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Abstract

Volumes of data used in science and industry are growing rapidly. When researchers face the challenge of analyzing them,
their format is often the first obstacle. Lack of standardized ways of exploring different data layouts requires an effort each
time to solve the problem from scratch. Possibility to access data in a rich, uniform manner, e.g. using Structured Query
Language (SQL) would offer expressiveness and user-friendliness. Comma-separated values (CSV) are one of the most
common data storage formats. Despite its simplicity, with growing file size handling it becomes non-trivial. Importing CSVs
into existing databases is time-consuming and troublesome, or even impossible if its horizontal dimension reaches
thousands of columns. Most databases are optimized for handling large number of rows rather than columns, therefore,
performance for datasets with non-typical layouts is often unacceptable. Other challenges include schema creation, updates
and repeated data imports. To address the above-mentioned problems, I present a system for accessing very large CSV-
based datasets by means of SQL. It’s characterized by: ‘‘no copy’’ approach – data stay mostly in the CSV files; ‘‘zero
configuration’’ – no need to specify database schema; written in C++, with boost [1], SQLite [2] and Qt [3], doesn’t require
installation and has very small size; query rewriting, dynamic creation of indices for appropriate columns and static data
retrieval directly from CSV files ensure efficient plan execution; effortless support for millions of columns; due to per-value
typing, using mixed text/numbers data is easy; very simple network protocol provides efficient interface for MATLAB and
reduces implementation time for other languages. The software is available as freeware along with educational videos on its
website [4]. It doesn’t need any prerequisites to run, as all of the libraries are included in the distribution package. I test it
against existing database solutions using a battery of benchmarks and discuss the results.
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Introduction

When considering processing of big and wide data, emphasis is

often put on custom solutions (e.g. scripts in MATLAB/R/

Python, programs in C/C++, different NoSQL [5] solutions) that

promise performance and customizability traditionally unavailable

to normalized solutions like SQL-capable relational databases.

However, it’s worth realizing the benefits of using a standardized

language for querying the data. Those include: shorter develop-

ment time, maintainability, expressive and natural way of

formulating queries, ease of sharing them with collaborators who

need just to understand SQL to know the purpose of a query.

Additionally, with scripting approaches to big data even reading

the data source is frequently not easy because of inefficiency of

high-level languages in running parsers. In light of these facts, it

seems that reasons stopping potential users from choosing a

database approach to handling their data are: inability of the latter

to accommodate modern dataset sizes (big data) and layouts (wide

data), necessity to install appropriate software and move data into

the system, as well as designing an appropriate database schema

beforehand. However, as solutions satisfying needs of efficient ad-

hoc access to computationally demanding datasets using standard

languages like SQL come to existence (NoDB [6], mynodbcsv),

this situation becomes likely to change.

Problems described above have been previously studied in the

field of database research. Among the better explored ones are

those of auto-tuning – offline [7–16] and online [17,18] and

adaptive indexing [19–25]. Mynodbcsv satisfies both philosophies

online, albeit it relies on a very simplistic, however effective

strategy – it greedily indexes all columns used in dynamic

(arithmetic/functional/conditional expressions, WHERE, OR-

DER BY, GROUP BY and JOIN clauses) parts of the queries.

At risk of being suboptimal this design choice gives one significant

benefit to the end-user – predictability. Each time a column is used

for the first time in a dynamic way, it will be indexed.

Information extraction for the static part of the query is done

using optimized CSV lookup algorithm, described in Table 1. The

solution for integrating SQL semantics with unstructured text data

retrieval as described in [26] is not required in case of mynodbcsv -

since dynamic part of the query (therefore all the computationally

demanding tasks of joining and filtering the data) is handled by

SQLite, my software is limited to retrieving corresponding rows/

columns from the static part using optimized linear scan.
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In-situ processing as described in [27–33] is reinforced in

mynodbcsv compared to previous accomplishments by its com-

pletely zero-config nature. Schemas are built automatically

assuming that first rows of CSV files contain column names.

New CSV files are introduced to the system by dragging and

dropping them over the GUI or using a classical file selection

dialog. Their names are converted to table names. SQL queries

are instantly possible for all new data.

Materials and Methods

A good example of almost entirely CSV-based dataset is the

tabular data from Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [34]. A subset of it containing roughly 130 CSV files with

clinical data about subjects was frequently used in neuroscience

studies in recent years. In the first test, I tried to import all of the

data into an SQLite database. This proved to be efficient for

querying but the import process itself was slow. The necessity to

prepare a schema beforehand and re-import each file whenever

certain kinds of change of the original data were made (e.g.

inserting new records, performing global text processing) was also

a hassle. Another type of data that ADNI provides is structural

magnetic resonance imaging (sMRI) data of the brain. After pre-

processing those data, there were about 400000 features for each

scan, corresponding to voxels of gray matter. With this amount of

columns no database solution at my disposal could handle it. At

the same time, I realized that the set of interesting queries

requiring all of the above data combined was limited. It consisted

mostly of simple filtering, grouping and ordering using subject’s

diagnosis, age or gender as criteria. This notion called for a more

efficient way of accessing the data, which didn’t require loading all

of it into the database but rather reduced the imported parts to

absolute minimum, i.e. just the columns used in SQL’s WHERE/

GROUP BY/ORDER BY clauses and in the dynamic expressions

in the SELECT clause, while obtaining the rest of the data directly

from the original CSV files.

Achieving the above in a completely robust manner (e.g.

supporting nested SELECT queries in the FROM clause, column

aliases, JOINs) excluded any simple text processing and required

writing a proper SQL parser. The idea was to restructure

[Figures 1,2] the original query in such a way that only dynamic

parts were retained and row identifiers added for the static parts

which later could be used to fetch data from the original CSV files.

For implementing the parser I used Boost Spirit parsing library

and defined the syntax corresponding to SELECT syntax in

SQLite. The parser takes a string containing an SQL query as

input and produces the Abstract Syntax Tree (AST), which

already specifies (to limited extent) which parts of the query are

dynamic. Further analysis step is necessary to determine if

expressions, which syntactically seem to be static are in fact

dynamic because they come from nested dynamic SELECT

queries. The analysis module detects these cases and for each

dynamic identifier makes sure that ‘‘id’’ column of each of the

tables used to produce that expression is included once in the list of

SELECT values. These added identifiers are named by conven-

tion ‘‘id___N’’ where N is an increasing integer number for each

new generated identifier. All ‘‘id___N’’ values are propagated

across nested queries regardless whether they are used in the final

output. The tables and columns are imported on-demand only for

the dynamic parts of the query. This is the key to obtaining good

performance. Temporary in-memory tables can be used to be even

faster. After retrieving identifiers from the reformatted query

results, original AST is used to fill in the missing static parts by

accessing CSV files. Large CSV files support is achieved by

keeping them mostly in memory (since file mapping is used to this

end, the percentage of file loaded into physical memory depends

on the amount of memory available and the file usage pattern)

with minimum overhead for caching some of the column positions.

Afterwards, columns are accessed by parsing the file on the fly,

using cached positions to amortize search time for each particular

column. This proved to be more efficient both performance- and

memory-wise than keeping parsed data in arrays of strings or

variant types. Finally, results are either printed out as CSV file,

presented by means of a dedicated graphical user interface (GUI)

implemented using the Qt library and a special data model

(derived from QAbstractItemModel class) or sent in CSV format

over a network socket. This approach is more robust than trying to

wrap the algorithm in an existing database interface (either native

SQLite or a generic one like ODBC) and provides the necessary

performance level to do online analysis of all the results. Wrapping

it in an existing API would have had an added benefit of offering a

drop-in replacement functionality for existing applications but I

chose to prioritize implementation time, robustness and speed. My

solution doesn’t require schema specification. All CSV files found

in the current working directory are automatically seen as tables in

the database with all the necessary columns imported on-demand.

Further files can be added using a drag-and-drop interface or from

the menu. For an overview of the architecture, see [Figure 3].

I tested mynodbcsv against three established database manage-

ment systems (DBMS), in order of decreasing similarity to

mynodbcsv – HSQLDB [35] (support for unlimited columns

and CSV data storage), H2 [36] (unlimited columns, requires data

import) and PostgreSQL [37] (limited columns, requires import).

When possible I created indices for columns used in WHERE

clauses. HSQLDB failed to create such indices for CSV-backed

tables within 10 minutes, so I proceeded without them.

In order to evaluate basic function of my implementation I

performed a set of queries on the abovementioned ADNI dataset

including genetic data (about 30000 single nucleotide polymor-

phisms (SNPs)) and imaging dataset reduced using custom atlas

from 400000 to 6800 features – an approach I used before to store

Table 1. CSV Access Algorithm.

1 Load or map CSV file as-is into memory.

2 Perform initial parsing of the file, caching starting position of every 100th column in each row, note: this doesn’t parse the numbers etc. it only traverses the
file to cache column positions.

3 Initialize cursor for each row to point to the first column.

4 If data query accesses column pointed by cursor of the respective row, parse it starting from the cursor and advance cursor by one column.

5 Else: look for the closest cached column position and find the destination column by dynamically parsing CSV, read the column and set cursor for that row
to point to the next column.

doi:10.1371/journal.pone.0103319.t001
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the data in a PostgreSQL database. Even after such reduction it

was impossible to store the data in a single table in PostgreSQL

because of the built-in limit of (depending on the type) 250-1600

columns per table. Therefore, I decided to store only columns that

were going to be used in expressions and put the remaining data

without modifications in one additional column named ‘‘rest’’.

Furthermore, to demonstrate its performance on big data, I

used Allen Brain Atlas single subject gene expression data

(900 MB CSV file, 60000 rows, 1000 columns), as well as an

artificially generated file with 1000 rows and 400000 columns

mimicking the situation with original imaging data. The latter

scenario exceeded beyond what was possible with existing

database solutions. I didn’t perform it using other databases

because of the vast performance gap between them and

mynodbcsv, which would require too much time to complete.

All of the above tests were executed under Windows 7 operating

system running on a PC with 16GB of memory and Intel Core i5-

2400 processor running at the frequency of 3.10 GHz. Code was

compiled with optimizations using GCC C++ Compiler version

4.6.2.

Furthermore, in order to place mynodbcsv in relation to NoDB,

I performed a test similar to the first microbenchmark in [6] on a

Figure 1. Examples of static and dynamic column references. Dynamic references are kept in the reformatted query, whereas for static ones
the identifier column of the corresponding table is added and subsequently they are fetched directly from the original CSV file.
doi:10.1371/journal.pone.0103319.g001

Figure 2. Query rewriting pipeline. In the first step, wildcard expressions are expanded and necessary identifier columns added. In the second
step, static values are filtered out giving the query that is actually executed by SQLite.
doi:10.1371/journal.pone.0103319.g002
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Macbook Air 13’’ 2013 model with 8 GB of RAM, Intel i7 CPU at

1.8 GHz and an SSD hard drive. Benchmark data consisted of 7.5

million rows with 150 columns containing integers in the range [0,

109). 10 SELECT queries without WHERE clause were executed

with 10 random columns each. Next, 10 SELECT queries on 10

random columns with WHERE clause for one random column,

were executed.

The abovementioned microbenchmark is representative of

‘‘narrow’’ data performance. Since this is the case, I decided to

include also traditional (MySQL [38]) and innovative (wormtable

[39], Teiid [40]) database systems, which were created for

handling datasets with vertical extent much bigger than the

horizontal one. This comparison further illustrates mynodbcsv’s

position in the database landscape.

In order to save storage space (in excess of 1 gigabyte) and

bandwidth, mock-up versions of data files necessary to reproduce

all of the above tests can be generated by scripts in File S1. Copies

of original data (where applicable) are available from the ADNI

[34] and Allen Brain Atlas [41] websites.

Results

In the ‘‘wide’’ data benchmarks, mynodbcsv was the only truly

satisfactory solution feature-wise, most of the time outperforming

competitors also performance-wise [Tables 2,3,4].

It could be seen that performance of PostgreSQL was severely

reduced when serving big TEXT-type column. In order to

determine the root cause of this inefficiency I’ve run PostgreSQL

with its data folder placed on a RAM disk created using ImDisk

Virtual Disk Driver to remove any unfair advantage of mynodbcsv

Figure 3. Block diagram of mynodbcsv architecture.
doi:10.1371/journal.pone.0103319.g003

Table 2. Performance comparison of mynodbcsv and HSQLDB/H2/PostgreSQL.

Query/Database mynodbcsv PostgreSQL* HSQLDB** H2

SELECT * FROM ADNI_Clin_6800_geno 347.968.79 3978.1630.27 43579.061432.11 35412.061611.24

SELECT * FROM ADNI_Clin_6800_geno
WHERE Diagnosis = ’’ AD ‘‘

436.1610.88 702.7613.0618 30513.065064.80 7543.26167.83

SELECT * FROM ADNI_Clin_6800_geno
WHERE Diagnosis = " AD " OR
PTGENDER = 1 OR RID%2 = = 0

689.2612.02 3046.6633.58 38849.56889.83 20650.16946.79

SELECT * FROM ADNI_Clin_6800_geno AS a
INNER JOIN PTDEMOG AS b USING(RID)
WHERE a.Diagnosis = " AD " OR
a.PTGENDER = 1 OR a.RID%2 = = 0

771.966.22 4830.6648.37 262336.769080.58 11206.36527.54

All execution times in [ms].
*For PostgreSQL only columns necessary for testing the WHERE/JOIN/etc. conditions were created in respective tables, the remaining columns where preserved in CSV
format in one column called ‘‘rest’’. Time required for parsing of the CSV column is not included in the measurements as it would be negligibly small compared to the
query execution time. ** For HSQLDB the actual CSV support was used.
doi:10.1371/journal.pone.0103319.t002
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keeping data in-memory all the time. The difference in timings for

PostgreSQL was negligible, therefore, I didn’t report the second

timings. I suppose that this poor performance might be a result of

sockets-based API of PostgreSQL, which has to perform refor-

matting necessary for the protocol and push large volumes of data

through a loopback network connection. Mynodbcsv on the other

hand has direct access to the data. This model is better suited for

local access and doesn’t constitute a security issue if shared

memory with appropriate protection flags is used to exchange data

between different processes.

Mynodbcsv had a tendency for query time increase as function

of number of columns. This performance hit was caused by the

query rewriting mechanism which tracks all of the columns

coming from tables in FROM and JOIN clauses throughout the

query. It could be further optimized to either remove tracking of

columns not specified explicitly in the SELECT clause (e.g. when

‘‘*’’ is used) or to decrease the computational complexity of

column tracking. Removing this overhead would offer an order of

magnitude increase in efficiency in some situations. Noteworthy,

for image file formats where numbers of columns can reach

millions, a very efficient array-addressing extension was intro-

duced to the syntax, allowing column access using offset

specification instead of name lookup. This practically eliminated

the above problem.

Overall, mynodbcsv was the only solution to offer this level of

performance and not suffer from any limitations.

In the first microbenchmark results [Tables 5,6], it took about

120 s for mynodbcsv to perform initial file scan and then 34 s for

the 1st query. The second query took 8.4 s. Successively the query

time stabilized at about 4.5 s. Probably NoDB would be

significantly better than mynodbcsv in the other benchmarks used

to evaluate it against existing DBMSes in [6] because queries

containing projections/aggregations on all of the attributes would

force mynodbcsv to build full SQLite database with all of the

columns. Overcoming this is impossible in the current ‘‘interme-

diate’’ framework of mynodbcsv, however in my experience this is

1) a rare scenario, 2) can be easily circumvented by streaming

query results to a custom application instead of projecting/

aggregating on the DB side.

In the second test, mynodbcsv suffered a bit from on-the-fly

parsing of CSVs which was tuned for parsing wide rather than

long data. It didn’t approach the performance of NoDB, falling

behind by a factor of approximately 4 times. Perhaps different

hardware configurations also affected the results in favor of NoDB.

Compared to wormtable and Teiid, mynodbcsv was again

outperforming the other two by 1–2 orders of magnitude in both

microbenchmark variants. When it comes to MySQL, mynodbcsv

was an order of magnitude faster in the first variant (without

WHERE clause) and about two times slower when the WHERE

clause was present. This is yet again attributable to the way the

benchmark was constructed, forcing mynodbcsv to add a new

column to its SQLite store in each run.

Discussion

The idea of using textual format for database storage isn’t new

and has been implemented completely or partially in existing

solutions already. Mynodbcsv, however, is using an intermediate

approach between building a new database engine and importing

data to existing one. Doing so using query rewriting provides an

efficient, robust and lightweight solution for many typical use-

cases. It manages to reduce standard database involvement to the

minimum and accesses bulk of the data directly in CSV files.

As can be seen in comparison to NoDB, it shares many of the

same on-the-fly parsing mechanisms, however as it is less coupled

with the query, it follows a more greedy approach when deciding

what to parse (i.e. entire columns of data).

Since mynodbcsv uses an existing database engine without any

modifications it can be configured with different backends. SQLite

has been chosen as a particularly lightweight and standalone

solution, however any database with appropriate Qt connector

could be a drop-in replacement. For example, a binding to

PGSQL (PostgreSQL) is a work in progress. It will be useful in

certain situations because PGSQL supports FULL OUTER JOIN

semantics, while SQLite doesn’t.

Support for CSV as data storage format is also not the only option.

The engine itself is completely unaware of using them, as they are

represented transparently with a QAbstractItemModel interface.

Mynodbcsv is easily extensible in terms of supported data formats, as

long as similar representation is possible for them. Such a mapping

for Nifti [42] files is a work in progress and future possibilities include

also Hierarchical Data Format (HDF5), Extensible Markup

Language (XML), MATLAB file format and others.

HSQLDB was the only freely available competitor offering

support for unlimited number of columns and CSV-based tables.

Table 3. Performance comparison of mynodbcsv and HSQLDB/H2/PostgreSQL using single subject Allen Brain Atlas data.

Query/Database mynodbcsv PostgreSQL HSQLDB H2

SELECT * FROM MicroarrayExpression_fixed AS a
INNER JOIN Probes AS b ON(a.c1 = b.probe_id)

310.9614.77 72158.961312.98 Didn’t finish 75680.8620192.18

All execution times in [ms].
doi:10.1371/journal.pone.0103319.t003

Table 4. mynodbcsv performance on a table with 400000 columns and 1000 rows (dummy); dummy2 has 10000 columns and
1000 rows.

Query Mynodbcsv Execution time [ms]

SELECT * FROM dummy 6297.8647.04

SELECT * FROM dummy AS a INNER JOIN dummy2 AS b USING(c0) 7391.26123.261

doi:10.1371/journal.pone.0103319.t004
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However, in the benchmarks it fell a long way behind both

mynodbcsv and PostgreSQL in terms of performance. Having

support for ‘‘real’’ columns and being able to execute functions on

them as part of the query gives HSQLDB certain advantage, but

in my experience with such wide tables, the typical use case is not

to analyze them entirely within a database query. Usually it’s rather a

matter of data integrity. Robustness benefits from keeping everything

in a single table, without resorting to cross filesystem linking. It’s also

convenient to retrieve selected parts of data by name. I tried to

improve HSQLDB performance by creating indices on the columns

used in WHERE clauses of the queries. This operation was taking an

indefinite amount of time when text table sources were attached, so

following the software documentation I detached them, created the

indices and reattached the sources. However after this operation,

queries involving JOIN clause started failing with ‘‘unsupported

internal operation RowStoreAVL’’ error message. Therefore, results

for HSQLDB are given without using indices.

H2 was significantly faster than HSQLDB with its support for

unlimited columns when data were imported into the database, yet

it was still far from the performance offered both by PostgreSQL

and mynodbcsv. Also its limitation of only one process accessing

the database at any given time was problematic already during

testing and most probably would escalate in production environ-

ment.

Although mynodbcsv was slower than NoDB for some queries,

it’s noteworthy that at the same time it used only 2 * 7500000 *

4 = 60 MB of additional lookup space, with everything else

effectively staying in the CSV files.

Mynodbcsv managed as well to outperform interesting and

innovative solutions like wormtable and Teiid in the microbe-

nchmark tests, falling behind MySQL slightly in the second

benchmark variant. This deficiency could be mitigated by

improving performance of SQLite imports, for example by

importing columns into separate tables and joining them using

views as opposed to re-creating a new table with all the necessary

columns each time as it is done now. More radical solutions

involve embedding mynodbcsv’s CSV support directly in SQLite

or writing a custom query execution engine from scratch.

From the perspective of end-user, mynodbcsv is already a

versatile tool - facilitating easy handling of big data stored in CSV

files. Despite the above examples being biased towards neurosci-

entific research, it’s a completely generic solution with applications

that are much broader and in fact valid for any type of tabular or

‘‘convertible to tabular’’ data. Potential uses - scientific, industrial

and personal include astronomy, physics, economy, education,

public health and more.

One could consider adding SQL completion solutions such as

SQLSUGG [43] to the GUI in order to offer a helping hand to the

Table 5. Query time comparison in microbenchmark similar to the first one from [6], without WHERE condition.

Database/Run Initial Load 1 2 3 4 5

Mynodbcsv ,120 34.165 8.441 7.949 7.780 5.373

MySQL ,285 178.706 185.047 175.109 185.564 189.746

Wormtable ,583 1357.733 1343.813 1342.653 1456.482 1418.348

Teiid ,0 602.970 625.252 665.062 637.091 657.034

Database/Run 6 7 8 9 10 Mean±SD*

Mynodbcsv 5.364 5.219 5.321 4.583 4.408 8.86068.549

MySQL 185.712 180.901 183.235 193.692 185.334 184.30565.015

Wormtable 1614.710 1469.741 1412.251 1348.159 1347.477 1411.137681.902

Teiid 692.183 644.607 625.928 616.335 642.654 640.912624.529

All times in [s].
*Without Initial Load time.
doi:10.1371/journal.pone.0103319.t005

Table 6. Query time comparison in microbenchmark based on first one from [6], with WHERE condition.

Database/Run 1 2 3 4 5

Mynodbcsv 235.406 215.238 221.219 223.249 227.089

MySQL 100.214 106.100 99.777 98.810 99.280

Wormtable 1378.221 1329.387 1372.538 1419.567 1644.511

Teiid 571.458 585.293 620.953 622.774 632.024

Database/Run 6 7 8 9 10 Mean±SD

Mynodbcsv 237.116 238.105 248.184 210.987 219.704 227.630611.120

MySQL 102.006 104.829 113.525 103.399 107.366 103.53064.366

Wormtable 1488.179 1641.428 1872.519 1510.913 1646.998 1530.4266160.910

Teiid 615.900 775.444 835.995 847.338 713.459 682.064698.207

All times in [s].
doi:10.1371/journal.pone.0103319.t006
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users with less SQL expertise. On the backend side, support for

horizontal aggregations [44] seems like a great addition to the big

data nature of mynodbcsv.

Network access to mynodbcsv is another potential area for

improvement. Issues involved include formatting of the results,

which at the moment is plain CSV but could be optimized using

binary encoding and/or compression. Combining these two

approaches would improve performance on the client side because

of reduced network bandwidth and CSV processing overhead.

The problem of database locking while importing columns is

currently solved using a global mutex, which allows one client to

block the others when running a query that requires importing of

too much data. This could be solved either by switching from

SQLite backend to one that allows simultaneous writes to a

database or by creating a dedicated SQLite database for each

connected client. For many scenarios the latter solution seems like

a fast and reliable option.

Conclusions

Processing very big and wide data is now commonplace in many

professional environments. Ability to access it efficiently without

building the usual database infrastructure is the holy grail of in-situ

approach. Mynodbcsv offers the ‘‘best of both worlds’’ alternative

for everybody who would like to benefit from in-situ SQL data

processing without the hassle of setting up heavier and more

elaborate systems. It’s also to the best of my knowledge the only

truly zero-config solution, which takes as little as drag and drop to

attach data. Last but not least thanks to the portability of libraries

used, it works out of the box on Windows, Linux and Mac OS X

platforms. There are still many areas for improvement (tighter

coupling of query analysis and data indexing/caching, better

network performance, multi-threading), however current imper-

fections are counterbalanced by interesting properties of the

system – speed, robustness, small footprint and predictability. I

keep working on it so that one day it may join the family of next

generation software solutions for data mining.

Supporting Information

File S1 Set of Python scripts to generate data for
benchmarks: equivalents of ADNI_Clin_6800_geno.csv,
PTDEMOG.csv, MicroarrayExpression_fixed.csv and
Probes.csv files, the dummy.csv, dummy2.csv and the
microbenchmark CSV files.
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