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ABSTRACT 

 

Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven 
combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using 
heterogeneous, that is gas-surface reactions.  The gas uptake to saturation of the probes was measured 
under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface 
functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such 
as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups.  The 
limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas.  With few 
exceptions most investigated aerosol samples interacted with all probe gases which points to the 
coexistence of different functional groups on the same aerosol surface such as acidic and basic groups.  
Generally, the carbonaceous particles displayed significant differences in surface group density:  
Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas 
Diesel soot recovered from a Diesel particulate filter had the largest.  The presence of basic oxides on 
carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to 
the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt.  
Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable 
groups similar to amorphous carbon FS 101.  TiO2 15 had the lowest density of functional groups 
among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary 
particles.  The used technique enabled the measurement of the uptake probability of the probe gases on 
the various supported aerosol samples.  The initial uptake probability, γ0, of the probe gas onto the 
supported nanoparticles differed significantly among the various investigated aerosol samples but was 
roughly correlated with the density of surface groups, as expected. 
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Introduction  

Aerosol particles occurring in the lower atmosphere directly and indirectly affect 

the radiative forcing of the climate, atmospheric processes and the hydrological cycle 1.  In the 

planetary boundary layer aerosols have a primary role in air pollution and control atmospheric 

composition, visibility and human health on a regional and local scale 2,3.  Atmospheric 

aerosols affect the radiation budget by scattering and absorbing solar and terrestrial radiation 

and indirectly by acting as cloud condensation nuclei that consist of particles larger than 50-

100 nm in diameter.  However, the radiative effects not only depend on the spatial distribution 

of aerosols, but also on their size, shape and chemical composition that control their optical 

constants.  The interfacial chemical properties of atmospheric particulates control their ability 

to act as cloud condensation or ice nuclei and are therefore of relevance to the global climate 1. 

 

Recent epidemiological and toxicological studies have shown that particulate matter 

has a significant harmful effect on public health, but also on animals and plants.  Particulate 

matter PM10, PM2.5 and PM1 which comprise particles whose effective aerodynamic diameter 

is smaller than 10.0, 2.5 and 1.0 µm, respectively, is sampled in the field on a routine basis.  A 

small fraction of PM1, predominantly the ultrafine fraction of less than 100 nm in diameter, is 

thought to spontaneously cross cellular membranes, both in vitro and in vivo, a process called 

translocation 4,5.  However, to date the molecular mechanism by which the fine (< 1 µm 

diameter) and ultrafine (< 0.1 µm) fraction cross cellular borders is not known with certainty.  

This translocation phenomenon has been related to mounting evidence that small particles 

cause adverse health effects such as cancer, respiratory and cardiovascular diseases, despite 

some reports to the contrary 6.  It is the submicron ultrafine fraction of particles that reportedly 

represents the highest health risk owing to their dimensions that are significantly smaller than 

the characteristic size of cells and bacteria 7.  As a consequence, a new field dealing with the 

toxicology of the ultrafine fraction of aerosols and nanoparticles has recently emerged that is 

called “nanotoxicology” 8. 

 

Both the size of atmospheric aerosol particles as well as their surface chemical 

properties are important for their biological effects and adhesion.  It still is an open question 

whether the particle surface area or the particle mass is the critical parameter that correlates 

with various health outcomes.  There are results supporting either, surface or volume (mass), 

and a couple of particularly convincing examples in favor of surface scaling has been presented 
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by Oberdörster et al. 8.  Field studies frequently reveal that the number concentration of the 

submicron fraction of atmospheric particles is significantly higher than the supermicron 

fraction.  The fact that the particle surface area decreases more slowly with the particle 

diameter than the volume (or mass) has led to the suggestion that it is the surface rather than 

the particle mass that is the critically important parameter for the harmful effects of submicron 

or nanoparticles.  Beyond the choice “surface area or mass” the question of the particle surface 

composition and its effect on biological membranes and solid supports has hardly been raised 

in the literature.  The characterization of the particle interface in terms of its physical and 

chemical properties is key to the understanding, and therefore control of the interaction 

between a nanoparticle and its substrate on a molecular level.  The knowledge of nanoparticle 

chemical properties at the interface is also of importance in biological work where assays and 

in vivo experiments will be affected by it 9,10. 

 

The present work deals with the application of a heterogeneous gas-surface titration 

technique in order to afford an alternative quantitative characterization of the interface of 

nanoparticles.  It uses different probe gases that heterogeneously interact with the functional 

groups present at the nanoparticle interface and implies the measurement of the probe gas 

uptake until saturation.  The results are expressed as a surface density of chemical 

functionalities such as acidic, basic, carbonyl and oxidizable groups if the particle metrology 

such as the particle size distribution function or some other metric for the total internal and 

external surface is known.  This highly surface sensitive and specific chemical “interrogation” 

of the particle complements other techniques performed on environmental particulate matter 

such as X-Ray Photoelectron Spectroscopy (XPS), Time-of-flight Chemical Ionization Mass 

Spectrometry (TOFCIMS) and various high resolution imaging techniques 11,12.  Work on 

“chemical interrogation” of the complex interface of combustion aerosol and ultrafine particles 

such as TiO2 has been performed some thirty years ago by Boehm and his group using liquid 

phase reagents that specifically reacted with interfacial functional groups in suspensions of 

particulate matter in tens of gram quantities13 and has been critically reviewed in the recent 

past by Boehm 14,15. 

 

This work deals with gas phase probe molecules that specifically interact with the 

interface of nanoparticles and has the clear advantage that it does not perturb the state of 

aggregation of the aerosol particles 14.  The central working hypothesis is the assumption that it 

is the unknown identity and abundance of functional groups at the interface of nanoparticles 
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that are responsible for their reactivity, both in the gas- as well as in the condensed phase 

including biological environments.  We hereby propose a direct gas-phase titration technique 

with the following advantages:  (a) it enables the use of MS-based techniques sensitive to less 

than one per cent of a molecular monolayer; (b) the low sample mass requirement in the range 

of one mg or so directly enables the investigation of ambient aerosol samples or from smog 

chambers; (c) the present approach emphasizes the measurement of interfacial or subsurface 

physical and chemical properties of nanoparticles not easily performed by spectroscopic 

methods, especially when molecular information is required.  Setyan et al. 16 have recently 

successfully used this technique for the investigation of aerosols sampled in the field. 

 

Experimental 

Surface titration under molecular flow conditions using a Knudsen flow reactor. 

The deposited powder samples have been “interrogated” by the probe gases at 

ambient temperature using a Knudsen flow reactor whose use for kinetics has been pioneered 

by Golden, Spokes and Benson 17.  Briefly, the method rests upon measuring the rate of 

disappearance of a gas under molecular flow conditions in the presence of a reactive substrate 

in comparison with its rate of effusion from the flow reactor that is measured under the 

relevant flow conditions.  All experiments have been performed using a Knudsen flow reactor 

equipped with effusive molecular-beam phase sensitive mass spectrometric (MS) detection 

based on electron-impact ionization.  The used two-chamber version adapted to the study of 

heterogeneous reactions has been described in detail in the recent literature 17,20.  The gas flow 

metered from a gas-handling vacuum line subsequently reacted with the sample once the 

isolation plunger was lifted.  The kinetics are expressed as a heterogeneous rate constant khet 

that depends on the surface-to-volume ratio As/V of the specific measurement system or as a 

dimensionless uptake coefficient γ that has been normalized by As/V, where As is the 

geometric surface area of the support and V the volume of the flow reactor.  From the rate of 

disappearance of the probe gas, the heterogeneous rate constant khet as well as the 

dimensionless corresponding uptake coefficient γ is given in the following equations: 

 

khet = (I0/I - 1)kesc         (1) 

 

γ = khet/ω = (4/c ) khet (As/V) -1       (2) 

 



 5 

where I0 and I are the rectified amplitudes of the MS signals of the chopped molecular beam 

recorded by the lock-in amplifier in the absence and presence of the sample, respectively, and 

ω = (c /4V)As is the calculated gas-surface collision frequency of the average molecule moving 

at a mean molecular speed c .  Equation (2) shows the normalization of khet by As/V in order to 

obtain the dimensionless γ. 

 

The specific parameters of the used Knudsen flow reactor are given in Table 1.  The 

emphasis of the present work is on the time integral of the net loss of the probe gas to the 

reactive substrate and represents the total number Ni
M of probe gas molecules M lost on the 

particular sample by uptake: 

 

Ni
M(aerosol + support) = ∫(Fi

M – FM(t))dt      (3) 

 

where FiM and FM(t) are the measured molecular flow rates flowing into and escaping the flow 

reactor.  The integration period from t = 0 to t is determined by the time interval it takes to 

saturate the sample completely, that is until no more uptake is experimentally measurable and 

Fi
M = FM(t).  The raw data Ni

M(aerosol + support) are corrected for the uptake Ni
M(support) of 

the probe gas on the empty FEP-Teflon-lined sample dish according to equation (4) and yield 

Ni
M(aerosol), or in short Ni

M, in molecular units. It is presented as either normalized to mass 

(number of molecules/mg) or to the total internal and external surface area of the sample 

measured according to BET (number of molecules/cm2 of aerosol surface): 

 

Ni
M(aerosol) = Ni

M(aerosol + support) – Ni
M(support)    (4) 

The BET surface has been taken as a metric of the total internal and external surface when 

normalizing Ni
M(aerosol) because the probe gas has sufficient time to interact with the total 

internal and external surface area of the sample up to complete saturation of the total surface 

area.  The BET adsorption isotherm does not routinely lead to a distinction between the 

external and internal surface or between pores of different sizes, except when data on the 

hysteresis behaviour of adsorption are included.  In contrast, the uptake kinetics is normalized 

to the geometric surface area owing to the fact that γ is usually measured right after the start of 

exposing the sample to the probe gas (γ0).  One may regard Ni
M(aerosol) as a lower limiting 

value if the BET surface would overestimate the “true” surface, whereas γ(γ0) may be regarded 
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as an upper limiting value if it is based on the geometric surface area of the sample or its 

projection onto the sample support. 

 

Source of Materials. 

Unless otherwise noted, all materials of commercial origin have been used as received.  The 

following three samples of commercially available amorphous carbon from Evonik (Frankfurt 

am Main, Germany, formerly Degussa AG) have been used:  FS 101, Printex 60 and FW 2 

whose physical and chemical properties are listed in the brochure “Pigment Blacks” 

(Pigmentrusse/pigment blacks Technische Daten Europa/Technical Data Europe, Degussa AG, 

Advanced Fillers & Pigments, 2006).  The soot standard reference material SRM 2975 has 

been obtained from NIST in gram quantities and has been collected from a Diesel engine of a 

heavy duty industrial forklift.  It is accompanied by a certificate exhibiting all measured 

properties.  Deposited Diesel soot from a heavy duty urban bus engine of a Swiss Transit 

Authority (TPG) has been recovered from a Diesel Particulate Filter (DPF-CRT) in a bus 

maintenance yard 16.  This sample has been called “Diesel TPG”.  Soot from a laboratory flame 

using a diffusion burner operating on n-hexane has been obtained at two operating conditions, 

namely “rich” and “lean” combustion conditions using a co-flow device whose design and 

operation have been published before 18,20.  For the generation of soot from a rich hexane flame 

a porous glass plug made of a Pyrex disc enabling liquid fuel transport from the reservoir to the 

flame across capillaries in the range 41-100 µm (Verrerie de Carouge, porosity 2) and an air 

flow rate of 1.375 l min-1 have been used.  The lean flame was maintained using a porous glass 

plug of 11-16 µm wide capillaries (Verrerie de Carouge, porosité 4) and an air flow rate of 

1.75 l min-1.  The flame soot was directly deposited onto a glass Petri dish of 4 cm ID and 

weighed gravimetrically, typically several mg.  Although the combustion stoichiometry of the 

rich and lean hexane flame were very similar, we have used the products of the heterogeneous 

reaction of NO2 on the corresponding soot as a discriminating feature 18,21.  The criterion 

between a rich and lean hexane flame was the exclusive HONO production resulting from the 

heterogeneous reaction on soot from the rich and NO generation from the lean flame 18,21.  In 

order to control the quality of soot on a routine basis frequent checks using the Knudsen flow 

reactor have been performed.  References 18 and 20 provide further details on the soot 

properties. 

 

Two TiO2 samples were purchased from Sigma-Aldrich:  TiO2 anatase (art. no. 

637254, hereafter called “TiO215”) and TiO2 mixture of rutile and anatase (art. no. 634662, 
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hereafter called “TiO2 50”).  TiO2 15 and TiO2 50 had primary average particle diameters of 15 

and 25-75 nm.  TiO2 P25, an often used catalyst support of technical significance, was 

purchased from Evonik (Degussa) and consisted of 21 nm wide particles on average.  TiO2 15, 

TiO2 50 and TiO2 P25 contained 98, 65 and 80-90% (w/w) anatase balanced by rutile.  The 

mass of the powder samples were measured gravimetrically and subsequently spread out on the 

FEP-Teflon (Dupont Inc., Geneva)-lined Pyrex sample dish.  The uptakes to saturation by the 

probe gases were independent of the way the samples were spread out on the sample support. 

 

Surface Probe Molecules and Uptake Experiments. 

The six probe molecules used are trimethylamine (N(CH3)3), hydroxylamine (NH2OH), 

hydrochloric acid (HCl), trifluoroacetic acid (CF3COOH), nitrogen dioxide (NO2) and ozone 

(O3).  N(CH3)3 and CF3COOH were purchased from Sigma-Aldrich (purum ≥ 99% and puriss., 

respectively), NO2 and HCl were obtained from Carbagas.  NH2OH is prepared by thermal 

decomposition of hydroxylammonium phosphate ((NH3OH)3PO4) according to the method of 

Schenk 22.  Small aliquots of the solid salt were decomposed inside a vacuum inlet line prior to 

use in order to avoid the reaction of free NH2OH with air.  Ozone was generated in a Fischer 

ozone generator from pure O2.  The resulting O2 flow containing 5-10% O3 in O2 was passed 

across a silicagel trap held at 196 K in order to freeze out O3 whose vapor pressure was 

controlled using a cold methanol slush bath at 193 K when filling a storage bulb. All samples 

except O3 have been distilled trap-to-trap using a greaseless vacuum inlet line as a routine 

purification procedure. 

 

Figures 1 and 2 provide typical examples of uptakes of acidic probe gases on 

amorphous carbon FW 2 and TiO2 P25, respectively.  The sharp drop in MS signal at m/e 45 

(COOH+) and 36 (HCl+) is a consequence of exposing the sample compartment to the probe 

gas that obviously has a strong interaction with the respective substrate.  Figures 1 and 2 

clearly show that the gas uptake saturates after several hundred seconds, depending on the flow 

rate or partial pressure in the flow reactor.  The small decrease of the I0 level of the probe gas 

MS signal before opening and after closing the sample compartment is due to the decrease of 

the stagnant pressure in the vacuum line of the gas inlet.  Figures 3 and 4 show typical 

examples of uptakes of N(CH3)3 and O3 on amorphous carbon FS 101 and on soot from a rich 

hexane flame monitored at m/e 58 (C3NH8
+) and 48 (O3

+), respectively.  A look at Figure 4 

shows that the O3 uptake is not quite saturated after t = 1090 s, a behaviour we have observed 

previously for ozone interacting with Norit A charcoal 23.  We therefore have to regard the O3 
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uptake on hexane flame soot as a lower limiting value which should be to within 15% or so of 

the fully saturated value akin to the O3/charcoal case. 

 

The probe molecules taken up are converted into Ni
M(aerosol) values according to 

equations (3) and (4) and are listed in Table 2 which displays the results for all investigated 

carbonaceous and TiO2 aerosols.  Results obtained for blanks (empty Petri dishes) indicate that 

the correction for the uptake of the probe gas on the blanks may be significant in some cases. 

Indeed, depending on the probe gas, between 1 and 50 % of the uptake occurs onto the blank.  

Among the worst case is the reaction of HCl with hexane soot (lean flame) where 65 % of the 

uptake is attributed to the blank.  As toxicological studies frequently use mass as the particulate 

exposure metric, we have normalized the Ni
M(aerosol) values to mass (first row of each box in 

Table 2).  As the surface density of functional groups may be more relevant than mass, we 

present Ni
M(aerosol) values normalized to surface area (BET, second row, Table 2).  The 

values for the BET surface area of the used samples are either known from the manufacturer or 

have been measured using a Sorptomatic 1990 (Fisons Instruments) (N2) typically using 50 - 

100 mg of sample mass (see Table 2).  A third way of expressing the results is in terms of a 

formal molecular monolayer (third row, Table 2).  The estimated quantity of probe gas forming 

a monolayer (ML) was calculated from the bulk densities taken from the CRC Handbook 24 

using the expression  ML = (ρNL/M)2/3, where ρ, NL and M are the bulk density, Avogadro’s 

number and molar mass, respectively.  The following values for ML have been obtained: 

1ML(N(CH3)3) = 3.6 x 1014 molecule cm-2, 1ML(NH2OH) = 7.9 x 1014 molecule cm-2, 

1ML(HCl) = 8.6 x 1014 molecule cm-2, 1ML(CF3COOH) = 4.0 x 1014 molecule cm-2, 

1ML(NO2) = 7.1 x 1014 molecule cm-2, 1ML(O3) = 7.4 x 1014 molecule cm-2.  A look at Table 

2 reveals that the data span a wide range of Ni
M(aerosol) values, from 0.81 (N(CH3)3/FS 101) 

to 364 % of a molecular monolayer (O3/lean flame hexane soot). 

 

The measurement of the heterogeneous rate constant for uptake of the probe gas, 

khet, and the associated dimensionless uptake coefficient γ according to equations (1) and (2) 

are displayed in Table 3.  The results were obtained under the assumption of a first order rate 

law for the uptake process based on the geometric surface area of the sample support (equation 

(2)).  Owing to the very small masses of the solid substrate used, usually on the order of 1 to 3 

mg, we may have to contend with the possibility that the sample will not form a coherent layer 

across the sample support such that we state an uncertainty of a factor of two in γ. 
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Results and Discussion. 

Following our previous approach on the titration of interfacial functional groups on 

laboratory-generated aerosol particles by specific gas phase probe molecules 16,25 we 

emphasize that the present approach affords a broad classification of functional groups at the 

interface.  These interact with the gas phase on the time scale of the experiment given by 1/kesc 

(Table 1) on the order of 40 s or so.  The six probe gases, N(CH3)3, NH2OH, HCl, CF3COOH, 

NO2 and O3 have been selected in order to obtain an idea on the identity of the interfacial 

functional groups of the supported nanoparticles.  Here we deal with fairly well-defined 

aerosol particles rather than aerosols collected in the field 16.  These particles nevertheless 

display complexities depending on the way they were generated, usually through incomplete 

combustion in the case of amorphous carbon and soot, and through thermal oxidation in the 

case of TiO2.  For example, the organic phase of all carbonaceous samples listed in Table 2 

may reveal hundreds of distinct organic compounds if subjected to detailed analytical 

separation and identification 26,27.  The gas-phase titration technique used here preserves the 

average particle morphology as well as the location of the functional group relative to the 

interface, thus emphasizing surface composition rather than the investigation of the bulk 

composition of the particle.  Minimal perturbation of collected aerosols immobilized on filters 

or solid supports is desired, even mandatory, for many investigations.  The intent and purpose 

of the present work is the identification of functional groups on the surface of carbonaceous or 

other nanoparticles such as –COOH (carboxylic), -C(O)- (carbonyl or aldehydic), oxidizable 

groups such as –OH being part of hydroquinone-like structures, olefinic moieties as well as 

acidic and basic oxides that do not necessarily contain nitrogen.  For TiO2 nanoparticles the 

surface functionalities consist of surface hydroxyl groups whose acidity ranges from very basic 

to very acidic, as well as reactive surface and subsurface defects and/or O-atom vacancies. 

 

We stress that the present approach does not represent a proxy for the reactivity, in 

terms of both the rate and the reaction products, of aerosol particles in the condensed phase.  

Rather, the information gathered from the present approach will form the basis for an 

understanding of the reactivity of the aerosol interface in terms of the surface composition 

corresponding to surface functional groups reaching into the solution environment.  Based on 

heterogeneous chemistry, the results enable a partial understanding of the reactivity of the 

aerosol at the aerosol-atmosphere interface.  Moreover, we surmise that the aerosol interface 

composition will not significantly change when the aerosol particle is immersed into a liquid, 
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except perhaps for hydrolysis reactions, such that the results of the present approach may still 

give useful clues for solution studies. 

 

One must ask the question whether the proposed reactions uniquely identify the 

surface functional groups in cases no reaction products are detected.  Setyan et al. 16 come to 

the conclusion that the listed reactions are unique after consideration of other possible reactions 

of the gas phase probes.  Three stringent conditions for the occurrence of a titration reaction 

under the present reaction conditions have to be met:  The titration reaction must occur (a) 

rapidly on the time scale given by 1/kesc (see Table 1); (b) at ambient temperature; (c) at low 

partial pressure or concentration, typically in the range 1011 - 1013 molecule cm-3.  Under these 

restrictive conditions only the reactions discussed below are thought to occur in the Knudsen 

flow reactor under the present conditions.  A fourth requirement is that the probe reaction be 

irreversible on the time scale of the time required to saturate the interface.  For each 

nanoparticle/trace gas combination a test was performed by halting the trace gas flow, 

evacuating the sample chamber and repeating the uptake at the same gas flow.  In no case 

significant additional uptake has been observed in the second uptake experiment so that we 

conclude that indeed, uptake is irreversible on the stated time scale. 

 

Carbonaceous Particles. 

Trimethylamine is a strong base in the gas phase as measured by its proton affinity 

(PA = 942 kJ Mol-1 compared to 854 kJ Mol-1 for NH3) 
28 and is designed to probe strong as 

well as weak Lewis acidic interfacial sites according to reaction (5) in which the acidic site is 

represented by a carboxylic group: 

 

-COOH + N(CH3)3 → -COO-(CH3)3NH+     (5) 

 

This reaction is monitored by recording the loss of N(CH3)3 from the gas phase without 

detection of a reaction product owing to the formation of a salt.  In addition to carboxylic 

groups there are other acidic groups that may contribute to the acidity of organic compounds 

such as acidic oxides on combustion aerosol particles that have been extensively studied in the 

past by Hofmann and coworkers 29 and Boehm and coworkers 30-32. These will be discussed 

below in more detail. 
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The Ni
N(CH3)3(aerosol) values for trimethylamine displayed in Table 2 reveal a 

significant presence of Lewis acidic functional groups among all investigated carbonaceous 

nanoparticles.  We strongly suspect the presence of carboxylic groups generated in the 

combustion process similar to the occurrence of mono- and dicarboxylic acids resulting from 

photooxidation processes of biogenic hydrocarbons that end up as secondary organic aerosols 

(SOA) 26,27,33,34.  There is extensive evidence from field studies for the presence of organic 

mono- and dicarboxylic acids, especially in aged (= oxidized) secondary aerosols (SOA) 35,36.  

Although almost all investigations have so far only addressed the bulk phase of the sampled 

aerosols we make the assumption that carboxylic acids may also be found at the interface and 

are involved in the gas phase neutralization reaction with N(CH3)3.  In addition, combustion 

aerosols may contain acidic oxides (see Scheme I), a subgroup of interfacial oxides on carbon, 

that have been detected on suitably activated amorphous carbon through heat treatment in the 

presence of dry oxygen 14,29,31.  Some of these acidic oxides may be the precursors of surface 

carboxylic groups in the presence of water vapour.  In fact, Boehm and coworkers detect four 

different acidic surface groups, classified from I to IV 31.  Group I and II are identified as being 

a more and a less (lactone) acidic carboxylic group, respectively, with group III and IV being a 

phenolic and carbonyl group, respectively.  Scheme I, image A and B present a molecular 

model for groups I and II before and after reaction with a base, whereas images C (lactol) and 

D display the complete molecular model with all four groups.  These models are consistent 

with all chemical reactions occurring in solution which enable the identification of the surface 

functional groups present on activated charcoal or amorphous carbon.  By analogy we 

conclude that the interfacial reaction of gas phase N(CH3)3 proceeds similarly to reaction of 

these acidic oxides with strong base in solution in view of the large gas phase proton affinity of 

N(CH3)3. 

 

A closer look at the results for N(CH3)3 in Table 2 reveals low values of 

Ni
N(CH3)3(aerosol) of less than one per cent or so of a formal monolayer for the amorphous 

carbon samples as well as for hexane flame soot, both rich and lean flame.  In contrast, 

Ni
N(CH3)3

i values are high for FW2, on the order of a factor of ten larger than the foregoing akin 

to the “aged” Diesel soot samples SRM 2975 and Diesel TPG.  According to the 

manufacturer’s specifications the amorphous carbon FW 2 has been postoxidized using either 

HNO3 or H2O2 which would explain the increased Ni
N(CH3)3 values compared to the other two 

samples, namely FS 101 and Printex 60.  We take note that the “aged” Diesel soot samples 

SRM 2975 and Diesel TPG, both of which have been previously discussed 16,37 and which are 
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displayed in Table 2 for the sake of comparison, have an increased amount of acidic surface 

functional groups.  A stability test of the trimethylammonium salt at the saturated interface of 

amorphous carbon FW2 after laboratory storage for three months inside a sealable 

polytheylene bag revealed a 20% decay using a repeated uptake experiment at a similar partial 

pressure of N(CH3)3.  Based on these different studies, the general apparent sequence for the 

N(CH3)3 reactivity on different carbonaceous aerosol is the following: 

 

“aged” Diesel soot (SRM 2975 and Diesel TPG); amorphous carbon FW 2 > 

amorphous carbon Printex 60; FS 101; lean and rich hexane soot 

 

The reaction of hydroxylamine indicates the presence of carbonyl groups of 

aldehydes and ketones forming an oxime if catalytic amounts of organic acids are present as 

the reaction is general acid- or base-catalyzed 38.  The presence of catalytic amounts of acid 

seems to be necessary as a pure thin film of benzophenone failed to react under our 

experimental conditions 25.  The reaction occurs according to equation (6): 

 

R1R2-C=O + NH2OH → R1R2-C(OH)(NHOH) → R1R2-C=N-OH + H2O (6) 

 

Owing to the heterogeneous nature of the reaction under the present conditions the reaction 

may possibly also occur with carbonyl groups other than those of aldehydes and ketones:  

amides, organic acids, acid anhydrides and other carbonyl-bearing species could in principle 

also contribute to the reactivity towards NH2OH.  However, below we will present quantitative 

results that suggest that the presence of species other than aldehydes and ketones are unlikely 

which is in agreement with the results of Boehm 14. 

 

The Ni
NH2OH values for the carbonaceous substrates displayed in Table 2 are 

significant and are at variance with the results of Demirdjian for toluene soot from a diffusion 

flame 25.  Of note is that the used co-flow burners for both toluene and hexane soot are of very 

similar design and operated under near identical flow conditions so that we expected soot of 

comparable properties 18,20.  The amorphous carbon samples all show low reactivity towards 

oxime formation upon NH2OH exposure, whereas the aged Diesel particulate samples SRM 

2975 and Diesel TPG show a large amount of oxime formation.  Both hexane flame soot 

samples lie in-between the Diesel soot models and the amorphous carbons inasmuch as 

reaction with NH2OH is concerned which is noteworthy in view of our previous results on 



 13 

toluene flame soot which resulted in low values 25.  Printex 60 again shows the lowest 

reactivity and qualifies for a carbon substrate with a low number of surface functional groups.  

Owing to the fact that oxime formation is general acid catalyzed 38 the differential reactivity of 

the present carbonaceous samples may either be attributed to the availability or mobility of the 

acid or, more likely, to the number of available carbonyl groups at the interface.  The 

elucidation of this aspect of surface titration must await further experiments as is the question 

regarding the types of surface carbonyl groups that are able to undergo oxime formation in 

addition to aldehydes and ketones.  At this moment we rule out significant surface oxime 

formation by carboxylic groups because of the low Ni
N(CH3)3 values displayed in Table 2.  

These data suggest a surface density of carboxylic groups of less than a factor of ten compared 

to carbonyl groups. 

 

An additional potential ambiguity concerns the basic nature of both NH2OH and 

N(CH3)3, the former being a very much weaker base compared to the latter in both the gas 

phase (PA) as well as in solution (pKa).  If the Ni
NH2OH(aerosol) value were due to the basicity 

alone one would expect at most an identical, if not a smaller value compared to 

Ni
N(CH3)3(aerosol).  In fact, just the opposite is true by factors of several up to ten which points 

to a very limited role of NH2OH as a (weak) base when it interacts with the existing surface 

groups.  An obvious exception is that of FW2 which has a large number of oxidized surface 

sites owing to its scheduled postoxidation treatment.  We therefore tend to attribute the high 

reactivity of the aerosol surface towards NH2OH to oxime formation according to equation (6), 

aldehydes and ketones being the sole carriers of oxime formation.  Owing to the fact that 

carbonyl groups represent a functional group whose formal oxidation number is lower than for 

a carboxylic group we may state that NH2OH primarily interacts with aerosol particles whose 

surface is partially oxidized.  In contrast, the reaction with N(CH3)3 signals the presence of a 

totally oxidized interface mostly consisting of carboxylic groups. 

 

Acidic probe gases such as HCl and CF3COOH interact with interfacial Lewis base 

sites B: whose molecular identity is not known a priori.  Equation (7) displays the expected 

acid-base reaction with the generation of the acid-base complex or salt: 

 

B: + HCl/CF3COOH → B:H+Cl-/CF3COO-     (7) 
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In discussing acidities or basicities of surface functional groups we find it more 

appropriate to consider the corresponding gas phase rather than the solution values because the 

interface lacks extensive solvation capabilities, at least under the present experimental 

conditions of high vacuum and the extremely low relative humidites.  A rigorous proof for this 

assumption cannot be given at this time except to state that this concept enables several 

explanations of observations that are not possible when solution properties are used.  It is 

noteworthy that HCl is a weaker acid than CF3COOH in the gas phase in contrast to aqueous 

solution where solvating effects predominate 28.  Owing to the smaller proton affinity 

compared to Cl-, CF3COO- is less basic than Cl- (1350 vs. 1395 kJ Mol-1).  Therefore, the gas 

phase acidity of the conjugate acid HCl is lower than that of CF3COOH.  The basic sites may 

be embodied by basic oxides whose existence on combustion aerosol particles and associated 

reactivity have been extensively documented in the past 29,39-42.  The basicity does not need to 

be centered on a N-containing base such as an amine or pyridine, rather it may be located on 

O-containing “bases” or basic oxides such as displayed in Scheme II.  Indeed, relevant acid-

base reactions of α - and γ - pyrones that serve as model compounds for the basic oxides with 

HCl and CF3COOH lead to pyrylium salts upon neutralization (Scheme II).  In addition to the 

fact that certain carbonaceous substrates do not interact with either CF3COOH or HCl (see 

Table 2), the reactivities of the acidic probe gases with the basic oxides are in general lower 

than for the corresponding basic N(CH3)3 probe.  According to Table 2 SRM 2975 and Diesel 

TPG soot do not react with CF3COOH whereas all three amorphous carbons FS 101, Printex 

60 and FW 2 do.  For the HCl probe, the inverse is true:  FS 101 and FW 2 do not interact, 

Printex 60 does so marginally, whereas both SRM 2975 and Diesel TPG abundantly react with 

HCl. 

 

Basic oxides are generated when amorphous carbon is heated under dry conditions 

to 900°C and subsequently exposed to a humid atmosphere at ambient temperature 13,39.  

Depending on specific combustion conditions such as temperature, richness of flame and 

residence time it is not inconceivable that certain amorphous carbons may accumulate basic 

oxides on their surface.  Boehm and coworkers have found that acetic acid (CH3COOH) is 

taken up on basic oxides located on the surface of amorphous carbon in quantities larger by a 

factor of three to six compared to HCl 39.  We attribute this to charge delocalization in the 

acetate compared to the chloride ion thus rendering it more nucleophilic than acetate.  The rate 

of the reverse reaction in equation (7) will therefore be faster for Cl- than for CH3COO-, 

thereby shifting the equilibrium towards the acid-base complex (salt) for acetate compared to 
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chloride.  This may be explained by the fact that the reaction kinetics of CH3COO- + H+ → 

CH3COOH is slower than Cl- + H+ → HCl owing to charge delocalization in the acetate anion.  

This in turn will affect the equilibrium in equation (7) in agreement with the results of Boehm 

and coworkers 39.  We therefore take the ratio Ni
CF3COOH/Ni

HCl > 1 as an indication for the 

presence of basic oxides on the surface of these carbonaceous aerosol particles which does not 

preclude the presence of additional types of Lewis bases on the substrate at the same time.  

CF3COOH which has been used as a probe gas is a much stronger acid in solution compared to 

CH3COOH which has been used by Böhm and Voll 39.  Nevertheless, we expect a similar 

degree of delocalization, hence similar stabilization of the negative charge in both 

trifluoroacetate and acetate anion in view of their similar structure. 

 

Considering the above ratio from data displayed in Table 2 we conclude that all the 

investigated amorphous carbons, namely FS 101, Printex 60 and FW 2 and to a lesser extent 

hexane soot from a lean flame apparently contain basic oxides on their surface by virtue of the 

larger uptake of CF3COOH compared to HCl.  Interestingly, Setyan and coworkers 16 have 

investigated a secondary organic aerosol generated from photooxidation of limonene, a 

naturally occurring terpene (C10H16).  In this case the ratio Ni
CF3COOH/Ni

HCl amounts to a factor 

of ten and indicates the presence of basic oxides despite the fact that the aerosol was generated 

from photooxidation, whereas all aerosol substrates studied here have been generated from 

thermal oxidation or combustion.  In contrast, both “aged” Diesel soot substrates as well as 

soot from the rich hexane flame take up higher amounts of HCl than CF3COOH.  The same 

observation has been made for PM4 collected in the field 16.  Diesel TPG soot is noteworthy for 

its high absolute value of Ni
HCl(aerosol) in that it can bind significant amounts of HCl 

compared to all other substrates.  Moreover, the same substrate also contains a large number of 

acidic sites (see Table 2) in just about equal numbers.  This shows that a soot surface may 

contain a large number of Lewis base as well as acidic surface functional groups that act 

independently of each other.  A last remark concerns Printex 60 soot that once again shows a 

low number of basic sites compared to all other carbonaceous samples.  In the end, the present 

titration technique does not give detailed molecular information on the sites reacting with both 

CF3COOH and HCl.  However, the ratio Ni
CF3COOH/Ni

HCl reveals precious information on the 

possible presence of pyrone structures.  Moreover, the structure and identity of the remaining 

basic sites preferentially reacting with HCl remain to be elucidated in the future. 
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Both O3 and NO2 are oxidizers that may specifically interact with oxidizable, thus 

reduced sites on combustion particles according to equation (8): 

 

-Cred + O3/NO2 → -Cox + O2/N(II or III) (HONO or NO)   (8) 

 

O3 is a stronger oxidizer than NO2, therefore the extent of interaction of an oxidizable substrate 

with ozone will usually be larger than with NO2 (see Table 2).  The reaction product of O3 on 

carbonaceous aerosol particles is O2 
23 and of NO2 either HONO and/or NO 21, depending on 

the nature of the adsorbed organic phase.  Olefins are practically the only hydrocarbons that 

quickly react with O3 in gas phase ozonolysis reactions whose products and mechanism are 

well established 43.  In contrast, reactions of gas-phase polycyclic aromatic hydrocarbons 

(PAHs) with O3 are slow, except in cases where part of the hydrocarbon retains an olefinic 

character, such as for example in azulene, acenaphthylene and indene 44-47.  In contrast, the 

reaction rate constant for the reaction of O3 with PAH’s adsorbed on SiO2, graphite or Diesel 

soot is larger by two-to-three orders of magnitude compared to the corresponding reaction of 

gas phase PAH’s 48-51 when the disappearance of the PAH in the presence of O3 is monitored.  

The fundamental reason for this discrepancy is unclear at the moment, but it may be related to 

the nature of the adsorption site on the carbonaceous substrate. A significant fraction, namely 

up to 70% of the PAH’s adsorbed on graphite and amorphous carbon resists oxidative decay in 

the presence of O3, whereas the decay is quantitative for PAH’s adsorbed on SiO2 
48.  A similar 

situation holds for reactions of NO2 with PAH’s adsorbed on Diesel soot and silica whose 

competitive kinetics with OH free radical has been studied by Villenave and coworkers 52,53.  

Slower by four orders of magnitude compared to OH, the NO2/PAH reaction retains some 

structure-specific aspects but is deemed not to be of any atmospheric importance. 

 

Concerning the interaction with O3 and NO2 both types of hexane flame soot 

generated in the laboratory from a diffusion flame have a functional group density larger by at 

least a factor of ten compared to all other carbonaceous substrates except FS101.  In going 

from a rich to a lean hexane flame the result for NO2 displayed in Table 2 is as expected, that is 

Ni
NO2(aerosol) for the rich flame soot is larger by a factor of two compared to the lean flame 

soot.  We know that a rich hexane or decane flame generates an adsorbed organic phase that is 

less oxidized, hence interacts to a larger extent with NO2
18.  In contrast, when considering the 

analogous results for O3 as a probe gas interacting with hexane flame soot the ordering is 

inversed with values differing by only 50%.  Therefore, the reactivity of both hexane flame 
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soots towards O3 is apparently very similar.  Both the SRM 2975 as well as all three 

amorphous carbon samples have low Ni
NO2 values indicating their advanced state of surface 

oxidation in contrast to hexane flame soot that may be characterized by a fairly reduced 

surface.  An obvious exception is the Diesel TPG sample that apparently retains its reducing 

power despite its age, sample history and number of carboxylic groups based on N(CH3)3 

uptake (see Table 2).  In keeping with the relative oxidizing power of O3 vs. NO2, the Ni
O3 

values are larger by a factor of ten or more compared to NO2 for the corresponding substrates. 

 

Other methods of surface characterization of carbonaceous particles have been 

proposed such as surface-sensitive spectroscopic techniques 14,15.  However, these yield 

different answers compared to the presently used chemical interrogation of the particulate 

interface.  A nice illustration of the capabilities of modern spectroscopic techniques at 

resolving microstructural details of the complex surface of carbonaceous particles has been 

presented by Schlögl and coworkers 54.  The combination of high-resolution imaging, electron 

energy loss spectroscopy and C1s and O1s XPS led to significant correlations between the 

degree of sp2 and sp3 hybridization of carbon, the size of the graphene layers, their curvature 

and the O-content of the interface.  These microstructural details are a fingerprint of the soot 

samples that differ according to the source and the way they were generated by combustion and 

represent useful complementary structural information to the surface-chemical investigation 

performed in this work.  An interesting attempt at identifying and quantifying the surface 

functional groups of amorphous carbon (soot) was undertaken by Muckenhuber and Grothe 
55,56.  These workers used both temperature-programmed desorption MS (TPDMS) as well as 

Diffuse Reflectance FTIR Spectroscopy (DRIFTS) as diagnostic techniques after 

heterogeneous reaction of soot with the mild oxidizer NO2 at temperatures up to 400°C.  The 

thermal stability of the various generated surface functional groups after mild NO2 oxidation 

was subsequently probed by TPDMS and DRIFTS for the identification of the gas phase 

oxidation products and the remaining surface intermediates, respectively.  The reaction with 

NO2 occurs at the interface and leads to the formation of an acidic functional group that 

decomposes into CO2 and NO at 140°C.  DRIFTS successfully identified the precursor to this 

acidic group but not the group itself because of its rapid thermal decomposition.  In parallel, 

quantum mechanical calculations are beginning to address the thermal decomposition of 

oxidized graphenic soot platelets as reaction products from functionalized polycyclic aromatic 

hydrocarbon oxidation in order to support the interpretation of TPDMS experiments 57. 
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TiO2 aerosol particles. 

In contrast to nanoparticle properties much knowledge has accumulated on the 

structure, physics and surface/bulk chemistry of single crystal TiO2 which has recently been 

summarized by Diebold 58.  We therefore take the single crystal properties of TiO2 as a limiting 

behaviour for nanoparticles in terms of reactive surface sites that consist of oxygen vacancies 

as well as surface defects.  These oxygen vacancies on the surface of single crystal TiO2 

corresponding to penta-coordinated Ti3+ ions are bridged with reactive surface hydroxyl groups 

after exposure to water vapor that dissociatively chemisorbs 58.  These oxygen vacancies 

constitute approximately 5 to 10% of the surface area on the (110) face of rutile which we 

consider a lower limiting value for TiO2 nanoparticles.  In addition, subsurface O-vacancies 

and structural defects are important as they migrate towards the surface and participate in the 

reactivity of the TiO2 single crystal surface depending on several experimental parameters such 

as temperature and diffusion coefficients of these defects.  It seems therefore, that surface and 

bulk properties in TiO2 may not be viewed separately and that, apart from structural defects, 

the only chemically distinguishable surface functional group is (bridging) surface hydroxyl 

whose acidic properties span a wide range 58.  Titania (TiO2) has therefore both surface –OH 

groups as well as Lewis acid corresponding to structural defects, but no Brönsted acid sites that 

undergo reaction with either Brönsted or Lewis bases 59.  The Lewis acid character of pure 

TiO2 is preserved upon adsorption of heavy-metal oxides such as Fe2O3 
60.  Wet-chemical 

titration of bulk anatase TiO2 aqueous suspensions also indicated a continuous spectrum of the 

amphiphilic nature of surface OH-groups in TiO2 spanning the range from strongly acidic to 

basic OH groups 13.  Numerous N-containing compounds such as NH3, N2H4 and NH2OH 

preferentially interact with Lewis acid sites in view of the confirmed absence of Brönsted 

acidity in pure anatase TiO2 
59.  However, when titania contains contaminants such as SiO2 

significant Brönsted acidity may result.  Taking on a slightly different viewpoint, Boehm and 

coworkers have stated that the density of acidic and basic OH-groups in titania (including TiO2 

P25) are roughly balanced 14.  Assuming titania to be pure it appears that N(CH3)3 directly 

interacts with TiO2 as a Lewis acid akin to ammonia and hydroxylamine 61. 

 

Hydroxylamine strongly interacts with Lewis acid sites of pure TiO2 (anatase) 

despite the fact that it is a much weaker base than ammonia.  Both the pKa in aqueous solution 

as well as the gas phase proton affinity PA are larger for NH3 than for NH2OH 28:  pKa(NH3) = 

9.25, pKa (NH2OH) = 5.96; PA(NH3) = 854, PA(NH2OH) = 803 kJ Mol-1.  Trimethylamine, 

N(CH3)3, is an even stronger base than NH3 both in the gas phase as well as in aqueous 
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solution:  PA(N(CH3)3) = 942 kJ Mol-1, pKa(N(CH3)3) = 9.81.  This indicates that NH2OH 

specifically reacts as a base with Lewis acid sites of TiO2 in agreement with the fact that pure 

TiO2 is not a Brönsted acid 59. 

 

A look at Table 2 reveals a significant uptake of both N(CH3)3 and even more so of 

NH2OH at ambient temperature on all three TiO2 samples.  A very efficient reaction of NH2OH 

occurs on several formal monolayers of the TiO2 substrate, at least for two of the investigated 

substrates, namely TiO2 P25 and TiO2 50.  This means that hydroxylamine may undergo 

reaction with deeper layers of titania in subsurface reactions that have been well documented 

on TiO2 single crystal surfaces 58.  In addition, the most reactive sample towards NH2OH, TiO2 

P25, has been shown to contain traces of SiO2 
59 whose Brönsted activity may contribute 

somewhat to its high reactivity towards hydroxylamine.  The present data also indicate that 

N(CH3)3 and NH2OH uptake is the smallest for TiO2 with a high anatase content (TiO2 15 nm) 

compared to a TiO2 with a lower anatase content such as TiO2 50.  However, the anatase 

content given by the manufacturer a priori addresses the bulk composition which nevertheless 

does not preclude a systematic variation of the interface with the composition of the bulk.  

Under the present reaction conditions both N-containing compounds adsorb on the TiO2 

substrate until saturation with no observable products evolved at ambient temperature.  We 

emphasize that NH2OH apparently specifically reacts with bulk TiO2 in contrast to combustion 

aerosol where the probe gas primarily interacts with aldehydes and ketones that are presumably 

part of the adsorbed organic phase of the carbonaceous aerosol. 

 

As shown in Table 2 both acidic probes substantially interact with all three TiO2 

samples despite the fact that its Lewis acid character is well established 59.  Apparently, titania 

has the ability to bind acidic probe gases on basic sites akin to combustion aerosol particles 

owing to the presence of basic carbon oxides.  Compared to the carbonaceous substrates the 

Ni
M(aerosol) values for CF3COOH and HCl are large and of the same order of magnitude 

except for TiO2 50 that has a ten times higher Ni
HCl(aerosol) value.  In view of the fact that the 

generic TiO2 surface is a Lewis rather than a Brönsted acid 59, we explain the fairly uniform 

reactivity towards CF3COOH and HCl with the presence of surface hydroxyl groups that act as 

basic sites in agreement with results obtained by Flaig-Baumann 13.  The apparent exception, 

namely the titration of TiO2 50 by a large amount of HCl, may be attributed to the formation of 

an oxychloride whose presence will have to be investigated in future experiments.  Titration 

experiments in aqueous suspension of TiO2 P25 reveal a strong adsorption of acetic acid, but 
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none with strong mineral acids such as HCl and HClO4 
13.  A look at Table 2 shows that this 

trend is not borne out in the gas phase where there is even a slight preference for HCl 

adsorption compared to CF3COOH.  This is an example where the solution surface titration is 

different from the gas phase.  This change in differential reactivity of CF3COOH vs. HCl, the 

absence of any interaction of TiO2 with gas phase NO2 (see below) and the lack of CO2 

reaction on TiO2 
62 are three examples for a change in reactivity of probe gases between the 

gas- and the condensed phase.  In contrast, no differences in gas-condensed phase reactivities 

have so far been found for carbonaceous substrates. 

 

TiO2 does not interact with NO2 in the gas phase despite its well-documented 

reactivity on single crystals 58, but reacts with gas phase O3, most probably resulting in non-

catalytic decomposition of ozone and generating O2 
63-65.  Ozone reacts as a Lewis base and 

forms an adduct with titania which has Lewis acid character.  In contrast, TiO2 P25 reacts with 

NO2 in solution to surface nitrate whose IR absorption has been identified 13.  Owing to the 

absence of significant amounts of adsorbed H2O this reaction is thought to be a surface variant 

of the well-known disproportionation reaction leading to nitrate and nitrite according to 2NO2 

+ H2O → HNO3 + HONO.  The absence of a reaction in the gas phase as opposed to aqueous 

suspension may be attributed to the slow kinetics of disproportionation in the gas phase or at 

the interface.  The O3 uptake on TiO2 is non-catalytic because it saturates after uptake of 

between 1.2 to 18 formal monolayers (Table 2).  In addition, O2 generation ceases after 

saturation of the O3 uptake on TiO2.  It is conceivable that O3 “fills” oxygen vacancies of the 

nanoparticle surface as well as subsurface vacancies in view of ist strong oxidizing power.  No 

systematic trend between the anatase and rutile phase could be detected when considering the 

relative reactivities of all probe gases expressed by their Ni
M(aerosol) values.  This is perhaps 

not too surprising as the specific structure is a property of the bulk of the particle whereas the 

present titration scheme specifically addresses the surface composition and structure. 

 

Summary of Uptake Values 

The surface reactivities of the different substrates based on the comparison of the 

Ni
M(aerosol)  values for all six probe gases may be summarized as follows: 

• Printex 60 has a significantly lower functional group density throughout, compared to other 

investigated carbonaceous substrates. 

• FS 101 is a highly “reduced” combustion aerosol based on its reactivity with O3. 
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• Diesel TPG aerosol particles are highly reactive except towards CF3COOH which suggests 

that these nanoparticles do not have significant amounts of basic oxides. The surface density 

(Ni
M(aerosol)) of all other carbonaceous particles are comprised between the extremes of 

Printex 60 and Diesel TPG, representing the average minimum and maximum values of Ni
M, 

respectively. 

• All three amorphous carbons together with lean hexane flame soot contain basic oxides as 

gauged by the larger Ni
M values for CF3COOH than for HCl in contrast to other carbonaceous 

particles 

• Due to the large number of surface functional groups which can be oxidized by O3 and 

NO2, laboratory soot from a hexane flame presents a “reduced” surface, akin to amorphous 

carbon FS 101. 

• TiO2 displays a large reactivity towards NH2OH, CF3COOH and HCl which is in 

agreement with the continuous distribution of acidic and basic OH groups on the surface of 

TiO2.  These go from Lewis acidic to Lewis basic character. 

• On TiO2 ozone decomposition is non-catalytic owing to rapid saturation of O3 uptake and 

generates O2 as a reaction product. 

• Akin to Printex 60 TiO2 15 has the lowest density of functional groups across all probe 

gases among the three studied TiO2 samples despite the smallest size of its primary particles 

and the highest anatase content. 

 

Uptake Kinetics. 

Table 3 displays the initial uptake coefficients γ0 that have been obtained from the 

MS data such as displayed in Figures 1 to 4 according to equations (1) and (2).  As indicated 

above the γ0 values have been obtained by using the geometric surface area (As) resulting in 

larger values of γ0 compared to the same data normalized to the BET surface area because of 

the small geometric relative to the large BET surface area.  A comparison between Tables 2 

and 3 reveals that the uptake probability is roughly correlated with Ni
M(aerosol).  The 

carbonaceous particles FW 2, SRM 2975 and Diesel TPG, taken as a group, have both high 

values of Ni
N(CH3)3 and Ni

NH2OH as well as large corresponding values γ0.  This relationship is 

expected because a high density of functional groups will lead to rapid uptake of the probe gas 

according to Equation (2).  The uptake kinetics scales with the surface As of the substrate, 

everything else being equal.  In addition, the γ0 values of N(CH3)3 and NH2OH for all 

carbonaceous particles are correlated which is also expected owing to the general acid 
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catalyzed nature of the oxime formation reaction, Equation (6):  the higher the acidic group 

density (measured by Ni
N(CH3)3), the higher is the corresponding γ0 and the faster is the oxime 

formation owing to the large catalyst concentration on the surface at a high value of Ni
N(CH3)3.  

A look at Table 2 and 3 provides further examples of such correlated behaviour between Ni
M 

and γ0, such as Ni
CF3COOH for FS 101, Printex 60 and FW2 or Ni

HCl for Diesel TPG.  However, 

there are also exceptions, especially for O3 as a probe gas.  Ni
O3 for Printex 60 γ0 is 

unexpectedly large, whereas the reverse is true for Ni
O3 for both hexane flame soots where γ0 

seems too small for the measured value of Ni
O3.  When one considers the results for all three 

TiO2 samples displayed in Table 3 one comes to the conclusion that there is also a rough 

correspondence of γ0 with the bulk anatase content of TiO2 in the order TiO2 15 > TiO2 P25 > 

TiO2 50.  In addition, the γ0 values for HCl are in general larger compared to CF3COOH 

uptake.  The geometric area is the correct metric to use when dealing with the initial uptake 

probability γ0 because the probe gas does not have the opportunity to explore the combined 

internal and external surface area in the short available reaction time, usually on the order of a 

few seconds or less.  On the other hand, we are faced with considerable uncertainties of sample 

presentation when the masses of the substrates are as small as in the present work.  We believe 

that the uptake probability γ0 is an additional useful parameter to gauge the reactivity of aerosol 

surfaces towards probe gases. 

 

Conclusions 

 

The Knudsen cell is a suitable experimental tool for the characterization of the density 

of chemical surface functions of nanoparticles.  The advantage of this technique compared to 

spectroscopic methods is that the obtained result is based on the particle surface reactivity  

towards different probe gases.  Quantitative surface densities of functional groups are 

obtained in combination with a metric for the external surface of the nanoparticles.  Such 

reactivity information is thought to be of prime importance to understand the potential 

toxicologic effects of nanoparticles.  The following general observations may be made: 

• The aerosol interface of the studied combustion and TiO2 nanoparticles is 

multifunctional,  combining acidic, basic, oxidizable [= reduced] and carbonyl 

functions on the same particle surface.  The relative distribution of these surface 

groups may be a useful indicator for the state of oxidation in the case of a 

carbonaceous particle, and/or reactivity of a particle surface. 
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• The density of functional groups on the carbonaceous (combustion) aerosol 

surface is variable depending on the combustion conditions in contrast to the three 

investigated TiO2 nanoparticle materials, whose surface shows a more uniform 

density of surface functional groups. 

• A rough correlation exists between the uptake kinetics, expressed as the reaction 

probability per gas-surface collision, and the density of surface functional groups as 

expected from theory.  However, there are also exceptions which indicate that there 

may be structural parameters also influencing the uptake kinetics. 
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Table 1  Knudsen flow reactor parameters for the 1mm nominal diameter aperture. 
 
Parametera Value 
Volume of the reactor V = 1830 [cm3] 
Estimated surface area of the reactor S = 1300 [cm2] 
Geometric surface area of the samples As = 12.6 [cm2] for both hexane soot samples 

As = 3.14 [cm2] for FS 101, Printex 60, FW 2, SRM  
        2975, Diesel TPG and TiO2 samples 

Escape orifice diameter Ø = 1 [mm] 
Chopper frequency 225 [Hz] 
Concentration of gas-phase probes in the reactor 1013 [molecule/cm3] 
Molecular flow rate of gas-phase probes 5 . 1014 [molecule/sec] 
Escape rate constant kesc = 0.010 · M/T  [s-1] 

 
aT = temperature [K], M = molecular mass [g/mol]. 

 
 
 
 
 
 
 
 
Table 3.  Initial uptake coefficient γ0 of heterogeneous chemical reactions between gas phase probe molecules and 
supported aerosol nanoparticles obtained using the Knudsen flow reactor based on the geometric surface area of 
the sample support.  Values in brackets correspond to the standard deviation of duplicates. 
 
 
 N(CH3)3 NH2OH CF3COOH HCl O 3 NO2 
FS 101 7.8 (±0.4) · 10-4 6.1 (±1.0) · 10-4 7.9 (±0.6) · 10-3 no reaction 1.1 (±0.1) · 10-2 3.8 (±0.3) · 10-4 
Printex 60 9.9 (±0.6) · 10-4 9.9 (±1.7) · 10-4 2.2 (±0.2) · 10-2 2.1 (±0.1) · 10-3 1.0 (±0.1) · 10-1 1.8 (±0.2) · 10-3 
FW 2 4.3 (±0.2) · 10-2 4.4 (±0.7) · 10-2 1.6 (±0.1) · 10-2 no reaction 1.1 (±0.1) · 10-1 5.8 (±0.5) · 10-3 
SRM 2975 2.4 (±0.1) · 10-2 1.5 (±0.3) · 10-2 no reaction 2.9 (±0.1) · 10-3 5.8 (±0.5) · 10-4 6.3 (±0.5) · 10-4 
Diesel TPG 1.3 (±0.1) · 10-2 2.1 (±0.4) · 10-2 no reaction 1.3 (±0.1) · 10-2 1.0 (±0.1) · 10-2 1.4 (±0.1) · 10-3 
Hexane rich flame 8.4 (±0.5) · 10-5 4.2 (±0.7) · 10-4 3.6 (±0.3) · 10-4 2.0 (±0.1) · 10-4 1.6 (±0.1) · 10-3 2.8 (±0.2) · 10-3 
Hexane lean flame 8.7 (±0.5) · 10-5 1.5 (±0.3) · 10-3 2.9 (±0.2) · 10-3 1.7 (±0.1) · 10-4 2.4 (±0.2) · 10-2 2.5 (±0.2) · 10-3 
TiO 2 15 2.5 (±0.1) · 10-1 8.4 (±1.4) · 10-2 5.5 (±0.4) · 10-2 1.4 (±0.1) · 10-1 1.0 (±0.1) · 10-3 no reaction 
TiO 2 50 6.5 (±0.4) · 10-3 1.5 (±0.3) · 10-2 1.0 (±0.1) · 10-2 1.9 (±0.1) · 10-2 6.4 (±0.5) · 10-4 no reaction 
TiO 2 P25 4.5 (±0.3) · 10-2 5.9 (±1.0) · 10-2 3.5 (±0.3) · 10-2 1.5 (±0.1) · 10-1 1.5 (±0.1) · 10-3 no reaction 
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Table 2  Uptake Ni(aerosol) of six probe gases in molecular units.  Values displayed in first, second and third row 
of each box correspond to uptake per mg, per cm2 of substrate and to a formal molecular monolayer in % (see 
text), respectively. Typical uncertainty derived from duplicates is ± 15% for all three entries per box. 
 
 

 Surface BET 
[m2/g] N(CH3)3 NH2OH CF3COOH HCl O3 NO2 

FS 101 
 

20a 
5.8 . 1014 
2.9 . 1012 

0.81 

1.2 . 1016 
6.0 . 1013 

7.6 

1.8 . 1015 
9.2 . 1012 

2.3 
No reaction 

7.3 . 1017 
3.7 . 1015 

498.0 

2.0 . 1015 
9.8 . 1012 

1.4 

Printex 60 
 

115a 
1.5 . 1015 
1.3 . 1012 

0.36 

2.1 . 1016 
1.8 . 1013 

2.3 

4.0 . 1015 
3.5 . 1012 

0.9 

8.2 . 1014 
7.1 . 1011 

0.08 

6.4 . 1016 
5.6 . 1013 

7.5 

7.4 . 1015 
6.4 . 1012 

0.90 

FW 2 
 

460a 
2.4 . 1017 
5.2 . 1013 

14.5 

4.4 . 1017 
9.6 . 1013 

12.2 

4.5 . 1016 
9.9 . 1012 

2.5 
No reaction 

4.4 . 1017 
9.6 . 1013 

12.9 

4.1 . 1016 
8.9 . 1012 

1.3 

SRM 2975 91 
4.9 . 1016 
5.3 . 1013 

14.7 

1.3 . 1018 
1.5 . 1015 

191.1 
No reaction 

2.4 . 1015 
2.6 . 1012 

0.3 

8.3 . 1015 
9.1 . 1012 

1.2 

3.2 . 1015 
3.5 . 1012 

0.49 

Diesel TPG 53.2f 
3.1 . 1016 
5.8 . 1013 

16.1 

1.4 . 1018 
2.6 . 1015 

331.2 
No reaction 

4.6 . 1016 
8.7 . 1013 

10.1 

1.3 . 1017 
2.5 . 1014 

33.7 

1.3 . 1016 
2.4 . 1013 

3.38 

Hexane soot 
from rich flame 

48.9f 
1.8 . 1015 
3.8  1012 

1.1 

2.1 . 1017 
4.4  1014 

55.7 

1.8 . 1015 
3.8  1012 

0.9 

9.0 . 1015 
1.9  1013 

2.2 

9.5 . 1017 
2.0  1015 
266.4 

2.6 . 1016 
5.4  1013 

7.6 

Hexane soot 
from lean flame 

74.3f 
2.8 . 1015 
3.8  1012 

1.1 

3.3 . 1017 
4.5  1014 

56.8 

3.2 . 1015 
4.3  1012 

1.1 

3.1 . 1015 
4.2  1012 

0.5 

2.0 . 1018 
2.7  1015 
364.0 

1.9 . 1016 
2.6  1013 

3.6 

cTiO 2 15 210±10b 
1.4 . 1017 
6.6 . 1013 

18.3 

2.7 . 1018 
1.1 . 1015 

140.1 

1.1 . 1017 
5.3 . 1013 

13.1 

3.9 . 1017 
1.9 . 1014 

22.1 

1.9 . 1016 
9.1 . 1012 

1.2 
No reaction 

dTiO 2 50 21.4b 
3.2 . 1016 
1.5 . 1014 

41.7 

1.5 . 1018 
7.0 . 1015 

892 

1.2 . 1016 
5.7 . 1013 

14.1 

3.9 . 1017 
1.8 . 1015 

209.3 

7.1 . 1015 
3.3 . 1013 

4.44 
No reaction 

eTiO 2 P25 50±15a 
6.4 . 1016 
1.3 . 1014 

36.1 

3.9 . 1018 
7.7 . 1015 

981 

1.1 . 1016 
2.3 . 1013 

5.7 

1.4 . 1017 
2.8 . 1014 

32.6 

6.4 . 1016 
1.3 . 1014 

17.5 
No reaction 

 
a Data given by manufacturer (Evonik AG)   dTiO2 50 nm : 65% anatase, 35% rutile (bulk) 
b Data given by manufacturer (Sigma-Aldrich AG)  eTiO2 P25:  80-90% anatase, balance rutile (bulk). 
cTiO2 15 nm : 98% anatase, 2% rutile (bulk)   fDetermined at EPFL (see under Experimental). 
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Figure Captions 

 

Figure 1.  Raw data of CF3COOH uptake on 1.77 mg of amorphous carbon FW 2 at a flow rate 

of 2.8 x 1014 molecule s-1 monitored at m/e 45 in the 1 mm diameter aperture Knudsen flow 

reactor (kesc = 0.0214 s-1) leading to the initial uptake coefficient γ0 = 3.9 x 10-3. 

 

Figure 2.  Raw data of HCl uptake on 1.93 mg of TiO2 P25 powder at a flow rate of 9.4 x 1014 

molecule s-1 monitored at m/e 36 in the 1 mm diameter aperture Knudsen flow reactor (kesc = 

0.0443 s-1) leading to the initial uptake coefficient γ0 = 3.7 x 10-3. 

 

Figure 3.  Raw data of N(CH3)3 uptake on 10.0 mg amorphous carbon FS 101 at a flow rate of 

6.4 x 1014 molecule s-1 monitored at m/e 58 in the 1 mm diameter aperture Knudsen flow 

reactor (kesc = 0.0308 s-1) leading to the initial uptake coefficient γ0 = 2.0 x 10-4. 

 

Figure 4.  Raw data of O3 uptake on 1.14 mg of soot from a rich hexane flame at a flow rate of 

6.7 x 1015 molecule s-1 monitored at m/e 48 in the 1 mm diameter aperture Knudsen flow 

reactor (kesc = 0.0509 s-1) leading to the initial uptake coefficient γ0 = 1.6 x 10-3. 
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Fig. 1 

 

HCl uptake on TiO2 P25
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Fig. 2 
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N(CH3)3 uptake on FS 101
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Fig. 3 

 

O3 vs hexane soot rich flame
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Fig. 4 
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Scheme I (Carbonaceous surface acidic oxide neutralization) 
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Scheme II (Carbonaceous surface basic oxide neutralization.  The wavy line in the formula of 

Scheme II indicates that both O-functionalities are not required to be part of the same aromatic 

ring system but may be separated by one or several aromatic rings.) 
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