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Combined loss of the BH3-only proteins Bim and Bmf
restores B-cell development and function in TACI-Ig
transgenic mice

C Woess'?, S Tuzlak', V Labi', M Drach3*, D Bertele®, P Schneider® and A Villunger*'

Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the
BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent
survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network,
BAFF/BAFF-R-mediated survival engages non-canonical NF-kB signaling as well as MAPK/extracellular-signal regulated kinase
and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and
regulated by APRIL that signals NF-kB activation via alternative receptors, that is, transmembrane activator and CAML interactor
(TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of
anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-
mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the
‘Bel2 homology domain 3-only’ subgroup of the Bcl2 family, Bel2 interacting mediator of cell death (Bim) and Bel2 modifying factor
(Bmf), mediate apoptosis in the context of TACI-lg overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly,
although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim™~Bmf~"~ mice, Bcl2 transgenic B
cells remain susceptible to the effects of TACI-lg expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice.
Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal
homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of
BAFF/APRIL-depletion strategies in B-cell-driven pathologies.
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Naive B cells depend on B-cell receptor (BCR)-tuned survival
signals that allow them to egress from bone marrow and
complete differentiation in the spleen via different transitional
(T) stages.'™ Once in the spleen, autoreactivity of expressed
BCRs is controlled again at the transitional T1 stage and
survivors develop via the T2 stage into follicular (FO) or
marginal zone (MZ) B cells, ready for antigen encounter.®*
MZ B cells together with innate-like B1 B cells from spleen and
coelomic cavities are responsible for the production of
natural immunoglobulins (Ig) and T cell-independent antibody
responses, leading to the production of low-affinity IgM and
IgG, whereas FO B cells can mature into class-switched
Ig-secreting plasma or memory B cells in germinal center
reactions during adaptive immune responses.®

Although B-cell homeostasis was thought to rely exclusively
on tonic BCR signaling,>® this view changed upon the
discovery that deletion or neutralization of the B-cell survival
factor, BAFF/BlyS/TALL-1/zZTNF4” or the receptor BAFF-R/

BR3, arrested B-cell development at the transitional T1
stage.>'® The TNF family cytokine BAFF signals mainly via
two receptors, above-mentioned BAFF-R and transmembrane
activator and CAML interactor (TACI), the latter also transmit-
ting signals from a related TNF family cytokine, APRIL, that
can again selectively engage an alternative receptor, B-cell
maturation (BCMA), shown to be required for plasma cell
survival.""™"3 Notably, neutralization of BAFF, by injection or
transgenic expression of IgG1-Fc receptor-fusion proteins of
the BAFF-R or TACI, causes the loss of B cells from the T2
maturation stage onwards in mice, whereas BCMA-IgG1-Fc
overexpression had no effect,®'* defining the BAFF/BAFF-R
axis as key for normal B-cell development.

Heterozygous mutations in TACI are causally linked to IgA
and common variable immune deficiencies (CVIDs) in humans,
characterized by antibody deficiencies, B lymphopenia and
autoimmune manifestations.'® Similarly, homozygous BAFF-R
mutations cause CVID in conjunction with severe B-cell
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deficiency.'® Targeting excess BAFF by neutralizing anti-
bodies or recombinant receptor-fusion proteins has been
tested in clinical trials for their efficacy to treat Sjogren
syndrome, rheumatoid arthritis or systemic lupus erythema-
tosus (SLE), yet results in clinical settings were not always
satisfactory. Second use for some of these reagents is
considered for the treatment of certain B-cell malignancies
including follicular lymphoma or chronic lymphocytic leukemia
and one such drug has entered phase II/Ill clinical trials for the
treatment of pre-treated multiple myeloma.'”

BAFF is thought to inhibit B-cell death mainly by activating
non-canonical NF-kB signaling, ultimately leading to the
transcriptional induction of pro-survival members of the B-cell
lymphoma 2 (Bcl2) family and known NF-kB targets, such as
Bcl2 itself,'® Bcl2-related protein X (BclX)'® or Bfl1/A1.2°
However, BAFF-R activation also leads to increased v-AKT
murine thymoma viral oncogene homolog 1 (AKT) and
extracellular-signal regulated kinase (ERK) activity that can
act on Mcl1 protein stability.222 Notably, absence of Bcl222 or
Mcl12% or A1 knockdown?® coincides with B-cell loss, whereas
overexpression of BAFF or Bcl2 associates with B-cell
hyperplasia leading to signs of SLE-like disease in mice.""2®
Consistently, overexpression of Bcl2® or BcIX*” can rescue
B-cell development in the absence of BAFF signaling, albeit
for reasons unclear, only partially. APRIL, which signals via the
BCMA receptor for plasma cell survival, also activates NF-xB
signaling and is believed to act mainly via induction of Mcl1,
whereas BclX appears dispensable.2®

Deprivation of BAFF or APRIL signaling promotes apopto-
sis, but the molecular details remain largely undefined. One
study addressed the link between Bcl2 interacting mediator of
cell death (Bim), BAFF and autoimmunity in vitro demonstrating
that BAFF signaling actually counteracts IgM-driven B-cell
apoptosis by promoting ERK-dependent proteasomal degra-
dation of Bim in the WEHI-231 B cell system.?® Autoreactive B
cells appear to depend on increased BAFF signaling for
survival to counteract self-antigen-driven increases in Bim
levels.®® The reduced BAFF responsiveness of Bim-deficient
B cells and accumulation of normal as well as autoreactive
anti-HEL-specific B cells in Bim™~ and autoantigen-exposed
Bim™~HEL-BCRtransgenic mice further points to a prominent
role for Bim in this process.®"*2 Together, this supports the
idea that BAFF controls B-cell survival by reducing Bim activity
and/or simultaneous induction of Bcl2 pro-survival homologs.
Similarly, Bim-deficient mice show increased plasma cell
numbers and elevated serum Ig-titers, suggesting a role in
limiting their survival by antagonizing Mcl1, downstream of
APRIL/BCMA 2833 However, direct genetic evidence defining
Bim as the critical mediator of B-cell death in the absence of
BAFF or APRIL is lacking and redundancy with other Bcl2
homology domain (BH) 3-only proteins can be expected.®*
Hence, we explored the genetic determinants of B-cell death
caused by BAFF and APRIL depletion by analyzing expres-
sion levels of Bcl2 family proteins in developing B cells under
normal conditions as well as in response to chronic BAFF and
APRIL deprivation and by testing the functional relevance of
BH3-only proteins constitutively expressed in B cells by
genetic co-deletion experiments in TACI-lg transgenic mice.
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Results

TACI-lg expression triggers Bcl2 regulated B-cell death.
We noted increased apoptosis in BAFF-sensitive T2 and FO
B-cell subsets derived from TACI-Ig mice that lack bioavail-
able BAFF and APRIL, the latter dispensable for normal
B-cell development® MZ B cells from TACI-lg mice also
showed increased apoptosis rates, but strong biological
variation precluded establishment of significant differences.
In contrast, BAFF-independent T1 B cells appeared unaf-
fected (Supplementary Figure 1 and Figure 1a). When put in
culture, however, only minor differences were noted, suggest-
ing that all these B-cell subsets do have a comparable
propensity to undergo spontaneous apoptosis ex vivo
(Figure 1b). In contrast, cells from TACI-lg mice that
simultaneously overexpressed Bcl2 were completely pro-
tected from apoptosis (Figures 1a and b). Hence, we
concluded that lack of BAFF primes B cells to Bcl2-
regulated mitochondrial apoptosis in situ.

Chronic BAFF and APRIL deprivation has only a minor
impact on Bcl2 family expression. Comparison of the
relative expression of Bcl2 family proteins in T1, T2, MZ and
FO B cells, sorted from spleens of wt or TACI-Ig mice, that
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Figure 1 Increased B-cell apoptosis in the absence of BAFF signaling.

(a) Splenocytes derived from mice of the indicated genotypes were stained with
fluorochrome-labeled monoclonal antibodies to distinguish the different B-cell
subsets, that is, T1 (IgM*CD21~CD237), T2 (IgM*CD21""CD23*), FO (CD23*
CD21*) and MZ (CD23-CD21%). Cell death was monitored by Annexin V/7-AAD
staining and flow cytometric analysis. Bars represent means of four to seven
independent animals per genotype + S.E.M. (b) Sorted B-cell subsets were put in
culture and cell death was determined after 24 h by Annexin V/7-AAD staining and
flow cytometric analysis. Bars represent means +S.E.M. from three individual
experiments. Significant differences compared with wt cells are marked with
*P<0.05; **P<0.005



contain only few residual B-cells (Supplementary Figure 1),
by reverse transcription-mixed ligation probe amplification
(RT-MLPA)®® indicated solely mild changes in mRNA levels
(Figure 2a). Notably, Bmf mRNA was found mildly increased
in T2 and MZ cells isolated from TACI-Ig mice, whereas levels
of Bid were reduced in BAFF-independent T1 cells. Con-
trasting our hypothesis, anti-apoptotic A7 was found
increased in MZ and FO B cells from TACI-lg mice
(Figure 2a). We also quantified mRNA levels of pro-
apoptotic Bcl2 proteins implicated in B-cell homeostasis by
gRT-PCR, but failed to notice significant differences
(Supplementary Figure 2A). Similarly, mRNA levels of Bcl2,
Mcl1 or A1 were not statistically different in FO B cells
isolated from wt or TACI-Ig mice (Supplementary Figure 2A).

As Bcl2 family proteins are influenced by post-translational
modification in abundance and function,3® we decided to sort
different B-cell types from wt mice and the residual cells found
in TACI-Ig mice expressing the relevant surface markers for
western blotting analyses. Surprisingly, in cells of TACI-Ig
mice, there was a strong decrease in Bim protein in T1 B cells
and lower Bim levels were also observed in T2 and FO B cells,
albeit the effect was clearly not as pronounced. In addition,
pro-apoptotic proteins Bcl2 antagonist of cell death (Bad) and
Bmf were increased in MZ B cells from TACI-Ilg mice,
consistent with our RT-MLPA data. Of note, Bcl2 and Mcl1
were reduced in FO B cells derived from TACI-Ig mice that may
render these cells more susceptible to apoptosis (Figure 2b).
To exclude the possibility that B cells surviving in a TACI-Ig
transgenic environment may have adopted their Bcl2 rheostat,
we also isolated follicular B cells from wt mice and cultured
them in the absence or presence of BAFF. Although levels of
Bim, Mcl1 and Bcl2 changed over time, none of these changes
was BAFF dependent (Supplementary Figure 2B). Together,
this documents that chronic BAFF (and/or APRIL) depletion
causes minimal changes in the expression profile of individual
Bcl2 family proteins.

Loss of BH3-only proteins Bim or Bmf reduces BAFF-
responsiveness of B cells. As our expression analysis did
not unambiguously identify the relevant pro-apoptotic effector(s)
of B-cell death in the absence of BAFF, we sorted different
B-cell subsets from wt mice or BH3-only protein mouse
mutants and analyzed their viability in culture. This analysis
revealed that only FO B cells from Bim™~ or Vav-Bel?
transgenic mice were protected from cell death, whereas
those lacking Bmf, Bad, p53-upregulated modulator of
apoptosis (Puma) or Noxa behaved like wt (Figure 3a; left
column). Similar findings were made in T2 and MZ B cells
and again Bcl2 overexpression was superior to loss of Bim in
preventing B-cell apoptosis ex vivo (Supplementary Figure 3).
Assessing BAFF responsiveness it became obvious that B
cells overexpressing Bcl2 were completely refractory to the
cytokine (Figure 3a; right column). However, Bim™" cells still
benefited from exogenous BAFF, suggesting that they are
partially responsive to this cytokine. FO B cells lacking Bmf
also showed an ameliorated response, suggesting that Bmf
may be a possible additional target of BAFF-R signaling
(Figure 3a). These findings were recapitulated to a large
degree in T2 and MZ B cells (Supplementary Figure 3).
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To consolidate these observations, we tested the BH3-only
protein knockout mice with reported phenotypes in the B-cell
compartment®~° for their response to recombinant TACI-Ig
injection. After initial titration experiments using either recom-
binant human or mouse TACI-Ig (Figure 3b, left panel), we
injected saline, higG1 or 10 ug hTACI-Ig fusion protein, that is,
the same protein expressed in TACI-Ilg mice, following
published procedure.*' In line with our in vitro observations,
FO B cells from Vav-Bcl2, Bmf”~ or Bim™~ mice proved
resistant to this treatment, whereas wt, Puma™~ or Bad™"~
mice displayed significant B-cell loss (Figure 3b, right panel,
Supplementary Figure 1H). Based on these findings, we
anticipated essential roles for Bim and Bmf in B-cell death in
the absence of BAFF and therefore inter-crossed TACI-Ig mice
with Bim™~ or Bmf”~ mice and compared them to TACI-Ig/
Vav-Bcl2 mice.

Loss of Bim and Bmf prevents B-cell death in TACI-lg
transgenic mice. Spontaneous apoptosis of different B-cell
subsets was quantified immediately after kiling the mice
using combined AnnexinV and B-cell surface marker staining
of splenocytes. Analysis of T1 B cells revealed no relevant
differences in the percentage of apoptotic cells in the
absence or presence of soluble TACI-Ig (Figure 4a). In
contrast, and as noted before, BAFF responsive T2 and FO
B cells showed increased apoptosis in the TACI-Ig back-
ground, when compared with wt. Surprisingly, Bmf deficiency
did not seem to confer protection from BAFF deprivation,
presenting with comparable apoptosis rates in situ. Bim™~
cells, however, showed no increase in cell death, similar to
B cells from Bim™~Bmf’~ or Vav-Bcl2 mice. MZ B cells
showed a similar trend but strong overall variation due to high
background affinity for AnnexinV (Figure 4a).

Comparison of the hematopoietic system of compound
mutant animals revealed numerous changes. Although the
overall bone marrow cellularity was not significantly different,
we confirmed a significant reduction in recirculating mature
B cells in the TACI-Ig mice (Supplementary Table 1). This loss
was less severe in the TACI-Ig mice lacking either Bim or Bmf
and completely rescued when both proteins were missing, or
when Bcl2 was overexpressed (Supplementary Table 1).

Unexpectedly, T1 B-cell numbers in the spleen, considered
BAFF-independent, were also significantly reduced in TACI-Ig
mice and this effect was alleviated by either loss of Bim, Bmf,
both or Bcl2 overexpression (Figure 4b and Supplementary
Table 2). BAFF-dependent stages, that is, T2, FO and MZ,
were strongly reduced in number by TACI-Ig expression, an
effect less pronounced on a Bim or Bmf-deficient background.
Strikingly, B-cell numbers were no longer significantly different,
regardless of absence or presence of TACI-Ig, in DKO mice
(Figure 4b). Notably, Bcl2 transgenic mice accumulated even
more B cells than DKO mice, but in contrast to these animals,
TACI-Ig co-expression reduced the number of T2, FO and MZ
B cells to a significant degree (Figure 4b and Supplementary
Table 2). Short-lived plasma cells in the spleen were clearly
elevated above wt levels in Bim™~, DKO and Bcl2 transgenic
mice and TACI-Ig expression reduced their number in a Bim-
dependent manner (Figure 4b).

Inguinal lymph nodes of TACI-Ig mice showed about 90%
reduction in B-cell numbers (Supplementary Table 3). As in the
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Figure 2

Influence of TACI-Ig expression on Bcl2 family expression. (a) Different B-cell subsets were sorted from wt and TACI-Ig mice for RNA extraction and subsequent
RT-MLPA analysis. Bars represent means of relative mRNA expression levels of n= 3 mice per genotype + S.E.M. Significant differences compared with wt cells are marked with
*P<0.05. (b) B-cell subsets were isolated from the spleen of wt or TACI-Ig mice. Cells from three wt and four to seven TACI-Ig mice, depending on the subset, were pooled per
lane (50 ug total protein). Two independent sorting experiments were performed and analyzed simultaneously by SDS-PAGE. Membranes were probed, stripped and re-probed

sequentially, anti-tubulin was used to control for protein loading. Bmf is expressed as a long and a short variant, described in Datta et a/®
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spleen, single deficiency for Bim or Bmf reduced B-cell loss,
whereas Bim™~Bmf~~ animals showed no response to BAFF
deprivation in vivo, a finding also observed in peripheral blood
(Supplementary Table 3).

B1 ‘innate-like’ B cells do develop in the absence of BAFF
signaling but express the BAFF-R as well as TACI and respond
to BAFF with increased survival and enhanced proliferation
ex vivo.*?> Hence, we assessed B1a and B1b B-cell numbers in
the peritoneal cavity of TACI-Ig mice and found them to be
reduced to about 25% in number when compared with wt,
contrasting previous reports.”® The reduction of B1 cells was
less pronounced in the absence of Bmf or Bim and again fully
rescued on a double-deficient background. Similar to our
findings in the spleen and lymph node, Bcl2 overexpression
provided only partial protection (Supplementary Table 4).

As expected, the numbers of Mac1™ myeloid or Ter119*
nucleated erythroid cells were not affected by TACI-Ig
expression (Supplementary Table 1). Surprisingly, T cells in
the spleen and lymph node of TACI-Ilg mice were under-
represented when compared with wt controls (Supplementary
Table 2). This effect was ameliorated by loss of Bim or Bmf and
completely compensated for when both genes were lost,
suggesting that B-cell-derived factors or signals are needed to
support T-cell homeostasis in vivo. Of note, the effects on
B-cell homeostasis were highly specific for deletion of Bim
and/or Bmf, as TACI-Ig mice lacking Puma or Bim plus Puma
did not show any of the rescue phenotypes resembling those
caused by Bmf deficiency or exceeding those caused by Bim
deficiency (Supplementary Table 5). Hence, we conclude that
BAFF secures B-cell survival by selectively neutralizing the
pro-apoptotic function of Bim and Bmf in B1 and B2 B cells.

Bim and Bmf deficiency confer a B-cell-autonomous
survival advantage. It remained formally possible that
Bim- and/or Bmf-deficient non-hematopoietic cells such as
intestinal epithelial cells or adipocytes'” contribute to
improved B-cell survival either by producing increased BAFF
levels, outcompeting the capacity of TACI-Ig, or by providing
alternative B-cell extrinsic survival factors that may compen-
sate for the loss of BAFF. However, using a cell death reporter
assay to determine the presence of bioavailable TACI-Ig in
serum® revealed sufficient levels of the transgene to buffer
exogenously added BAFF in all genotypes analyzed
(Supplementary Figure 4a). Nonetheless, as serum level
may not faithfully reflect TACI-Ig levels in the niches where B
cells develop, we also reconstituted lethally irradiated
co-isogenic TACI-Ig transgenic mice with bone marrow from wt,
Bmf™~, Bim™~ or DKO mice. Mice were analyzed 12 weeks after
reconstitution and this revealed that indeed significantly more
B cells accumulated in TACI-Ig recipients when donor bone
marrow lacking Bmf, Bim, both or overexpressing Bcl2 was used
(Supplementary Figure 4b). Together with our acute TACI-Ig
depletion experiments (Figure 3b), this confirms that combined
Bim and Bmf deficiency does provide a cell autonomous
survival advantage to B cells in the absence of BAFF.

Bim and Bmf loss enables the development of antigen-
competent B cells in TACI-Ig mice. To assess if the B cells
accumulating in the absence of Bim and/or Bmf upon BAFF
and APRIL deprivation in vivo are also functional, we
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immunized mice with NP-OVA adsorbed to alum to induce
a T cell-dependent immune response. Alternatively, animals
were immunized with the T cell-independent antigen TNP-
Ficoll to interrogate the functionality of developing MZ and B1
B cells. These analyses confirmed reduced levels of NP- and
TNP-specific Ig levels in TACI-Ig mice. Loss of Bmf had only
limited impact on NP-specific Ig-titers, loss of Bim partially
restored and combined loss of Bim plus Bmf, similar to Bcl2
overexpression, fully restored NP-specific antibody produc-
tion (Figure 5). Of note, double deficiency also efficiently
restored T-independent immune responses, indicating that
the surviving B cells in Bim™~Bmf’~ mice were indeed
functional in the presence of TACI-Ig (Supplementary Figure 5).

TACI-lg expression reduces disease burden in Vav-Bcl2
mice. In Vav-Bcl2 mice, transgene overexpression leads to
premature death due to development of follicular lymphoma
or autoimmune glomerulonephritis.*® Although Bcl2 over-
expressing B cells were highly apoptosis resistant and
completely refractory to exogenous BAFF in culture
(Figures 1 and 3), we noted that expression of TACI-Ig led
to reduced B-cell numbers in the spleen, lymph nodes and
peritoneal cavity of Vav-Bcl2 mice. This contrasted findings
made in Bim~~Bmf’~ mice, in which B-cell numbers
were equally elevated in the presence or absence of
TACI-Ig transgene expression (Figure 4b and Supplementary
Tables 2—4). Hence, we reasoned that Bcl2 overexpression
may prime B cells to death by sequestering large amounts of
BH3-only proteins, such as Bim,** that can become activated
upon BAFF deprivation and may be released by sensitizers,
such as Bmf or Bad, to trigger apoptosis. To mimic this
situation, FO B cells from Vav-Bcl2 mice and wt controls were
exposed to graded doses of the BH3-mimetic ABT-737
ex vivo, mimicking the function of Bmf or Bad.*® Although
Bcl2 transgenic FO B cells did not respond to factor
deprivation, these cells were highly sensitive to ABT-737
and died as fast as wt cells under these conditions.
Consistent with our hypothesis, B cells lacking Bim and
Bmf were highly resistant to spontaneous death and to
ABT-737 (Supplementary Figure 6).

As BAFF-neutralizing reagents are used to treat SLE and
considered as therapy for different B-cell malignancies,'” we
tested if TACI-Ig would ameliorate pathology in Vav-Bcl2 mice.
Hence, we monitored the disease-free survival of wt, TACI-Ig,
Vav-Bcl2 and double-transgenic mice and took serum
samples after 2, 8 or 12 months. Vav-Bcl2 mice showed the
well-known pathological increase in total serum 1g,*>4¢ a
phenotype that was significantly reduced in the double-
transgenic mice at 2 and 8 months but no longer different in
mice that survived for 1 year (Figure 6a). Despite this gradual
adaptation, double-transgenic mice showed extended
disease-free survival (Figure 6¢) and histological assessment
of spleens of phenotypically healthy mice killed after 8 or
12 months showed clearly improved splenic architecture,
reduced follicle and germinal center size and no lymphatic
infiltrates in the liver parenchyma, in clear contrast to findings
made in age-matched Vav-Bcl2 mice (Figure 7a, not shown).
To find out if the survival of autoantibody-secreting plasma
cells may be reduced in the presence of TACI-Ig, we also
quantified dsDNA-specific autoantibodies in sera of aged
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Figure 5 Restoration of Ig production in TACI-Ig mice by cell death inhibition. Mice of the indicated genotypes were immunized with NP-Ovalbumin and sera were taken on
day 10. NP-specific Ig-titers were measured by ELISA. Dilutions were predetermined to produce absorbance readings in the linear range. Total Ig (1 : 3200), IgM (1 : 200), IgG1
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represent minimal and maximal ranges. Significant differences are marked with *P<0.05, **P<0.005 and are compared to the according genotype without the TACI-Ig

single- and double-transgenic mice. However, these were
found to be comparable by ELISA (Figure 6b). Immunohis-
tochemistry revealed glomerular Ig deposits in the kidneys of
single- and double-transgenic animals, albeit with reduced
intensity in the latter (Figure 7b). Based on these observations,
we conclude that the prolonged survival of double-transgenic
mice is most likely due to a reduced severity of SLE-like
symptoms combined with a reduced risk to develop follicular
lymphoma.

Discussion

BAFF was suggested to promote survival by the activation
of non-canonical NF-kB signaling as well as activation of

Cell Death and Differentiation

AKT/PI3K and ERK kinase modules, culminating in increased
expression of Bcl2-homologs and/or the reduction of Bim
levels.'®2%2° Upon BAFF depletion, triggering Bcl2-
inhibitable apoptosis (Figure 1), we noted only minor changes
in Bcl2 family mRNA and protein levels (Figure 2a). Of note,
pro-apoptotic Bmf and Bad were increased in MZ B cells upon
BAFF depletion. Loss of either gene affects B-cell home-
ostasis, exacerbated in compound mutant mice,*”-*84° and for
both proteins, a role for AKT as negative regulator has been
described.*”*® Although this fits the overall idea that loss of
BAFF signaling triggers B-cell death by activating BH3-only
proteins, Bim levels were found to be reduced in BAFF-
sensitive B-cell stages, and, contrasting expectations, also in
T1 B cells (Figure 2b). The latter observation may be explained
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and were analyzed using the Logrank (Mantel-Cox) test

by the fact that BAFF-R is already upregulated in transitional
T1 B cells and thus aids the development of T1 B cells in the
spleen.*® This suggests that only the few T1 B cells with
sufficiently low levels of Bim are able to survive and progress in
development in TACI-Ig mice. Reduced levels of Bcl2 and
Mcl1, as noted in FO B cells, may also sensitize to apoptosis,
as both proteins are clearly critical for B-cell survival.235°

It deserves mentioning, however, that TACI-Ig mice do not
represent an exact phenocopy of Baff” ~ mice,” as BAFF may
not be cleared sufficiently fast in the microenvironment where
it is produced. In addition, the Fc-portion of the TACI-Ig fusion
protein may trigger signaling via Fc-receptor (FcR)-activation
on myeloid cells or clearance of FcR-positive B-cell subsets by
alternative mechanisms than death upon BAFF depletion.
Although the latter was formally excluded (Supplementary

Figure 1H), the analysis of Baff”~ mice may have yielded a
slightly different picture regarding the impact of BAFF
depletion on Bcl2 family expression levels. However, overall
our findings strongly suggest that the relative expression
levels of Bcl2 proteins are rather poor predictors of biological
outcome as Bim deficiency clearly protects B cells from death
in TACI-Ig mice and Bmf deficiency, albeit yielding modest
effects when deleted alone, strongly contributes to B-cell
survival upon BAFF or APRIL depletion (Figures 3 and 4 and
Supplementary Tables 1-3). Although a contribution of Bim
to cell killing upon BAFF or APRIL deprivation was
anticipated,®'*® engagement of Bmf in B-cell death was
unexpected, at least based on previous analysis of mature
B-cell survival in culture.®® BAFF-dependent ERK activation
can affect Bim stability by phosphorylation, promoting its
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proteasomal turnover, thereby counteracting BCR-ligation-
triggered apoptosis in WEHI-231 cells.?® However, as lack of
Bim conferred only partial BAFF independence to cultured
B cells in our hands, additional pro-apoptotic targets neutralized
by BAFF-R signaling had to be considered (Figure 3). Bmf
seemed a possible candidate, as its mRNA appeared
increased in T2 and FO B cells in our RT-MLPA analysis. In
addition, Bmf protein was increased in MZ B cells from TACI-Ig
mice (Figure 2) and FO B cells without Bmf showed reduced
BAFF responsiveness in vitro (Figure 3 and Supplementary
Figure 4). Notably here, growth factor deprivation or PI3K
inhibition increases Bmf protein levels in different cell types,
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including WEHI-231 B cells*”®' (AV unpublished). Although
BAFF-dependent AKT activation appears to control mainly the
metabolic fitness of B cells,2 it remains plausible that it does
so, in part, by repressing Bmf. Consistently, increased cell
death resistance caused by Bim/Bmf double deficiency was
associated with a complete rescue of B-cell development in
TACI-Ig mice (Figure 4).

Importantly, DKO mice expressing TACI-Ig were perfectly
able to mount a T cell-dependent and T-independent immune
response, including class switching, proving that the surviving
B cells were also functional (Figure 5 and Supplementary
Figure 5). These findings demonstrate that BAFF is most



critical for survival, but dispensable for B-cell differentiation
and activation. Further, we conclude that Bim and Bmf
co-regulate B-cell homeostasis and development by acting
as sensors for the presence or absence of BAFF and/or BCR
signaling strength, removing cells when these signals drop
under or exceed a critical threshold, respectively. As a
consequence thereof, potentially autoreactive or hyperactive
B cells are cleared from the system, a conclusion consistent
with the noted autoimmunity in aged Bim~~Bmf’~ mice.5?
These findings define also a possible pathogenic mechanism
by which B cells are depleted in CVID patients.

Remarkably, we also noted that, albeit Bcl2 overexpression
induced B-cell accumulation exceeding in number that
observed in DKO mice, BAFF depletion triggered a significant
reduction of B cells in Vav-Bcl2/TACI-Ilg mice as compared
with Vav-Bcl2 mice (Figure 4 and Supplementary Table 2).
This appeared paradox, as these cells do no longer respond to
BAFF ex vivo and were highly apoptosis resistant (Figures 1
and 3). However, along the line of current thinking this may be
explained by excessive accumulation of pro-death molecules,
such as Bim,** that are then released in the absence of BAFF,
by activation of other BH3-only proteins, possibly Bmf
and Bad. In accordance, Bim~~Bmf~~ B cells were highly
resistant to ABT-737, a BH3-mimetic performing similar
functions as Bad,*® whereas wt and Bcl2 transgenic B cells
were equally sensitive (Supplementary Figure 6). This
prompted us to investigate if BAFF ablation can ameliorate
the B-cell-driven pathologies in Vav-Bcl2 mice.*® Indeed, the
overall survival rate of double-transgenic animals was
significantly increased over that of Vav-Bcl2 mice (Figures 6
and 7). This supports the concept that BAFF-depletion
therapies, alone, or in combination with Bcl2 antagonists, for
example, BH3-mimetics, may prove exquisitely potent to treat
B-cell-driven pathologies that associate with high levels of
Bcl2, whereas the inhibition of BH3-only protein activation,
when properly managed, may ameliorate B-cell loss asso-
ciated with CVID.

Materials and Methods

Mouse strains. C57BL/6 TACl-lg transgenic, Vav-Bcl2 transgenic, Bim™~,
Bmf™~, Bad™~, Puma~~ and Noxa~ mice have been described.®3%3404653
Animal experiments were performed in agreement with Austrian legislation
(BMWF-66.011/0165-11/3b/2010 and BMWF-66.011/0009-11/3b/2010).

Cell culture. Primary lymphocytes were cultured in DMEM (PAA, Linz, Austria),
250uM  L-glutamine (Gibco Life-Technologies, Vienna, Austria), 50 uM 2-
mercaptoethanol, penicillin/streptomycin (Sigma-Aldrich, Vienna, Austria) and 10%
fetal calf serum (PAA). mBAFF (R&D Systems, Vienna, Austria) was used at 10 ng/
ml. ABT-737 was purchased from Selleckchem (Houston, TX, USA).

Flow cytometry. Single-cell suspensions were stained with monoclonal
antibodies conjugated with fluorescein isothiocyanate, R-phycoerythrin, allophyco-
cyanin or biotin. The monoclonal antibodies used are listed in the Supplementary
Information. Samples were analyzed in a FACS-Calibur or sorted using a FACS-
Avrialll (both BD, Vienna, Austria).

Immunoblotting. Cells were lysed in RIPA buffer (150 nM NaCl, 50 mM Tris,
1% (v/v) NP40, 0.5% (v/v) sodium deoxycholate), 0.1% (v/v) SDS) with phosphatase
inhibitors (PhosSTOP, Roche, Basel, Switzerland). 50 g of protein was separated
by SDS-PAGE on 10 or 14% Tris-Glycine gels and electro-blotted onto nitrocellulose
membranes (Hybond, Amersham, GE Healthcare, Little Chalfont, UK). Antibodies
used are listed in the Supplementary Information.
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Hematopoietic reconstitution. Co-isogenic recipients were created by
crossing wt Ly5.1 mice with Ly5.2 TACI-Ig transgenic mice. Mice were reconstituted
via tail vein injection with 2 x 10° bone marrow cells 6 h after exposure to 10 Gy of
y-irradiation and analyzed 12 weeks after reconstitution.

RT-MLPA and gRT-PCR analysis. mRNA was isolated using Fast-Spin
columns (ZymoResearch, Irvine, CA, USA). RT-MLPA analysis (MRC Holland,
Amsterdam, Netherland, Mouse RT-MLPA kit RM002 or Human RT-MLPA kit R011-
B1) was performed according to the manufacturer's recommendation. qRT-PCR
analysis was performed as described.>* For further details see the Supplementary
Information.

TACI-lg depletion experiments. Mice were treated with graded doses of
human TACI (amino acids 2-118)-higG1-Fc, mouse TACI (amino acids 2-78)-
higG1-Fc produced in CHO cells, higG1 (Southern Biotech isotype control
#0151K-14) or PBS i.p. on days 0 and 4. On day 7, the mice were killed for analysis
as described.*!

Immunization. Six- to twelve-week-old mice were injected i.p. with NP-OVA
(100 ug/mouse adsorbed to Alum, Sigma-Aldrich) or 50 ug TNP-Ficoll in 200 sl
PBS (both Biosearch Technologies, Petaluma, CA, USA), to induce T cell-
dependent or T cell-independent humoral immune responses, respectively. Blood
was collected from the submandibular vein before immunization or on day 7 (TNP-
Ficoll) or day 10 (NP-OVA) after immunization. Antigen-specific Ig-titers and anti-
dsDNA Ig-titers were quantified by ELISA.%®

Statistical analysis. Statistical analysis was performed using unpaired
Student’s ttest or analysis of variance analysis, where indicated, and applying
the Stat-view 4.1 software program. To compare survival of mice of different
genotypes, the Log-Rank (Mantel-Cox) test was used. P values of <0.05
were considered statistically significant and marked with *, P values <0.005 are
tagged with **.
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