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Abstract:
In this contribution, we explore the feature extraction framework to ease the knowledge transfer
in the thematic classification of multiple remotely sensed images. By projecting the images in a
common feature space, the purpose is to statistically align a given target image to another source
image of the same type for which we dispose of already collected ground truth. Therefore, a
classifier trained on the source image can directly be applied on the target image. We analyze and
compare the performance of classic feature extraction techniques and that of a dedicated method
issued from the field of domain adaptation. We also test the influence of different setups of the
problem, namely the application of histogram matching and the origin of the samples used to
compute the projections. Experiments on multi- and hyper-spectral images reveal the benefits of
the feature extraction step and highlight insightful properties of the different adopted strategies.

1 INTRODUCTION

In the field of remote sensing, when dealing
with the supervised thematic classification of a
given image, the availability of labeled samples
from other acquisitions can alleviate the effort
associated with the ground truth collection task.
Therefore, procedures allowing a classifier trained
on one image, the source image, to perform effi-
ciently on a different but related image (same sen-
sor and set of classes), the target image, are highly
demanded by the users [Bruzzone and Prieto,
2001]. These techniques could limit the expen-
sive field campaigns or time-consuming photo in-
terpretation analyses needed to define a training
set when previously obtained information linking
spectral signatures and ground cover classes is
not available. However, there can be heavy ra-
diometric differences between the images due to
varying illumination and atmospheric conditions,
seasonal effects affecting the vegetation, changing
acquisition geometry, etc. These factors induce
a shift in the statistical distribution of the land
cover spectra.

To address this issue and make the images
more similar to each other, the basic approaches
involve the use of demanding physical models
(e.g. atmospheric compensations) or very simple
signature extension approaches [Woodcock et al.,

2001]. Recently, other more sophisticated strate-
gies, relying on the statistical properties of the an-
alyzed datasets, have been proposed. To improve
the standard univariate PDF matching procedure
of histogram matching (HM), in [Inamdar et al.,
2008] the authors propose its multivariate exten-
sion. Such a procedure is designed to take into
account the correlation between bands. In [Tuia
et al., 2012], a correspondence between the data
manifolds is sought by means of graphs in order
to deform and align the images.

In the pattern recognition and machine learn-
ing communities, the above-mentioned problems
are studied in the framework known as domain
adaptation (DA) [Pan and Yang, 2010]. Among
the DA methods, we find a set of techniques
aimed at transferring the knowledge via the so-
called feature-representation-transfer approach.
The goal of this type of procedures is to build a set
of shared and invariant features, either by feature
extraction (FE) or by feature selection, which are
able to reduce the differences of statistical distri-
bution between the two domains.

Subsequently, one is enabled to apply a model
trained on the source image to classify another
target image of interest. The same line of rea-
soning applies to localized reference data, only
partially covering the complete class distribution.



When these data have to be used to general-
ize over the entire image, a sample selection bias
problem is likely to occur. In remote sensing, the
two aforementioned DA problems are addressed
by partially unsupervised or semi-supervised clas-
sification tasks.

In the literature, while a wealth of differ-
ent FE methods have been applied to single im-
ages [Arenas-Garćıa and Petersen, 2009], few pa-
pers tackle the simultaneous analysis of multiple
remotely sensed images through dimensionality
reduction. In [Nielsen et al., 1998], the authors in-
troduce a method, based on canonical correlation
analysis, to detect changes in bi-temporal images.
The technique aims at projecting the samples into
a space where the extracted components display
similar values for the unchanged regions while
maximally differing on the changed ones. How-
ever, this methodology is restricted to the study
of spatially co-registered images. The selection of
invariant features is investigated in [Bruzzone and
Persello, 2009]. It has been proven that, when
working with a hyperspectral image, it is possible
to select a discriminant subset of the numerous
bands that bears the highest spatial invariance
across the image to improve the generalization
abilities of a classifier.

In the present contribution we study the appli-
cation of FE techniques to reduce the distribution
divergence between source and target domains
while keeping the main data properties. We
study their impact when implemented in a cross-
domain setting in combination with the widely
used HM procedure. Starting with images hav-
ing either unmatched (original) or matched his-
tograms, prior to the classification task, FE is
performed on a subset of pixels coming either
from a single or from both images. Once the
projection is defined, a common identical map-
ping of the images is carried out. In the new
feature space, we should observe: 1) datasets dis-
playing more similar probability distributions and
2) more separable thematic classes. Then, a sim-
ple supervised classifier learned on the source im-
age, where the pixels have been sampled, could be
used to predict the target image. In our experi-
ments, keeping fixed the base classifier, we com-
pare the effectiveness of FE via Principal Com-
ponent Analysis (PCA), Kernel Principal Compo-
nent Analysis (KPCA) and Transfer Component
Analysis (TCA), which is a procedure especially
designed for DA. Additionally, we investigate the
influence of other factors affecting the knowledge
transfer process, such as the origin (source image
only or both images) of the pixels used to define
the projection or the nature (linear or non-linear)
of the classification model.

2 DOMAIN ADAPTATION VIA
FEATURE EXTRACTION

Let DS = {XS , YS} = {(xSi
, ySi

)}ns
i=1 be

the set of ns labeled source training data and
XT = {xTj}

nt
j=1 the set of the nt unlabeled tar-

get data, with samples xSi
,xTj

∈ Rd ∀ i, j. The
goal of the partially unsupervised approaches con-
sidered in this paper is to predict labels yTj

∈
Ω = {ωc}Cc=1 (set of C classes in common with
DS) based exclusively on the use of labeled data
from DS in the training phase. To this end, a
common mapping φ of the samples of both do-
mains is needed such that P (X∗S) ≈ P (X∗T ), with
X∗S = φ(XS), X∗T = φ(XT ). In practice, we need
a matrix W to perform the joint mapping φ of the
data. This mapping matrix can be found based
on a subset of samples X from either

• the two domains, i.e. X ⊆ XS ∪XT , or

• one domain only, i.e. X ⊆ XS (or XT ).

Standard FE methods can be employed to es-
timate W and embed data in a m-dimensional
space with m � d. In the next sections, we will
briefly illustrate two techniques for non-linear FE.

2.1 Kernel Principal Component
Analysis

Kernel PCA [Schölkopf et al., 1998], the non-
linear counterpart of standard PCA, aims at ex-
tracting a set of features or components onto
which it projects the original data to improve
their representation.

Let us consider the n × d matrix X =
[x1, . . . ,xn]> composed of the n column vectors
xi ∈ Rd belonging to dataset X (centered to zero
mean). Classical PCA aims at finding the direc-
tions of maximal variance (i.e. diagonalizing the
covariance matrix) by solving the following eigen-
problem (primal formulation)

1

n− 1
X>Xu = λu . (1)

It is possible to show that the corresponding
dual formulation leading to KPCA

1

n− 1
XX>α = λα (2)

yields the same non-zero eigenvalues λ and that
its eigenvectors α are related to their primal
counterparts u.

By applying the well-known kernel trick in or-
der to implicitly simulate a mapping ϕ of the sam-
ples into a higher-dimensional Reproducing Ker-
nel Hilbert Space (RKHS), Eq. (2) becomes

1
n−1ϕ(X)ϕ(X)>α = λα ⇔

1
n−1Kα = λα ,

(3)



where K is the kernel matrix of elements Ki,j =
ϕ(xi)

>ϕ(xj). Dropping the 1/(n− 1) factor and

by using the centered kernel matrix K̃ = HKH,
with centering matrix H = In−1n1>n /n, the final
KPCA eigenvalue problem is set up as

K̃α = λα . (4)

The resulting projection of some test samples
Xtest (e.g. the complete images) on the first
m kernel principal components is expressed as
X∗test = K̃testW, where K̃test is the centered test
kernel and W is constituted by the first m eigen-
vectors [α1, . . . ,αm].

2.2 Transfer Component Analysis
The other kernel-based FE technique we tested
is especially designed for DA. In fact, the TCA
method [Pan et al., 2011] aims at finding a com-
mon embedding of the data from the two domains
that minimizes the divergence between the distri-
butions. To estimate this shift, TCA resorts to a
recently proposed measure, the Maximum Mean
Discrepancy (MMD) [Borgwardt et al., 2006].
This is a non-parametric, kernel-based, multivari-
ate measure of divergence between probability
distributions.

The empirical estimate of the MMD between
distributions of a given source dataset XS and
target dataset XT is computed as

MMD(XS , XT ) = Tr(KL) , (5)

where

K =

[
KS,S KS,T

KT,S KT,T

]
∈ R(ns+nt)×(ns+nt) , (6)

with KS,S ,KT,T ,KS,T ,KT,S being the kernel
matrices obtained from the data of the source do-
main, target domain and cross domains, respec-
tively. Moreover, if xi,xj ∈ XS , then Li,j =
1/n2s, else if xi,xj ∈ XT we have Li,j = 1/n2t ,
otherwise, Li,j = −1/nsnt. We interpret MMD
as the squared distance between the means, com-
puted in the feature space, of the samples belong-
ing to the two domains. This quantity equals zero
when the two distributions are exactly the same.

The purpose of the TCA algorithm is to find
a mapping function φ, and thus a projection ma-
trix W ∈ R(ns+nt)×m (with m � ns + nt), that
is able to reduce the distance between the prob-
ability distributions of φ(XS) and φ(XT ) (MMD
minimization) while preserving the main proper-
ties of the original data XS and XT (maximiza-
tion of data variance as in PCA and KPCA).

The kernel learning problem solved by TCA is

minW

{
Tr(W>KLKW) + µTr(W>W)

}
s.t. Σ∗ = Im . (7)

The first term is the MMD between mapped sam-
ples MMD(X∗S , X

∗
T ), which should thus be mini-

mized according to the TCA objectives. The sec-
ond one is a regularizer controlling the complexity
of W, whose influence is tuned by the tradeoff
parameter µ. The constraint is used to enforce
variance maximization, which is the other goal
of TCA. Indeed, Σ∗ = W>K̃W is the covariance
matrix of the data in the projection space which is
constrained to orthogonality by the identity ma-
trix Im.

The problem in (7) can be reformulated as a
trace maximization problem whose solution yields
the mapping matrix W through the eigendecom-
position of

M = (KLK + µI)−1KHK , (8)

and keeping the m eigenvectors associated with
the m largest eigenvalues eig(M).

Finally, we compute the m transfer
components for new test samples Xtest as
X∗test = KtestW, where Ktest is the test kernel.

3 DATA DESCRIPTION AND
EXPERIMENTAL SETUP

3.1 Datasets
The first dataset used for the experiments is the
1.3 m spatial resolution image acquired by the
ROSIS-03 hyperspectral sensor over the city of
Pavia, Italy. The 102 retained bands cover a re-
gion of the spectrum between 0.43 and 0.86 µm.
In this urban setting, 4 classes have been taken
into account: “buildings”, “roads”, “shadows”
and “vegetation”. Because of different materi-
als constituting the roofs as well as the roads and
due to the different types of vegetation, the spec-
tral signatures of these ground cover classes bear
a remarkable variation across the image.

Thus, we considered two spatially disjoint sub-
sets of the scene to assess the ability of the differ-
ent FE techniques in transferring the knowledge:
a source sub-region of 172×123 pixels and a tar-
get sub-region 350×350 pixels. The spatial extent
of the starting source sub-image is quite small,
raising the question of the representativity of the
training samples while generalizing over the Pavia
scene (simulated sample selection bias problem).
Indeed, the description of the classes is presum-
ably not rich enough to account for the complete
variation of the spectral signatures. The dataset
shift level is here deemed to be light.

The second dataset consists of two VHR
QuickBird images of two different neighborhoods
of the city of Zurich, Switzerland, acquired in Au-
gust 2002 and in October 2006. For the empirical



assessment of the techniques, we defined the im-
age of 2006 as being the source image while taking
the 2002 image as the target image. The shift oc-
curred between the two acquisitions is judged as
large in this case. In fact, we notice differences in
illumination conditions due to the sun elevation
and acquisition geometry, seasonal effects affect-
ing the vegetation and a different nature of the
materials used for roofs and roads. The stan-
dard 4 QuickBird bands in the VNIR spectrum
(450 to 900 nm) have been completed by textu-
ral and morphological features to reach a final set
of 16 features. For the classification task we de-
fined 5 classes found on both images: “buildings”,
“roads”, “grass”, “trees” and “shadows”.

For the two datasets, the variables have been
normalized to zero mean and unit variance, based
on the source image descriptive statistics.

3.2 Design of the experiments

In order to comprehensively assess the advantages
of the different FE methods when combined with
linear or non-linear models, we chose Linear Dis-
criminant Analysis (LDA) and Quadratic Dis-
criminant Analysis (QDA) as base classifiers.

For the key FE step we applied the 3 men-
tioned techniques: PCA, KPCA and TCA. The
σ parameter of the Gaussian RBF kernel, used for
both the KPCA and TCA, has been set as the me-
dian distance among the data points. A sensitiv-
ity analysis and other previous works [Pan et al.,
2011], suggested to set to 1 the value for the TCA
tradeoff parameter µ. The classification models
have been trained with source samples mapped
into a space of increasing dimension (1 to 18 or
15 features for the Pavia and Zurich datasets, re-
spectively). PCA and KPCA have been run in
3 different settings. First, the mapping matrix
W has been computed based on samples com-
ing from both images (standard setting). A sec-
ond test involved a FE on the source image alone,
with a subsequent identical mapping of the target
image (same W used for the projection of both
domains). The third approach considered a sep-
arate, independent, mapping of the two domains
(different W). In this setting, just the results
with PCA are reported. TCA was only run in
the first setting, since this technique is explicitly
designed to handle data issued from two different
domains. As upper and lower bounds, classifiers
trained with samples only belonging to the target
or source image have also been tested. In these
cases, the input space was constituted by the orig-
inal spectral bands (plus spatial information for
the Zurich images). A summary of all these set-
tings with related names is reported in Tab. 1.

Name FE
method

FE
based on

Classifier
trained on

(L/Q)DAtgt - - target im.
(L/Q)DAsrc - - source im.

(L/Q)DA PCA PCA both im. source im.
(L/Q)DA PCA 1DOM PCA source im. source im.
(L/Q)DA PCA INDEP PCA both im. indep. source im.

(L/Q)DA KPCA KPCA both im. source im.
(L/Q)DA KPCA 1DOM KPCA source im. source im.

(L/Q)DA TCA TCA both im. source im.

Table 1: Methods and settings compared in the exper-
iments using either LDA (L) or QDA (Q) as classifiers.

The influence of the HM procedure as a pre-
processing step has also been investigated. The
series of experiments depicted above has been car-
ried out without and with the univariate match
of the distributions of the two images (source im-
age as reference). To capture the hypothetic loss
in accuracy when re-predicting on the source im-
age after having extracted the features using data
from both images, classification performances on
the source images have also been recorded.

For both datasets, 200 pixels per class have
been retained to build the training sets. The set
of unlabeled target pixels used to compute the
projection counted 200 · C pixels randomly se-
lected all over the corresponding image. Exper-
iments with 10 independent realizations of these
sets have been run to ensure a fair comparison.

4 RESULTS AND DISCUSSION

4.1 Pavia ROSIS dataset
The left panel of Fig. 1 depicts the performance
of the LDA on the Pavia target image. Fig. 1(a)
reports the results obtained on the raw im-
ages, whereas Fig. 1(b) shows the behavior after
HM. One can notice the large gap between in-
domain (LDAtgt: solid blue line) and out-domain
(LDAsrc: dashed red line) models existing in both
plots. Nonetheless, the impact of the HM as a
preprocessing step is quite remarkable. In fact,
LDA models trained on original target data out-
perform LDA models based on original source
data by 0.356 κ points when no matching is per-
formed, while this difference reduces to 0.188 κ
points after matching.

In between these reference lines, we observe
two distinct trends. The first one concerns kernel-
based FE methods (LDA KPCA: dashed purple line,
LDA KPCA 1DOM: solid light green line, LDA TCA:
dashed black line) that yield a robust perfor-
mance with accuracies reaching and even exceed-
ing those of the target models when using at
least 14 (no HM) or 8 (with HM) extracted fea-
tures. After these thresholds, the 3 techniques
converge to very similar performances, indicat-
ing the non-inferiority of KPCA with respect to
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Figure 1: Classification performances (average of estimated κ statistic over 10 runs) on the (left) Pavia and
(right) Zurich datasets considering several different settings. Target domain test sets included 14’047 (Pavia)
and 26’797 (Zurich) samples. (a) LDA on the Pavia target image, without HM. (b) LDA on the Pavia target
image, with HM. (c) LDA on the Zurich target image, without HM. (d) LDA on the Zurich target image, with
HM. (e) QDA on the Zurich target image, with HM. (f) LDA on the Zurich source image after FE, with HM
(test set of 12’310 pixels). Legend of (b) also valid for (a), (c) and (d).

a domain adaptation technique as TCA. Such a
behavior also suggests that basing the FE on one
domain only (the source image) does not imply a
loss in invariance across domains. Indeed, rather
than the reduction of the statistical divergence
between datasets (as measured by the MMD),
it seems that the extraction of features provides
larger benefits in terms of class discrimination.
The latter is highly increased in the two domains,
especially when resorting to kernel-based meth-
ods, easing thus the drawing of meaningful and
domain invariant class boundaries. Note that the
feature extractors employed in our tests do not
explicitly aim at optimizing class separation: this
may be interpreted as an implicit benefit of the
non-linear mapping.

The second trend is related to PCA-based
methods (LDA PCA: dashed dark green line,
LDA PCA 1DOM: dashed light blue line), which re-
veal a less satisfactory performance, just above
the baseline of the LDAsrc model. Peak accu-
racies are obtained in both experiments with 2
features, while after, as noisy components come
into play, the quality of the LDA model decreases.
Also in this case, no difference is noticeable be-
tween the use of both domains for FE versus the
use of the source domain only.

4.2 Zurich QuickBird dataset

When considering the second dataset, Figs. 1(c)-
(d) confirm the usefulness of HM. All the meth-

ods/settings tested failed if applied to unmatched
data. Another key finding is the complementar-
ity of the two pre-classification procedures. On
both datasets, we noticed that the best accura-
cies are those reached by models built on images
with matched histograms having undergone the
FE. After these steps, the images are sufficiently
aligned and the features are discriminant enough
to allow classifiers trained on the source image to
generalize well on the target image too.

Looking in details at Fig. 1(d), we witness
a similar behavior as with the Pavia dataset.
Kernel-based techniques need more features to at-
tain good performances with respect to PCA. On
this dataset, nevertheless, the best classification
accuracy reached by both families of methods is
comparable and still 0.1 κ points below the ref-
erence of the target domain model. Additionally,
let us remark the slight superiority of the setting
in which the FE is done exclusively on the source
image (LDA PCA 1DOM, LDA KPCA 1DOM) with re-
spect to an extraction based on both domains
(LDA PCA, LDA KPCA). This trend, which is observ-
able also on the previously examined dataset, was
not expected, revealing some interesting proper-
ties of the tested approaches. Finally, as for the
Pavia image, we observe the complete, though
expected, failure of the LDA PCA INDEP approach
(solid brown line), with an accuracy curve evolv-
ing far below the rest of the curves throughout
the entire feature set.



Fig. 1(e) describes the behavior of the same
alignment strategies, after HM, but when a non-
linear classifier is used. The QDA curves depicted
here show that the tendencies highlighted for lin-
ear models are valid in this situation as well. It
is worth noting the remarkable discriminant and
invariant properties of the all the features ex-
tracted by KPCA from the source image. The
QDA KPCA 1DOM curve is the most stable across the
entire range of features provided to the model.

In conclusion, Fig. 1(f) uncovers the behavior
of some of the LDA models when asked, after HM
and after the projection, to predict the class la-
bels back on the source image. Although the pat-
tern is not as evident as expected, we can appreci-
ate the loss in accuracy induced by the FE based
also on pixels issued from another domain. This
confirms that out-domain data interfere with the
proper extraction of discriminant domain-specific
features, while improving the overall generaliza-
tion abilities of the system when dealing with
cross-domain knowledge transfer.

5 CONCLUSIONS

In this paper, the analysis of feature ex-
traction techniques to jointly transform two re-
lated remote sensing images to align their feature
spaces has been presented. After the projection,
the matched images display an increased discrim-
ination between ground cover classes, allowing a
supervised classifier to obtain an accurate gener-
alization on both source and target domains.

Experiments proved that the combination of
the histogram matching procedure with the fea-
ture extraction step is extremely beneficial, con-
firming the mandatory application of the former
before any domain adaptation task. Among the
extraction techniques, we noticed the slight supe-
riority of kernel-based features extractors (KPCA
and TCA) with respect to simple linear tech-
niques such as PCA. No notable differences have
been observed between the two kernel methods.
This fact suggests that, rather than the reduction
of the divergence between marginal distributions
governing the two images, as pursued by TCA,
the key benefit is the increased class separability.
Also, we found that the use of pixels from one
image only to compute the projection provides
equally invariant features as a joint sampling of
the images.

These results open a number of opportunities
to practitioners of the field dealing with large
scale land cover mapping applications involving
several remotely sensed images.

As an outlook on new research directions, we
plan to test supervised FE methods. Techniques

such as Kernel Fisher Discriminant Analysis, Ker-
nel Canonical Correlation Analysis, Kernel Or-
thogonal Partial Least Squares, etc. could be used
to find the proper projections based on the la-
beled source domain data.

ACKNOWLEDGEMENTS
This work has been supported by the Swiss
National Science Foundation with grants no.
200021-126505 and PZ00P2-136827.

REFERENCES
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