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Advances in radioimmunotherapy 2

Rational combinations of immunotherapy with radiotherapy 
in ovarian cancer
Fernanda G Herrera, Melita Irving, Lana E Kandalaft, George Coukos

Except for its use in palliative care, radiotherapy has been largely abandoned in the management of ovarian cancer 
because of the recognised efficacy and lower toxicity of systemic chemotherapy compared with radiotherapy. New data 
have emerged that show synergy of radiotherapy with immunotherapy to control or eradicate cancer. Different doses 
of hypofractionated radiotherapy have been shown to induce immunogenic cell death and in-situ vaccination in 
several tumour models. However, doses less than 2 Gy can also reprogramme the tumour microenvironment. This 
Series paper discusses the past and present use of radiotherapy for ovarian cancer, and the mechanisms by which 
radiotherapy can mobilise anticancer immunity. We provide emerging preclinical and clinical data for combining 
immunotherapy with radiotherapy for ovarian cancer treatment and offer a clinical development roadmap to guide 
the next generation of clinical trials for this combination strategy for this disease.

Introduction
Ovarian cancer is the fourth leading cause of cancer-
related death in women, with 140 000 deaths per year.1 

Nearly 75% of patients are diagnosed at a late stage 
with widespread intra-abdominal disease. Cytoreductive 
surgery and primary chemotherapy remain cornerstone 
treatments for this disease.2,3 Despite advances in com-​
binatorial chemotherapy regimens,3 targeted therapy,4,5 

and the advent of intraperitoneal chemotherapy,6 current 
therapeutic options for ovarian cancer are not appropriate 
or are insufficient to confer long-term survival benefit. 
Although clinical remission for ovarian cancer is 
commonly attainable, the majority (over 70%) of patients 
will relapse, with 5-year survival rates of approximately 
30%7 and the proportion of patients who remain cancer-
free at 10 years is less than 15%.8 Immunotherapy has 
emerged as a therapeutic option with huge curative 
potential, and immune checkpoint inhibitors have gained 
an important place in the treatment of several disease 
cancer types.9 However, ovarian cancer remains poorly 
responsive to immunotherapy.10 Historically, the clinical 
efficacy of ionising radiation has been attributed to its 
ability to induce DNA damage, which can result in direct 
tumour cell death. However, the existence of radiation-
induced antitumour immunity and its potential to 
synergise with immunotherapy, has been increasingly 
recognised as a potential therapy.11 Under certain 
circumstances, radiotherapy can induce an immune-
mediated abscopal effect, whereby radiation to a 
metastatic deposit induces tumour regression outside the 
irradiated field.12 The biological mechanisms underlying 
the abscopal effect are yet unknown, but several case 
reports have shown that immunotherapy when combined 
with radiotherapy can leverage this effect.11,13,14 Irradiated 
tumour cells can undergo so-called immunogenic cell 
death, a particular form of cell death that exposes tumour-
associated antigens.14–16 Which can be recognised and 
engulfed by antigen-presenting cells (APCs),17,18 and then 

presented to CD8 T cells (figure 1).14,19,20 Radiation can also 
induce a profound reprogramming of the tumour micro
environment through the upregulation of cytokines 
and chemokines,21 and normalisation of the tumour 
vasculature.22 Together, these events promote antitumour 
T-cell responses (figure 2) and thus provide evidence of 
the abscopal effects of radiotherapy. Clinical reports 
support this idea, with objective responses reported in 
patients with metastatic cancer who are undergoing 
radiotherapy and immunotherapy treatment (table 1).13,28 
The results of the PACIFIC phase 3 randomised trial 
are intriguing as they also suggest that checkpoint 
immunotherapy following conventional chemoradiation 
might be beneficial.29 In this study, 713 patients 
who received at least two cycles of platinum-based 
chemotherapy with radiotherapy and did not develop 
disease progression were randomly assigned (2:1) to 
receive the PD-L1 inhibitor durvalumab (10 mg/kg every 
2 weeks up to 12 months) or placebo. With a median 
follow up of 14·5 months, the median time to death or 
distant metastasis was 23·2 months (95% CI, 23·2 to 
not reached) with durvalumab versus 14·6 months 
(10·6–18·6) with placebo (hazard ratio 0·5; 0·4–0·7; 
two-sided p<0·001).29 Although in this study PD-L1 
blockade was given sequentially to chemoradiotherapy, a 
potential late-onset synergy effect between these two 
treatments cannot be excluded.

In-vitro radiosensitivity data of ovarian cancer cells and 
patient tumour-derived spheroids support the view that 
ovarian cancer tumours are responsive to radiation, with a 
mean inactivation dose between 1·31 Gy and 2·80 Gy.30 
Historically, whole-abdominal radiotherapy has been used 
in ovarian cancer to sterilise anatomical areas that are at 
a high risk of recurrence.31 However, the high-dose 
irradiation schema applied (typically 22·5–33 Gy to the 
whole abdomen plus a complementary dose of up to 
45–50 Gy to the pelvis) was limited by several severe acute 
and late toxic effects.31 Radiation-mediated toxic effects 
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were exacerbated if full-dose cisplatin and paclitaxel 
chemotherapies had been added to the treatment, either 
together or in sequence.32 Thus, the use of whole-abdominal 
radiotherapy at these doses has declined because of high 
toxicity, particularly when compared with new available 
chemotherapy regimens. New radiotherapy modalities, 
like intensity-modulated radiation therapy (IMRT) and 
volumetric modulated arc therapy (VMAT), along with 
studies showing synergy between whole-abdominal low-
dose irradiation combined with chemotherapy33,34 or PARP 
(poly[ADP-ribose] polymerase) inhibitors,35 have renewed 
the interest in using low-dose whole-abdominal radio-​
therapy after primary debulking in ovarian cancer. 
Similarly, in the oligometastatic setting, stereotactic body 
radiotherapy (SBRT), a novel treatment modality that 
implements real-time imaging and high-dose radiation 
beams, has shown a high rate of local control (90–100%) in 
properly selected patient populations with metastatic 
ovarian cancer, with mild or no toxic effects.36 This wealth 
of evidence related to radiotherapy, and its immunogenic 
potential prompted us to re-examine the role of radio-​

therapy in ovarian cancer. In this Series paper, we 
review the clinical experiences and clinical trial results of 
two different forms of radiotherapy for ovarian cancer 
treatment—namely whole-abdominal radiotherapy and 
SBRT. We will then focus our discussions on the biological 
mechanisms that these two different forms of radiotherapy 
might elicit to mobilise the immune system. We then offer 
a roadmap that could guide future clinical development 
and research opportunities of novel combination therapies 
in ovarian cancer.

History of whole-abdominal radiotherapy for 
ovarian cancer
Radiotherapy has extensively been used with a curative 
intent as an adjuvant therapeutic option for early-stage and 
minimal residual advanced-stage ovarian carcinoma of all 
tumour subtypes. However, in the 1980s whole-abdominal 
radiotherapy was mainly abandoned in favour of systemic 
platinum-based chemotherapy on the basis that cisplatin 
was a highly active systemic agent, with possibly 
higher efficacy than whole-abdominal radiotherapy; 
whole-abdominal radiotherapy could not be conveniently 
combined with full-dose platinum chemotherapy because 
of severe myeloid toxic effects; and large radiation fields 
were intolerable for the gastrointestinal and genitourinary 
tracts31 and inefficacious in eradicating bulky residual 
peritoneal carcinomatosis.37 Nevertheless, multiple trials 
have suggested that whole-abdominal radiotherapy is still 
an active option for ovarian cancer management. In 1979, 
Dembo and colleagues38 randomly assigned 190 patients 
with stage I–III ovarian cancer with minimal residual 
disease to postoperative whole-abdominal radiotherapy 
(22·5 Gy in ten fractions given to the pelvis, followed 
immediately by 22·5 Gy in ten fractions to the whole 
abdomen and pelvis using cobalt with moving-strip 
technique) versus pelvis irradiation (45 Gy in 20 fractions) 
and concomitant chlorambucil (6 mg per day for 
2 years).38 The study showed a 10-year survival advantage 
of 64% versus 40% in favour of whole-abdominal 
radiotherapy.39 However, no survival benefit was observed 
for patients with gross (>2 cm) residual disease.39 In a 
Canadian trial done between 1981 and 1990, 125 stage I–III 
patients with ovarian cancer were randomly assigned to 
receive two doses of whole-abdominal radiotherapy, 
22·5 Gy in 22 fractions or 27·5 Gy in 27 fractions, both 
followed by a pelvic boost of 22·5 Gy in ten fractions.40 No 
difference was found in terms of survival, tumour control, 
or toxic effects between high-dose and low-dose 
abdominopelvic radiotherapy, and the authors concluded 
that doses higher than 22·5 Gy are unlikely to improve 
outcomes.40

Four other randomised trials have compared whole-
abdominal radiotherapy with chemotherapy, although only 
two studies involved cisplatin-based chemotherapy. Most 
of these trials showed no significant differences between 
whole-abdominal radiotherapy and chemotherapy groups. 
The most important trials summarising the role of whole-
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Figure 1: Immune activation following radiotherapy
(A) Apoptotic tumour cells release various immunological mediators in the form of ATP, HMG-1, calreticulin, and 
complement. DNA accumulation in the cancer cell’s cytosol activates an IFN-I pathway via the cGAS/hSTING 
pathway. (B) Together these processes result in a potent inflammatory response promoting dendritic cell 
migration to the lymph node. (C) Activation of the adaptive immune response and elimination of tumours. 
IFN-I=type I interferon. NF-κB=nuclear factor κB. TLR=toll-like receptor.
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abdominal radiotherapy in the postoperative setting are 
presented in table 2. In the study published by Dembo and 
colleagues,39 patients with stage III ovarian cancer with 
high-grade histology and residual disease after debulking 
surgery had worse prognoses and derived less benefit 
from whole-abdominal radiotherapy. In this subgroup of 
patients, the group from Princess Margaret Hospital, tested 
a combined chemotherapy strategy (50 mg/m² cisplatin, 
50 mg/m² doxorubicin, and 500 mg/m² cyclophosphamide 
every 3 weeks) followed by consolidation whole-abdominal 
radiotherapy.37 This group was compared with a historical 
group of high-risk patients who received only whole-
abdominal radiotherapy. The median survival for the 
combined group was 5·7 years compared with 2·4 years in 
the control group.37 Although the difference was not 
statistically significant due to the small number of 
patients involved, this finding served to highlight that 
whole-abdominal radiotherapy was tolerable following 
systemic chemotherapy. More recently, a population-based 
study from British Columbia, Canada, suggested that 
whole-abdominal radiotherapy confers a survival benefit 
when added to chemotherapy, particularly in clear-cell 
carcinoma.45 Using retrospective data, this report showed 
that patients with stage IC–II ovarian clear-cell carcinoma 
treated with carboplatin and paclitaxel followed by whole-
abdominal radiotherapy had statistically superior disease-
free survival compared with patients who had no 
radiotherapy after initial chemotherapy. The absolute 
increase in disease-free survival following radiotherapy 
was 20% at 5 years. The results of these trials should 
be interpreted with caution due to the small number 
of patients included in the analysis, methodological issues 
(eg, unbalanced selection criteria, comparison with 
historical series), and the suboptimal surgery, chemo
therapy, or radiotherapy technology applied in some 
of these studies. Nevertheless, these reports provide 
important experience regarding the use of whole-
abdominal radio-​therapy in ovarian cancer.

The analysis of the side-effects of whole-abdominal 
radiotherapy in 598 patients with ovarian cancer who were 
treated between 1971 and 1985 showed that the most 
frequent acute complications were nausea and vomiting 
(in 364 patients [61%]), diarrhoea (in 407 patients [68%]), 
and cystitis (in 38 patients [6·4%]).31 25 patients (4·2%) 
had serious late bowel complications. Treatment 
interruptions were frequent and were observed in 
136 patients (23%), the most common cause being 
myelosuppression.31 Many of the toxic effects of whole-
abdominal radiotherapy are due to the large volume of 
tissue receiving a high dose of radiotherapy with little 
sparing of healthy organs. Over the past few years, newer 
radiotherapy techniques have been implemented that 
enable the sparing of healthy tissues. Arians and 
colleagues46 reported a phase 2 study of 20 patients treated 
with IMRT to the whole-abdominal cavity with effective 
sparing of healthy organs. Only one patient experienced 
acute grade 4 haematological toxic effects. No gastro-​

intestinal acute toxic effects above grade 2 were 
observed. Importantly, quality of life (QOL; mean global 
health status) decreased by 18·1 points (95% CI 
7·1–29·0), but had recovered to baseline 6 weeks after 
whole-abdominal radiotherapy. A similar observation 
was found for all function scale scores. Our group and 
others have been able to spare large volumes of active 
bone marrow from high-radiation doses in gynaecological 
tumours with the aim of reducing acute and late 
haematological toxic effects.47,48 Rochet and colleagues49 
showed substantial sparing of kidney and liver tissue 
using a form of VMAT called TomoTherapy (Accuray, 
Sunnyvale, CA, USA). We summarise several dosimetric 
studies on the differences among three-dimensional 
conformal radiation therapy, IMRT, and VMAT on whole-
abdominal radiotherapy delivery for ovarian cancer 
treatment (appendix pp 1–2).

New strategies using radiotherapy at lower doses as a 
biological response modifier could improve tolerance 
and increase the efficacy of chemotherapy, targeted 
therapy, and immunotherapy. As an example, the 
Gynecology Oncology Group administered low-dose 
whole-abdominal radiotherapy (0·6 Gy in two fractions 
daily on days 1 and 4 of each week for 6 weeks) as a 
chemosensitiser for dose-escalated weekly docetaxel in 

Figure 2: Tumour inflammatory profiles
Tumours can be divided into so-called hot (T-cell inflamed) or cold (T-cell non-inflamed) tumours according to the 
presence of immune cells. (A) In cold tumours, barriers to T-cell infiltration and activity exist. (B) In these cold 
tumours, radiotherapy can reprogramme the tumour microenvironment to make them suitable for checkpoint 
blockade cancer immunotherapies. TAA=tumour-associated antigen. TCR=T-cell receptor. Treg=regulatory T cell. 
MDSC=myeloid-derived suppressor cell. MHC-I=MHC class I. NK cell=natural killer cell. PGE2=prostaglandin E2.
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women with recurrent ovarian, fallopian tube, or 
peritoneal cancers. Ten (77%) of 13 patients included 
had radiologically measurable disease. Of the ten radio-​
logically evaluable patients, six (60%) had stable disease 
and four (40%) had progressive disease. Three (30%) of 
these patients were disease free for at least 6 months. Of 
the three patients (23% of the 13 cases) with radiologically 
non-measurable disease, one patient (33%) had a disease-
free interval of 21·2 months. Dose-limiting toxic effects 
were primarily haematological but also included grade 3 
diarrhoea in one patient.33 Reducing radiotherapy doses 
to the whole abdomen while potentiating synergy with 
systemic therapies was also shown in other studies. A 
phase 1 trial that enrolled 12 patients with optimally 
debulked stage III/IV endometrial cancer tested low-dose 
whole-abdominal radiotherapy in combination with 
weekly cisplatin. The results suggested feasibility of 
using low-dose whole-abdominal radiotherapy (0·50 
and 0·75 Gy per fraction) as a novel chemosensitising 
modality for weekly cisplatin (40 mg/m², maximum 
70 mg intravenously).34 Three patients in each cohort had 
grade 3 acute haematological events. One patient had 
grade 4 neutropenia. The estimated median time to 
recurrence was 18·2 months (95% CI 7·2 to not reached). 
The estimated median survival time was 27·5 months 
(10·4 months to not reached).34 Similar results were seen 
in a cohort of patients with gastrointestinal malignancies 
and peritoneal carcinomatoses that were treated 
with low-dose whole-abdominal radiotherapy and 
gemcitabine.50 In the past 2 years, low-dose whole-
abdominal radiotherapy (0·6 Gy in two daily fractions on 
day 1 and day 5 of each week for 3 weeks) was combined 
with the PARP inhibitor veliparib used in a dose-
escalated manner twice daily in patients with epithelial 
ovarian, fallopian tube, or peritoneal cancers.35 Of the 32 
patients, one patient with platinum-sensitive BRCA-
mutated ovarian cancer achieved a partial response. The 
overall survival in the platinum-sensitive population was 
11 months compared with 6 months in the platinum-
resistant patients. The treatment was well tolerated 
with no major side-effects.35 These data indicate that 
low-dose irradiation to the whole-abdominal cavity is well 
tolerated.

Hypofractionated radiotherapy in the 
oligometastatic setting of ovarian cancer
For many years, radiotherapy has been predominantly 
used in the palliative setting with the aim to offer 
symptom control in ovarian cancer. In the past 10 years, 
several studies have reported the use of localised high-
dose irradiation (>5 Gy per fraction) to treat patients with 
oligometastatic ovarian cancer. Oligometastatic disease is 
an intermediate clinical state of cancer dissemination 
where few metastases are detectable by current imaging 
methods.51 SBRT is an innovative new approach for 
ablative or salvage radiotherapy that allows for precise 
high-dose radiotherapy to the tumour, with minimal 
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dose to organs in close proximity, and is ideal for patients 
with little metastatic disease (figure 3). The use of 
SBRT at oligometastatic sites was shown to increase 
progression-free survival by 5 months52 and 7 months,53 
in two randomised trials that included patients with 
metastatic non-small-cell lung cancer.52,53 Furthermore, in 
stage I inoperable non-small-cell lung cancer, SBRT 
increased local disease control when compared with 
standard fractionated radiotherapy.54 In 2015, a phase 2 
randomised trial that included patients with breast, 
prostate, colorectal, or lung cancer showed that the use of 
SBRT in patients with controlled primary tumours and 

one to five oligometastases achieved a 13 month 
improvement in overall survival.55

Multiple studies of SBRT in the management 
of metastatic gynaecological malignancies have been 
published. Lazzari and colleagues36 evaluated 82 oligo-
metastatic, platinum-resistant patients with ovarian 
cancer who had a median of three prior systemic 
treatment regimens. A median of two lesions per patient 
were irradiated with 24 Gy in three fractions. For the 
whole cohort of patients, 156 treated lesions were 
radiologically evaluated. Complete radiological response 
was observed in 91 (58%) lesions, partial response in 26 

Patients (n) Stage Treatment groups Overall survival (%) p value 

WART Chemotherapy No further 
treatment

Dembo et 
al, 197938

147 I–III WART (45·0 Gy in 20 fractions for pelvis 
and 22·5 Gy in ten fractions for abdomen) 
vs 6 mg per day chlorambucil

85% 53% NA <0·05

Sell et al, 
199041

118 I–II WART (45·0 Gy in 20 fractions for pelvis 
and 22·5 Gy in ten fractions for abdomen) 
vs 200 mg/m² cyclophosphamide per day 
for 4 weeks

55% 63% NA NS

Chiara et al, 
199442

70 I–III WART (43·2 Gy in 24 fractions for pelvis 
and 30·2 Gy in 24 fractions for abdomen) 
vs 50 mg/m² cisplatin and 600 mg/m² 
cyclophosphamide; 6 cycles every 
28 days from day 1 

53% 71% NA NA

Sorbe et al, 
200343

98 III–R0 Group A, WART*; group B, 
chemotherapy†; group C, no further 
treatment

69% 57% 65% <0·001

Sorbe et al, 
200343

172 III–R1 Group A, WART*; group B, no further 
treatment

32% NA 41% 0·112

Pickel et al, 
199944

32 IC–IV (R0 surgery 
followed by 
chemotherapy)‡

WART (30·0 Gy for abomen, 51·6 Gy for 
pelvis, and 42·0 Gy for para-aortic 
irradiation) vs no further treatment

59% NA 33% 0·029

WART=whole-abdominal radiotherapy. NA=not applicable. NS=not significant. R0=no evidence of microscopic disease after surgery. R1=microscopic disease after surgery. 
*WART consisted of 50·4 Gy in 32 fractions for pelvis and 20 Gy in 20 fractions for the abdomen. †Chemotherapy consisted of 50 mg/m² cisplatin plus 50 mg/m² 
doxorubicine or 60 mg/m² epirrubicine. ‡Chemotherapy consisted of 400 mg/m² carboplatin and 70 mg/m² epirubicin on day 1 and 100 mg/m² prednimustine orally on 
days 3–7 at 1-month intervals.

Table 2: Studies comparing WART with chemotherapy

Figure 3: SBRT on an ovarian cancer tumour
Example of SBRT dose wash for a patient with oligometastatic ovarian cancer. The tumour has a dose wash of 46 Gy (prescribed dose 45·5 Gy in seven fractions of 
6·5 Gy at 80% isodose line). Fiducial markers were placed in the tumour for robotic assistance. Median dose to the organs at risk and the tumour are described. L=left. 
PTV=planning target volume. R=right. SBRT=stereotactic body radiotherapy. 

Tumour (PTV) 
Kidney (R)
Kidney (L)
Liver
Spleen 
Stomach 
Pancreas
Heart
Active bone marrow 
Spinal cord
Bowel
Duodenum 
Lung (R)

46·00
10·63

6·05
6·05
2·53
1·84
4·50
3·39
4·47
1·00
1·08
1·00
1·02

Structure Median dose (Gy)
L LR R

CoronalAxial
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(17%) lesions, stable disease in 24 (15%), and progressive 
disease in 11 (7%) irradiated lesions. This study confirmed 
the radiosensitivity of ovarian cancer even in the context 
of platinum resistance. Importantly, the study showed 
the potential role of SBRT to delay systemic therapy 
with a median systemic treatment-free interval after 
SBRT of 7·4 months. The pattern of recurrence 
after SBRT was predominantly outside the irradiated 
area. Kunos and colleagues56 treated 25 patients with 
oligometastatic, platinum-resistant ovarian cancer (less 
than four metastatic sites) with 24 Gy in three fractions 
and showed 100% local control and a disease-free survival 
of 7·8 months. Stereotactic body radiosurgery was well 
tolerated in this study despite a heavily pretreated patient 
population. Similarly, Iftode and colleagues57 treated 
26 patients with SBRT. A median of two metastatic 
locations per patient were irradiated (44 metastatic 
lesions treated in total). 28 lesions (63·6%) were located 
in the lymph nodes, 14 lesions (31·8%) in the liver and 
two lesions (4·5%) were located in the lung. At a median 
follow-up of 28·5 months, the local control rate was 
92% and median disease-free survival was 19 months. 
This study provided evidence that endometrioid and 
clear-cell histology are also radiosensitive. Importantly, 
no severe adverse events were reported.57 A group at MD 
Anderson Cancer Center reported a series of 102 carefully 
selected patients with ovarian cancer whom, despite 
having been pretreated with a median of three chemo
therapy lines, underwent local irradiation of oligo
metastases with curative doses (≥45 Gy).58 72 patients 
(71%) achieved disease control in the irradiated area and 
35 patients (35%) had no evidence of disease outside 
the irradiated area at a median of 38 months after 
irradiation.58 5-year overall survival after radiotherapy 
was 40% and disease-free survival was 24%. Patients 
benefited from longer chemotherapy-free periods after 
receiving radiotherapy (median chemotherapy-free 
period 6 months after radiotherapy vs 2 months before 
radiotherapy). No major acute side-effects were reported. 
Ten patients had bowel obstruction and five patients had 
ureteral stenosis, although most of these complications 
were attributed to disease progression rather than 
radiotherapy.58

The results of these studies deserve caution as the 
sample sizes are small, patients were not randomly 
assigned, and an important selection bias might exist for 
patients with ovarian cancer treated with this modality. It 
is also worth noting that despite excellent local control in 
the irradiated area, progression outside of the targeted 
lesions remained high, and in one study was reported to 
occur in 58 (72%) of 81 patients.36 The challenge is 
determining which patients will benefit most from SBRT. 
Patients with clear-cell histology were more likely to be 
continuously without systemic disease after irradiation 
(six [75%] of eight patients) than other patients (19 [26%] 
of 74 patients; p=0.003).58 These high rates of distant 
progression prompted a phase 1 study with 12 women 

(seven with primary ovarian cancer) testing the safety of 
sequential carboplatin and gemcitabine followed by 
SBRT.59 This study showed that carboplatin area under 
curve 2 or 4 and 600 mg/m² gemcitabine can be delivered 
the day before SBRT using CyberKnife (Accuray, 
Sunnyvale, CA, USA) with acceptable toxic effects by use 
of a regimen of three fractions of 8 Gy.59 These results are 
reassuring and might lead to the use of radiosensitisers, 
targeted agents, and immunotherapy in combination 
with SBRT.

Immunotherapy in ovarian cancer
Although immunotherapy with immune checkpoint 
inhibitors has been accepted as a new and important 
cancer treatment, not all patients, nor all tumour 
types, draw clinical benefit. A phase 1 study of 20 patients 
with platinum-resistant ovarian cancer treated with 
nivolumab (1–3 mg/kg), a checkpoint inhibitor targeting 
PD-1, showed a modest overall response rate of 15% and 
a disease control rate of 45%.60 Similarly, an analysis of 
patients with ovarian cancer who had been treated with 
one or fewer lines of therapy and given avelumab, an 
anti-PD-L1 drug, administered at 10 mg/kg every 
2 weeks, showed an overall response of 21% compared 
with only 9% in individuals who were heavily pretreated 
and had more advanced disease.61 Other trials using 
PD-1 or PD-L1 inhibitors showed similar results.62 
Regarding biomarker predictors of tumour response, 
Disis and colleagues61 analysed PD-L1 expression in 
archival tumour tissues. No correlation was found 
between PD-L1 expression and benefit from avelumab 
treatment. The proportion of patients with PD-L1-positive 
tumours (PD-L1 expression cutoff of 1%) who achieved 
an overall response was 12% (nine of 76 patients). In the 
nivolumab trial,60 tumour specimens from 16 (80%) of 
20 patients showed high expression of PD-L1 (15 patients 
had pathology scores of +2 and one patient had a 
pathology score of +3). An objective response occurred 
in two of 16 patients (12·5%) with tumours that showed 
high expression of PD-L1, whereas no response occurred 
in two of the four patients with tumours with low 
expression of PD-L1. Similarly, in other trials, responses 
occurred irrespective of tumour PD-L1 status.62

Responses to immune checkpoint inhibitors are 
contingent upon the presence of tumour-specific T cells 
that can be reinvigorated in the tumour microenvironment 
(tumour-infiltrating lymphocytes [TILs]).63,64 Thus, the 
key objective of current cancer immunotherapy is to 
convert so-called cold or immune-desert tumours to so-
called hot tumours to unleash tumour immune 
responses. In preclinical models of ovarian cancer, 
Duraiswamy and colleagues65,66 confirmed that absence 
of T-cell infiltration at baseline predicts resistance to 
PD-L1 blockade-based combinations, an association 
confirmed in patients with melanoma who received PD-1 
blockade.64 In published ovarian cancer trials, baseline 
TIL status of patients is unknown, and thus no correlation 
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with disease control rate or overall response rate has 
been reported. However, overall disease control rate 
reported in patients with ovarian cancer receiving PD-1 
or PD-L1 blockade monotherapy (38–52%)61,67 is lower or 
similar to previously reported proportions of patients 
with ovarian cancer whose tumours exhibit intraepithelial 
TILs (roughly 55%).68 Therefore, approximately half of 
ovarian cancer tumours that do not have pre-existing 
TILs would not be expected a priori to respond to PD-1 
blockade or combinations that primarily focus on 
boosting T effector cell functions. The immune-inflamed 
phenotype might also feature TILs that have 
attenuated effector cell functions because of coexpression 
of additional coinhibitory T-cell receptors (eg, LAG-3, 
TIM-3, BTLA [B- and T-lymphocyte attenuator], or 
CTLA-4), which have already been described in human 
ovarian tumours,66,69 and combination of antibodies 
blocking more than one of these receptors could reduce 
adaptive resistance to PD-1 blockade.

In advanced ovarian tumours, several immune 
suppressive factors might attenuate T effector cell 
functions, dampening the response to PD-1 blockade. In 
this context, T cells might be subject to suppression by 
regulatory T cells,70 myeloid-derived suppressor cells 
(MDSCs),71 tumour-associated macrophages,72 and a 
plethora of soluble factors including IL (interleukin)-10,73 
prostaglandins,74 and TGFβ.75 In addition, negative 
metabolic regulators, such as IDO-1 (indoleamine 
2,3-dioxygenase 1)76 and arginase-165,77 can suppress 
T cells through depletion of L-tryptophan and L-arginine 
in the tumour microenvironment. In other instances, 
T cells are excluded from the tumour islets because of 
vascular barriers like the upregulation of FasL (tumor 
necrosis factor ligand superfamily member 6) on 
endothelial cells, which selectively kills T cells leaving 
regulatory T cells (Tregs) unaffected, or the decrease or 
deregulation of endothelial adhesion molecules ICAM-1 
(intracellular adhesion molecule 1) and VCAM-1 
(vascular cell adhesion molecule 1), which are key for 
T-cell extravasation.78–80 Reprogramming the immune 
microenvironment of ovarian cancer is thus crucial to 
unleash tumour responses to immune checkpoint 
inhibitors.

High tumour mutational burden and consequently 
neoantigen load have also been associated with tumour 
response to PD-1 and PD-L1 blockade in melanoma, and 
non-small-cell lung cancer.81,82 Furthermore, patients 
with mismatch repair-deficient colorectal cancer, which 
exhibits a hypermutated phenotype, had higher response 
rates to PD-1 blockade than patients with mismatch 
repair-proficient tumours.83,84 Conversely, in patients 
with ovarian cancer, the number of non-synonymous 
mutations and the incidence of mismatch repair 
deficiency is relatively low.84,85 This low incidence of 
mutations correlated with unresponsiveness to anti-
PD-1 or anti-PD-L1 therapy for ovarian cancer in 
two studies.86,87

Immune modulatory effects of radiotherapy
In-situ vaccination induced by radiotherapy
Radiation can induce multiple forms of DNA damage, 
which has been observed with doses as low as 1 Gy.88 
Radiation-generated double-strand break DNA fragments 
are sensed by cGAS (cyclic GMP-AMP synthase), a 
pattern-recognition receptor that triggers type I interferon 
(IFN-I) production via hSTING (downstream adaptor 
stimulator of interferon genes, also known as MITA).17 
The induction of IFN from cGAS/hSTING signalling is 
required to achieve optimal dendritic cell recruitment and 
cross-priming of T effector cells, the essential steps to 
convert the tumour into an in-situ vaccine. Similarly, 
irradiated stressed cells might release danger signals that 
can ignite an inflammatory reaction, and undergo a so-
called immunogenic death which will effectively expose 
tumour-associated antigens.89 Hallmarks of immunogenic 
cell death upon irradiation include the translocation of 
calreticulin from the endoplasmic reticulum to the cell 
surface, which acts as a so-called eat-me signal inducing 
maturation of dendritic cells, with subsequent release of 
cytokines such as IL-6 and TNF (tumor necrosis factor)-
alpha.90 In addition, radiation-damaged tumour cells 
activate APCs through the release of damage-associated 
molecular pattern molecules (DAMPs), which include 
HMG-1 (high-mobility group box 1), a chromatin nuclear 
protein that is released mainly after necrotic cell death and 
serves as a TLR (toll-like receptor) 4 ligand on APCs,19 and 
the release of ATP, which acts as a so-called find-me signal 
for monocytes and dendritic cells,91 leading to the secretion 
of proinflammatory cytokines such as IL-1 beta and IL-18.92 
Similarly, complement anaphylatoxins, released following 
complement activation by radiotherapy-induced IgM 
binding to necrotic tumour cells, might directly contribute 
to dendritic cell recruitment and maturation, and 
ultimately to T-cell immunity (figure 1).93

Immune reprogramming by radiotherapy
The in-situ vaccination process contributes to the 
effective recognition of tumour-associated antigens by 
dendritic cells, which will then migrate to lymph nodes 
or tertiary lymph node structures, where they present 
such antigens to T cells and exert potent immuno
modulatory effects. Furthermore, the Batf3 (basic leucine 
zipper transcriptional factor ATF-like 3)-dependent 
dendritic cell subset has been shown to be essential for 
the cross-priming of CD8 T cells, which are key effectors 
in antitumour immunity.94 Indeed, Batf3–/– mice exhibit 
an impaired ability to crossprime cytotoxic T lymphocytes 
against tumour antigens.94 This process requires 
peptide MHC recognition by cognate T-cell receptors. 
Radiotherapy upregulates MHC class I molecules on 
tumour cells, enabling enhanced presentation of tumour-
associated antigens.15,95 In addition, local high-dose 
radiotherapy can trigger production of type I IFN, which 
initiates a cascade of events able to activate innate 
and adaptive immunity against the tumour.96 NKG2D 
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(NKG2-D type II integral membrane protein) receptor 
ligands, induced upon irradiation, act as activating 
receptors for the adaptive immune system.97,98 Radio-​
therapy can also upregulate the expression of death 
receptors of the TNF family on tumour cells, including 
FasL, TNF-apha receptors,99 TRAIL-R1 (death receptor 4), 
and TRAIL-R2 (death receptor 5)100 on tumour cells. The 
ligands for these receptors (FasL and TRAIL) are 
expressed on activated cytotoxic T lymphocytes or 
secreted by them (TNF-alpha). Thus, radiotherapy can 
sensitise tumour cells to cytotoxic T lymphocyte-
mediated apoptosis.

Many of these acute responses to radiotherapy exposure 
can either directly or indirectly attract or activate cytotoxic 
T lymphocytes, thus explaining its potential for turning a 
non-inflamed tumour into one that is responsive to 
immunotherapy.89 For example, CXCL16, which has been 
shown to be induced by radiotherapy (via IFN-γ and 
TNF-alpha), promotes the recruitment of CD8 T effector 
cells and T helper 1 CD4 cells.101 IFN-γ also induces 
CXCL9 and CXCL10, which recruit T cells into the 
tumour microenvironment.102 In addition to providing 
chemoattractants to recruit T cells, radiotherapy can also 
help their homing into the tumour bed via the 
upregulation of adhesion molecules, such as ICAM-1 on 
the tumour vasculature endothelium, which facilitates 
leucocyte endothelial transmigration (figure 2).103

A roadmap for the development of radiotherapy 
and immunotherapy combinations in ovarian 
cancer
This clinical experience offers important knowledge for 
rethinking radiotherapy in the era of immunotherapy. 
Indeed, both SBRT and whole-abdominal radiotherapy 
could be repurposed as partners for immunomodulatory 
therapies to achieve improved tumour control in specific 
clinical populations; SBRT has emerged as an important 
intervention for in-situ vaccination, while low-dose whole-
abdominal radiotherapy could be envisioned as a means 
to achieve subdiaphragmatic so-called in-field tumour 
reprogramming in the context of immunotherapy schemes. 
However, the exact dose, volumes, and fractionation 
schemes of radiotherapy require optimisation to maximise 
the benefits in combination with immunotherapy.89 We 
describe two clinical scenarios where radiotherapy can be 
tested in clinical trials in combination with immunotherapy 
in ovarian cancer.

SBRT to induce in-situ vaccination in combination with 
immunotherapy
Hypofractionated SBRT releases immunogenic tumour-
associated antigens over the course of several days14,15 
together with endogenous DAMP ligands that can 
stimulate TLRs on APCs.19 Vanpouille-Box and 
colleagues104 showed that double-stranded DNA fragments 
accumulated in the cytoplasm with hypofractionated 
doses below 10 Gy. Above that radiation therapy dose 

threshold, induction of TREX1 (three-prime repair 
exonuclease 1), an enzyme that degrades cytoplasmic 
DNA, mediates rapid degradation of cytosolic DNA, 
precluding the activation of the cGAS/hSTING pathway 
and abrogating the abscopal effect of radiation and synergy 
with CTLA-4 blockade.104

This finding provides the basis for developing rational 
radioimmunotherapy combinations. Although SBRT 
itself can promote tumour antigen release and APC 
stimulation, tumour resident APCs might be strongly 
polarised towards tolerogenic functions, such that SBRT 
alone might be insufficient to produce effective in-situ 
vaccination. Further activation of APCs through CD40 or 
TLR agonists could be used to maximise immunogenic 
antigen presentation.105,106 Immune checkpoint inhibition 
of the PD-1 and PD-L1 axis, and CLTA-4 could provide 
further synergy to the combination by removing 
inhibition on T cells and enhancing their priming 
capacity.107,108 A combination of SBRT, CD40, or TLR 
agonists, plus immune checkpoint inhibitors, might be 
sufficient to trigger effective in-situ vaccination in a 
subset of patients with ovarian cancer. This combination 
could serve as one component of combinatorial 
immunotherapy to mobilise immunity. Clearly, additional 
immune suppressive mechanisms that are active will 
need to be neutralised, including T-cell intrinsic immune 
checkpoints but also extrinsic suppressive mechanisms 
from the tumour microenvironment. The therapeutic 
toolbox is progressively increasing, with a large number 
of agents under clinical testing.

Immediate opportunities to target immune suppressive 
pathways exist. For example, Tregs, which have an 
important role in suppressing T-cell immunity in ovarian 
cancer,70 can be attenuated through metronomic 
cyclophosphamide,109 while VEGF blockade can normalise 
the tumour vasculature,79 and in combination with 
aspirin, can significantly enhance T-cell homing in 
ovarian tumours.80

The combination of metronomic cyclophosphamide 
(50 mg delivered orally) with bevacizumab (15 mg/kg 
delivered intravenously) together with the anti-PD-1 
antibody pembrolizumab (200 mg delivered intravenously) 
produced important clinical responses (15 partial response 
and 13 stable disease) in 40 patients with advanced 
recurrent ovarian cancer.110 The 6-month progression-free 
survival rates for the platinum-sensitive population were 
70% and 59% for non-sensitive patients (p=0·024).Other 
agents under current clinical testing could prove very 
useful, including antibodies targeting TGFβ, which might 
be used to overcome stromal barriers,111 and IL-2, which at 
the peak of tumour antigen release by radiotherapy could 
help boost the expansion and function of mobilised 
T cells.112 We summarise the preclinical evidence of SBRT 
and different combinatorial immunotherapies to activate 
tumour responses in different tumour models (table 3) 
and published clinical trials of SBRT and immunotherapy 
(table 4).
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The combination of PD-1 and CTLA-4 inhibition with 
nivolumab and ipilimumab was reported to produce 
statistically higher response rates (31·4%) than nivolumab 
alone (12·2%) in a phase 2 study with 100 patients with 
persistent or recurrent ovarian cancer.128 Importantly, the 
administration of immune checkpoint inhibitors targeting 
PD-1 or PD-L1 as well as CTLA-4 in concomitance with 
SBRT was proven safe.129 Overall, SBRT studies in ovarian 
cancer have shown that hypofractionated radiation is 
well tolerated without clinically significant side-effects. 

However, the potential for complications should not be 
minimised, particularly for patients with ovarian cancer 
harbouring metastatic disease close to the bowel, kidney, 
bladder, or ureters. In the PLUMMB trial, combining 
pembrolizumab (100 mg every 3 weeks) and radiotherapy 
(36 Gy in six fractions, weekly) in patients with localised 
bladder cancer, grade 3 dose-limiting urinary toxicity was 
reported in two out of the first five patients enrolled, and 
the trial was stopped prematurely without reporting 
efficacy outcomes.130 The authors advised caution when 

In-vivo tumour model Radiation dose Immunotherapy details Results

Chakravarty et al, 1999113 Mice bearing spontaneous tumour 
model of subcutaneous Lewis lung 
carcinoma

One fraction of 60 Gy After radiotherapy, 500 µg/kg bodyweight 
intraperitoneal Flt3L per day for 10 days

Improved survival and reduced lung 
metastases compared with control or Flt3L 
alone

Teitz-Tennenbaum et al, 
2003114

Mice bearing subcutaneous MCA 
205 sarcoma or D5 melanoma

42·5 Gy (five fractions 
of 8·5 Gy)

Before and after radiotherapy, four intravenous 
deliveries of 1 × 10⁶ intratumoral dendritic cells

Increased overall response rate compared 
with control or dendritc cell administration 
alone

Demaria et al, 200411 Mice bearing subcutaneous 67NR 
mammary carcinoma

One fraction of 2–6 Gy After radiation therapy, ten deliveries of 0·5 mg/kg 
bodyweight intraperitoneal Flt3L

Synergism through T-cell-mediated abscopal 
effect

Demaria et al, 2005115 Mice bearing subcutaneous 4T1 
mammary carcinoma

12 fractions of 2 Gy After radiation therapy, three intraperitoneal doses of 
200 µg anti-CTLA-4

Increased tumour responses compared with 
control or CTLA-4 alone

Lee et al, 2009116 Mice bearing subcutaneous 4T1 
mammary carcinoma and 
B16-CCR7 melanoma

Two fractions of 12 Gy During and after radiation therapy, delivery of 
intratumoral adenovirus expressing TNFSF14

Increased abscopal effect was T-cell mediated

Dewan et al, 2009117 Mice bearing subcutaneous TSA 
mammary adenocarcinoma and 
MCA38 colon carcinoma

Five fractions of 6 Gy, 
three fractions of 
8 Gy, or one fraction 
of 20 Gy

During or after radiation therapy, 
three intraperitoneal doses of 200 µg anti-CTLA-4

Fractionated but no single fraction 
radiotherapy with CTLA-4 monoclonal 
antibody induced abscopal effect

Deng et al, 2014118 Mice bearing subcutaneous TUBO 
mammary carcinoma and MCA38 
colon carcinoma

One fraction of 12 Gy Before, during, and after radiotherapy, four 
intraperitoneal doses of 200 µg anti-PD-L1

Increased T-cell infiltration boosts 
abscopal effect

Twyman-Saint et al, 
2015119

Mice bearing subcutaneous TSA 
mammary adenocarcinoma and 
subcutaneous B16-F10 melanoma

Three fractions of 
8 Gy or one fraction of 
20 Gy

Before, during, and after radiotherapy, 200 µg 
intraperitoneal anti-CTLA4, anti-PD1, and anti-PD-L1

CTLA-4 decreased Tregs, PD-L1 reinvigorates 
exhausted T cells, and radiotherapy increases 
the TCR repertoire

Rodriguez-Ruiz et al, 
2006120

Mice bearing subcutaneous MC38 
colon adenocarcinoma

Three fractions of 
8 Gy

After each radiation therapy fraction, 300 µg 
intraperitoneal anti-PD1, CD137 agonist, or both

Potentiation of abscopal effect

Reits et al, 200615 Subcutaneous MC38 
adenocarcinoma

One fraction of 10 Gy Three intravenous adoptive transfers of 
1 × 10⁶ gp70-specific CTLs

Radiotherapy significantly enhanced the 
efficacy of adoptive T-cell transfer in vivo

Honeychurch et al, 2003121 B-cell lymphoma line injected 
intravenously into BALB/c mice

One fraction of 5 Gy 
total body irradiation

1 mg intravenous CD40 agonist Combination resulted in increased survival 
with long-term T-cell-mediated protection in 
more than 80% of animals

Verbrugge et al, 2012122 4T1·2 mouse subcutaneous 
syngeneic breast tumours

One fraction of 12 Gy 100 µg intraperitoneal CD137 agonist, agonistic 
CD40, or anti-PD-1 on days 0, 4, 8, and 12 relative to 
radiation therapy

Enhanced antitumor effect mediated by CD8 
and natural killer cells

Dovedi et al, 2013123 A20 cell line model of subcutaneous 
B-cell lymphoma and EL4 cell line 
model of T-cell lymphoma line

One fraction of 10 Gy 3 mg/kg intravenous TLR7 agonist R848 starting 
with radiation therapy and repeated weekly for up to 
5 weeks

Increased CD8-mediated tumour control

Vanpouille-Box et al, 
2015124

4T1 mouse model of subcutaneous 
mammary carcinoma

Five fractions of 6 Gy 200 µg intraperitoneal 1D11 (a pan-isoform 
anti-TGFβ; every other day from day 12–28 before 
and after radiotherapy), anti-PD1 (on days 18, 22, 26, 
and 30 after radiotherapy), or both

Increased tumour responses and survival

Rech et al, 2018105 KPC.4662 mouse model of 
spontaneous pancreatic ductal 
carcinoma and mice bearing 
subcutaneous B16-F10 tumours

One fraction of 20 Gy 200 mg intraperitoneal anti-PD-1 and anti-CTLA-4 
administered before, concomitant, and after 
irradiation and CD40 agonist on day 3 after 
radiotherapy

Increased survival and abscopal effect

Mason et al, 2005125 C3Hf/KamLaw mice developing 
fibrosarcoma induced by 
methylcholanthrene

Two fractions of 10 Gy 100 µg peritumoral CpG oligodeoxynucleotide 1826 
(TLR9 agonist) per mouse

Increased tumour control and survival

TNFS14=tumor necrosis factor ligand superfamily member 14 (also known as LIGHT). CTL=cytotoxic T lymphocyte. Treg=regulatory T cell. TCR=T-cell receptor. SBRT=stereotactic body radiotherapy. 

Table 3: Preclinical studies of SBRT and immunotherapy
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combining radiotherapy and immune checkpoint 
inhibition, particularly when radiotherapy is given at a 
high dose per fraction for pelvic tumours.130 Grade 3 
anaemia was observed in four (18%) of 18 patients in a 
trial that combined SBRT with CTLA-4 in patients with 
metastatic melanoma.119 Radiotherapy can also contribute 
to severe late sequelae, including bowel obstruction and 
ureteral strictures. Therefore, clinicians should consider 
four major principles when delivering SBRT: proper target 
and healthy organ localisation (eg, by use of MRI, PET/CT, 
or both, when appropriate); management of breathing-
related motion, which is essential to assure tight planning 
margins; use of imaging-guided radiotherapy, which 
enables automatic correction of patient position through 
translation and rotation of the treatment coach; and use of 
a real-time method for motion management during 
treatment (eg, tracking devices with fiducial markers 
implanted near the target volume) to avoid as much as 
possible any internal organ motion. Similar measurements 
should be considered when irradiating the supra-​clavicular 
or mediastinal areas, which are frequent locations of 
oligometastatic disease outside the abdomen. SBRT can 
cause important late adverse effects if delivered near the 
main airways, the oesophagus, main blood vessels, or 
nerves. To avoid these severe toxic effects, investigators 
should apply dose constraints to healthy organs.

Low-dose fractionated whole-abdominal radiotherapy 
to reprogramme the tumour microenvironment
Low-dose ionising irradiation might increase immuno
genicity of cold tumours by triggering inflammatory 

mechanisms that enable T-cell attack.131 Low-dose 
irradiation is able to induce DNA damage,88 and numerous 
studies have reported that it can activate dendritic cells, 
increase antigen uptake, and enhance T-cell 
stimulation.132–136 Similarly, low-dose irradiation (0·94 Gy) 
might induce substantial apoptosis in Tregs compared 
with T effector cells.137 In a mouse model of pancreatic 
cancer, a single fraction of localised low-dose irradiation 
(ie, 0·5–2·0 Gy) could reprogramme the tumour 
microenvironment, inducing reprogramming of tumour-
associated macrophages towards an iNOS-positive 
phenotype, which in turn produced the appropriate 
chemokines to recruit T effector cells.103 In addition, M1 
macrophages drove normalisation of the tumour 
vasculature, increasing CD31 and VCAM-1 expression, 
and allowing T-cell infiltration in tumours. Together, these 
effects enabled T-cell-mediated tumour rejection.103 
Moreover, the results were corroborated in patients with 
pancreatic adenocarcinomas treated in the neoadjuvant 
setting, where a single dose of 2 Gy was sufficient to 
increase T cells in the tumour microenvironment.103 
Notably, large volumes of low-dose radiation have been 
shown to enhance antitumour control. For instance, rats 
with hepatocarcinoma irradiated with 0·2 Gy to the whole 
body had significantly fewer lung metastases than 
controls, with a significant increase in tumour-infiltrating 
CD8 cells and IFN-γ and TNF-alpha expression in the lung 
tumour micro-​environment.138 Spary and collegues139 
showed that 0·6–2·4 Gy radiation enhanced T-cell 
function by increasing T-cell proliferation, T-cell receptor 
signalling, and the polyfunctionality of CD8 cells.

Disease Patients (n) Radiation therapy Immune checkpoint 
inhibitor

Schedule Abscopal

Twyman-Saint Victor 
et al, 2015119

Melanoma 22 Two to three fractions of 6 Gy or 
two to three fractions of 8 Gy

Four doses of 3 mg/kg 
ipilimumab every 
3 weeks

Ipilimumab 3–5 days after 
radiation therapy

18%; no complete 
responses

Hiniker et al, 201228 Melanoma 22 Four fractions of 50 Gy, three 
fractions of 24 Gy, or ten fractions 
of 40 Gy

Four doses of 3 mg/kg 
ipilimumab every 
3 weeks

Radiation therapy within 
5 days of ipilimumab

Complete response, 14%; 
partial response, 14%; 
stable disease, 23%

Tang et al, 2017126 Non-small-cell lung cancer, 
colorectal cancer, renal cell 
carcinoma, and other cancers

35 50 Gy in four fractions; 
ten fractions of 6 Gy at one site

Four doses of 3 mg/kg 
ipilimumab every 
3 weeks

Radiation therapy 1 day 
after ipilimumab or 1 week 
after second ipilimumab

Partial response, 10%; 
stable disease, 13%; no 
complete response

Luke et al, 2018127 Ovarian cancer, endometrial 
cancer, colorectal cancer, and 
other cancers

73 Three to five fractions of 10 Gy 
at two to four sites

200 mg 
pembrolizumab every 
3 weeks until 
progression, death, or 
toxic effects

Pembrolizumab 7 days 
after SBRT

One complete response; 
eight partial responses; 
21 with stable disease

Maity et al, 201826 
(cohort 1)

Non-small-cell lung cancer or 
melanoma (progression on 
anti-PD-1)

12 Three fractions of 8 Gy to the first 
six patients and one fraction of 
17 Gy to the following patients at 
one site

Six doses of 200 mg 
pembrolizumab every 
3 weeks

SBRT 6–10 days after 
pembrolizumab

Two partial responses; 
nine progressive disease; 
one not evaluable

Maity et al, 201826 
(cohort 2)

Pancreatic cancer, breast 
cancer, head and neck cancer, 
colon cancer, or kidney cancer 
(no previous anti-PD-1)

12 Three fractions of 8 Gy to the 
first six patients and one fraction 
of 17 Gy to the following patients 
at one site

Six doses of 200 mg 
pembrolizumab every 
3 weeks

SBRT 6–10 days after 
pembrolizumab

One complete response; 
one stable disease; nine 
progressive disease

SBRT=stereotactic body radiotherapy. 

Table 4: Clinical trials of SBRT and immune checkpoint inhibitors in different disease types
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These observations are provocative and support 
the re-examination of whole-abdominal radiotherapy 
approaches. Given that in the majority of patients, 
ovarian cancer remains localised to the subdiaphragmatic 
region, whole-abdominal radiotherapy could be repur-​
posed as an interesting approach to so-called in-field 
immunomodulation in the context of combinatorial 
immunotherapy. In this setting, low-dose (metronomic) 
whole-abdominal radiotherapy could neutralise some of 
the important immunosuppressive circuitries operating 
in ovarian cancer, such as Tregs,137 immunosuppressive 
tumour-associated macrophages,103 and tolerogenic 
dendritic cells,140 and offer a convenient therapeutic 
platform for immunotherapy by fostering repro
gramming of macrophages and APCs, and promoting 
T-cell infiltration into tumours. In this case, irradiation to 
the whole-abdominal cavity of patients with ovarian 
cancer could be accompanied by pharmacological 
interventions to further increase APC activation (eg, 
using CD40 agonists or TLR agonists) and by immune 
checkpoint inhibitors such as anti-PD-1, anti-PD-L1, anti-
CTLA-4, or anti-LAG-3. These schemes are supported by 
preclinical studies and early clinical experiments. For 
example, an intratumoral TLR9 agonist, combined with 
2 Gy radiation in two fractions, produced T-cell infiltration 
and important clinical responses in patients with 
advanced lymphoma.106 Furthermore, low-dose whole-
body irradiation (1–2 Gy) favoured maturation of 
peritoneal APCs that showed high expression of CD80 
and CD86 and production of IL-12. These events were 
accompanied by a significant upregulation of CD28 on T 
cells that was observed with both 1 Gy and 2 Gy. CTLA-4 
on T cells was increased with 2 Gy and significantly 
reduced with 0·075 Gy.141 This preclinical study supports 
the hypothesis that the combination of large volumes of 
low-dose irradiation with a CTLA-4 inhibitor could 
eventually be synergistic in patients. Future preclinical 
studies of large volumes of low-dose irradiation could 
reveal whether radiotherapy induces higher expression 
of other coinhibitory receptors like PD-1, TIM-3, and 
LAG-3 to justify the combination of immune checkpoint 
inhibitors targeting these receptors with radiotherapy in 
patients. Low-dose whole-abdominal radiotherapy should 
be tested clinically in combination with immunotherapy 
in the advanced setting, but also in the adjuvant setting 
with curative intent. The tolerability of low-dose whole-
abdominal radiotherapy with PARP inhibitors35 could 
also position whole-abdominal radiotherapy as a potential 
important partner of combinations with PARP inhibitors 
and immune checkpoint inhibition.

The best radiotherapy delivery for optimal immuno
therapy synergy might require both SBRT and low-dose 
whole-abdominal radiotherapy. In this case, SBRT is 
used to cause the release of tumour antigen to ultimately 
elicit competent cytotoxic T lymphocytes while, in 
parallel, low-dose whole-abdominal radiotherapy of the 
remaining tumour deposits is used to reprogramme 

the tumour microenvironment, enabling robust T-cell 
infiltration in ovarian tumours.

Late chronic radiation toxicity has always been a major 
concern of whole-abdominal radiotherapy, therefore it is of 
major importance that radiation oncologists deliver this 
technique using IMRT or VMAT that has been shown to 
provide better target coverage with substantial sparing of 
the liver, bone marrow, and kidneys.49 Whole abdominal 
radiotherapy can also be myelosuppressive and this 
characteristic might have important con​sequences for 
patients receiving immune checkpoint inhibitor therapy. 
IMRT could also help spare the bone marrow in addition 
to reducing gastrointestinal and urinary toxicity.47 In 2019, 
Pike and colleagues142 reported a clinically significant 
lymphopenia in patients receiving three-dimensional 
conformal radiotherapy to the spine, lung, mediastinum 
or chest wall. The lymphopenia persisted and became 
severe after initiation of immune checkpoint inhibitors 
and was associated with increased mortality on multivariate 
analysis. Despite the lower doses proposed, caution should 
be exercised with the delivery of low-dose radiation in large 
treatment volumes. Therefore, similar principles to SBRT 
apply to whole-abdominal radiotherapy delivery, and 
include the precise localisation of the target and organs at 
risk and the management of respiratory motion. To avoid 
irradiation of large abdominal volumes, an alternative 
could be the delivery of low-dose irradiation uniquely to 
the macroscopically visible tumour deposits. A phase 1a/1b 
clinical trial (NCT03728179) is currently testing the 
combination of low-dose image-guided radiotherapy 
delivered to all metastatic tumour deposits using 
TomoTherapy in patients with cold tumours in combi-​
nation with low-dose metronomic cyclophosphamide, 
anti-CTLA-4, anti-PD1 monoclonal antibody, and aspirin.

Barriers to the implementation of 
radioimmunotherapy combinations
The ability of radiotherapy to activate antitumour 
immunity explains the synergy of radiotherapy with 
immune checkpoints well documented in mouse tumour 
models, and in patients who were previously refractory to 
checkpoint inhibitor therapy and subsequently responded 
after receiving radiotherapy. However, abscopal responses 
remain relatively rare in the clinic, the majority of them 
having been observed in immunoreactive tumours such 
as melanoma, kidney, and lung cancers (table 1). This 
observation suggests that although radiotherapy might 
release tumour antigens, the activation of APCs might be 
suboptimal in many combinations, while barriers to T-cell 
homing, engraftment, and function remain in distant 
tumour deposits. Thus, identifying and overcoming such 
barriers, which could either pre-exist or be induced 
by radiotherapy in the tumour microenvironment is 
necessary. For instance, tumour cells undergoing 
irradiation release ATP,91 which is rapidly catabolised 
into adenosine in the tumour microenvironment by 
ectoenzymes CD39 and CD73 expressed on tumour 
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cells,143 stromal cells,144 and immune cells.145 Local 
accumulation of extracellular adenosine suppresses 
dendritic cells and T effector cells while promoting 
proliferation of Tregs146 and a suppressive phenotype in 
tumour-associated macrophages and MDSCs.147 Pharma-​
cological blockade of the adenosine pathway with a CD73 
antibody synergises with anti-PD-1 or anti-CTLA-4 and 
promotes antitumour immune responses in mouse 
models of locally advanced fibrosarcoma and metastatic 
breast cancer.148 Future research in preclinical studies and 
translational research in patients should address the role 
of adenosine in inducing immune suppression from 
radiotherapy. Homoeostatic repair mechanisms induced 
by radiotherapy are responsible for the accumulation of 
Tregs in the tumour microenvironment149 and the 
increased expression or bioavailability of TGFβ,111 which 
locally curtails the positive immunomodulatory effects of 
radiation since TGFβ and IL-10 (also produced by Tregs) 
can dampen activation of dendritic cells and proper 
priming of T cells.150 Cyclophosphamide is effective in 
reducing Tregs in vivo;109 however, studies have now 
shown that these cells repopulate in the periphery very 
rapidly, highlighting the transient and possibly limiting 
nature of this approach.151 Therefore, clinical trials 
assessing the effect of a cyclophosphamide dosing 
schedule on Treg depletion should be carefully planned. 
Agents in clinical development blocking TGFβ or IL-10 
could also be useful in this setting.

Other immunosuppressive loops in the tumour 
microenvironment might represent obstacles for the 
abscopal effect. Upregulation of PD-L1 following 
radiotherapy has been reported in several preclinical 
studies122,124,152 and is mediated via increased production 
of IFN-γ by T cells that infiltrate the tumour 
microenvironment following radiotherapy, which in 
turn induces PD-L1 expression on tumour cells. If 
radiotherapy alone or in combination with immune 
checkpoint inhibitors elicits T-cell responses that are 
insufficient to eliminate the tumour, then the 
upregulation of other immune checkpoints will limit 
tumour rejection by adaptive resistance.152

Genomic variations might create challenges to the 
expected synergy between radiotherapy and immuno
therapy. For example, cell stress mechanisms activated by 
radiation require functional p53 (cellular tumor antigen 
p53), which is involved in the upregulation of NKG2D 
ligands. Thus, in the absence of p53, radiotherapy might 
not result in enhanced tumour immune recognition.153 
Similarly, a TLR4 polymorphism (Asp299Gly) that affects 
binding to HMG-1 predicted early relapse after radio-​
therapy in patients with breast cancer.131 Finally, tumour 
heterogeneity and divergent clonal evolution might be a 
major factor contributing to the emergence of escape 
variants resisting the favourable immune response that 
can be elicited by the combination of radiotherapy and 
immunotherapy. Genetic variants affecting neoantigen 
expression, processing and presentation,154 oncogenic 
pathways,155 and IFN signalling156,157 have been described as 
mechanisms of immune escape.

In addition to biological barriers, one must also consider 
the feasibility of the combinatorial approach. The 
implementation of phase 1 clinical trials that combine 
radiotherapy with three or more immuno-​modulatory 
drugs will require clear prespecified radiotherapy-
associated and drug-attributed side-effects to properly 
define dose-limiting toxic effects. Dose-escalation studies 
of radiotherapy or the administered drugs might help 
refine the recommended phase 1b or 2 dose. Such trials 
should test clinical and radiological endpoints of efficacy 
and be sufficiently enriched by translational interrogation 
of patients and tumour biopsies obtained before treatment 
and longitudinally during treatment to provide rigorous 
scientific evidence of the effects of the treatment in the 
tumour microenvironment. Lastly, considering the risk of 
toxic effects, such trials will require evaluation of the 
health-related quality of life of patients.158

Conclusion
The combination of radiotherapy with immunotherapy is a 
paradigm shift for radiation oncology as the aim of 
radiotherapy is progressing from direct tumour steri- 
lisation to tumour microenvironment reprogramming 
and immune modulation. Although radiotherapy can be 
applied to promote many aspects of the tumour immunity 
cycle, such as activating tumour antigen presentation, 
vasculature normalisation, and T-cell and dendritic cell 
recruitment and activation, a variety of suppressive 
mechanisms, including influx of Tregs and MDSCs, and 
stroma repair are also set into motion, which will have 
to be countered by suitable combinations of radiation 
and immunotherapy treatments. Combining immuno-​
modulatory agents with low-dose whole-abdominal 
radiotherapy, or with high-precision SBRT, can further 
promote the activity of favourable immune cells and 
block or reprogramme inhibitory ones (ie, MDSCs, M2 
macrophages, and Tregs). These radiotherapy modalities 
represent new opportunities in ovarian cancer treatment, 
promising to enhance the efficacy of immunotherapy in 

Search strategy and selection criteria

References for this Series paper were identified through 
searches of PubMed using the search terms “ovarian 
cancer”, “immunotherapy”, “dendritic cells”, “T cells”, 
“microenvironment”, “radiation therapy”, “whole 
abdominal radiation therapy”, stereotactic body radiation 
therapy”, “intensity modulated radiation therapy”, “PARP 
inhibitors”, and “abscopal effect”. No date limits were 
applied. Articles were also identified through searches of 
the authors’ own files. Only papers published in the English 
language were reviewed. The final reference list was 
generated on the basis of originality and relevance to the 
broad scope of this Series paper.
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this disease. Much remains to be determined, including 
biomarkers to select the best combinations of 
immunomodulatory agents, and the optimal radiation 
doses, volumes, and fractionations to be used. Clinical 
studies testing combinations must be designed to carefully 
test radiotherapy doses and schedules, taking into 
consideration the key biological and safety concerns. In 
addition, a careful evaluation of immunomodulatory drugs 
should balance feasibility and biological opportunity to ask 
important biological efficacy and clinical safety questions. 
Rapid clinical development of these combinations will 
require the use of reliable preclinical tumour models along 
with neoadjuvant window-of-opportunity clinical studies 
that can test radiotherapy doses and drug combinations. 
Detailed tissue analyses should help elucidate the 
mechanisms of action of the combinations, and hopefully 
lead to the development of biomarkers for patient selection. 
The kinetics of the cellular and molecular events 
triggered in the tumour microenvironment by different 
radiotherapy modalities and sequences of treatments 
should provide valuable clues as to the optimal time 
window for radiotherapy to potentiate immunomodulatory 
inter-​ventions that might be tumour-type specific.
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