be predicted by performance on addition, even 
after general cognitive abilities and basic numerical skills are entered in the model. This hypothesis is 
relevant in the educational context in which our research took place, that is in France before 2020. At that 
time, subtraction was formally introduced in Grade 2 (MENJ, 2015) but situations where some objects are 
removed or lost in contrast to situations where objects are added or earned had been already presented in 
kindergarten (EDUSCOL, 2020).
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THEVENOT ET al.730

Learning new operations results in new conceptual and declarative knowledge and new procedures. 
There are both continuities and discontinuities between additions and subtractions on the one hand and 
multiplications and divisions on the other hand but generally, reference to additions and subtractions 
constitutes a basis to learn conceptual, declarative and procedural aspects of  multiplication and division 
(Cooney et al., 1988; Lemaire & Siegler, 1995). Although repeated addition is introduced in classrooms 
as a procedure that can be used to solve multiplication problems (e.g., 5 × 4 can be solved by performing 
5 + 5 + 5 + 5), teaching a conception of  multiplication as a repeated addition is not necessarily the best 
way to develop a deep understanding of  the multiplication concept in children (Park & Nunes, 2001). 
Indeed, Grade 2 children better grasp this concept when they are taught the scheme of  correspondence 
or, in other words, the fact that a multiplication is an invariant relation of  correspondence between two 
quantities. More precisely, children perform better when they have been trained with word problems such 
as “Yesterday, Tom ate 2 fruits at each of  the 3 meals. How many fruits did he eat yesterday?” (i.e., scheme 
of  correspondence) than with problems such as “Yesterday, Tom ate 2 fruits during breakfast, 2 fruits 
during the lunch and 2 fruits during diner. How many fruits did he eat yesterday?” (i.e., repeated addition). 
This conception of  multiplication as a scheme of  correspondence allows children to understand that it is 
possible to multiply 4.3 by 2.1, for example, which would not make sense in a repeated addition concep-
tion (Larsson et al., 2017). For Piaget (1965) or Steffe (1988, 1992), overcoming the addition scheme addi-
tion to reach a higher level of  abstraction is necessary to master multiplication. Clark and Kamii (1996) 
showed that some children in Grade 2 already master such multiplicative thinking, but they also show that 
this ability develops slowly. Even if  children must construct their representation of  multiplication out of  
addition, it remains that when whole numbers are used in the text of  a problem, repeated additions can 
be used as a resolution procedure.

However, once the multiplication scheme is acquired by children, multiplication tables are often 
learnt by heart in classrooms (Geary, 1994), and, by Grade 4, retrieval of  the answers from memory is 
the dominant strategy (Cooney et al., 1988). Memorization of  new associations between operands and 
results can create the emergence of  interference, some specific to multiplications (Barrouillet et al., 1997; 
De Visscher & Noël, 2014) and some others related to prior associations, particularly with addition facts 
(Lemaire et al., 1994; Miller & Paredes, 1990). Therefore, negative side effects can arise from conflicts 
between previous addition facts in memory and newly acquired associations. Still, either negative or posi-
tive, these effects would reflect the impact of  operations previously learned on more recently acquired 
ones. Therefore, our second hypothesis (H2) is that, in Grade 3, multiplication performance will depend 
on addition performance but that this relation will disappear in Grades 4 or 5. This is because, as just 
stated, retrieval, which is disconnected from addition procedures (e.g., Mathieu et al., 2016), becomes 
the dominant strategy over development. Moreover, and as also explained above, as children grow older, 
they depart progressively from the addition scheme to understand multiplicative structures (Clark & 
Kamii, 1996). These hypotheses make sense in the educational context in which the study was conducted. 
At that time in France, multiplication was introduced only at the end of  Grade 2 and initially and uniquely 
presented as a shortcut for repeated additions. It was only later that multiplication was presented as a 
combination between variables. At a procedural level, multiplication tables are taught through rote learn-
ing in French schools and are expected to have been automatized by the end of  Grade 3 up to the 9 times 
table (MENJ, 2015).

Compared with other operations, studies related specifically to division processing are the least 
advanced. This operation is taught at a later stage during schooling and is practised less frequently than 
other operations. During Grade 4 children rely heavily on iterated addition (e.g., 20/5 is 5 + 5 + 5 + 5) and 
sometimes, but rarely, on repeated subtractions (20/5 is 20–5 -5 -5 -5) (Mulligan & Mitchelmore, 1997). 
During Grade 5, children move to the use of  multiplication (48/6 is 6 x? = 48) but still rely infre-
quently on direct retrieval. In fact, the percentages of  retrieval do not increase with age (Robinson, 
Arbuthnott, et al., 2006). At a more conceptual level, children have difficulties in understanding the rela-
tions between division and multiplication (e.g., Robinson, Arbuthnott, et al., 2006; Robinson & LeFevre, 
2012; Robinson, Ninowski, & Gray, 2006). More precisely, still 80% of  children in Grade 8 do not apply 
their knowledge that multiplying is the inverse of  dividing when they solve problems involving several 
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aCQUISITION OF NEW aRITHMETIC SKIllS 731

operations (Dubé & Robinson, 2018). In fact, this difficulty in grasping the relation between division 
and multiplication is also observable in adults who have a better comprehension of  the relation between 
addition and subtraction (Robinson & Ninowski, 2003). As a consequence, performance in division could 
benefit less, or at least could take longer than other operations to benefit, from the mastery of  previously 
learnt operations. At the same time, Parmar (2003) notes that other operations can be used as a basis for 
learning division. Indeed, repeated subtraction may form the basis for understanding the quotitive schema 
associated with division (i.e., how many groups of  × objects can be formed from a specific amount?) 
(Fischbein et al., 1985). Therefore, it is possible that addition, subtraction and multiplication perfor-
mances are related to division because they can be used as procedures to solve them. Nevertheless, we 
have seen that subtraction is rarely used by children (e.g., Mulligan & Mitchelmore, 1997). Therefore, its 
relation to division could be inexistent in both Grades 4 and 5 (H3). In contrast, addition is the dominant 
strategy to solve division in Grade 4 and the relation between these two operations could therefore be 
limited to this grade (H4). Indeed, in Grade 5, resort to the inverse multiplication becomes the dominant 
strategy for division and our sixth hypothesis (H5) is that the relation between these two operations could 
be limited to this grade. Theses hypotheses are based on previous literature showing that children struggle 
in establishing the relation between multiplication and division, despite the facts that in France, in which 
the research took place, division is sometimes presented as soon as Grade 2 in sharing situations or situ-
ations in which the number of  times a number is comprised in a larger number has to be determined. 
Division is then more formally introduced in Grade 4 (MENJ, 2015).

Operationalization of  the present research

Then, with instruction and practice, conceptual, declarative and procedural knowledge play a growing role 
on the acquisition of  arithmetic skills (Geary et al., 2017). However, the acquisition, memorization and 
implementation of  knowledge and procedures might depend in turn on the cognitive abilities that control 
their activation, use and checking (Archambeau & Gevers, 2018; Geary, 2011). This can be especially true 
for division for which, as just stated, conceptual understanding could be particularly disconnected from 
the knowledge of  other operations (e.g., Dubé & Robinson, 2018).

To investigate this matter, we used a cross-sectional approach and examined pupils' performance on 
different arithmetic operations adapted to their levels of  schooling. This set of  data was subjected to 
regression analyses in which 3 categories of  variables were successively introduced: (1) general cognitive 
abilities (i.e., working memory, executive functions, visual attention and language) (2) basic numerical skills 
and (3) previously learnt arithmetic operations. Our main goal was to assess the specific weight of  this 
last variable on children's performance for each arithmetic operation after the role of  the other variables 
had been taken into account.

As just stated, four general cognitive abilities were entered in the models. We entered a measure of  
visual attention because performing calculations first requires the encoding of  the problem operands 
and arithmetic signs (Thevenot et al., 2011; Thevenot & Barrouillet, 2006, 2010). Children who are able 
to deliberately focus their attention and to resist distraction are more efficient during this phase (Ortega 
et al., 2020). More generally, attentive children are more successful than other children in processing 
arithmetical operations (Aunola et al., 2004; Commodari & Di Blasi, 2014; Geary, 2013). This is the 
reason why we also included two measures of  executive functions that were combined, one related to 
inhibition and the other to flexibility. A measure of  working memory was also included because working 
memory resources are mobilized to manage the calculation implementation process (Brysbaert, 2018). 
Working memory integrates the outcomes of  the encoding phase and the outcomes of  the activation 
of  declarative and procedural knowledge in long-term memory. The management cost of  such integra-
tion depends on pupils' level of  mastery related to this knowledge. For example, early during schooling, 
small additions impose a minimal processing demand on the cognitive system because they rely on auto-
matic processing corresponding either to memory retrieval or fast counting (e.g., Ashcraft, 1992; Ashcraft 
& Battaglia, 1978; Fayol & Thevenot, 2012; Thevenot et al., 2016; Thevenot & Barrouillet, 2020). In 
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THEVENOT ET al.732

contrast, division requires a substantial level of  cognitive control because it involves to-and-fro between 
multiplication, addition and subtraction processing. Inhibition of  interferences and updating of  interme-
diate results are also needed to solve division (Raghubar et al., 2010; Swanson, 2011,) and this is the reason 
why we entered a measure of  executive functions in the models. Finally, language skills play an important 
role in the development of  arithmetical competencies (Brysbaert, 2018), and a measure combining lexical 
skills and written language was also entered in the first step of  the models. To sum up, working memory 
capacities, executive function skills, visual attention and language abilities were independently entered in 
Step 1 of  our hierarchical regression models.

In order to assess the specific role of  arithmetical skills in the acquisition of  more and more complex 
operations, it was important to ensure that the contribution of  arithmetic was indeed specific and not 
due to numerical skills in general. This is the reason why we measured children's basic numerical skills 
through a classical matching task between symbolic and nonsymbolic numerosity representations (Billard 
et al., 2021; Geary et al., 2009).

To test the 5 hypotheses formulated, we asked children in each school level from Grades 2 to 5 to 
solve arithmetic operations. Additions and subtractions were presented to children from Grade 2, multi-
plications from Grade 3 and divisions from Grade 4.

METHOD

Participants

Our research included 435 children attending school in classrooms from Grades 2 to 5 (105 to 111 pupils 
per school level) in a range of  public and private schools all over the Paris region in France. Written 
informed consent to participate was obtained from all the parents or legal tutors of  the children involved. 
All procedures performed in this study have been conducted in compliance with the recommendations 
of  the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Because only 
behavioural data were collected in a nonvulnerable population of  children, the official approval of  a 
committee of  ethics was not required. Our research protocol was however accepted by inspectors of  the 
French National Education.

Table 1 shows the characteristics of  the sample: gender, parents' socio-professional category (SPC, 
following the recommendation of  French national statistics office, the higher socio-professional category 
between the two parents was retained to classify children in one of  three SPC categories).

Material and procedure

The protocol was established on the basis of  the BMT-i (Modulable Battery of  Computerized Tests), 
which assesses cognitive skills (Billard et al., 2021). Eight speech therapists and three neuropsycholo-
gists were in charge of  the testing after having been trained to the test administration. The tests were 

T A B L E  1  Socio-demographic characteristics of  the sample.

Grade 2 3 4 5

Sample size (N) 109 111 110 105

Girls (N and %) 56 (51%) 53 (48%) 62 (56%) 58 (55%)

SPC (%)

 1 = low 12% 34% 9% 16%

 2 = middle 16% 18% 27% 25%

 3 = high 72% 48% 64% 59%
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aCQUISITION OF NEW aRITHMETIC SKIllS 733

administered in one or two 45-minute sessions, at least 15 days apart, during school hours. Children were 
first tested on language skills, then on numerical skills, then on working memory and finally on executive 
functions and visual attention.

The tests were administered using a secure website using a Surface Pro3 tablet operating under 
Windows 8. The items needed to be read out loud were recorded in advance and read out by the software. 
Responses were either recorded automatically or noted by the examiner.

Tasks

Numerical skills

Arithmetic
Mental arithmetic fluency was evaluated using an adaptation of  the Dutch Tempo-Test-Rekenen test 
(TTR) (de Vos, 1992) in which children had to solve a maximum of  4 series of  operations. Each of  the 
series corresponded to 40 problems related to a specific arithmetic operation (i.e., addition, subtraction, 
multiplication and division). At all school level, children had to solve additions and subtractions, multi-
plications were added from Grade 3 and divisions were added from Grade 4 upwards. For each series, 
children were given 1 minute to solve as many operations as possible. A 30-second pause was set up 
between series. Children's scores were calculated for each operation and corresponded to the number of  
correct answers out of  40.

Basic numerical skills
This task included in the BMT-i (Billard et al., 2021) assesses children's ability to match nonsymbolic 
numerosities (i.e., dots) and numerical symbolic representations (i.e., Arabic digits). This type of  tasks 
is especially well suited for our purpose because it allows the detection of  children with mathematics 
difficulties or disabilities and therefore assesses the core knowledge of  basic numerical representations 
(Geary et al., 2009). Children were presented with 66 pairs of  stimuli in rapid succession on a computer 
screen and had to decide whether two stimuli of  a pair represented the same numerosity. The pairs always 
contained a set of  dots and an Arabic digit ranging from 1 to 9, which were presented sequentially either 
with the sets of  dots or the Arabic digit presented first. The distance between the two quantities was 
controlled and varied from 0 to 2. The rate of  correct answers in the task was calculated for each child.

General cognitive abilities

General cognitive abilities were assessed through a battery of  six subtests conceived to assess working 
memory, executive functions (i.e., two subtests), visual attention and language (i.e., two subtests) (Iannuzzi 
et al., 2019).

Working memory
In the working memory span test, children had to repeat series of  3 to 7 digits presented verbally through 
the software at a fixed pace of  one digit per second. Children had to repeat the numbers in the reverse 
order (i.e., backward span), and a score was calculated by considering the maximum number of  digits 
correctly recalled.

Executive functions
Executive functions were assessed through a flexibility and an inhibition tasks. The inhibition task was a 
simple “go/no-go”-type task. The child had to touch a circle as quickly as possible every time the word 
“circle” was uttered by the software and had to stay still when another word was uttered. In the flexibility 
task, the child had to shift between two types of  instructions. The first instruction was to press a triangle 
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THEVENOT ET al.734

when the word triangle was uttered by the software. By contrast, following the second instruction, the 
child had to press a circle when the word square was uttered. Children's executive function scores were 
calculated by adding the number of  correct responses across the two subtests.

Visual attention
Sustained visual attention was assessed using an adaptation of  the Conners test (Conners et al., 2011). 
During 15 minutes, children were presented with coloured circles and black circles. Following a go-no-go 
task methodology, children had to react as quickly as possible to coloured circles and not to more seldom 
black circles randomly intertwined. The ability to sustain attention was measured by the percentages of  
missed targets.

Language
Written language Reading speed and accuracy were assessed through the processing of  a text tailored to children's school level. 
We calculated the number of  words read correctly in one minute (NWRC/min), and this score was combined with the measures 
collected in the following language test.

Lexical skills Two tests were used to assess children's lexical knowledge depending on school level, one for 
Grades 2 to 4 and one for Grade 5. Lexical production was assessed through the naming of  40 pictures. 
Lexical comprehension was assessed through the selection of  the picture corresponding to the spoken 
word uttered by the software amongst 5 pictures. A set of  32 words was used for Grades 2 to 4, and a 
different set of  33 words was used for Grade 5.
The score corresponding to the language variable combined the previous NWRC/min score and the 
scores obtained from children in the lexical production and comprehension tests.

RESULTS

Descriptive analyses

Table 2 presents the mean performance (and standard deviations) for each of  the variables that we studied 
across grades. The coefficients of  asymmetry and flattening did not reveal any violation of  the normality 
of  their distribution (Kline, 1998). The reliability of  the scores for each of  the operations, measured using 
Cronbach's alpha, was very good (alpha between .82 and .92).

T A B L E  2  Children's performance in the different tasks.

Grades

2nd 3rd 4th 5th

M (SD) M (SD) M (SD) M (SD)

Mental arithmetic

 Addition 11.88 (3.02) 13.66 (3.55) 16.56 (3.98) 18.95 (4.08)

 Subtraction 9.23 (4.46) 11.46 (4.33) 15.07 (5.30) 17.87 (4.53)

 Multiplication -- 10.26 (3.32) 14.19 (4.27) 16.64 (4.12)

 Division -- -- 5.38 (4.05) 8.09 (4.66)

General cognitive abilities

 Working memory 1.53 (1.17) 1.82 (1.39) 2.27 (1.24) 2.30 (1.29)

 Executive functions 7.52 (2.65) 8.48 (2.27) 9.56 (1.99) 9.67 (2.24)

 Visual attention .34 (.08) .36 (.06) .38 (.04) .39 (.05)

 Language 33.63 (8.83) 41.07 (9.11) 47.94 (9.76) 60.27 (10.39)

Basic numerical skills .58 (.11) .63 (.13) .70 (.10) .72 (.09)
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Hierarchical regression models

To determine the main predictors of  success in mental arithmetic amongst the variables we studied, 
our data were processed through hierarchical regression analyses. In successive steps, we introduced our 
different sets of  variables.

Step 1: General cognitive abilities were introduced (i.e., working memory, executive functions, visual 
attention and language): Model 1.

Step 2: Basic numerical skills (matching between nonsymbolic and symbolic numerosity representa-
tions) were introduced in addition to general cognitive abilities: Model 2.

Step 3: The variables concerning mental arithmetic were introduced at this stage in addition to general 
cognitive abilities and basic numerical skills. We explored first the contribution of  performance in addi-
tion to the explanation of  performance in subtraction; then, the contribution of  addition and subtraction 
to multiplication; lastly, the contribution of  addition, subtraction and multiplication to division: Model 3.

Ultimately, 9 models of  three-stage hierarchical regression were tested (i.e., contribution of  addition 
on subtraction in Grades 2, 3, 4 and 5; contribution of  addition and subtraction on multiplication in 
Grades 3, 4 and 5 and contribution of  addition, subtraction and multiplication on division in Grades 4 
and 5) (Tables 3 to 5). Table 3 reports the results obtained for subtraction. As it can be seen, our first 
hypothesis (H1) that addition will explain subtraction performance in all grades (i.e., from Grade 2 to 
Grade 5) after cognitive and basic numerical skills are entered in the regression analyses was confirmed 
(β = .585; .522; .682 and .630 for Model 3 in Grades 2, 3, 4 and 5, respectively).

Table 4 reports the results for multiplication. Contrary to our second hypothesis (H2), addition 
predicted multiplication in all grades (β = .339; .277; .525 for Model 3 in Grades 3, 4 and 5, respectively) 
and not only in Grades 3 or 4.

Finally, Table 5 reports the results for division. As expected (H3), above general cognitive and 
basic numerical skills, subtraction did not explain division performance neither in Grade 4 nor Grade 
5 (β = .137 and .194 for Model 3 in Grades 4 and 5, respectively). H4 was also confirmed because addi-
tion predicted division only in Grade 4 (β = .490 and .166 for Model 3 in Grades 4 and 5, respectively). 
However, contrary to H5 according to which multiplication will predict division only in Grade 5, we can 
see that multiplication predicted division in both Grades 4 and 5 (β = .353 and .235 for Model 3 in Grades 
4 and 5, respectively).

DISCUSSION

In this study, we aimed at determining the impact of  previously taught operations on performance in 
subtraction, multiplication and division in children from Grade 2 to Grade 5 beyond general cognitive 
abilities and basic numerical skills. We formulated 5 hypotheses concerning the possible relations between 
operations. In accordance with our first hypothesis, we showed that addition predicts subtraction perfor-
mance in all school grades. This confirms previous observations that addition and subtraction perfor-
mances remain strongly correlated throughout schooling (Dowker, 1998; Xu et al., 2021). This result 
strengthens the legitimacy of  a pedagogical approach introducing addition and subtraction at the same 
time in the first year of  formal schooling (Villani et al., 2018).

Our second hypothesis that addition will predict multiplication performance only in early grades was 
not confirmed because the relation was observed in all grades (i.e., 3, 4 and 5). Therefore, it is possible 
that children do not depart as we should expect from the addition schema when they consolidate their 
conception of  multiplication. This interpretation relates to Post et al.'s (1985) observations that children 
tend to inadequately extend their knowledge of  addition when they encounter situations requiring multi-
plicative thinking, such as fraction problems (Tobias & Andreasen, 2013). This result supports Park and 
Nunes’ (2001) proposition that addition should be introduced at school in relation to multiplication only 
as a mean to solve the problems and not as a scheme to help children understanding the multiplication 
concept. Alternatively, the result that addition predicts multiplication performance in all grades could be 
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due to the use of  backup strategies relying on addition. Indeed, it has been shown that even adults’ resort 
to decomposition strategies such as 7 × 6 = (6 × 6) + 6 when retrieval fails (LeFevre et al., 1996).

Concerning division, we showed that it was not predicted by subtraction performance. This result 
confirmed our third hypothesis, which was based on previous observations that children only rarely resort 
to the repeated subtraction procedure to solve division problems (e.g., 24 / 6 = 24–6 = 18–6 = 12–6 = 
6–6 = 0 so 4) (Robinson, Arbuthnott, et al., 2006). Indeed, in Grade 4, children preferentially use the 
iterated addition procedure (Mulligan & Mitchelmore, 1997). This is confirmed by our results because, 
in accordance with our fourth hypothesis, addition predicts division only in Grade 4 but not in Grade 5, 
where children preferentially solve division through retrieval of  inverse multiplication facts (Mulligan & 
Mitchelmore, 1997). Still, and contrary to our fifth hypothesis, multiplication was a significant predictor 
of  division in both Grades 4 and 5. This shows that conceptual understanding or procedural mastering 
of  multiplication must be associated with division as soon as this last operation is introduced. This result 
strengthens the position that extra effort to link these two operations across instruction is primordial 
(e.g., Mulligan & Mitchelmore, 1997; Nunes & Bryant, 1996). Such multiplicative thinking is also viewed 
as essential for the development of  concepts needed to be mastered by pupils in later grades, such as 
ratio, proportion, area, volume or proportions (Mulligan & Watson, 1998). Teaching the relation between 
multiplication and division early during school curriculum could be achieved by introducing multiplication 
and division instruction at the same time in classrooms (Villani et al., 2018). One efficient way to promote 
the understanding of  this relation is the use of  arrays or in other words of  arrangements of  objects in 
columns and rows (Jacob & Mulligan, 2014). This tool helps children focus their attention on three quan-
tities that can be apprehended flexibly for the description of  multiplication or division situations (i.e., 12 
objects are divided into 4 lines of  3 objects and multiplying 3 objects by the number of  lines give the total 
amount of  objects).

T A B L E  4  Hierarchical regression models for mental multiplication in Grades 3 to 5.

Independent variables

Grade 3 Grade 4 Grade 5

Model 
1

Model 
2

Model 
3

Model 
1

Model 
2

Model 
3

Model 
1

Model 
2

Model 
3

β β β β β β β β β

Step 1

 Working memory .040 .003 −.044 .135 .130 .039 .125 .094 .092

 Executive functions .062 .021 −.022 .093 .089 .053 .087 .044 .025

 Visual attention .137 .104 −.028 .166 .129 .017 .159 .128 .084

 Language .255** .250** .148 .150 .118 −.013 .273** .279** .131

 R 2 .12 .10 .19

 F(4, 110) = 3.551, p < .001 F(4, 104) = 2.832, p < .001 F(4, 98) = 5.384, p < .001

Step 2

 Basic numerical skills .261** .165* .133 −.030 .144 −.029

  ΔR 2 .06 .02 .01

 R 2 .18 .12 .20

  ΔF(5, 110) = 4.631, p < .001 ΔF(5, 104) = 2.612, p < .001 ΔF(5, 98) = 4.713, p < .001

Step 3

 Mental addition .339** .277* .525**

 Mental subtraction .288** .435** .010

  ΔR 2 .25 .34 .21

 R 2 .43 .46 .41

  ΔF(7, 110) = 11.194, p < .001 ΔF(7, 104) = 11.573, p < .001 ΔF(8, 98) = 9.169, p < .001

*, p < .01; **, p < .001.
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To sum up and conclude, we have shown here that subtraction and multiplication performance capi-
talize on the acquisition of  addition and that division performance capitalizes on multiplication perfor-
mance. We have discussed the fact that, therefore, mutual development and articulation of  arithmetical 
concepts must be given special attention from teachers and educators in arithmetic instruction. Stated 
differently and in accordance with the conclusion of  Xu et al. (2021), we show here that learning arithme-
tic is a hierarchical process. Thus, at the very least, ensuring that children master the operations that have 
been taught before moving to the teaching of  new operations is crucial.
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T A B L E  5  Hierarchical regression models for mental division in Grades 4 to 5.

Independent variables

Grade 4 Grade 5

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

β β β β β β

Step 1

 Working memory .039 .033 −.069 .059 .005 −.017

 Executive functions .208* .203* .174* .146 .072 .062

 Visual attention .122 .079 −.045 .326** .270** .209*

 Language .257* .220* .086 .099 .109 −.049

 R 2 .18 .20

 F(4, 104) = 5.424, p < .001 F(4, 98) = 5.937, p < .001

Step 2

 Basic numerical skills .154 .061 .252* .119

  ΔR 2 .03 .05

 R 2 .20 .25

  ΔF(5, 104) = 4.890, p < .001 ΔF(5, 98) = 6.191, p < .001

Step 3

 Mental addition .490** .166

 Mental subtraction −.137 .194

 Mental multiplication .353** .235**

  ΔR 2 .35 .18

 R 2 .55 .43

  ΔF(8, 104) = 14.466, p < .001 ΔF(8, 98) = 8.536, p < .001

*, p < .01; **, p < .001.
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