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Abstract 

Positive phototropism is the process through which plants orient their organs towards a directional light 

source. While the blue light receptors phototropins (phot) play a major role in phototropism towards blue 

(B) and ultraviolet (UV) radiation, recent research showed that the UVB light receptor UVR8 also triggers 

phototropism towards UVB. In addition, new details of the molecular mechanisms underlying the activity 

of these receptors and interaction with other environmental signals have emerged in the past years. In this 

review we summarize the current knowledge about hypocotyledoneous and inflorescence stem growth 

reorientation towards B and UVB, with focus on the molecular mechanisms.  

Abbreviations 

B, blue light 

FR, far-red light 

GA, gibberellins  

HB, high blue light 

LB, low blue light (below 1µmol.m-2.s-1) 

LOV, light oxygen or voltage FMN-binding  

R, red light 

R:FR, red to far-red ratio 

STK, serine-threonine kinase  

UV, ultraviolet radiation 
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Introduction 

Developmental plasticity is a distinctive feature of plants. After germination, the number, shape and 

functionality of plant organs is regulated to fit the prevailing environmental conditions. In this review we 

will discuss phototropism, the process through which plants regulate their shape to position their organs 

towards the most favorable light conditions. 

Plants perceive a broad range of the light spectrum, from ultraviolet (UV) to far-red light (FR), using 

wavelength-specific light receptors. However, only blue light (B, 380-500nm) and ultraviolet radiation 

(UVA, 315-380nm and UVB, 280-315nm) can trigger phototropism (Liscum et al. 2014, Fankhauser and 

Christie 2015). These short-wavelength radiations are scattered and absorbed by the plant tissues, so when 

the light stimulus is directional light gradients are created within the organs which allow plants to determine 

their relative position to the light source. BL and UV are perceived by phototropins (phot) and the UV-B 

receptor UV RESISTANCE LOCUS 8 (UVR8), which upon unilateral irradiation are differentially 

activated in the lit and the shaded side of the stem (Liscum et al. 2014, Vandenbussche et al. 2014, 

Fankhauser and Christie 2015, Vanhaelewyn et al. 2019). This differential photoreceptor activation leads 

to the creation of an auxin gradient across the stem, which promotes differential cell expansion between the 

lit and the shaded side, eventually causing bending. 

Here we will discuss the current knowledge about how plants perceive light signals, from the photoreceptor-

mediated light perception, the downstream signaling mechanisms and finishing with how these pathways 

are integrated with other light signals to fine tune stem phototropism. While the physiological response is 

largely conserved among plants, the molecular mechanisms have mostly been studied in Arabidopsis, so 

we will focus on this model and point out whenever differences were found in other species. We apologize 

to colleagues whose work could not be cited due to space constraints. Primary references for earlier work 

are available in recent reviews (Liscum et al. 2014, Christie et al. 2015, Okajima 2016, Jenkins 2017, 

Christie et al. 2018, Podolec and Ulm 2018, Liang et al. 2019).  

Photoreceptor activation 

phot are the main photoreceptors involved in phototropism towards B, UVA and also UVB in hypocotyls 

(Liscum et al. 2014, Vandenbussche et al. 2014). Land plants have two phot, phot1 and phot2, which in 

addition to stem phototropism control other processes that improve photosynthetic efficiency such as 

stomatal opening, leaf flattening and positioning and chloroplast localization (Christie et al. 2015, Li and 

Mathews 2016). Although both phot control the same processes, their relative contribution depends on the 

environmental conditions. In the case of phototropism both receptors promote bending towards B, but phot1 

can do it in response to a broad range of B intensities, even below 1µmol.m-2.s-1 (LB), while phot2 is 
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specialized in perceiving higher B intensities (HB) (Kagawa et al. 2009, Liscum et al. 2014). This is 

consistent with the fact that phot1 is light labile and its abundance is down regulated by light, while phot2 

levels increase with irradiation (Liscum et al. 2014, Sullivan et al. 2019). Whether phot1 and phot2 have 

different roles in response to UVB has not been tested, but according to phot1phot2 mutants phot have a 

major role driving phototropism of hypocotyls towards low fluencies of monochromatic UVB (0.002 µmol. 

m-2. s-1) and a minor role in response to higher UVB fluencies (0.12 µmol. m-2. s-1) (Vanhaelewyn et al. 

2016). It is worth noting that the effect of phot on UVB signaling was evaluated in the absence of B, so the 

physiological role of phot activation by UVB in natural conditions, where B predominates is still unclear. 

phot are light activated serine-threonine kinases with two N-terminal Light Oxygen or Voltage (LOV1 and 

LOV2) domains that bind flavine mononucleotide (FMN) and a C-terminal serine-threonine kinase domain 

of the AGC family (STK) (Fig. 1A) (Christie et al. 2015, Okajima 2016). While the LOV domains are 

structurally similar, they have different functions. LOV1 has been proposed to promote phot dimerization 

and modulate LOV2 photoreactivity, while LOV2 has a major role controlling the kinase activity of the 

receptors (Christie et al. 2015, Okajima 2016). 

In the dark phot are inactive. LOV2 binds FMN non-covalently, and interacts with the STK inhibiting its 

kinase activity. Upon absorption of the inductive wavelengths a covalent adduct is formed between the 

FMN and a conserved cysteine in LOV domains, causing structural changes in LOV2 and in two helical 

structures flanking it, named A’α and Jα, finally leading to de-repression of the STK (Fig. 1A) (Christie et 

al. 2015, Okajima 2016). This leads to autophosphorylation of phot as well as phosphorylation of other 

downstream signaling factors, triggering morphogenic responses to B (Fig. 1A) (Liscum et al. 2014, Suzuki 

et al. 2019). Interestingly, these conformational changes can be achieved by single aminoacid changes 

rendering the STK constitutively active (Okajima 2016, Petersen et al. 2017). Consistent with the notion 

that a gradient of phot activation is required for phototropism, plants expressing a constitutively active 

kinase variant of phot1 have reduced phototropic responses (Petersen et al. 2017). 

phot are phosphorylated in several residues, localized in the N-terminal region upstream LOV1, in the linker 

region between LOV1 and LOV2, and in the STK (Fig. 1A) (Christie et al. 2015). phot phosphorylation is 

essential for signaling, and two residues within the kinase activation loop (S849 and S851 in phot1, S761 

and S763 in phot2 in Arabidopsis) play a key role (Fig. 1A) (Christie et al. 2015, Okajima 2016). A recent 

analysis showed that upon B activation phot1 dimerizes in a phosphorylation-independent manner (Xue et 

al. 2018). This suggests a model in which B triggers phot1 dimerization, and phosphorylation occurs as a 

second step. In this scenario it will be interesting to test if, alternatively to being autophosphorylated, phot1 

monomers in a dimer can phosphorylate each other. In favor of this model, a constitutively active kinase 

variant of phot1 can trigger phosphorylation of a kinase dead mutant in vitro in the dark (Petersen et al. 



4 

2017). However, whether phot1 dimerization precedes or is required for phot1 phosphorylation remains to 

be established. 

Within seconds or minutes, the FMN-cysteinyl adduct reverts to the dark state, and the speed of this 

reversion affects phot activity. It has been proposed that the longer decay time of phot1 compared to phot2 

would explain its role in phototropism towards LB (Okajima 2016). However, etiolated Arabidopsis 

seedlings expressing slow-photocycling versions of phot1 or phot2, obtained by single aminoacid 

substitutions within the LOV2 domain, have impaired phototropism instead of increased sensitivity, 

suggesting that other aspects of the system are regulated to enhance sensitivity to the unidirectional stimulus 

(Hart et al. 2019). Nevertheless, slow phot photocycling improved other phot-mediated responses, 

suggesting that changing phot reversion rate using guided mutagenesis could be a useful approach to 

improve photosynthetic efficiency (Hart et al. 2019). phot inactivation speed not only depends on specific 

aminoacids within the LOV2 domain, but also can be modulated by LOV1 and it has been recently shown 

that it is also regulated by temperature (Christie et al. 2015, Okajima 2016, Fujii et al. 2017, Hart et al. 

2019). Given its strong impact on photosynthesis-related traits, the study of phot variants with altered 

photocycle will be an interesting topic for future research. An important tool that remains unexplored to 

study phot variants is the collection of Arabidopsis accessions. Here may lay useful resources to understand 

how changes in phot protein sequence affect its activity in vivo.  

Despite their hydrophilic nature, both phot1 and phot2 localize to the intracellular part of the plasma 

membrane (Fig. 2A) (Liscum et al. 2014, Preuten et al. 2015). How phot associate with the membrane is 

still unknown but certain residues in the C-terminal domain may be involved in their subcellular localization 

pattern (Christie et al. 2015). In the case of phot1 upon light perception it localizes to membrane 

microdomains and is internalized to the cytoplasm (Preuten et al. 2015, Xue et al. 2018). Localization to 

membrane microdomains depends on phot1 phosphorylation and appears to be important for hypocotyl 

phototropism since treatments with MβCD, a sterol-disrupting agent, inhibits phototropism and can be 

rescued adding sterols (Xue et al. 2018). On the other hand, phot1 internalization appears to be irrelevant 

for hypocotyl phototropism, since anchoring phot1 to the membrane through lipid modifications inhibits 

internalization and doesn´t affect hypocotyl bending (Preuten et al. 2015). In the case of phot2, light triggers 

its translocation to the Golgi apparatus (Christie et al. 2015). In both cases phot internalization requires a 

functional STK (Christie et al. 2015). 

phot are the most relevant light receptors triggering hypocotyl bending towards B and UV, and 

inflorescence bending towards B. However, in inflorescence stems the response to UVB depends 

predominantly on UVR8 (Kagawa et al. 2009, Liscum et al. 2014, Vandenbussche et al. 2014, Fankhauser 

and Christie 2015, Vanhaelewyn et al. 2019). UVR8 is the only UV-B specific receptor described to date 
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and has a role in seedling de-etiolation and UVB protection, as well as a small role controlling hypocotyl 

phototropism towards UVB among other functions (Vandenbussche et al. 2014, Jenkins 2017). 

UVR8 is a seven-bladed β-propeller protein. In the absence of UVB it exists as a dimer, and upon UVB 

perception the dimer dissociates allowing monomeric UVR8 to initiate signaling (Fig. 1B) (Jenkins 2017). 

UVR8 is different from other plant light receptors since instead of binding a chromophore it uses tryptophan 

residues in its primary structure for UV-B absorption. Photoperception changes the structure of tryptophans, 

remarkably W233 and W285 which are present in the dimerization interface, which in turn weaken the 

interactions between arginines R286 and R338 and specific aspartate and glutamate residues in the 

complementary monomer, promoting dissociation of the dimer (Fig. 1B) (Jenkins 2017, Liang et al. 2019). 

UVR8 monomers localize to the nucleus, where they control transcriptional responses to UVB (Fig. 2B) 

(Jenkins 2017, Liang et al. 2019). Given that UVR8 doesn’t have a nuclear localization signal (NLS) it has 

been proposed that nuclear translocation involves interaction with an NLS-containing protein. One 

candidate for this function is CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a protein that 

interacts with UVR8 and is required for its nuclear localization and signaling (Fig. 2B). Alternatively, other 

proteins might enable UVR8 nuclear import and COP1 would be required for maintenance of UVR8 in the 

nucleus (Jenkins 2017, Liang et al. 2019). It will be interesting to know whether in response to unilateral 

UVB irradiation a gradient of UVR8 nuclear localization is established in the stem. Also, the involvement 

of COP1 in UVR8 nuclear localization could be more easily studied in inflorescence stems where the cop1 

mutation does not have such a strong developmental effect as in the hypocotyl.  

In the absence of UVB, UVR8 returns to the dimeric state in less than an hour (Jenkins 2017). This 

inactivation is promoted by the REPRESSOR OF UVB PHOTOMORPHOGENESIS (RUP) proteins, 

RUP1 and RUP2. In addition, RUPs inhibit UVR8 signaling since they bind to the same region as COP1, 

and inhibit UVR8 nuclear accumulation (Jenkins 2017, Liang et al. 2019). Whether RUPs are important for 

UVR8-mediated phototropism is still unknown. However, in etiolated hypocotyls enhanced UVR8 

signaling in rup1rup2 interferes with the phototropic response towards low intensity UVB (which, as 

mentioned before, is driven by phot), pointing at a role of these proteins in the interaction between phot and 

UVR8 signaling in phototropism towards UVB (Vanhaelewyn et al. 2016). 

While phot and UVR8 are expressed in most tissues, the analysis of transgenic lines expressing these 

photoreceptors under the control of tissue-specific promoters combined with localized light treatments 

showed that their action is site-specific (Kagawa et al. 2009, Preuten et al. 2013, Liscum et al. 2014, 

Vanhaelewyn et al. 2019). In Arabidopsis hypocotyls the site of perception and response to B is below the 

meristem, in the elongation zone (Preuten et al. 2013, Yamamoto et al. 2014, Sullivan et al. 2016b). In 
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contrast, in grasses the emerging shoot is covered by a protective sheath called coleoptile, and in this case 

the perception of the light signal occurs in the tip of the organ (Matsuda et al. 2011). In inflorescence stems 

the phototropic B stimulus can be perceived and trigger bending along the whole organ (Kagawa et al. 

2009). So far, the site of perception of UVB triggering phototropism has not been established. phot1 

expressed in the hypocotyl epidermis, cortex or endodermis complements the phototropic defects in 

phot1phot2 hypocotyls, while UVR8 is mostly active triggering inflorescence stems bending towards UVB 

when it´s expressed in the cortex and epidermis, and to a smaller extent in the endodermis (Preuten et al. 

2013, Vanhaelewyn et al. 2019).  

Early signaling for phototropism 

Upon unilateral irradiation a light gradient is established across the stem which creates a photoreceptor 

activation gradient between the lit and the shaded side (Fig. 2) (Liscum et al. 2014, Vandenbussche and 

Van Der Straeten 2014, Suzuki et al. 2019). Although in Arabidopsis this hasn´t been tested directly for 

phot nor UVR8, in maize and oat differential phot1 phosphorylation occurs between the lit and shaded side 

of the coleoptile (Suzuki et al. 2019). In Arabidopsis this activation gradient can be inferred visualizing 

changes in the abundance or localization of downstream targets. 

In the case of phot, a fast signaling event following photoreceptor activation is the de-phosphorylation of 

NON PHOTOTROPIC HYPOCOTYL 3 (NPH3), an essential protein for phot-mediated phototropism but 

apparently not for UVR8-mediated stem bending (Fig. 2A) (Liscum et al. 2014, Vandenbussche et al. 2014, 

Fankhauser and Christie 2015, Christie et al. 2018, Sullivan et al. 2019). In darkness phosphorylated NPH3 

localizes to the plasma membrane and interacts with the N-terminal portion of phot1 through its C-terminal 

region. De-phosphorylation of NPH3, which can be detected within 5 min after irradiation, inhibits its 

interaction with phot1 and promotes internalization of the protein to cytosolic aggregates which are already 

visible 15min after irradiation (Fig. 2A) (Haga et al. 2015, Sullivan et al. 2019). Recently, using GFP-

tagged versions of NPH3 it was shown that upon unilateral B irradiation these NPH3 aggregates are more 

abundant in the lit than in the shaded side of Arabidopsis hypocotyls, pointing at the existence of a phot 

activation gradient (Fig. 2A) (Sullivan et al. 2019). In darkness or after long periods of irradiation NPH3 is 

re-phosphorylated by a still unknown kinase and re-localized to the membrane (Haga et al. 2015, Christie 

et al. 2018). 

Intriguingly, while NPH3 dephosphorylation correlates with phototropism, sustained NPH3 de-

phosphorylation and exclusion from the membrane correlate with lower phototropic response. So, a fast 

recovery of phosphorylated NPH3 levels at the membrane would be required to achieve maximal responses 

to light (Liscum et al. 2014, Haga et al. 2015, Hart et al. 2019, Sullivan et al. 2019). One fundamental factor 
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for this process is ROOT PHOTOTROPISM2 (RPT2) (Fig. 2A). RPT2 is the second founding member of 

the NPH3/RPT2-like (NRL) family, since it shares structural features with NPH3. It also localizes to the 

plasma membrane, interacts with phot1 and NPH3 and is required for normal hypocotyl phototropism. rpt2 

mutants respond to B intensities below 0.17µmol.m-2.s-1, but have impaired responses to higher irradiances 

(Haga et al. 2015). Also, in etiolated seedlings a pretreatment with red light (R) enhances phototropism in 

a process that involves RPT2. Moreover NPH3 phosphorylation and membrane localization are restored 

after a long exposure to B in an RPT2-dependent manner (Haga et al. 2015). These phenotypes can be 

explained by the promotion of RPT2 accumulation by light (Haga et al. 2015). Thus, the current model is 

that HB enhances NPH3 de-phosphorylation and internalization, but light-promoted accumulation of RPT2 

counteracts this action allowing phototropism. NPH3 and RPT2 interact in yeast, so the effect of RPT2 on 

NPH3 activity could be direct (Christie et al. 2018). Nevertheless, in etiolated wild type seedlings NPH3 

de-phosphorylation and internalization increase with higher irradiances of B even after long exposure times, 

hence RPT2 accumulation is insufficient to inhibit these processes (Haga et al. 2015, Sullivan et al. 2019). 

In addition, a recent report showed that in de-etiolated seedlings NPH3 de-phosphorylation is inhibited 

independently of RPT2 by factors related to other photoreceptor signaling mechanisms (discussed below) 

(Sullivan et al. 2019). 

NPH3 and RPT2 contain an N-teminal BRIC-A-BRAC, TRAMTRACK AND BROAD COMPLEX (BTB) 

domain, an NPH3 domain and a C-terminal coiled coil domain (Liscum et al. 2014, Christie et al. 2018). 

The NPH3 domain characterizes NRL proteins (33 members in Arabidopsis), which have various roles in 

plant development and physiology (Christie et al. 2018). While the biochemical function of RPT2 is 

unknown NPH3 has been reported to form part of a CUL3 RING E3 UBIQUITIN LIGASE (CRL3) 

complex which targets phot1 for ubiquitination following light activation (Christie et al. 2018). phot1 

mono-ubiquitination occurs in response to LB and has been related to phot1 internalization, which as 

discussed before, appears to be unrelated to phototropism. Multi and poly-ubiquitination of phot1 occurs in 

response to HB and triggers its degradation (Christie et al. 2018). Given the tight correlation between NPH3 

phosphorylation levels and phototropism, it would be interesting to test the role of NPH3 phosphorylation 

on its activity as an E3 ligase and its potential effect on phot1 levels. 

Apart from promoting their own phosphorylation, phot also phosphorylate other proteins. Among phot 

targets, PHYTOCHROME KINASE SUBSTRATE 4 (PKS4) and the auxin transporter ABCB19 have been 

related to phototropism (Fig. 2A) (Liscum et al. 2014, Christie et al. 2015, Okajima 2016). ABCB19 is 

phosphorylated by phot1 in vitro and phosphorylation inhibits its function. However, abcb19 mutants have 

exaggerated phototropism, so it seems that this phosphorylation is not required to promote hypocotyl 

bending but rather to inhibit it. PKS4 belongs to a family of plant-specific proteins with 4 members in 
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Arabidopsis (PKS1-4) involved in various phot-mediated responses (de Carbonnel et al. 2010, Kami et al. 

2014, Liscum et al. 2014, Christie et al. 2015). Although the biochemical function of PKS proteins is still 

unclear it may be related to auxin transport or signaling (de Carbonnel et al. 2010, Kami et al. 2014). PKS4 

localizes to the plasma membrane, interacts with phot1 and NPH3 and is required for hypocotyl 

phototropism in LB (Kami et al. 2014, Fankhauser and Christie 2015). Upon B exposure it is 

phosphorylated in vivo by phot1 on S299. However, this phosphorylation is not required for phototropism 

towards LB in etiolated seedlings. On the contrary, phosphorylated PKS4 acts as an inhibitor of 

phototropism towards HB in de-etiolated seedlings (Schumacher et al. 2018). Thus, future research is 

required to link phot-mediated phosphorylation of signaling targets to positive phototropism. To date, the 

only phot phosphorylation target required for a phot-mediated response is the kinase Blue Light Signaling 

1 (BLUS1), which is essential for blue light induced stomata opening (Christie et al. 2015). 

While phot-triggered early signaling occurs at the plasma membrane, UVR8 signaling takes place in the 

nucleus where UVR8 monomers interact with COP1 (Fig. 2B) (Jenkins 2017, Lau et al. 2019, Liang et al. 

2019). Together with SUPPRESSOR OF PHYA-105 (SPA) proteins, COP1 acts as a substrate adapter in a 

CUL4-DDB1 E3 ubiquitin ligase complexes which target many proteins involved in light signaling. 

ELONGATED HYPOCOTYL5 (HY5) is a transcription factor that promotes photomorphogenesis, is one 

of the most up-regulated genes in response to UVB, and is a COP1 target (Liang et al. 2019, Vanhaelewyn 

et al. 2019). Upon UVB irradiation UVR8 binding to COP1 reduces its association with the E3 ligase 

complex inhibiting COP1-mediated degradation of HY5 (Fig. 2B) (Podolec and Ulm 2018, Lau et al. 2019). 

This allows HY5 protein accumulation, which in turn promotes its own transcription, creating a feed 

forward loop which enhances photomorphogenic responses to UVB (Liang et al. 2019).  

Early UVR8 signaling has been widely studied in the context of hypocotyl growth inhibition in response to 

UVB. However it was shown that upon unilateral UVB irradiation a UVR8 activity gradient is established 

in the hypocotyl and in the inflorescence stem, which allows phototropic bending. This causes accumulation 

of HY5 and expression of its targets in the lit side of the organ, presumably leading to site-specific growth 

inhibition (Vandenbussche and Van Der Straeten 2014, Vanhaelewyn et al. 2019). In inflorescence stems 

HY5 HOMOLOG (HYH) has a role in addition to HY5, and its expression is induced by UVB more 

prominently in the lit than in the shaded side (Fig. 2B) (Vanhaelewyn et al. 2019). Accordingly, HY5 and 

HYH targets are also differentially expressed across the stem (Vanhaelewyn et al. 2019).  

Apart from COP1, UVR8 in the nucleus also interacts with transcription factors (TFs) such as WRKY 

DNA-BINDING PROTEIN 36 (WRKY36), BRI1-EMS-SUPRESSOR1 (BES1) and BES1-

INTERACTING MYC-LIKE1 (BIM1) (Liang et al. 2019) (Fig. 2B). WRKY36 represses transcription of 

HY5, inhibiting photomorphogenesis downstream of UVR8. BES1 and BIM1 are brassinosteroid signaling 
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transcription factors which promote hypocotyl elongation promoting several growth-related genes. While 

interaction of UVR8 with these transcription factors is required for hypocotyl growth inhibition by UVB, 

their role in phototropism has not been studied. 

Late downstream signaling 

Growth reorientation towards the light source requires that the shaded side of the stem grows more than the 

lit side. Both in response to B and UVB this is achieved by the formation of an auxin gradient across the 

stem (Fig. 2). Although this has not been measured directly in Arabidopsis due to its small size, it has been 

found in other species such as Brassica and oat, and indirectly measured in Arabidopsis using auxin 

signaling reporters (Liscum et al. 2014, Fankhauser and Christie 2015). Auxin is mostly synthesized in 

developing tissues, such as young leaves and cotyledons, and moves basipetally through the phloem. Given 

that the epidermis has a major role regulating plant growth, control of auxin transport from the vasculature 

to the epidermal tissues is fundamental for phototropism (Savaldi-Goldstein et al. 2007).  

In hypocotyls bending towards B phot require members of the PIN FORMED (PIN) family of auxin efflux 

carriers. High order PIN mutants have impaired hypocotyl bending (Liscum et al. 2014, Fankhauser and 

Christie 2015). This could reflect a general need of auxin transport from the site of production to the site of 

action, or a specific role of PINs in the bending site. In favor of the second alternative, in response to 

unilateral B PIN3 changes its localization in the endodermal cells promoting auxin transport from the 

vasculature to the shaded side of the hypocotyl in a process regulated by clathrin (Zhang et al. 2017). 

Although the mechanism linking photoreceptor activation with modulation of PIN activity is still unknown, 

kinases belonging to the same class as phot, the AGCVIII, regulate PIN activity via phosphorylation. 

Among these kinases, D6 PROTEIN KINASES (D6PKs) phosphorylate and activate PINs, and are essential 

for phototropism in many light conditions without affecting hypocotyl growth (Haga et al. 2018). PINOIDs 

(PIDs) were proposed as regulators of PIN activity in phototropism. However, the quadruple mutant lacking 

all four family members has normal phototropism towards B, ruling out a key role of these kinases in the 

process (Haga et al. 2014). Recently AGC1-12 was shown to phosphorylate PINs and is required for 

phototropism in response to B pulses. AGC1-12 and D6PKs also play a role in gravitropism suggesting that 

these kinases have a broad role in auxin-mediated tropic responses (Haga et al. 2018).  

Interestingly, the role of PINs is not so prominent in phototropism towards UVB. pin3 mutants have a full 

response to unilateral UVB, and overexpressing PID or inhibiting PINs with N-(1-naphtyl)phtalamic acid 

(NPA) has a smaller effect than in response to B (Vandenbussche et al. 2014). In inflorescence stems the 

role of PINs in UVB responses remains to be established. However, NPA treatment inhibits bending, and 
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PID, which is required for full bending, is upregulated in the lit side in a UVR8-dependent fashion, so 

probably regulation of PINs activity influences stem bending towards UVB (Vanhaelewyn et al. 2019).  

As mentioned before ABCB19, another auxin transporter is phosphorylated by phot but mutants have 

increased hypocotyl phototropism so its role in phototropism is still unclear, and members of the AUX/LAX 

family of auxin importers have a very limited effect in hypocotyl phototropism towards B and no role in 

response to UVB (Liscum et al. 2014, Vandenbussche et al. 2014, Fankhauser and Christie 2015). 

Once in the cell auxin is perceived by nuclear receptors, with members of the TRANSPORT INHIBITOR 

RESISTANT1/AUXIN BINDING F-BOX (TIR/AFB) having a clear role in phototropism (Liscum et al. 

2014, Leyser 2018). These proteins act as substrate adaptors in a SCF-type ubiquitin ligase complex that 

targets transcriptional regulators to de-repress gene expression in response to auxin (Leyser 2018). 

Aux/IAA proteins, together with co-repressor proteins such as TOPLESS (TPL) inhibit transcription 

promoted by AUXIN RESPONSE FACTORs (ARFs). In response to auxin Aux/IAAs are degraded and 

ARFs promote transcription of auxin responsive genes. NPH4/ARF7 and IAA19 are among the most 

important auxin related factors for phototropism in response to B (Liscum et al. 2014). Interestingly NPH4, 

ARF19 and IAA19 are most likely dispensable for phototropism towards UVB (Vandenbussche et al. 2014, 

Vanhaelewyn et al. 2019). Nevertheless, stable versions of IAA7 (axr2) and IAA17 (axr3) have impaired 

phototropism in response to both B and UVB, suggesting that auxin signaling is required in both cases 

(Vandenbussche et al. 2014, Vanhaelewyn et al. 2019). However, axr mutants have pleiotropic effects, so 

the interpretation of these results is not straightforward. Indeed, inflorescences of axr2 mutants show 

negative phototropism in response to B, pointing at a complex regulation of differential growth in these 

mutants (Sato et al. 2015). Auxin signaling also controls cell expansion regulating the orientation of 

microtubules (True and Shaw 2020). In addition, in hypocotyls it was shown that phot can also control 

microtubule orientation (Lindeboom et al. 2013). It will be interesting to know how these pathways 

interplay in the control of differential cell expansion in the stem in response to unilateral light stimulus. 

Members of the SMALL AUXIN UP RNA (SAUR) are upregulated in response to auxin (Leyser 2018). In 

response to UVB SAUR are downregulated in a UVR8-dependent manner (Vandenbussche et al. 2014). 

SAUR19 was shown to have a role in phototropism towards B since hyperactive variants have impaired 

phototropic responses (Spartz et al. 2012). SAUR19 and SAUR24 localize to the plasma membrane, where 

they interact with and inhibit PP2C-D thereby inhibiting de-phosphorylation of the H+ATPase which in its 

active phosphorylated form acidifies the apoplast enhancing cell expansion (Leyser 2018). Activation of 

the H+ATPase is required for phototropism, but was proposed to initiate the formation of an auxin gradient 

(Hohm et al. 2014). Also, in stomata phot trigger H+ATPase activation presumably independently of auxin, 

in a process that requires the guard-cell specific phot1 target BLUS1 (Christie et al. 2015). Hence, while 
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the requirement of SAUR and H+ATPase for phototropism is clear, the mechanisms in which they are 

involved are not fully understood.  

Stem phototropism towards UVB requires not only auxin but also gibberellins (GA). In the lit side of the 

stem HY5 promotes expression of GA2-oxidases GA2OX1 and GA2OX8, two enzymes involved in GA 

inactivation by hydroxylation (Fig. 2B). This creates a gradient of bioactive GA abundance across the stem, 

which in addition to the auxin gradient is expected to control differential cell expansion controlling for 

example the abundance of REPRESSOR OF GA (RGA) (Fig. 2B). However, this GA gradient is not enough 

to promote bending, but is required for a full response (Vanhaelewyn et al. 2019). In contrast, GA is not 

necessary for phototropism towards B in etiolated seedlings but may be involved in the interaction between 

phot and other photoreceptor signaling pathways (Tsuchida-Mayama et al. 2010). 

Modulatory roles of other photoreceptors 

While phot and UVR8 are the only photoreceptors capable of triggering phototropism, the R and far-red 

light (FR) receptors phytochromes (phy) and the B receptors cryptochromes (cry) have a modulatory role 

which depends on the plant developmental stage (Fig. 3) (Liscum et al. 2014, Fankhauser and Christie 

2015). One key developmental process in a plant’s life cycle is de-etiolation, which happens when seedlings 

growing in the dark reach the soil surface, and transition from a heterotrophic metabolism to photo-

autotrophy (Legris et al. 2019). Predictably, responses to light are very different between etiolated and de-

etiolated plants, and in particular the mechanisms underlying phototropism vary significantly between these 

developmental states (Fig. 3). For example, phy and cry enhance phototropism in etiolated seedlings, but 

inhibit it in de-etiolated seedlings. In this section we will describe how photoreceptors modulate 

phototropism in etiolated and de-etiolated plants. 

Etiolated seedlings grow below the soil and rely on the seed reserves to reach the surface. In these 

conditions, seedlings are highly sensitive to light, at least in part due to the accumulation of high levels of 

phot1 and phyA (Liscum et al. 2014, Legris et al. 2019). In etiolated seedlings, B or R perceived by cry or 

phyA respectively enhance hypocotyl curvature towards B (Fig. 3) (Whippo and Hangarter 2003, Tsuchida-

Mayama et al. 2010). This can be explained by increased expression of genes related to phototropism such 

as RPT2 and PKS1 (Kami et al. 2012, Liscum et al. 2014, Fankhauser and Christie 2015, Haga et al. 2015). 

In addition, it was recently shown that phyA can also enhance hypocotyl phototropism towards LB in 

response to a B pre-treatment (Sullivan et al. 2016a). Interestingly, while PHOT1 expression in the 

epidermis is enough to trigger phototropism, this interaction between phyA and phot1 occurs in another 

tissue, probably the cortex (Sullivan et al. 2016a). Hypocotyls have negative gravitropsim, and to bend they 

need to reorient growth in a direction opposed to the one set by the gravitropic stimulus. It has been 
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previously shown that phyA reinforces phototropism inhibiting gravitropism (Lariguet and Fankhauser 

2004, Liscum et al. 2014). Interestingly, epidermal or cortical phyB inhibits gravitropism in de-etiolated 

seedlings, promoting degradation of amyloplasts in the endodermis (Legris 2019). Whether this is the case 

in phyA-mediated inhibition of gravitropism, or if phyB-mediated inhibition of gravitropism has an effect 

on phototropism remains to be established.  

Once the seedling reaches the soil surface, phy, cry and UVR8 promote de-etiolation, which is characterized 

by inhibition of hypocotyl elongation among other responses. In these growth-inhibiting conditions 

seedlings are not too sensitive to the phototropic stimulus, suggesting that when photosynthetic organs are 

exposed to optimal light conditions, the re-orientation is not a priority (Fig. 3) (Whippo and Hangarter 2003, 

Goyal et al. 2016). Nevertheless, when light is scarce positioning of the photosynthetic organs towards the 

light would be advantageous. Indeed, in the presence of surrounding plants inhibition of phyB promotes 

phototropism (Goyal et al. 2016). In the proximity of plants, the light spectrum presents a reduced red to 

far-red ratio (R:FR), since the photosynthetic pigments absorb mainly R and B and reflect and transmit FR. 

In these conditions, inactivation of phyB allows the accumulation of auxin through the transcriptional 

activation of auxin synthesis genes by PHYTOCHROME INTERACTING FACTORS (PIF) in the 

cotyledons (Goyal et al. 2016, Legris et al. 2019). When low R:FR is combined with a directional B cue, 

this newly synthesized auxin is transported to the shaded side of the hypocotyl enhancing phototropic 

bending (Goyal et al. 2016). Remarkably, auxin biosynthesis is not required for etiolated seedlings. Mutants 

for auxin biosynthesis show reduced phototropism in light-grown seedlings, but not in dark-grown 

seedlings (Goyal et al. 2016) This is in agreement with previous data showing that the absence of cotyledons 

(where most auxin is synthesized in response to shade) does not affect phototropism in etiolated seedlings, 

while it inhibits the bending in de-etiolated seedlings (Preuten et al. 2013). As mentioned above, green 

tissues also absorb B so, below a green canopy cry and phot are also inactivated. Future research is required 

to understand how these signals are integrated to control phototropism in shaded environments.  

While fully de-etiolated seedlings growing in the light have a reduced phototropic response, a recent report 

showed that dark-adapted de-etiolated seedlings are more responsive to unilateral B than etiolated seedlings 

(Sullivan et al. 2019). In this particular case, enhanced phototropic bending correlates with reduced NPH3 

dephosphorylation but in a RPT2-independent manner, and cannot be explained by increased auxin 

sensitivity, suggesting the existence of an alternative mechanism to the previously reported (Sullivan et al. 

2019).  

So far there is no data regarding the interaction of other photoreceptors with phot and UVR8 in the control 

of phototropism in inflorescence stems (Fig. 3). However, it is tempting to speculate that COP1 may 

represent a signaling hub in this process. In addition to UVR8, phy and cry also inhibit COP1 (Podolec and 
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Ulm 2018). Two recent papers showed that UVR8 and cry compete with other transcription factors, such 

as HY5, for the binding to COP1 thereby impeding their degradation (Lau et al. 2019, Ponnu et al. 2019). 

Considering the importance of HY5 distribution for asymmetrical growth of the stem, it is reasonable to 

speculate that the modulation of the HY5-COP1 interaction by different photoreceptors may be critical for 

stem curvature in different light scenarios (Vanhaelewyn et al. 2019). In addition, UVR8 was shown to 

inhibit  accumulation of PIF4 and PIF5 in de-etiolated seedlings (Sharma et al. 2019, Tavridou et al. 2019). 

Given that PIF activity can also be regulated by phy and cry, this may also represent a signaling hub. 

Conclusions 

Phototropism has fascinated scientists as early as Darwin’s observations in the late 19th century. Since the 

discovery of phot in Arabidopsis in the 1990’s by Winslow Briggs’ group we have advanced in our 

knowledge about phot structure and signaling mechanisms, showing that plants developed complex 

mechanisms to accurately regulate phototropism in a large range of environmental conditions. The recent 

discovery of the UVB receptor UVR8, and its role in phototropism makes the system even more complex 

and intriguing.  

While phot are the main receptors involved in hypocotyl phototropism, inflorescence stem phototropism 

towards unilateral UVB is controlled by UVR8. It would be interesting to study the interplay of these 

receptors in natural conditions, where B and UVB will jointly provide information about the heterogeneity 

of the light environment, and where other factors such as temperature, day length and the activity of other 

photoreceptors could modulate phototropism. Also, since Arabidopsis is a rosette plant, bending of the 

inflorescence stem towards UVB could be directly related to positioning the flowers rather than the leaves. 

Studying phototropism in species with a different architecture might help us distinguish between the 

mechanisms controlling inflorescence positioning and leaf positioning, which could reveal the relative 

contributions of phot and UVR8 to phototropism. In addition, hypocotyl phototropism towards UVB was 

studied in etiolated seedlings. It would be interesting to evaluate the role of UVR8 triggering phototropism 

in de-etiolated seedlings. 

In the previous paragraphs we listed unresolved issues regarding the molecular mechanisms of phot and 

UVR8 signaling. In general, UVR8 signaling has been studied in the context of hypocotyl growth inhibition. 

Now, we should evaluate whether these mechanisms are conserved for phototropism. While our knowledge 

about phot is more complete than for UVR8, key questions remain unsolved in all the steps leading from 

phot activation to stem bending. First, phot have a role at the membrane, but how they are associated with 

it is still unknown. The same is true for key signaling factors such as NPH3, RPT2 and PKS proteins. NPH3 

phosphorylation status is clearly a determinant for phototropism, but we still ignore which are the kinases 
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and phosphatases required for this regulation. Finally, both for UVR8 and phot the establishment of an 

auxin gradient is required to trigger bending, but the molecular link between photoreceptor activation and 

auxin transport or signaling remains elusive. Given the site-specificity of these processes biochemical 

approaches face strong difficulties. However, as recent examples have shown, the use of fluorescence 

microscopy will be instrumental to study phototropism. 
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Figure legends 

Figure 1. Photoreversible activation by blue and UVB light of phot1 and UVR8. A- Phot consist of two 

N-terminal light sensing LOV domains and a C-terminal serine-threonine kinase domain (STK). In the dark, 

LOV2 interacts with the STK inhibiting its kinase activity. Light induces covalent binding of FMN to the 

LOV domains, triggering conformational changes and eventually de-repressing the STK, which promotes 

phot autophosphorylation and phosphorylation of their targets. In the absence of blue light this process is 

reverted and phot return to the inactive state. B- UVR8 exists as a dimer in the dark, and in response to 

UVB monomerizes allowing interaction with its signaling partners. Light is perceived by tryptophan 

residues in the protein. In particular, W233 and W285 located at the interface between both monomers 

regulate dimerization through interaction with certain residues in the complementary monomer, with R286 

and R338 having a major role. In the absence of UVB the monomer returns to the inactive dimeric state. 

Figure 2. Hypocotyl and inflorescence stem curvature mediated by phot1 and UVR8. A- In 

Arabidopsis young seedlings, unilateral B irradiation drives hypocotyl curvature, which is the result of an 

increase in cell elongation in the shaded part of the hypocotyl compared to the lit side. This asymmetrical 

growth is accomplished by differential auxin distribution and phot1 activity across the hypocotyl. In blue 

light-irradiated cells, phot1 is activated and it starts a cascade of molecular events, which includes: NPH3 

de-phosphorylation and internalization, phosphorylation of PKS4 and ABCB19. B- In adult Arabidopsis 

plants, unilateral UVB irradiation drives the curvature of the inflorescence stem, which is mainly regulated 

by UVR8. In UVB-irradiated cells, the monomeric and active UVR8 form is accumulated in the nucleus, 

where it modules the transcription of several genes by sequestration and release of different transcription 

factors (TFs). This differential gene expression across the stem generates the asymmetrical distribution of 

auxin and GA, which promotes stem bending. nu: nucleus. 

Figure 3. Photoreceptors action in stem phototropism at different developmental stages of 

Arabidopsis thaliana. phot1, phot2 and UVR8 are the main photoreceptors involved in the perception of B 

and UVB triggering phototropism. Cry and phy have a modulatory role, which would be important for the 

integration of different environmental stimuli. n.t.: not tested. n.d.: no genetic evidence supporting the 

involvement of the photoreceptor in the process. 1- Reviewed in Liscum et al 2014. 2- Vandenbussche et 

al. 2014. 3- Vanhaelewyn et al. 2016. 4- Goyal et al. 2016. 5- Schumacher et al. 2018. 6- Kagawa et al. 

2009. 7- Vanhaelewyn et al. 2019. 9- Whippo and Hangarter 2003. 10- Lariguet and Fankhauser 2004. 
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Figure 1. Photoreversible activation by blue and UVB light of phot1 and UVR8. A- Phot consist of two 

N-terminal light sensing LOV domains and a C-terminal serine-threonine kinase domain (STK). In the dark, 

LOV2 interacts with the STK inhibiting its kinase activity. Light induces covalent binding of FMN to the 

LOV domains, triggering conformational changes and eventually de-repressing the STK, which promotes 

phot autophosphorylation and phosphorylation of their targets. In the absence of blue light this process is 

reverted and phot return to the inactive state. B- UVR8 exists as a dimer in the dark, and in response to 

UVB monomerizes allowing interaction with its signaling partners. Light is perceived by tryptophan 

residues in the protein. In particular, W233 and W285 located at the interface between both monomers 

regulate dimerization through interaction with certain residues in the complementary monomer, with R286 

and R338 having a major role. In the absence of UVB the monomer returns to the inactive dimeric state. 
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Figure 2. Hypocotyl and inflorescence stem curvature mediated by phot1 and UVR8. A- In 
Arabidopsis young seedlings, unilateral B irradiation drives hypocotyl curvature, which is the result of an 
increase in cell elongation in the shaded part of the hypocotyl compared to the lit side. This asymmetrical 
growth is accomplished by differential auxin distribution and phot1 activity across the hypocotyl. In blue 
light-irradiated cells, phot1 is activated and it starts a cascade of molecular events, which includes: NPH3 
de-phosphorylation and internalization, phosphorylation of PKS4 and ABCB19. B- In adult Arabidopsis 
plants, unilateral UVB irradiation drives the curvature of the inflorescence stem, which is mainly 
regulated by UVR8. In UVB-irradiated cells, the monomeric and active UVR8 form is accumulated in the 
nucleus, where it modules the transcription of several genes by sequestration and release of different 
transcription factors (TFs). This differential gene expression across the stem generates the asymmetrical 
distribution of auxin and GA, which promotes stem bending. nu: nucleus. 
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Figure 3. Photoreceptors action in stem phototropism at different developmental stages of 

Arabidopsis thaliana. phot1, phot2 and UVR8 are the main photoreceptors involved in the perception of B 

and UVB triggering phototropism. Cry and phy have a modulatory role, which would be important for the 

integration of different environmental stimuli. n.t.: not tested. n.d.: no genetic evidence supporting the 

involvement of the photoreceptor in the process. 1- Reviewed in Liscum et al 2014. 2- Vandenbussche et 

al. 2014. 3- Vanhaelewyn et al. 2016. 4- Goyal et al. 2016. 5- Schumacher et al. 2018. 6- Kagawa et al. 

2009. 7- Vanhaelewyn et al. 2019. 9- Whippo and Hangarter 2003. 10- Lariguet and Fankhauser 2004. 

 


