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Preface

The calculation of the economic capital falls under the Solvency II and is recently

one of the main objectives of European insurers and reinsurers on a yearly basis.

Typically, these regulations require them to hold a certain amount of capital to

cover them from the risk of insolvency. However, the latter requires a proper under-

standing of the dependence structure between the insurance risks. Moreover, given

the high competition in the insurance market, insurers compete intensively on price,

quality of service, �nancial strength and other factors among every line of business.

Therefore, a main objective of insurers is also to maximise their pro�t at the end of

the calendar year and stand out from their competitors.

This thesis discusses both objectives and is divided into three parts. The �rst part

combines Chapters 2 and 3. Both chapters explore Price Optimisation in the scope

of insurance for a non-life portfolio. The considered optimisations problems are rel-

evant for practicing actuaries and are investigated in details for the new business

and the renewal business. The second part examines new dependence models de-

rived from the distribution of the largest claims observed in two insurance portfolios

using the copula approach. In Chapter 4, we investigate some distributional and

extremal properties of our new model. Whereas, in Chapter 5, we introduce a new

class of tractable distribution, the Discrete-Stable distribution, for the claim count-

ing random variable and explore some new dependence properties. Finally, in the

last part, we use the Sarmanov distribution to model the dependence of multivari-

ate insurance risks on one hand and the number of claims on the other hand. In

Chapter 6, we present closed-type formulas for risk aggregation and capital alloca-

tion of mixed Erlang risks joined by the Sarmanov distribution. These formulas are

derived in the general framework of stop-loss reinsurance and then in the particular

case with no stop-loss reinsurance. In Chapter 7, we derive closed type formulas for

multivariate compound distributions with multivariate Sarmanov counting distribu-

tion. We then compare the exact values with the ones obtained from the classical

recursion-discretization approach.
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Chapter 1

Introduction

Nowadays, European insurers and reinsurers are governed by new regulations re-

quiring them to hold a certain amount of capital to cover their unexpected losses.

The calculation of the economic capital falls under the Solvency II framework and

is based on a Value-at-Risk approach at 99.5% con�dence level. Several factors are

taken into account to compute the latter, however one of the main factors is asso-

ciated with the modeling of the dependence structure observed between insurance

risks under the enterprise risk management scheme. Measuring the dependence be-

tween insurance risks is important in practice. For instance, Nguyen and Molinari

[95] show that ignoring the latter leads to an underestimation of the overall capital

the insurer must hold. However, assuming complete dependence between the risks

overestimates the overall risk the insurer is facing, hence their capital and as a re-

sult generates higher costs to the insurance and reinsurance companies relating to

the capital they are holding. Therefore, in order to assess the level of dependence

between the di�erent insurance risks, insurers shall compute some statistical mea-

sures. The most popular measure of dependence is the linear correlation coe�cient,

namely Pearson correlation coe�cient. However, relying solely on the latter is, in

general, misleading especially in non-life insurance due to the asymmetry of the loss

distributions for some lines of business. Therefore, to model accurately the depen-

dence between the risks, insurers shall determine their loss distributions. In this

respect, the copula approach is introduced. Copulas have a long history in the liter-

ature, see Genest and MacKay [48], Joe [66], Nelsen [94] and the references therein.

Their importance lies in the fact that they capture the whole dependence structure

between insurance risks. However, the main di�culty remains in the choice of the

copula that will best �t the risk pro�le of the company, see for instance Genest and

Rivest [49], Kole et al. [74] for methods related to the selection of the appropriate

copula model.
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Although insurers must cope with the new regulations on a yearly basis, they are

also concerned in increasing their pro�t at the end of each calendar year. Given the

high competition in the insurance market, speci�cally in the auto-insurance mar-

ket, insurers intensively compete on several factors such as price, quality of service,

�nancial strength and many other factors across every class of drivers. One of the

main objectives they have to deal with is based on how to generate more sales, re-

tain existing customer and increase their pro�t simultaneously in order to stand out

from their competitors. In this respect, a new and evolving concept is introduced in

the scope of insurance namely Price Optimisation. Price Optimisation is generally

referred to as the practice of increasing or decreasing premium rates of policyholders

based on non-related risk factors and some business constraints, see NAIC [92].

In the sequel, we shall explore both objectives of insurers in details. The thesis is

structured as follows.

1.1 Price Optimisation

Price Optimisation is a new and evolving area in the actuarial practice for insurance

companies. It has already been used for years in the retail and travel industries, see

Ferreira et al. [39], Phillips [99], but has never been used in the scope of insurance

until recently. Price optimisation is the process of going from traditional actuarial

rates to �nal prices. However, this process involves a deep understanding of the

market demand and customer behavior. In the literature, Price Optimisation is

sometimes referred to as Price discrimination, see Thomas [115]. This designation

is justi�able in the concept of Inertia pricing, i.e., the act of o�ering lower prices to

new customers who share the same risk pro�le of existing ones.

In the last 12 years, many insurance companies in Europe have already implemented

price optimisation techniques. So far in the literature, there is no precise mathemat-

ical description of the optimisation problems solved in such applications. Nonethe-

less, very recent contributions focus on the issues of price optimisation, mainly

from the ethical and regulation points of view, see Marin and Bayley [84], NAIC

[92], Schwartz and Harrington [108].

In this thesis, we tackle in Chapters 2 and 3 the following issue: How can we modify

the premiums for given customers within a range of reasonable prices such that the

new premiums are optimal under some business constraints?

In this regard, we consider a non-life insurance portfolio, speci�cally an auto-insurance
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portfolio. The main source of portfolio income emanates from the premium volume.

In this respect, we consider in both chapters the maximisation of the expected pre-

mium volume under some business constraints. We model the demand function in

both cases based on the initial price, i.e. before optimisation, the �nal price, i.e.

after optimisation, and some other risk characteristics.

Chapter 2 is dedicated to the price optimisation of the renewal business. We de-

�ne some objective and constraint functions relevant to insurers. We consider both

continuous and discrete optimisation and provide some algorithmic sub-optimal so-

lutions. Also, we explore some simulation techniques for the discrete case.

In Chapter 3, we deal with price optimisation of the new business. Typically, due to

high competition in the insurance market, insurers intensively compete on several

factors such as price, quality of service, etc. Therefore, we include in our model the

competition in the market when setting the optimisation problems.

1.2 Dependence models

Copulas have a long history in the literature, see Genest and MacKay [48], Nelsen

[94]. They are popular tools for modeling dependent insurance risks, see Denuit

et al. [28], Embrechts et al. [37], Klugman and Parsa [72], Vandenberghe et al. [116]

and the references therein. Typically, a copula is de�ned as the joint distribution

function of random variables uniformly distributed on the interval (0, 1). Sklar [111]

shows that one can construct multivariate distributions with arbitrary marginal

distributions. Indeed, if we consider a d-variate random vector (X1, . . . , Xd) with

joint distribution function F , then when the marginal distributions Fi of Xi for

i = 1, . . . , d are known, we can write F with respect to the copula C of the d-variate

vector as follows

F (x1, . . . , xd) = C (F1(x1), . . . , Fn(xd)) .

Moreover, if the marginal distributions Fi of Xi are continuous then the copula C

of F is unique and can be written as

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
n (ud)

)
.

Copulas share several interesting properties, mainly they are invariant through in-

creasing transformations. The latter is relevant for instance when converting the

actual losses into loss payments. Also, to assess the level of dependence between in-

surance risks with a copula, we can use two other dependence measures namely the

Kendall's τ and Spearman's rank correlation ρS which are concordant/discordant
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measures. They are de�ned as follows for a given copula C

τ(C) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1, ρS(C) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.

In the sequel, we shall present several applications based on the copula approach.

1.2.1 New dependence models based on mixture copulas

In insurance practice, modeling of multivariate data is crucial in several applications.

We count for instance the pricing of dependent insurance risks, risk management of

di�erent portfolios, reinsurance modeling of joint risks etc. With motivation from

Zhang and Lin [127], we propose, in Chapters 4 and 5, a �exible family of copulas

derived from the joint distribution F of the largest claim sizes of two insurance

portfolios. Their corresponding collective model over a �xed time period is given

in terms of the individual claim sizes of the two portfolios (Xi, Yi), i ≥ 1 with

distribution function G and a claim counting random variable N . By allowing N

to depend on some parameter, say θ, then F = F (θ) is for various choices of N a

tractable parametric family of bivariate distribution functions. If N = 0, then there

are no claims, so the largest claims in both portfolios are equal to 0. However, when

N ≥ 1, then (XN :N , YN :N) denotes the maximal claim amounts in both portfolios.

In this respect, we de�ne Λ = N |N ≥ 1. Inspired by Joe [67][Chapter 4.2], F can be

expressed with respect to the Laplace transform of the claim frequency distribution

as follows

F (x, y) = LΛ (− lnG(x, y)) , where Λ = N |N ≥ 1.

In Chapter 4, we assume that Λ belongs to a tractable family of distributions namely

Shifted Geometric, Shifted Poisson and Truncated Poisson. We present several

applications of the implied parametric models to some data from the literature.

Furthermore, we investigate the extremal properties of F and G by Monte Carlo

simulation and show that they almost share the same dependence property.

In Chapter 5, we introduce a new class of distributions for N , namely the Discrete-

Stable distribution, motivated by the Poisson distribution. By allowing N to be a

compound Poisson random variable, then N is given by

N =
Y∑
i=1

Zi, N = 0 if Y = 0, (1.2.1)

where Y is a counting random variable independent of Zi's which are discrete random

variables. In this Chapter, we shall focus on a tractable choice for Zi's, namely these
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are independent copies of a Sibuya random variable Z with probability generating

function (pgf)

PZ(z) = 1− (1− z)α,

with α ∈ (0, 1] a �xed parameter. For such Z and Y a Poisson random variable

with parameter λ > 0, then N has a discrete-stable distribution with parameters

λ > 0 and α ∈ (0, 1]. Furthermore, we investigate the dependence property of F

with respect to both parameters α and λ and present several applications of the new

model to concrete insurance data sets.

1.2.2 Dependence models based on the Sarmanov distribu-

tion

Let S denote the aggregate claims of an insurance portfolio. In the individual

model, S is de�ned as the sum of each individual claims, say Xi for i = 1, . . . , n,

i.e. S =
∑n

i=1Xi where X1, X2, . . . , Xn are mutually independent random variables

and n is �xed. By allowing the number of claims n to be random, say N , we de�ne

the collective model as

S =
N∑
i=1

Xi,

where the individual claims Xi are independent for di�erent i and identically dis-

tributed and are independent of N . In the sequel, we shall explore applications of

the collective model in the multivariate case with the use of Sarmanov distribution

to model on one hand the dependence between the individual claim amounts and

on the other hand the dependence between the number of claims in each portfolio.

Sarmanov's distribution was �rst introduced by Sarmanov [107] in the bivariate

case, then extended by Lee [77] to the multivariate case. The Sarmanov distribution

caught the interest of many researchers in di�erent �elds. Vernic [117] considered

capital allocation based on the TVaR rule for the Sarmanov distribution with expo-

nential marginals; Cossette et al. [23] used the Farlie-Gumbel-Morgenstern (FGM)

distribution to model the dependence between mixed Erlang distributed risks and

applied it to capital allocation and risk aggregation; Hashorva and Ratovomirija [59]

and Ratovomirija [100] presented aggregation and capital allocation in insurance and

reinsurance for mixed Erlang distributed risks joined by the Sarmanov distribution

with a speci�c kernel function. One key advantage of the Sarmanov distribution is

its �exibility to join di�erent types of marginals and its allowance to obtain exact

results. Its applications in many insurance contexts show its �exible structure when
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modeling the dependence between multivariate risks given the distribution of the

marginals, see the references cited above. For some kernel function φ, we de�ne the

Sarmanov distribution as follows

h(x) =
n∏
i=1

fi(xi)

(
1 +

∑
1≤j<l≤n

αj,lφj(xj)φl(xl)

)
,x ∈ Rn,

where φi and αj,l are the non-constant kernel functions and dependence parameters

respectively satisfying the following conditions

E(φi(Xi)) = 0 for i = 1, . . . , n and 1 +
∑

1≤j<l≤n

αj,lφj(xj)φl(xl) ≥ 0.

Following some recent works of Cossette et al. [23], Hashorva and Ratovomirija

[59] and Ratovomirija [100], we present in Chapter 6 some closed-type formulas for

risk aggregation and capital allocation of mixed Erlang risks joined by Sarmanov's

multivariate distribution by considering a di�erent kernel function for Sarmanov's

distribution, not previously studied in this context. The risk aggregation and capital

allocation formulas are derived and numerically illustrated in the general framework

of stop-loss reinsurance, and then in the particular case with no stop-loss reinsurance.

A discussion on the dependence structure of the considered distribution, based on

Pearson's correlation coe�cient, is also presented for di�erent kernel functions and

illustrated in the bivariate case.

In Chapter 7, we consider the multivariate extension of the univariate collective

model. In this respect, we consider m insurance portfolios as follows

(S1, ..., Sm) =

(
N1∑
l=0

X1l, ...,

Nm∑
l=0

Xml

)
,

where Nj denotes the number of claims of type j and Xjl the corresponding claim

sizes. We assume that the number of claims are dependent and joined by the Sar-

manov distribution. In this chapter, we present closed-type formulas for multivariate

compound distributions with multivariate Sarmanov counting distribution and in-

dependent Erlang distributed claim sizes. Further on, we also consider a type II

Pareto dependence between the claim sizes of a certain type, see Sarabia et al. [106].

The resulting densities rely on the special hypergeometric function. Based on the

Pochhammer symbol (a)(n) = a (a+ 1) × ... × (a+ n− 1) , n ≥ 1, (a)(0) = 1, the
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generalized hypergeometric function rFq is de�ned by

rFq ({a1, ..., ar} , {b1, ..., bq} ; z) = 1 +
∞∑
n=1

(a1)(n) × ...× (ar)(n)

(b1)(n) × ...× (bq)(n)

zn

n!
.

The advantage of this function is that it is already implemented in the usual software.

Finally, we numerically illustrate the applicability and e�ciency of such formulas by

evaluating a bivariate cumulative distribution function, which is also compared with

the similar function obtained by the classical recursion-discretization approach.



Chapter 2

Some Mathematical Aspects of Price

Optimisation

This chapter is based on E. Hashorva, G. Ratovomirija, M. Tamraz and Y. Bai: Some

Mathematical Aspects of Price Optimisation, published in Scandinavian Actuarial

Journal, 1-25, 2017.

2.1 Introduction

Commonly, insurance contracts are priced based on a tari�, here referred to as

the market tari�. In mathematical terms such a market tari� is a function say

f : Rd → [m,M ] where m,M are the minimal and the maximal premiums. For in-

stance, a motor third party liability (MTPL) market tari� of key insurance market

players in Switzerland has d > 15. Typically, the function f is neither linear nor a

product of simple functions.

In non-life insurance, many insurance companies use di�erent f for new business

and renewal business. There are statistical and marketing reasons behind this prac-

tice. In this paper we are primarily concerned with non-life renewal business. Yet,

some �ndings are of importance for pricing of insurance and other non-insurance

products. We shall �rst discuss three important actuarial tasks and then present

various mathematical aspects of relevance for pricing actuaries.

Practical actuarial task T1: Given that a portfolio of N policyholders is priced

under a given market tari� f , determine an optimal market tari� f ∗ that will be

applied in the next portfolio renewal.

Typically, actuarial textbooks are concerned with the calculation of the pure pre-

8
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mium, which is determined by applying di�erent statistical and actuarial methods

to historical portfolio data, see e.g., Asmussen [13], Embrechts et al. [36], Rolski

et al. [104], Rotar [105]. The tari� that determines the pure premium of a given

insurance contract will be here referred to as the pure risk tari�. In mathemati-

cal terms this is a function say g : Rd1 → [m1,M1] with d1 ≥ 1. In the actuarial

practice, pure premiums are loaded, for instance for large claims, provisions, direct

expenses and other costs (overheads, pro�t, etc.). Actuarial mathematics explains

various approaches for loading insurance premiums; in practice very commonly a

linear loading is applied. We shall refer to the function that is utilised for the cal-

culation of the premium of an insurance coverage based on the costs related to that

coverage as actuarial tari�; write gA : Rd2 → [m2,M2] for that function.

Despite the importance of task T1, the current actuarial literature has not dealt

with its mathematical aspects. On the other side, practicing actuaries are constantly

confronted with various black-box type solutions available from external services or

in few cases have developed their own internal models.

Practical actuarial task T2: Given a pure risk tari� g, construct an optimal ac-

tuarial tari� gA that includes various premium loading.

Since by de�nition there is no unique optimal actuarial tari�, the calculations lead-

ing to it can be performed depending on the resources of pricing and implementation

team.

To this end, let us brie�y mention an instance which motivates T2: Suppose for

simplicity that the insurance portfolio in question consists of two groups of policy-

holders A and B with nA and nB policyholders, respectively. All the contracts are

to be renewed, say at the next 1st of January. The pricing actuary calculates the

actuarial tari� which shows that for group A, the yearly premium to be paid from

each policyholder is 2'000 CHF and for group B, say 500 CHF. For this portfolio,

overhead expenses (or expenses not directly allocated to an insurance policy) are

calculated (estimated) to be X CHF for the next insurance period. The amount X

can be distributed to N = nA+nB policyholders in di�erent ways, for instance each

policyholder will have to pay X/(nA + nB) of those expenses. Another alternative

approach could be to calculate it as a �x percentage of the pure premiums. The

principal challenge for pricing actuaries is that the policyholders are already in the

portfolio and might be very sensitive to any change of their premiums, especially

when the insurance risk does not change.

At renewal (abbreviated as @R in the following) given that the insured risk does
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not change, if the new o�ered premium is di�erent from the current one, the poli-

cyholder can cancel the contract. Clearly, another common reason for canceling the

insurance contract is also the competition in the insurance market. Consequently,

the solutions of T1-T2 need to take into account the probability of renewal of the

policies at the point of renewal.

As illustrated above for T2, the percentage of premium increase δi for the ith policy-

holder @R can be �xed, i.e., δi ∈ ∆ where say ∆ = {0%, 5%, 10%}. Such increases

are often common in practice especially if the distribution channel is primarily dom-

inated by the tied agents. A clear advantage of such type of tari� modi�cation is

that it can be straightforwardly implemented with minimal implementation costs.

Therefore, instead of T2 a simpler task which is very often encountered in the in-

surance practice (but surprisingly not in actuarial literature) is as follows:

Practical actuarial task T3: Modify for any i ≤ N the premium Pi of the i
th

policyholder @R by a �xed percentage, say δi ∈ ∆i with ∆i a discrete set (for instance

∆i = {0%, 5%, 10%}) so that the new set of premiums

P ∗i = Pi(1 + δi), 1 ≤ i ≤ N

are optimal under several business constraints. Moreover, determine the new market

tari� f ∗ which yields P ∗i 's.

There are several di�culties related to the solutions of the actuarial tasks T1-T3. In

practice themarket tari� is very complex for key insurance coverage such as motor or

household insurance. A typical f utilised in insurance practice is as follows (consider

only two arguments for simplicity)

f(x, y) = min
(
M0,max(eax+by,m0 +m1x+m2y)

)
. (2.1.1)

The exponential term in f is very common in practice since both claim frequency

and average claim sizes are modelled using generalised linear models (GLM's) with

log-link function. The reason for the choice of log-link functions is the ease of IT

implementation. Both min and max functions in (2.1.1) prevent the premiums from

being extremes. These are often decided by empirical �ndings and insurance market

constraints.

Even if we know the optimal P ∗i 's that solve T3, when the structure of f (and also

of f ∗) is �xed say as in (2.1.1), then the existence of an optimal f ∗ that gives exactly

P ∗i 's is in general not guaranteed. Note that due to technical reasons, the actuaries
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can change the coe�cients that determine f , say a, b and so on, but the structure

of the tari�, i.e., the form of f in (2.1.1) is in general �xed when preparing a new

renewal tari� due to implementation costs.

The main goal of this contribution is to discuss various mathematical aspects that

lead to optimal solutions of both actuarial tasks T1 and T3. Further we analyse

eventual implementations of our optimisation problems for renewal business. Opti-

misation problems related to new business are more involved and will therefore be

treated in a forthcoming contribution.

To this end, we note that in the last 12 years many insurance companies in Europe

have already implemented price optimisation techniques. Very recent contributions

focus on the issues of price optimisation, mainly from the ethical and regulation

points of view, see Marin and Bayley [84], NAIC [92], Schwartz and Harrington

[108]. It is important to note that optimality issues in insurance and reinsurance

business, not directly related to the problems treated in this contribution, have

been discussed in various contexts, see e.g., Asimit et al. [6, 7, 10], Chi and Meng

[21], Golubin [52], Huang et al. [64], Zhang et al. [128] and the references therein.

Brief organisation of the rest of the paper: Section 2 describes the di�erent opti-

misation settings from the insurer's point of view. In Section 3, we provide partial

solutions for problem T3. Section 4 describes the di�erent algorithms used to solve

the optimisation problems followed by some insurance applications to the motor line

of business presented in Section 5.

2.2 Objective functions and Business Constraints

2.2.1 Theoretical Settings

For simplicity, and without loss of generality, we shall assume that the renewal time

is �xed for all i = 1, . . . , N policyholders already insured in the portfolio with the

ith policyholder paying the insurance premium Pi for the current insurance period.

Each policyholder can be insured for di�erent insurance periods. Without loss of

generality, we shall suppose that @R each insurance contract has the option to be

renewed for say one year, with a renewal premium P ∗i := Pi(1 + δi).

Suppose that the renewal probability for the ith contract is a function of Pi and

some parameters describing the risk characteristics of the policyholder. At renewal,

by changing the premium, this probability will depend on the premium change δi,

the previous premium Pi and other risks characteristics. Therefore we shall assume
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that this probability is

Ψi(Pi, δi), (2.2.1)

where Ψi is a strictly positive function depending eventually on i (when the risk

characteristics of the ith policyholder are tractable). This is a common assumption

in logistic regression, where Ψi is the inverse of the logit function (called also expit),

or Ψi is a univariate distribution function.

In order to consider the renewal probabilities in the tari� and premium optimisation

tasks, the actuary needs to know/determine Ψi(Pi, δi) for any δi ∈ ∆i, where ∆i is

the range of possible changes of premium (commonly 0 ∈ ∆i). Estimation of Ψi's is

non-trivial; it can be handled for instance using logistic regression, see Section 2.4.1

below for more details.

In practice, depending on the market position and the strategy of the insurance

company, di�erent objective functions can be used for the determination of an op-

timal actuarial tari� or market tari�. We discuss below two important objective

functions:

O1) Maximise the future expected premium volume @R:

In our model, the current premium volume for the portfolio in question is

V =
∑N

i=1 Pi, whereas the premium volume in case of complete renewal is

V ∗ =
N∑
i=1

P ∗i =
N∑
i=1

Pi(1 + δi).

Given the fact that not all policies might renew, let us denote by N@R the

random number of policies which will be renewed. Since we can treat each

contract as an independent risk, then

N@R =
N∑
i=1

Ii,

with I1, . . . , IN independent Bernoulli random variables satisfying

P {Ii = 1} = Ψi(Pi, δi), 1 ≤ i ≤ N.

Clearly, the expected percentage of the portfolio to renew is given by (set
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below δ = (δ1, . . . , δN))

θ(δ) =
E {N@R}

N
=

N∑
i=1

E {Ii}
N

=
1

N

N∑
i=1

Ψi(Pi, δi). (2.2.2)

The premium volume @R (which is random) will be denoted by V@R. It is

simply given by

V@R :=
N∑
i=1

IiPi(1 + δi).

Consequently, considering the interest in maximising the premium volume,

then the objective function in this setting is given by

qvol(δ) := E {V@R} =
N∑
i=1

Pi(1 + δi)E {Ii} =
N∑
i=1

Pi(1 + δi)Ψi(Pi, δi). (2.2.3)

Note that P1, . . . , PN are known, therefore the optimisation will be performed

with respect to δi's only.

O1') Minimise the variance of V@R: If the variance of V@R is large, the whole re-

newal process can be ruined. Therefore along O1 the minimisation of the

variance of V@R is important. In this model we have

qvar(δ) := V ar(V@R) =
N∑
i=1

[Pi(1 + δi)]
2Ψi(Pi, δi)[1−Ψi(Pi, δi)].(2.2.4)

O2) Maximise the expected premium di�erence @R: Let τi = Piδi be the premium

di�erence for the ith policyholder and set τ := (τ1, . . . , τN). The total pre-

mium di�erence @R is
∑N

i=1 Iiτi, with expectation

qdif (τ ) = E

{
N∑
i=1

Iiτi

}
=

N∑
i=1

τiΨi(Pi, δi). (2.2.5)

It is not di�cult to formulate other objective functions, for instance related to

the classical ruin probability, Parisian ruin (see e.g., Debicki et al. [25]), or future

solvency and market position of the insurance company. Moreover, the objective

functions can be formulated over multiple insurance periods. Due to the nature of

insurance business, there are several constraints that should be taken into account
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for the renewal business optimisation, see Asimit et al. [9] and the references therein.

Typically, the most important business constraints relate to the strategy of the com-

pany and the concrete insurance market. We formulate few important constraints

below:

C1) Expected retention level @R should not be less say than 70%. Although the

pro�t and the volume of premiums at renewal are important, all insurance

companies are interested in keeping most of the policyholders in their port-

folios. Therefore there is commonly a lower bound imposed on the expected

retention level ` at renewal. For instance ` ≥ 90% means that the expected

percentage of customers that will not renew their contracts should not exceed

10%. In mathematical terms, this is formulated as

θrlevel(δ) =
E {N∗}
N

≥ `. (2.2.6)

C2) A simple constraint is to require that the renewal premiums P ∗i 's are not too

di�erent from the "old" ones, i.e.,

δi ∈ [a, b], τi := Piδi ∈ [A,B], 1 ≤ i ≤ N (2.2.7)

for instance a = −5%, b = 10% and A = −50, B = 300.

Several other constraints including those related to reputational risk, decrease of

provision level for tied-agents, and loss of loyal customers can be formulated similarly

and will therefore not be treated in detail.

2.2.2 Practical Settings

In insurance practice the cost of optimisation itself (actuarial and other resources)

needs to be also taken into account. Additionally, since the total volume of premiums

at renewal is large, an optimal renewal tari� is of interest (business relevant) only if

it produces a signi�cant improvement to the current tari�. Therefore, for practical

implementations, we need to rede�ne the objective functions. For a given positive

constant c, say c = 1′000, we rede�ne (2.2.3) as

qcvol(δ1, . . . , δN) := c
⌊
E {V@R} /c

⌋
= c
⌊ N∑
i=1

Pi(1 + δi)Ψi(Pi, δi)/c
⌋
, (2.2.8)
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where bxc denotes the largest integer smaller than x. Similarly, we rede�ne (2.2.4)

as

c
⌊
V ar(V@R)/c

⌋
= c

⌊ N∑
i=1

{Pi(1 + δi)}2Ψi(Pi, δi)[1−Ψi(Pi, δi)]/c
⌋
. (2.2.9)

Finally, (2.2.5) can be written as

qcdif (τ1, . . . , τN) = c
⌊ N∑
i=1

τiΨi(Pi, δi)/c
⌋
. (2.2.10)

For implementation purposes and due to business constraints, τi's can be assumed

to be certain given positive integers.

Therefore a modi�cation of (2.2.7) can be formulated as

δi ∈ [a, b] ∩ (c−1
1 Z), τi := Piδi ∈ [A,B] ∩ (c1Z), 1 ≤ i ≤ N, (2.2.11)

where c1 > 0, for instance c1 = 100. Such modi�cations of both objective functions

and constraints show that for practical implementation, there is no unique optimal

solution of the optimisation problem of interest.

Remarks 2.2.1. i) If two di�erent insurance contracts are renewed through di�erent

distributional channels, then typically di�erent constraints are to be applied to each

of those policies. Additionally, the cancellation probabilities could be di�erent, even

in the case where both policyholders have the same risk pro�le. Therefore, in order

to allow for di�erent distributional channels, we only need to adjust the constraints

and assume an appropriate cancellation pattern.

ii) From the practical point of view, Ψi's are estimated by using for instance logis-

tic regression. At random, customers are o�ered @R higher/lower premiums than

their Pi's i.e., δi's are chosen randomly with respect to some prescribed distribution

function. An application of the logistic regression to the data obtained (renewal/non

renewal) explains the cancellation (or renewal) probability in terms of risk factors

as well as other predictors (social status, etc.). In an insurance market dominated

by tied-agents this approach is quite di�cult to apply.

iii) Di�erent policyholders can renew their contracts for di�erent periods. This case

is included in our assumptions above.

iv) Most tari�s utilised in practice, for instance an MTPL one, consist of hundreds

of coe�cients (typically more than 300). Due to a dominating product structure,

modern insurance tari�s consists of many individual cells, say 200'000 in average.

However, most of these tari� cells are empty and typically less than 15% of the cells
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determine 80% of the total premium volume in the portfolio. For instance, it is quite

rare that a Ferrari is insured for a TPL risk by a 90 years old lady, living in a very

small village. With this in mind, typically, the relevant number N in practical opti-

misation problems does not exceed 30'000. Our algorithms and simulation methods

work fairly well for such N .

2.3 Solutions for T3

The main di�culty when dealing with the actuarial task T3 lies on the complexity

of Ψi's since these functions are:

a) in general not known,

b) di�cult to estimate if past data are partially available,

c) even when these functions are known, the constraints C1-C2 and the objective

functions O1,O1',O2 are in general not convex. We discuss next a partial solution

for T3.

Problem T3a: Given P1, . . . , PN determine δ∗ = (δ∗1, . . . , δ
∗
N) such that

qvol(δ
∗) is maximal, qvar(δ

∗) is minimal (2.3.1)

under the constraints

θrlevel(δ) ≥ `, l ≤ δ ≤ u,

where l and u are 2 vectors such that their components li, ui ∈ (−1, 1) for i ≤ N .

Problem T3b: Determine the market tari� f ∗ from P ∗1 , . . . , P
∗
N .

The solution (an approximate one) of T3b can be easily derived. Given P ∗1 , . . . , P
∗
N ,

and since the structure of the market tari� is known, then f ∗ can be determined

(approximately) by running a non-linear regression analysis with response variables

P ∗i 's.

Below we shall focus on task T3a dealing with the determination of the optimal

premiums P ∗i 's at renewal. In insurance practice, the functions Ψi, i ≤ n can be

assumed to be piece-wise linear and non-decreasing. This assumption is indeed rea-

sonable, since for very small τi or δi the cancelation probability should not change.

However, that assumption can be violated if for instance at renewal the competi-

tion modi�es also their new business premiums. For simplicity, these cases will be

excluded in our analysis, and thus we assume that the decision for accepting the

renewal o�er is not in�uenced by the competition.

We list below some tractable choices for Ψi's:
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Ma) Suppose that for given known constants πi, ai, bi

Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ), 1 ≤ i ≤ N.

In practice, πi, ai, bi need to be estimated. Clearly, the case that bi's are equal

to 0 is quite simple and tractable.

Note in passing that a simple extension of the above model is to allow ai and

bi to di�er depending on the sign of δi.

Mb) One choice motivated by the logistic regression model commonly used for

estimation of renewal probabilities is the expit function, i.e.,

Ψi(Pi, δi) =
1

1 + c−1
i e−Tiδi

, 1 ≤ i ≤ N,

where ci, Ti's are known constants (to be estimated in applications), see e.g.,

Guillén et al. [55] .

We note that Model Ma) can be seen as an approximation of Model Mb).

Mc) Finally, we consider the case where Ψi's are determined only for speci�c δi's.

For instance, for the ith policyholder Ψi depends on Pi and δi as follows

index 1 2 3 4 5 6 7 8 9

δi( in %) -20 % -15 % -10% -5% 0% 5% 10% 15% 20%

Pi(1 + δi) 80 85 90 95 100 105 110 115 120

Ψi(Pi, δi) 0.999 0.995 0.990 0.975 0.950 0.925 0.900 0.875 0.825

Table 2.3.1: Renewal probabilities as a function of premiums of the ith policyholder.

The Model Ma) is simple and tractable and can be seen as an approximation of a

more complex one. Moreover, it leads to some crucial simpli�cation of the objective

functions in question.
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2.4 Optimisation Algorithms

2.4.1 Maximise the expected premium volume @R

In this section, we consider the objective function O1 subject to the constraint

function C1. Our optimisation problem can be formulated as follows

max
δ
qvol(δ), δ := (δ1, . . . , δN)

subject to θrlevel(δ) > `,

l ≤ δ ≤ u,

(2.4.1)

where qvol and θrlevel are de�ned respectively in (2.2.3) and (2.2.6). Further l :=

(l1, . . . , lN), u := (u1, . . . , uN) are such that li, ui ∈ (−1, 1) for i ≤ N .

Probability of renewal Ψi as in Ma).

We consider the case where the probability of renewal Ψi is

Ψi := Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ).

• Setting bi = 0, we have

Ψi := Ψi(Pi, δi) = πi(1 + aiδi). (2.4.2)

Since Ψi ∈ (0, 1) should hold for all policyholders i ≤ N , we require that

ai ∈ (1− 1

πi
,

1

πi
− 1), δi ∈ (−1, 1), πi > 0

for all i ≤ N .

The assumption bi = 0 implies that (2.4.1) is a quadratic programming (QP)

problem subject to linear constraints. It has a global maximum if and only

if its objective function is concave, which is the case when ai < 0. Hence we

shall assume that ai ∈ (1− 1
πi
, 0) for any i ≤ N .

Scenario 1: We consider the optimisation problem (2.4.2) without the upper

and lower bounds constraints. In view of (2.4.2), the optimisation problem

(2.4.1) can be reformulated as follows

min
δ
f(δ) =

1

2
δ>Qδ + c>δ, δ = (δ1, . . . , δN)>,

subject to g(δ) = a>δ − b ≤ 0,
(2.4.3)
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where

c = (−π1P1(1 + a1), . . . ,−πNPN(1 + aN))>

describes the coe�cient of the linear terms of f , Q is a diagonal and positive

de�nite matrix describing the coe�cients of the quadratic terms of f deter-

mined by

Q =


−2π1P1a1 0 0 . . . 0

0 −2π2P2a2 0 . . . 0

0 . . . −2πiPiai . . . 0

0 0 0 . . . −2πNPNaN

 .

Since (2.4.3) has only one constraint, a is a vector related to the linear coe�-

cients of g and is given by

a = −(π1a1, π2a2, . . . , πNaN)>.

Furthermore, we have that

b =
N∑
i=1

πi −N`.

Note in passing that the constant term of the objective function f is not

accounted for in the resolution of (2.4.3).

Next, we de�ne the Lagrangian function

L(δ, λ) = f(δ) + λg(δ),

where λ is the Lagrangian multiplier.

Given that Q is a positive de�nite matrix, the well-known Karush-Kuhn-

Tucker (KKT) conditions (see for details Luenberger and Ye [81][p. 342])
∇L(δ∗, λ∗) = 0,

λ∗g(δ∗) = 0,

g(δ∗) ≤ 0,

λ∗ ≥ 0

(2.4.4)

are su�cient for a global minimum of (2.4.3) if they are satis�ed for a given

vector (δ∗, λ∗). Thus, in the sequel, we provide an explicit solution for this type

of optimisation problem. Typically, (2.4.3) can be reduced to the Markowitz
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mean-variance optimisation problem, see Markowitz [85], Markowitz et al. [86].

Setting δ1 = δ+Q−1c, then (2.4.3) can be expressed as the following standard

quadratic program

min
δ1

1

2
δ>1Qδ1,

subject to a>1 δ1 ≤ b1,

(2.4.5)

with b1 = b + a>Q−1c. It should be noted that the constant term (when

replacing δ1 by δ + Q−1c in (2.4.5)) does not play any role in the resolution

of (2.4.5).

Let δ∗1 be the optimal solution of (2.4.5). The KKT conditions de�ned in

(2.4.4) can be explicitly written as follows:
Qδ∗1 + λ∗a = 0, (2.4.6a)

λ∗(a>δ∗1 − b1) = 0, (2.4.6b)

a>δ∗1 − b1 ≤ 0, (2.4.6c)

λ∗ ≥ 0, (2.4.6d)

where 0 = (0, . . . , 0)> ∈ RN .

If λ∗ = 0, then δ∗1 = 0 follows directly from (2.4.6a). Therefore,

δ∗ = −Q−1c.

In view of (2.4.6d) the other possibility is λ∗ > 0, which in view of (2.4.6b)

implies a>δ∗1 = b1. Further from (2.4.6a) δ∗1 = −λ∗Q−1a, hence

δ∗ = −Q−1(λ∗a+ c),

with λ∗ = −(a>Q−1a)−1b1.

Scenario 2: We consider that (2.4.3) has lower and upper bounds constraints.

Thus, the optimisation problem at hand can be formulated as follows

min
δ

1

2
δ>Qδ + c>δ,

subject to a>δ − b ≤ 0,

l ≤ δ ≤ u.

(2.4.7)
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The constraints in (2.4.7) can be grouped into one equation

Aδ ≥ d,

where A is a (2N + 1) × N matrix and d a vector of dimension 2N + 1

respectively given by

A =



π1a1 π2a2 π3a3 . . . πNaN

1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . 1 0

0 0 . . . 0 1

−1 0 0 . . . 0

0 −1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . −1 0

0 0 . . . 0 −1



, d =



−b
l1

l2
...

lN−1

lN

−u1

−u2

...

−uN−1

−uN



.

Since we have a convex objective function and a convex region given by con-

straints, the solution δ∗ is unique and we can transform the above optimisa-

tion problem to a bound constrained one using duality. Hence, (2.4.7) can be

rewritten as follows

min
δ
f(δ) =

1

2
δ>Cδ − c̃>δ,

subject to g(δ) = δ ≥ 0,
(2.4.8)

with C = AQ−1A> a square matrix of dimension (2N +1) and c̃ = AQ−1c+d

a vector of dimension (2N + 1). Since Q is an N ×N positive de�nite matrix

and A has rank N , then C = AQ−1A> is positive de�nite.

If δ∗ is the solution of (2.4.8), then δ∗ = Q−1
(
A>δ∗ − c

)
is the solution of

(2.4.7). We refer to Voglis and Lagaris [120] for the description of the algo-

rithm and Appendix A.

• Hereafter we shall assume that bi 6= 0 implying that Ψi is of the form

Ψi := Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ). (2.4.9)
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Given bi ∈ (−1, 0) and δi ∈ (−1, 1), the condition Ψi ∈ (0, 1) holds if and only

if

ai ∈
(
max (1− 1

πi
,−1− bi),min (1 + bi,

1

πi
− 1)

)
for i ≤ N . Clearly, under (2.4.9) we have that (2.4.1) is a non-linear opti-

misation problem with also non-linear constraints. The most popular method

discussed in the literature for solving this type of optimisation problem is

the Sequential Quadratic Programming (SQP) method see e.g., Bartholomew-

Biggs [16], Boggs and Tolle [18], Nickel and Tolle [96]. It is an iterative method

that generates a sequence of quadratic programs to be solved at each itera-

tion. Typically, at a given iterate xk (2.4.1) is modelled by a QP subproblem

subject to linear constraints and then solution to the latter is used as a search

direction to construct a new iterate xk+1.

Plugging (2.4.9) in (2.4.1), the optimisation problem at hand can be reformu-

lated as

min
δ
f(δ) = −

N∑
i=1

Piπi(1 + (1 + ai)δi + (ai + bi)δ
2
i + biδ

3
i ),

subject to

g(δ) = −
N∑
i=1

πi(1 + aiδi + biδ
2
i ) +N` ≤ 0,

h1(δi) = δi − ui ≤ 0 for i ≤ N,

h2(δi) = −δi + li ≤ 0 for i ≤ N,

(2.4.10)

where f , g, h1 and h2 are continuous and twice di�erentiable.

The main steps required to solve (2.4.10) are described in Appendix A.

Probability of renewal Ψi as in Mb).

We consider the following model for the renewal probability:

Ψi := Ψi(Pi, δi) =
1

1 + c−1
i e−Tiδi

, 1 ≤ i ≤ N, (2.4.11)

where ci is a constant that depends on the probability of renewal for δi = 0 denoted

by πi given by

ci =
πi

1− πi



23

and Ti < 0 is a constant (to be estimated in applications) that measures the elasticity

of the policyholder relative to the premium change. The greater |Ti| the more elastic

the policyholder is to premium change. Under (2.4.11) we have that (2.4.1) is a non-

linear optimisation problem subject to non-linear constraints, which can be solved

by SQP algorithm described in Appendix A.

Remarks 2.4.1. If δi are close to 0, then using Taylor expansion Mb) can be

approximated by Ma) as follows

Ψi(Pi, δi) ≈
ci

1 + ci

(
1 +

ciTi
1 + ci

δi −
T 2
i (ci − 1)

2(1 + ci)2
δ2
i

)
,

where

πi =
ci

1 + ci
, ai =

ciTi
1 + ci

, bi = −T
2
i (ci − 1)

2(1 + ci)2
. (2.4.12)

Probability of renewal Ψi as in Mc).

In this model δi belongs to a discrete set, which we shall assume hereafter to be

D = {−20%,−15%,−10%,−5%, 0%, 5%, 10%, 15%, 20%}.

Also, the renewal probabilities Ψi's are �xed for each insured i based on δi for i ≤ N

as de�ned in Table 2.3.1. In this section we deal with a Mixed Discrete Non-Linear

Programming (MDNLP) optimisation problem. Thus, (2.4.1) can be reformulated

as follows

min
δ
f(δ) = −

N∑
i=1

Pi(1 + δi)Ψi(Pi, δi),

subject to g(δ) = −
N∑
i=1

Ψi(Pi, δi) +N` 6 0,

and δi ∈ D, 1 ≤ i ≤ N.

(2.4.13)

In general, this type of optimisation problem is very di�cult to solve due to the fact

that the discrete space is non-convex. Several methods were discussed in the liter-

ature for (2.4.13), see e.g., Arora et al. [4]. The contribution Loh and Papalambros

[80] proposed a new method for solving the MDNLP optimisation problem subject

to non-linear constraints. It consists in approximating the original non-linear model

by a sequence of mixed discrete linear problems evaluated at each point iterate δk.
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Also, a new method for solving a MDNLP was introduced by using a penalty func-

tion, see the recent contributions Luenberger and Ye [81], Ma and Zhang [82] for

more details. The algorithmic solution of (2.4.13) is described in Appendix B.

2.4.2 Maximise the retention level @R

We consider the case where the insurer would like to keep the maximum number of

policyholders in the portfolio @R. Therefore the optimisation problem of interest

consists in �nding the optimal retention level @R whilst increasing the expected

premium volume by a �xed amount say C in the portfolio. Hence, the optimisation

problem can be formulated as follows

max
δ

1

N

N∑
i=1

Ψi(Pi, δi),

subject to

E(P ∗) > E(P ) + C,

l ≤ δ ≤ u,

(2.4.14)

where E(P ∗) =
∑N

i=1 Pi(1 + δi)Ψi(Pi, δi) is the expected premium volume @R,

E(P ) =
∑N

i=1 Piπi is the expected premium volume before premium change and

C is a �xed constant which can be expressed as a percentage of the expected pre-

mium volume before premium change. We remark that C can be interpreted as

a certain premium loading. Clearly, (2.4.14) is a non-linear optimisation problem,

which can be solved by using the SQP algorithm already described in Appendix A).

2.5 Insurance Applications

In this section, we consider a simulated dataset that describes the production of the

motor line of business of an insurance portfolio. We simulate premiums from an ex-

ponential random variable with mean 1′204. Also, the probability of renewal before

premium change, πi for i = 1, . . . , N , are known and estimated by the insurance

company for each category of policyholders based on historical data. Given that the

behaviour of the policyholders is unknown at the time of renewal, the probability

of renewal Ψi, depends on πi and δi for i = 1, . . . , N . If δi is positive, then Ψi

decreases whereas if δi is negative, it is more likely that the policyholder will renew

the insurance policy, thus generating a greater Ψi. In the following paragraphs, we

are going to present some results related to the optimisation problems formulated

in the last section.
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2.5.1 Optimisation problem Ma)

Maximise the expected premium volume @R.

We consider, �rst, the optimisation problem de�ned in (2.4.1). In this case, the

probability of renewal Ψi is de�ned in Ma) and set bi = 0 for i = 1, . . . , N . Given

that ai < 0 for i ≤ N , the probability of renewal Ψi increases when δi is negative

and decreases when δi is positive, thus describing perfectly the behaviour of the

policyholders that are subject to a decrease, respectively increase, in their premiums

@R. The table below describes some statistics on the data for 10′000 policyholders.

Premium at time 0

Min 200

Q1 491

Q2 909

Q3 1'605

Max 9'061

No. Obs. 10'000

Mean 1'204

Std. Dev. 990

Table 2.5.1: Production statistics for the motor business.

We consider the constraint that the expected percentage of the policyholders to

remain in portfolio @R is at least 85%. By solving (2.4.1) in Matlab with the

function quadprog, we obtain the optimal δ for each policyholder. We denote by t0
the time before premium change and by t1 the time after premium change. Figure

6.4.1 below is a comparative histogram describing the number of policyholders at

time t0 and at time t1 with respect to the di�erent premium ranges and the average

optimal δ for each premium range.
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Figure 2.5.1: Number of policyholders based on premium range.

As seen in Figure 6.4.1, 32% of the policyholders have a premium below 600 CHF vs.

30% @R due to an average optimal increase in premium of 8%. The average optimal

δ decreases gradually for premiums between 600 CHF and 2′200 CHF. Premiums

above 2′200 CHF account for only 16% of the portfolio with an average optimal δ

of 8%. Typically, in practice, insurance companies are likely to increase the tari�s

of policyholders with low premiums as a small increase in the price will not have

a great impact on the renewal of the policy. However, for policies with large pre-

mium amount, a small increase in the price can lead to the surrender of the policy.

Therefore, the results in Figure 6.4.1 are accurate from the insurance company's

perspective when increasing/ decreasing the premiums paid by the policyholders. It

should be noted here that we neglect the cases of bad risks and large claims. We

look at a homogeneous portfolio where the occurrence of a claim is low and the claim

amounts are reasonable.

Next, we consider two scenarios:

Scenario 1 The expected percentage of the policyholders (abbreviate as EPP) to

remain in portfolio @R is at least 75%,

Scenario 2 The EPP to remain in portfolio @R is at least 85%.

Table 2.5.2 below summarises the optimal results when solving (2.4.1) and exam-

ines the e�ect of both scenarios on the expected premium volume and the expected

number of policyholders in the portfolio @R.
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Scenario 1 Scenario 2

Range of δ (%) (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected premium volume @R (%) 15.78 23.03 8.70 12.96

Growth in expected number of policies @R (%) -3.52 -5.25 -0.16 -0.16

Average optimal delta (%) 19.99 29.90 7.97 11.89

Number of increases 10'000 10'000 6'196 6'528

Number of decreases - - 3'804 3'472

Table 2.5.2: Scenarios testing.

Scenario 1 The optimal δ for both bounds corresponds approximately to the max-

imum value (upper bound) of the interval. This is mainly due to the fact that EPP

@R to remain in portfolio is at least 75%. Therefore, the main goal is to maximise

the expected premium volume at time t1.

Scenario 2 For EPP @R to remain in portfolio of at least 85%, Table 2.5.2 shows

an increase in the expected premium volume which is less important than the one

observed in Scenario 1. However, the expected number of policyholders in the port-

folio @R is higher and is approximately the same as at t0.

Hereafter, we shall consider EPP @R to remain in portfolio to be at least 85%.

Commonly in practice the size of a motor insurance portfolio exceeds 10′000 pol-

icyholders. However, solving the optimisation problems for δ using the described

algorithms when N is large requires a lot of time and heavy computation and may

be costly for the insurance company. Thus, an idea to overcome this problem is to

split the original portfolio into subportfolios and compute the optimal δ for the sub-

portfolios. One criteria that can be taken into account for the split is the amount

of premium in our case. However, in practice, insurance companies have a more

detailed dataset, thus more information on each policyholders, so the criterion that

are of interest for the split include the age and gender of the policyholders, the car

type, age and value. Table 2.5.3 and Table 2.5.4 below describe the results when

splitting the original portfolio into three and four subportfolios, respectively.
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Growth in % @R

Premium Range Average optimal δ E {N@R} E {V@R}

< 600 8.60% -0.27% 9.17%

(600,1'200) 7.29% -0.03% 8.25%

> 1′200 8.05% -0.17% 8.99%

After the split 8.00% -0.16% 8.84%

Before the split 7.97% -0.16% 8.70%

Di�erence - 0% -0.13%

Table 2.5.3: Split into 3 subportfolios.

Growth in % @R

Premium Range Average optimal δ E {N@R} E {V@R}

< 500 8.99% -0.34% 9.50%

(500, 800) 6.27% 0.15% 7.41%

(800, 1'400) 7.66% -0.09% 8.49%

> 1′400 8.47% -0.26% 9.31%

After the split 7.99% -0.16% 8.95%

Before the split 7.97% -0.16% 8.70%

Di�erence - 0% -0.23%

Table 2.5.4: Split into 4 subportfolios.

In Table 2.5.3 and 2.5.4, we consider that the insurer would like to keep 85% of

the policyholders in each subportfolios, thus a total of 85% of the original portfolio.

However, in practice, the constraints on the retention level @R are speci�c to each

subportfolios. In this regard, the insurance company sets the constraints on the

expected number of policies for each subportfolios so that the constraint of the

overall portfolio is approximately equal to 85%. The error from the split into three,

respectively four subportfolios is relatively small and is of -0.13%, respectively -

0.23% for the expected premium volume @R.

Remarks 2.5.1. i) This application is mostly relevant when dealing with a non

linear optimisation problem of a large insurance portfolio.

ii) In the following sections, we limit the size of the insurance portfolio to 1'000

policyholders as the algorithms used thereafter to solve the optimisation problems

are based on an iterative process which is computationally intensive.
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Maximise the expected premium volume and minimise the variance of

the premium volume

Similarly to the asset allocation optimisation problem in �nance introduced by

Markowitz Markowitz [87], the insurer performs a trade-o� between the maximum

aggregate expected premiums and the minimum variance of the total earned premi-

ums, see e.g., Asimit et al. [11] for a di�erent optimality criteria.

We present in Figure 2.5.2 the comparison of the optimal results computed with the

function gamultiobj of Matlab 2016a for the following scenarios:

• Scenario 1: the expected premium volume and the variance of the premium

volume are optimised simultaneously as in Problem T3a,

• Scenario 2: only the expected premium volume is maximised.

The same constraint on the retention level is used for both scenarios and δ ∈
(−30%, 30%). The histograms in Figure 2.5.2 represent the optimal variance whilst

the dashed curves depict the optimal expected volume. We notice that all the opti-

mal results are normalised with the results obtained from the assumption that the

insurer will not change the premiums for next year.

Figure 2.5.2: Optimal results with di�erent objective function scenarios.

For both Scenarios, the maximum expected volume is associated with higher vari-

ance. In this respect the lower the retention level the higher the expected volume

and the higher the variance. Furthermore, compared to Scenario 2, Scenario 1 re-

sults in smaller expected volume but yields a smaller variance. We show next in
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Table 2.5.5 the optimal results for the di�erent constraints on the retention level

and the possible range of premium changes.

75% 85%

Bounds for δ (−10, 20) (−20, 30) (−10, 20) (−20, 30)

Aggregate expected future premiums @R ( %) 103.57 103.66 99.90 103.90

Variance of the aggregate future premiums @R ( %) 109.76 113.08 98.41 101.05

Expected number of policies @R ( %) 98.95 98.84 99.98 99.99

Average optimal δ ( %) 6.13 6.82 1.68 1.98

Average optimal increase ( %) 18.50 26.92 11.82 20.32

Average optimal decrease ( %) -8.33 -16.32 -8.92 -17.10

Number of increases 539 535 511 510

Number of decreases 461 465 489 490

Table 2.5.5: Scenario 1 optimal results based on di�erent retention levels .

It can be seen that the optimal variance @R increases with the range of the possible

premium changes δ. For instance when the insurer would like to keep at least 75%

of the policyholders, the variance @R increases from 109.76 for δ ∈ (−10%, 20%)

to 113.08 for δ ∈ (−20%, 30%), respectively. Furthermore, the increase in variance

@R is associated with an increase of the expected volume @R. This means that the

riskier the portfolio the more the insurance company earns premiums.

Maximise the retention level @R.

We consider here that the insurer would like to maximise the EPP @R to remain in

portfolio whilst increasing the expected premium volume @R by a certain amount

C needed to cover, for instance, the operating costs and other expenses of the

insurance company. Figure 2.5.3 below describes the results obtained from solving

the optimisation problem (2.4.14) de�ned in Section 2.4.2 using the fmincon function

in Matlab for C = 95′000 and δ ∈ (−10%, 20%).
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Figure 2.5.3: Number of policyholders based on premium range.

In practice, the amount C needed to cover the expenses of the company is set by

the insurers. In fact, C can be expressed as a percentage of the expected pre-

mium volume at time t0. Therefore, we consider three di�erent loadings: 9%,

10% and 11% thus adding an amount of 85′000, respectively 95′000 and 105′000

to the expected premium volume at time t0. We consider two ranges for δ, namely

δ ∈ (−10%,−20%) and δ ∈ (−20%,−30%).

C = 85′000 C = 95′000 C = 105′000

Bounds for δ (-10,20) (-20,30) (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected number of policies( %) -2.19 -2.06 -2.50 -2.36 -2.82 -2.67

Growth in expected premium volume( %) 8.90 8.90 9.95 9.95 11.00 11.00

Average optimal δ ( %) 13.92 15.82 15.12 17.23 16.60 18.64

Table 2.5.6: Scenario testing - Retention

Table 2.5.6 shows that when C increases, the expected number of policyholders

@R decreases whereas the average optimal δ increases.

2.5.2 Optimisation problem Mb)

We consider the probability of renewal Ψi as de�ned inMb). As discussed in Section

2.4.1, Ti describes the behaviour of the policyholders subject to premium change.
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For instance, let us consider a policyholder whose probability of renewal without pre-

mium change πi is 0.95. Figure 2.5.4 shows that the greater Ti the more the curve

of the renewal probability goes to the right thus the less elastic the policyholder is

to premium change. Conversely, as Ti decreases, the more elastic the policyholder

is to premium change.

Figure 2.5.4: Renewal probability with respect to premium change for di�erent
values of Ti

In this section, we will only consider the case where the insurer would like to max-

imise the expected premium volume @R. The constraint on the retention level is

assumed to be of 85%.
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Figure 2.5.5: Number of policyholders based on premium range.

Figure 2.5.5 shows that the average optimal δ for premiums less than 1'200 CHF is

constant for the di�erent premium ranges at 20% which corresponds to the maxi-

mum value that δ can take. However, for premiums greater than 1'200 CHF, the

average optimal δ decreases to -6%. As stated in Section 2.5.1, insurers are more

likely to increase the premiums of policyholders with small premium amounts and

decrease the premiums of policyholders with large premium amounts. Thus, the

results obtained in Figure 2.5.5 are accurate as they describe the behaviour of the

insurer when increasing, respectively decreasing the premiums of the policyholders.

At the time of renewal, the insurer sets the constraints on EPP to remain in portfolio.

Typically, when the retention level is low, the expected premium volume @R is

greater compared to the case when the retention level is high. Therefore, we consider

two di�erent scenarios:

Scenario 1 The EPP @R to remain in portfolio is at least 75%,

Scenario 2 The EPP @R to remain in portfolio is at least 85%.

The table below summarises the optimal results when solving (2.4.1) for the di�erent

constraints.
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Scenario 1 Scenario 2

Bounds for δ (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected premium volume @R (%) 17.84 26.45 4.50 6.48

Growth in expected number of policies @R (%) -0.93 -1.41 -0.02 -0.02

Average optimal delta (%) 20.00 30.00 10.70 16.09

Number of increases 1'000 1'000 703 736

Number of decreases - - 297 264

Table 2.5.7: Scenarios testing.

Scenario 1 Table 2.5.7 shows that all policyholders are subject to an increase in

their premiums and the average optimal δ for the whole portfolio corresponds to the

maximum change in premium for both bounds of δ.

Scenario 2 As seen in Table 2.5.7, the expected number of policyholders @R is

approximately the same as the one before premium change. However, the growth

in expected premium volume is lower than in Scenario 1 due to the fact that the

average optimal δ for both bounds is lower.

Remarks 2.5.2. It should be noted that the probability of renewal de�ned in Mb)

can be approximated by the probability of renewal de�ned in Ma) for δ relatively

small (refer to Remark 2.4.1). Therefore, consider δ ∈ (−5%, 5%) and a retention

level ` = 85% @R. The table below describes the optimal results when using the logit

model Mb) and the polynomial model de�ned in Ma).

Model Logit Polynomial Di�erence*

Growth in expected premium volume @R 1.53% 0.47% 1.04%

Growth in expected number of policies @R -0.02% -0.02% 0%

Average optimal delta 2.97% 1.30% NR

Number of increases 796 619 NR

Number of decreases 204 381 NR

Table 2.5.8: Comparison between Ma) and Mb).
(*NR = Not Relevant)

Table 2.5.8 shows that for a small range of δ, the di�erence between the exact results

obtained from Mb) and the approximate results obtained from Ma) is relatively
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small and is of around 1% for the expected premium volume @R and is of 0% for

the expected number of policyholders @R. Thus, the approximate values tend to the

real ones when the range of δ tends to 0.

2.5.3 Optimisation problem Mc) and Simulation studies

In this Section, we consider the case where the renewal probabilities Ψi are �xed for

each insured i, as de�ned in Table 2.3.1. To solve the optimisation problem (2.4.13),

we use the MDNLP method described in Appendix B. The table below summarises

the optimal results for a portfolio of 100'000 policyholders with respect to di�erent

constraints on the retention level at renewal.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.92 5.92 5.34 4.19 2.22 -1.24

Growth in expected number of policies @R (%) -7.89 -7.89 -5.26 -2.63 0.00 2.63

Average optimal delta (%) 15.00 15.00 10.00 4.82 -0.51 -6.37

Table 2.5.9: Scenario testing-Discrete optimisation

Table 2.5.9 shows that when the retention level increases, the expected number of

policies increases whereas the expected premium volume @R decreases. In fact, the

average optimal δ decreases gradually from 15% for a retention level of 85% to -6%

for a retention level of 97.5%. Also, it can be seen that for a retention level of

95% the optimisation has a negligible e�ect on the expected number of policies and

premium volume @R as the average optimal δ is approximately null. Hence, no

optimisation is needed in this case.

In addition to the MDNLP approach, we have implemented a simulation technique

which consists in simulating the premium change δ for each policyholder as described

in the following pseudo algorithm:

• Step 1: Based on a chosen prior distribution for δ, sample the premium

change for each policyholder,

• Step 2: Repeat Step 1 until the constraint on the retention level is satis�ed,

• Step 3: Repeat Step 2 m times,

• Step 4: Among the m simulations take the simulated δ which gives out the

maximum expected pro�t.
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Next, we present the optimal results obtained through 1′000 simulations for the same

portfolio. We shall consider three di�erent assumptions on the prior distribution of

δ, namely:

• Case 1: Simulation based on the Uniform distribution

In this simulation approach, we assume that the prior distribution of δ is

uniform. As highlighted in Table 2.9.1- 2.9.2, the parameters of the uniform

distribution and the possible values of the premium change are chosen so that

the constraint on the retention level is ful�lled. Actually, this choice is based

on many simulations trials that we have implemented in which for a �xed

range of δ, the parameter of the Uniform distribution is modi�ed at each trial

so that the retention level is reached. It should be noted that the more the

elements of δ, the smaller the bounds of the Uniform distribution. We present

in Table 2.5.10 the simulation results.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.13 5.11 4.02 1.87 -0.55 -4.10

Growth in expected number of policies @R (% ) -10.32 -6.64 -5.24 -2.61 0.04 2.73

Average optimal delta (%) 17.30 12.62 9.95 4.87 -0.36 -6.52

Table 2.5.10: Simulation approach based on the Uniform distribution.

• Case 2: Simulation based on practical experience

Next, we assume a prior distribution for δ which is based on the historical

premium change of each policyholder. Those prior distributions are presented

in Figure 2.9.1 and the results are described in Table 2.5.11 below.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.50 5.08 4.10 1.98 -0.87 -3.75

Growth in expected number of policies @R (% ) -9.19 -7.70 -5.26 -2.63 0.47 2.77

Average optimal delta (%) 16.2 13.9 10.0 4.92 -1.17 -6.25

Table 2.5.11: Simulation approach based on practical experience

• Case 3: Simulation based on the results of the MDNLP

We use the empirical distribution of the optimal δ obtained from the MDNLP
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algorithm as a prior distribution. The chosen distribution are shown in Fig-

ure 2.9.1 with di�erent constraints on the retention level. Table 2.5.12 below

summarises the optimal results.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.92 5.92 3.90 1.61 -0.91 -4.05

Growth in expected number of policies @R (% ) -7.89 -7.89 -5.26 -2.63 0.00 2.63

Average optimal delta (%) 15.00 15.00 10.00 4.82 -0.51 -6.35

Table 2.5.12: Simulation approach based on empirical distribution.

It can be seen that the simulation approaches yield approximately to the same results

obtained from the MDNLP algorithm presented in Table 2.5.9.

2.6 Appendix A: Solution of (2.4.8)

Let I = {1, . . . , N}. The Lagrangian function related to (2.4.8) is

L(δ,λ) = f(δ) + λg(δ),

where λ := (λ1, . . . , λN) are the Lagrangian multipliers. In this case, the KKT

conditions below 
Cδ∗ − c̃+ λ∗ = 0,

λ∗i δ
∗
i = 0, ∀i ∈ I

δ∗i ≥ 0, ∀i ∈ I
λ∗i ≥ 0,∀i ∈ I

(2.6.1)

hold for (δ∗,λ∗).

Let L be a subset of I such that λi > 0 and δ∗i = 0 for all i ∈ L if L is non-empty.

Note that λi = 0 for i 6∈ L. We have that if L is empty, then by (3.6.3)

δ∗ = C−1c̃. (2.6.2)

Next suppose that L is non-empty and set R = I\L. If R is empty, then the solution

is found to be on the boundary as above, i.e, δ∗i = 0 for all i. If R is non-empty, we

have that λi = 0 for any i ∈ R. We need to determine δ∗R which is the subvector

of δ∗ determined by dropping the components with indices not in R. Since C is
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positive-de�nite, then CRR the submatrix of C determined by dropping the rows

and columns with indices not in R is positive de�nite and therefore non-singular. In

view of (3.6.3) we obtain the solution

δ∗R = (CR,R)−1(−CR,Lδ∗L + c̃R) = (CR,R)−1c̃R

and

λ∗L = c̃L − CL,Lδ∗L − CL,Rδ∗R = c̃L − CL,R
(
(CR,R)−1c̃R

)
.

For practical implementation, it is necessary to determine the index set L and this

can be achieved by an iterative approach, see Voglis and Lagaris [120].

2.7 Appendix B: Solution of (2.4.10)

Step 1: Let

L(δ, λ,µ,γ) = f(δ) + λg(δ) +
N∑
i=1

µih1(δi) +
N∑
i=1

γih2(δi)

be the Lagrangian function of (2.4.10) where λ ∈ R and µ,γ ∈ RN are the La-

grangian multipliers and (δ0,λ0,µ0,γ0) an initial estimate of the solution. It should

be noted that the SQP is not a feasible point method. This means that neither

the initial point nor the subsequent iterate ought to satisfy the constraints of the

optimisation problem.

Step 2: In order to �nd the next point iterate (δ1, λ1,µ1,γ1), the SQP deter-

mines a step vector s = (sδ, sλ, sµ, sγ) solution of the QP subproblem evaluated at

(δ0,λ0,µ0,γ0) and de�ned below

min
s

1

2
s>Hs+∇f(δ0)>s,

subject to

∇g(δ0)>s+ g(δ0) ≤ 0,

∇h1(δ0,i)
>s+ h1(δ0,i) ≤ 0 for i ≤ N,

∇h2(δ0,i)
>s+ h2(δ0,i) ≤ 0 for i ≤ N,

(2.7.1)

where H is an approximation of the Hessian matrix of L, ∇f the gradient of the

objective function and ∇g, ∇h1 and ∇h2 the gradient of the constraint functions.

The Hessian matrix H is updated at each iteration by the BFGS quazi Newton for-
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mula. The SQP method maintains the sparsity of the approximation of the Hessian

matrix and its positive de�netness, a necessary condition for a unique solution.

Step 3: In order to ensure the convergence of the SQP method to a global solu-

tion, the latter uses a merit function φ whose reduction implies progress towards a

solution. Thus, a step length, denoted by α ∈ (0, 1), is chosen in order to guarantee

the reduction of φ after each iteration such that

φ(δk + αsk) ≤ φ(δk),

with

φ(x) = f(x) + r
(
g(x) +

N∑
i=1

h1(xi) +
N∑
i=1

h2(xi)
)
and r > max

1≤i≤N
(|λ|, |µi|, |γi|).

Step 4: The new point iterate is given by

(δ1, λ1,µ1,γ1) = (δ0 + αsδ, λ0 + αsλ,µ0 + αsµ,γ0 + αsγ).

If the latter satis�es the KKT conditions (3.6.3), the SQP converges at that point.

If not, set k = k + 1 and go back to Step 2.

Remarks 2.7.1. It should be noted that the KKT conditions de�ned in (3.6.3) are

known as the �rst order optimality conditions, see e.g., Luenberger and Ye [81].

Hence if for a given vector (δ∗, λ∗,µ∗,γ∗), the KKT conditions are satis�ed, then

(δ∗, λ∗,µ∗,γ∗) is a local minimum of (2.4.10).

2.8 Appendix C: MDNLP optimisation problem (2.4.13)

Step 1: Given that Ψi is discrete and depends on the values of δi, we assume that

Ψi can be written as a function of δi as follows

Ψi(δi) = −0.9775δ2
i − 0.4287δi + 0.9534 for δi ∈ D.

(2.4.13) is then treated as a continuous optimisation problem and the optimal solu-

tion is found by using one of the methods described previously. We denote by δ∗

the continuous optimal solution.
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Step 2: Let δ0 be the rounded up vector of δ∗ to the nearby discrete values of the

set D. δ0 is considered to be the initial point iterate. If δ0 is not a feasible point

of (2.4.13), then (2.4.13) is approximated by a mixed discrete linear optimisation

problem at δ0 and is given by

min
δ
∇f(δ0)>(δ − δ0),

subject to g(δ0) +∇g(δ0)>(δ − δ0) 6 0,

and δ ∈ DN .

(2.8.1)

Step 3: (2.8.1) is solved by using a linear programming method and the branch

and bound method, see Dakin [24] for more details. We denote by δk the new point

iterate. If δk is feasible and ||δk − δk−1|| < ε with ε > 0 small, then the iteration is

stopped. Else k = k + 1 and go back to Step 2.

Remarks 2.8.1. If, for a certain point iterate δ, the constraint of (2.4.13) is sat-

is�ed and δ ∈ DN then δ is a feasible solution of the optimisation problem.

In general, it is very hard to �nd the global minimum of a MDNLP optimisation

problem due to the fact that there are multiple local minimums. Therefore, δ∗ is

said to be a global minimum if δ∗ is feasible and f(δ∗) ≤ f(δ) for all feasible δ.

2.9 Appendix D: Prior distribution for simulation

2.9.1 Simulation based on the Uniform distribution (simula-

tion Case 1)

The tables below describe the range of δ with their respective distribution based on

the di�erent retention levels.

Retention level (%) 85 87.5 90

Range of δ(%) {15, 20} {10, 15} {0, 5, 10, 15}
Prior distribution U(0.85, 0.99) U(0.90, 0.99) U(0.04, 0.68)

Table 2.9.1: Possible range of δ and prior distribution uniformly distributed.
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Retention level (%) 92.5 95 97.5

Range of δ(%) {−5, 0, 5, 10, 15} {−5, 0, 5, 10, 15} {−20,−10,−5, 0, 5, 10, 15}
Prior distribution U(0.05, 0.40) U(0.04, 0.21) U(0.002, 0.47)

Table 2.9.2: Possible range of δ and prior distribution uniformly distributed.

2.9.2 Simulation based on practical experience and on the

optimal premium changes from the MDNLP algorithm

We depict in Figure 2.9.1 the prior distributions used in the simulation approach

described in Section 2.5.3. The red curves represent the prior distribution from

practical experience (simulation Case 2) while the blue curves are the empirical

distribution of the optimal premium changes obtained with the MDNLP algorithm

(simulation Case 3).
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(a) Retention level 85% (b) Retention level 87.5%

(c) Retention level 90% (d) Retention level 92.5%

(e) Retention level 95% (f) Retention level 97.5%

Figure 2.9.1: Prior distribution used in simulations studies: case 2 and case 3.



Chapter 3

Price Optimisation for New Business

This chapter is based on M. Tamraz and Y. Yang: Price Optimisation for New

Business, Submitted.

3.1 Introduction

Consider that in the insurance market N customers are looking for an insurance

coverage. There are k + 1 di�erent insurance companies that o�er di�erent pre-

miums to each customer, say jth customer receives k o�ers, i.e., Pji, i ≤ k is the

premium o�ered by the ith insurance company. Of course, we shall assume that all

the o�ers are for the same coverage. Of interest here is the possibility of a premium

optimisation approach for a given company operating in the market. We write, for

notation simplicity, the premiums o�ered by that company to the jth customer as

Pj instead of say Pj1. Let us consider a simple example. Suppose that k = 3, so

there are altogether four companies in the market. The premiums o�ered by three of

them are 500CHF, 520CHF, 522CHF, whereas the premium o�ered by the company

in question that will perform an optimisation, say l, is Pj = 519CHF. Assume that

the total pro�t from the contract if the premium o�ered is 500CHF equals 40CHF.

If instead of Pj an optimal premium

P ∗j = Pj(1 + δj), 1 ≤ j ≤ N

is o�ered, for instance δj = −0.06 then the contract is still pro�table (with approx-

imate pro�t of 16 CHF) and moreover, by this o�er the company is ranked �rst.

The chances for getting this customer are therefore high. Typically, insurance com-

panies o�er also premiums that are not pro�table (those risks are cross-subsidised).

Therefore lowering the premium is not always the right and optimal solution. So

43
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the decision related to which δ to choose for each contract strongly depends on the

strategy of the company. For the customer j let Ij(Pj, δ) denote the Bernoulli ran-

dom variable which equals to 1, meaning that the customer accepts the contract for

the premium Pj(1 + δj) with acceptance probability

πj(Pj, δj) ∈ (0, 1].

Each contract o�ered can be seen as an independent risk. Therefore, the total

number of customers that join the company as new business is given by

N(δ) =
N∑
j=1

Ij(Pj, δj).

Hereafter, in order to avoid trivialities we shall assume that δj > −1.

Consequently, the total premium volume of the new business V(δ) (which is random)

is given by

V(δ) =
N∑
j=1

Ij(Pj, δj)Pj(1 + δj).

Of interest for the insurance company is to maximize the expected premium volume,

i.e., the objective function is to maximize

E {V(δ)} =
N∑
j=1

Pj(1 + δj)π(Pj, δj) (3.1.1)

under some business constraints, for instance the expected number of new customers

should not be below aN , i.e.,

E {N(δ)} =
N∑
j=1

πj(Pj, δj) ≥ aN, (3.1.2)

where a ∈ (0, 1) is a prespeci�ed known constant.

Price optimisation for new business has already been discussed in brief, see Marin

and Bayley [84] and for renewal business see Hashorva et al. [61] for more details.

However, in the literature, price optimisation is more focused on the regulations and

ethical points of view, see NAIC [92], Schwartz and Harrington [108].

This paper is structured as follows. In Section 2, we de�ne the optimisation problems

from the insurer's perspective. Section 3 is dedicated to the choice of the acquisition

rate πj for each customer based on the competitors' price. Finally, Section 4 presents

applications of the de�ned optimisation problems to a simulated data set.
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3.2 Optimisation Models

Nowadays, insurers are interested in increasing their conversion rates on new busi-

ness. This action leads as a result to an increase in the premium volume of the

respective company. Clearly, one simple solution is to lower the premiums of all

customers looking to purchase an insurance coverage in the market on one hand and

increase the premiums of the existing customers at renewal on the other hand. Even-

though this method might substantially increase the conversion rate of company l

and its expected premium volume, it does not represent the optimal solution as it

does not di�erentiate between the di�erent segments of customers in the market.

Therefore, we use price optimisation in order to avoid negative pro�t performance

and adverse selection. Moreover, given the high competition in the market, insurance

companies need to constantly monitor their position to maintain their reputation.

In this respect, we shall consider the competitors' premiums in the optimisation

setting.

In the sequel, we assume that we have k+1 insurance companies in the market,

representing k competitors for company l who will perform the optimisation. Also,

we assume that we have full information about the market, so the premiums of the

k competitors are known. Hereafter, we shall de�ne two optimisation problems rele-

vant for company l assuming that N customers are looking to purchase an insurance

coverage in the market.

3.2.1 Maximise the expected premium volume

Insurers are interested in maximising their premium volume as it is one of the main

source of pro�t of an insurance company. However, they expect to have in their

portfolio a certain number of new customers and this based on the strategy of the

company. Thus, the optimisation problem can be formulated as such

max
δ

N∑
j=1

Pj(1 + δj)πj(Pj, δj),

subject to
1

N

N∑
j=1

πj(Pj, δj) 6 `1,

and
1

N

N∑
j=1

πj(Pj, δj) > `2,

(3.2.1)

where `1, `2 < 1 are 2 constants. For instance, `1 and `2 may denote the ratio of the
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expected number of customers to the total number of customers of the cheapest and

the most expensive company in the market respectively. However, in practice, the

total numbers of customers in a certain insurance company is not known by other

companies, hence `1 and `2 are set by the insurers based on their strategy.

3.2.2 Maximise the expected number of new customers

The second objective function is concerned with the number of customers that the

company is expected to get at the beginning of the period. Eventhough maximising

the premium volume is important for insurers, they, nonetheless, are interested in

acquiring a maximum number of new customers as they may pro�t the insurance

company in the long run. Thus, one of the main goals of insurers is to maximise the

expected number of customers that may accept the o�er. Hence, the optimisation

problem can be formulated as follows

max
δ

N∑
j=1

πj(Pj, δj),

subject to
N∑
j=1

Pj(1 + δj)πj(Pj, δj) 6 C1,

and
N∑
j=1

Pj(1 + δj)πj(Pj, δj) > C2,

(3.2.2)

where C1 and C2 are two constants. Typically, in practice, the insurer would like

to maintain the reputation of the insurance company in terms of premium vol-

ume and thus stay relatively in the same position he was in the market before

performing the optimisation. Therefore, C1 and C2 depend on the expected pre-

mium volume of the competitors. For instance, C1 =
∑N

j=1 Pn,jπn,j(Pn,j, 0) and

C2 =
∑N

j=1 Pm,jπm,j(Pm,j, 0) where m and n denote the mth and nth competitors of

company l in the market with C1 > C2.

Remarks 3.2.1. (i) In the optimisation setting, we assume that the competitors

do not react to the premium change of company l who performs the optimisation.

(ii) In the insurance sector, there are multiple competitors in the market. However,

we assume that customers are looking for large, nationally known insurer compared

to a less expensive local known insurer. In this respect, we consider that 10 insurance

companies are competing in the market.
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(iii) We assume that the change in premium δ has an upper and lower bound and

this based on the insurer strategy. For instance, the insurer doesn't want to be the

cheapest in the market nor the most expensive one. This entails that, for j ≤ N ,

δj ∈ (mj,Mj) where mj,Mj ∈ (−1, 1).

3.3 Choices for πj

The optimisation problems are quite similar to the ones de�ned in Hashorva et al.

[61] for the renewal business. However, the main di�erence lies in the choice of the

probabilities πj's for customer j. Clearly, πj's are strongly dictated by how many

companies are o�ering in the market, and how much is the premium di�erence. In

the sequel, we discuss some possible tractable choices for πj's.

3.3.1 Step function for πj

Suppose that there are k other competitors in the market and their premiums for

the jth customer are known. If the current rate of company l, who performs the

optimisation, is below one of the competitors' rate, then an increase in the rate level

might not lead to a decrease in policies. In this respect, we model the conversion

rate for customer j based on the competitors' premiums, more speci�cally with

respect to the cheapest and highest premiums observed in the market with respective

probabilities c1 and c2 where c1 > c2 and c1, c2 ∈ (0, 1) as follows

πj(Pj, δj) = c1 + (c2 − c1)
Pj(1 + δj)− min

16i6k
(Pji)

max
16i6k

(Pji)− min
16i6k

(Pji)
, for Pj(1 + δj) ∈ (Aj, Bj). (3.3.1)

Clearly, πj is a piece-wise linear, decreasing step function where the jumps are

dictated by the di�erence in premiums between two o�ers. It should be noted that

Aj and Bj are the jump points from one level to another. For simplicity, they are

de�ned as the arithmetic average between two premium o�ers.

The corresponding shape of πj is realistic from a practical point of view as for some

premium ranges the customers' behaviour is the same relative to the di�erent o�ers.

The table below illustrates the latter. In this example, we consider four insurance

companies and estimate the values of πj for some premium ranges.
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Pj 500 515 520 522

Range for Pj (495,507) (507,517) (517,521) (521,525)

πj 0.75 0.50 0.40 0.30

Table 3.3.1: Values of πj relative to customer j based on the di�erent premium
ranges.

By considering this expression for πj, the objective functions in (3.2.1) and (3.2.2)

are non linear discontinuous functions. Several methods in the literature are dis-

cussed to solve non-linear optimisation problems, see Boggs and Tolle [17], Fletcher

and Powell [40], Frank and Wolfe [41]. However, these methods rely upon some

assumptions on the objective function such as continuity, existence of derivatives,

unimodality, etc. Therefore, in order to solve the optimisation problems at hand, we

use the genetic algorithm method (abbreviated GA) described in Appendix A. GA

is a widely popular method when it comes to this type of objective function. It has

been explored in many areas such as optimisation, operation, engineering, evolution-

ary biology, machine learning, etc., see Garg [44], Mitchell [90], Reid [101], Shankar

et al. [109] for more details. GA uses historical information to speculate on new

search points with expected improved performance.

Discrete case for δ. Throughout the paper, we assume that δ is continuous and can

take any values in the interval (m,M) where m,M ∈ (0, 1). We shall investigate

now the case where the change in premium δ can only take �nite integer values

from a discrete set for all customers. Let's consider the case where the competitors'

premiums and company's l premium do not change. As πj for j ≤ N depends

constantly on the competitors' o�ers for the coverage in question and the position

of the latter in the market, πj varies for each customer j independently from δj and

Pj. Thus, for illustration purposes, we compute the values of πj, j = 1, 2, 3 for three

di�erent customers based on the di�erent change in premium δi for i = 1, . . . , 9.
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i 1 2 3 4 5 6 7 8 9

δi -20% -15% -10% -5% 0% 5% 10% 15% 20%

π1 0.750 0.750 0.750 0.656 0.536 0.416 0.300 0.300 0.300

π2 0.750 0.750 0.723 0.613 0.504 0.394 0.300 0.300 0.300

π3 0.750 0.728 0.618 0.508 0.398 0.300 0.300 0.300 0.300

Table 3.3.2: Values of π for 3 di�erent customers based on δi for i = 1, . . . , 9.

The discrete opimisation problem is solved using GA, see Appendix A for more de-

scription on the algorithm.

3.3.2 Linear function for πj.

The simplest choice for πj is by considering the continuous version of the step func-

tion de�ned above. Referring to Hashorva et al. [61], we assume that for each

customer j,

πj(Pj, δj) = αj + βjδj,

where αj and βj are two constants to be estimated in applications. In this case,

(3.2.1) is a quadratic optimisation problem subject to linear constraints, see Markowitz

[88].

3.3.3 Logistic model for πj.

The third choice is motivated by the logistic regression model where the logit func-

tion shall be used to model the conversion rate. The latter is popular in the literature

for the modeling of probabilities such as the probability of renewal or lapses observed

in an insurance portfolio as well as the probability of merger of non-life insurers, see

Guillén et al. [55], Hashorva et al. [61], Meador et al. [89]. Its expression is given by

πj(Pj, δj) =
1

1 + c−1
j e−Tjδj

, (3.3.2)

where cj and Tj are two constants to be estimated in applications. cj includes the

competition in the market and can be expressed in terms of πj before premium
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change as follows

cj =
πj(Pj, 0)

1− πj(Pj, 0)
,

whereas Tj < 0 models the elasticity of customer j relative to the change in pre-

mium δj. The greater |Tj| , the more elastic the customer j is when purchasing an

insurance policy. For this choice of πj, the optimisation problems (3.2.1) and (3.2.2)

are non-linear subject to non-linear constraints. We use the Sequential Quadratic

Programming (SQP) method to solve this type of constrained optimisation prob-

lems. This method is very popular in the literature, see Boggs and Tolle [17], Nickel

and Tolle [96]. It is an iterative method which solves a quadratic subproblem at

each point iterate. The solution to the latter determines a step direction for the

next point iterate. We refer to Appendix B for more details on the algorithm.

3.4 Insurance Applications

This section is dedicated to the application of price optimisation to insurance datasets.

In this respect, we consider a simulated dataset describing the production of the mo-

tor line of business. The premiums are known and are assumed to be fair across the

di�erent segments of customers. Typically, in practice, auto-insurance markets are

highly competitive. Insurers intensively compete on several factors such as price,

quality of service, etc. Therefore, we consider that 10 leading insurers are competing

in the market. Also, we assume that the premiums o�ered by the competitors are

uniformly distributed around the company's l premiums who is performing the op-

timisation. Based on some characteristics on the insured and the type of vehicle, an

o�er is made by the insurance company for the coverage in question. In the sequel,

we shall consider a heterogeneous portfolio consisting of n = 1′000 policyholders.

Di�erent premiums are o�ered to di�erent segments of customers. Moreover, we

note that for each customer the position of the competitors in the market change

with respect to the premium charged and coverage. Therefore, we assume that for

each o�er the rank of the competitors and the company l in question change.

The table below presents some statistics relative to the premiums o�ered by com-

pany l and its competitors.
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Initial Premium Competitors' Premiums

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Mean 1'204 1'163 1'166 1'167 1'164 1'172 1'168 1'164 1'163 1'162

Min 400 371 374 381 369 367 373 376 368 368

Q1 804 792 789 797 795 800 795 801 792 799

Q2 1'223 1'145 1'141 1'137 1'146 1'161 1'155 1'143 1'151 1'140

Q3 1'598 1'500 1'501 1'495 1'517 1'521 1'505 1'489 1'496 1'493

Max 1'999 2'248 2'190 2'233 2'252 2'233 2'235 2'176 2'217 2'217

Table 3.4.1: Premium Statistics

The above statistics rely on a simulation procedure described under the following

steps:

• Step 1: Generate n uniform random numbers between 400 and 2′000. These

numbers account for the premiums o�ered by company l for a given coverage,

denoted by P0. We assume that 75% of the customers are charged a premium

between 400 and 1′600 and the rest in (1′600, 2′000). This assumption is

accurate in practice especially for TPL covers and All Risks.

• Step 2: Simulate n uniform random numbers u between 0.25 and 0.75. These

numbers re�ect the ranks of company l relative to each o�er. For instance,

0 and 1 are the ranks of the cheapest and the most expensive companies

competing in the market respectively whereas say 0.5 is the company ranked

5th among the 10 competitors.

• Step 3: Based on Step 2, we compute the median premiums, denoted by

Pmj , for each o�er j. We assume that the smallest and greatest premiums in

the market, denoted by Pminj and Pmaxj are expressed with respect to Pmj as

such

Pminj = Pmj(1+lwb) and Pmaxj = Pmj(1+upb) with lwb = −10% and upb = 15%.

Hence, for each o�er j, Pmj is computed as follows

Pmj − P0j

0.5− u
=
Pmaxj − Pminj

1− 0
=⇒ Pmj =

P0j

1 + (upb− lwb)(u− 0.5)
.

• Step 4: For j ≤ n, we generate premiums between (Pminj , Pmaxj) with Pminj
and Pmaxj as de�ned in Step 3 for the remaining 7 insurance companies

denoted by Pij for i = 1, . . . , 7.
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• Step 5: If Pij = P0j for i = 1, . . . , 7, go back to Step 4.

3.4.1 πj as de�ned in 3.3.1

We consider πj for customer j to be a step function as de�ned in (3.3.1). Let

c1 = 0.75 and c2 = 0.3 denote the conversion rates for the cheapest and the most

expensive insurance companies o�ering in the market respectively. These values are

accurate from the perspective of the policyholder as the latter is not only interested

in paying the lowest premium o�ered in the market but is also interested in the

reputation of the company and the quality of service. For illustration purposes, we

�rst assume that only one customer is looking to purchase a motor insurance policy

in the market. The competitors' o�ers are summarized below and are ranked in

ascending order: 438, 457, 477, 492, 532, 596, 654, 675, 733.

Company l who will perform the optimisation o�ers an initial premium of P0 = 568

to the corresponding customer for the coverage. The �gure below shows the conver-

sion rates based on the di�erent premiums o�ered.

Figure 3.4.1: Values of πj based on the premium range for customer j.

For instance, if the insurer decides to increase the premium of the current policy-

holder from 568 to say 680, the probability of acquiring the new business decreases

from 0.55 to 0.4. Whereas, a small increase in premium, say 580, will yield the same

conversion rate.
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In the sequel, we assume, for simplicity, that the competitors do not react to in-

creases/ decreases in premiums of company l. This assumption is accurate from a

practical point of view as the reaction of the market to price changes is unlikely to

be instantaneous due to several factors. One of the main factors is the time delay

in settling claims. Indeed, the latter is important when modeling the �nancial state

of a company.

Hereafter, we denote by t0 the time before optimisation is performed and by t1

the time after the optimisation. We consider the optimisation problems de�ned in

Section 3.2.

Maximise the expected premium volume at t1.

i) Continuous case for δ. We consider the optimisation problem de�ned in (3.2.1).

The objective of the insurer is to maximise the premium volume of the company

under some constraints on the number of customers that he expects to get at the

beginning of the insurance period. In the sequel, we shall consider a conversion rate

between 45% and 50%. The change in premium δ lies in (−20%, 20%). The optimal

results obtained when solving (3.2.1) using the function ga in Matlab are presented

hereafter.

Figure 3.4.2 below highlights the positions of company l among its competitors based

on the premiums o�ered to n = 1′000 customers looking to purchase an insurance

coverage in the market at time t0 and t1.

Figure 3.4.2: Premiums o�ered by company l compared to the competitors.

Figure 3.4.2 shows that 4% of the customers in the market are o�ered the high-
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est premium by company l at t0 compared to 39% after optimisation, at t1. The

percentage of customers that are o�ered the cheapest premium in the market at t1
is of 29% compared to none at t0. This relatively high increase will generate new

sales for company l. In this particular case, the premium charged is lower than the

market average premium. In practice, this decrease in premium may mainly target

young new drivers. Also, if, for instance, the new customers' family, say parents or

siblings, are already insured within the company, the decrease in premium is a way

to enhance the loyalty of the individuals towards the company and thus increasing

their future lifetime within the company. Finally, 32% are o�ered a premium in

between at t1 compared to 96% at t0.

In the sequel, we shall consider two scenarios with respect to di�erent constraints

and di�erent bounds for δ.

Scenario 1: The expected percentage of new customers (abbreviated EPN) shall

be between 45% and 50%.

Scenario 2: The EPN shall be between 50% and 55%.

The table below shows the optimal results at t1 for the two scenarios. All optimal

results are normalised with the results obtained from the assumption that the insurer

will not change the premiums for next year.

Scenario 1 Scenario 2

Bounds for δ (−10%, 15%) (−20%, 20%) (−10%, 15%) (−20%, 20%)

Aggregate expected future premium at t1 (%) 107.51 106.41 108.29 114.91

Expected number of new policies at t1 (%) 107.07 106.94 109.22 117.74

Average optimal δ (%) 1.44 0.48 0.81 -2.63

Average optimal increase (%) 13.80 13.78 13.66 13.82

Average optimal decrease (%) -9.34 -13.37 -9.41 -13.14

Number of increases 466 510 443 390

Number of decreases 534 490 557 610

Table 3.4.2: Optimal results for Scenario 1&2 based on di�erent bounds for δ

Table 3.4.2 shows that for both scenarios, the average optimal δ decreases with the

range of possible premium changes. For instance, in Scenario 1, the average opti-

mal δ decreases from 1.44% for δ ∈ (−10%, 15%) to 0.48% for δ ∈ (−20%, 20%).

Also, the expected premium volume for Scenario 2 is greater than the one in Sce-

nario 1 for both bounds. This is mainly due to the fact that the constraint on the

expected number of new customers that will join company l is greater in Scenario
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2. Typically, the probability that new customers will join the company is higher

resulting in a positive e�ect on the expected premium volume. Also, the number of

customers subject to an increase in premium is higher in Scenario 1 for both bounds.

Remarks 3.4.1. In this application, we considered a portfolio of n = 1′000 cus-

tomers looking to purchase an insurance policy in the market. However, in prac-

tice, n is larger. For n large, the running time may take hours (for instance, for

n = 10′000, the running time is about four hours) whereas for n = 1′000 customers,

using matlab, the running time is about 15 min which is reasonable. Hence, it is less

time consuming if the insurance company split the o�ers into di�erent categories

and perform the optimisation for each of these di�erent segments.

ii) Discrete case for δ. In the following, we consider that the change in premium δ

takes its values from a discrete set as seen in Table 3.3.2. We look at the optimisation

setting (3.2.1) and set the constraints on the expected conversion rate between 45%

and 50%. To solve (3.2.1), the function ga implemented in Matlab is used. The

optimal results are summarized below.

Figure 3.4.3 highlights the distribution of the 1′000 o�ers with respect to the set of

discrete premium changes. For 93.5% of the portfolio, δ is between −15% and 15%.

Only a small proportion of customers are o�ered the lowest and highest change in

premium, i.e. −20% and 20%.

Figure 3.4.3: Optimal change in premium for the whole portfolio .

We consider two Scenarios based on the constraints of the optimisation problem.

Scenario 1: The constraints on the EPN are: `1 = 50%, `2 = 45%,

Scenario 2: The constraints on the EPN are: `1 = 55%, `2 = 50%.
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Scenario 1 Scenario 2

Aggregate expected future premium at t1 (%) 106.80 112.33

Expected number of new policies at t1 (%) 106.99 117.65

Average optimal δ (%) -0.31 -2.85

Average optimal increase (%) 10.19 16.16

Average optimal decrease (%) -10.28 -15.97

Number of increases 413 371

Number of decreases 587 629

Table 3.4.3: Optimal results for Scenario 1&2 based on di�erent bounds for δ

Table 3.4.3 shows that for the same range of possible changes in premium δ, an

increase in the expected conversion rate leads to a higher expected premium volume

and a lower average optimal δ as seen in Scenario 1.

Maximise the expected percentage of new business at t1

We shall now investigate the optimisation problem (3.2.2) where the insurer max-

imises the expected number of new customers that will join company l. Clearly, in

this case, a simple approach is to o�er the lowest premium in the market to attract

a maximum number of new customers. However, this is not bene�cial to the insurer

as he would like to maintain the reputation of the insurance company in the market.

In this respect, let C1 and C2 be two constraints relative to the expected premium

volume set by the insurer for the optimisation. We assume that C1 and C2 depend

on the expected premium volume of the competitors.

In the sequel, we shall analyse two Scenarios.

Scenario 1: We assume that the growth in the expected premium volume is be-

tween 8% and 10%, i.e, C1 = 595, 033 and C2 = 583, 130.

Scenario 2: We assume that the growth in the expected premium volume is be-

tween 10% and 16% , i.e, C1 = 624, 410 and C2 = 595, 033 .

The �gure below compares the number of customers observed in the di�erent pre-

mium ranges along with the average optimal change δ in each range at time t0 and

t1, i.e. before and after the optimisation is performed, under both Scenarios.
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Figure 3.4.4: Number of policyholders in each premium range at t0 and at t1 for
both Scenarios.

As seen in Figure 3.4.4, the number of o�ers with a premium less than 600 increases

at t1 whereas the number of o�ers with a premium above 1′800 decreases under both

Scenarios. This decrease in premium is explained by a negative average optimal

change δ for almost all ranges of premiums. Also, the curve of the average optimal

δ for Scenario 1 is always above the one for Scenario 2, i.e, the average optimal

δ increases at a faster pace in Scenario 1 compared to Scenario 2. This is mainly

explained by the constraints on the expected premium volume which is higher in

Scenario 2.

Scenario 1 Scenario 2

Bounds for δ (−20%, 20%) (−20%, 20%)

Aggregate expected future premium at t1 (%) 109.68 115.10

Expected number of new policies at t1 (%) 118.00 124.13

Average optimal δ (%) -3.03 -4.97

Average optimal increase (%) 16.30 16.20

Average optimal decrease (%) -16.46 -16.02

Number of increases 410 343

Number of decreases 590 657

Table 3.4.4: Optimal results for Scenario 1&2 based on di�erent bounds for δ
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Table 3.4.4 shows that an increase in the expected premium volume leads to an

increase in the expected number of customers and a decrease in the average opti-

mal δ. These results are accurate from the insurance company's perspective as the

conversion rate increases when δ decreases leading to a higher expected premium

volume.

3.4.2 πj de�ned as in Section 3.3.3

In this section, we consider the logit function, as de�ned in (3.3.3), commonly used

to model the elasticity of a customer due to price changes. In Hashorva et al. [61],

the latter was used to model the probability of renewal after premium change and in

Guillén et al. [55], the lapses observed in the insurance industry. We assume that the

constraint on the expected percentage of customers to accept the o�er of company l

is of 45% and the change in premium δ lies in the interval (−20%, 20%). Solving the

optimisation problem de�ned in (3.2.1) yields the following optimal results. First,

the �gure below shows the ranks of company l among the competitors based on the

premium o�ers to the n customers before and after performing the optimisation.

Figure 3.4.5: Acquisition rate: 45% Figure 3.4.6: Acquisition rate: 50%

Figure 3.4.5 shows that a large proportion of customers are o�ered the highest pre-

mium in the market. This is mainly due to a relatively low acquisition rate of 45%.

Clearly, this is not the case when we increase the conversion rate. As seen in Figure

3.4.6, a smaller proportion of customers are o�ered the highest premium in the mar-

ket and a larger proportion are o�ered the smallest premium. This is accurate from

the insurance company's perspective as the latter is more interested in acquiring

new business than maximising its premium volume.

The table below summarizes the optimal results obtained at t1 for the following two

Scenarios based on di�erent bounds for δ.



59

Scenario 1: The constraint on the EPN is of 45%.

Scenario 2: The constraint on the EPN is of 50%.

Scenario 1 Scenario 2

Bounds for δ (−15%, 15%) (−20%, 20%) (−15%, 15%) (−20%, 20%)

Aggregate expected future premium at t1 (%) 106.36 108.03 97.58 101.40

Expected number of new policies at t1 (%) 96.19 96.18 106.86 106.86

Average optimal δ (%) 10.67 12.65 -8.90 -4.82

Average optimal increase (%) 13.31 17.27 14.31 18.18

Average optimal decrease (%) -6.15 -8.83 -14.81 -18.62

Number of increases 864 823 203 375

Number of decreases 136 177 797 625

Table 3.4.5: Optimal results for Scenario 1&2 based on di�erent bounds for δ

As seen in Table 3.4.5, Scenario 1 yields a higher expected premium volume for

both bounds compared to Scenario 2 but results in a lower acquisition rate. The

average optimal change in premium is positive in Scenario 1 whereas in Scenario 2

it is negative for both bounds. This is mainly explained by the acquisition rate set

in both Scenarios. Finally, the larger the range of premium change, the higher the

expected premium volume and the higher the average optimal δ for both Scenarios.

3.5 Appendix A: Solution of (3.2.1) and (3.2.2) us-

ing (3.3.1).

In this section, we illustrate the GA method used to solve the optimisation problem

(3.2.1) with πj as de�ned in (3.3.1). The constrained optimisation (3.2.1) can be

reformulated as an unconstrained one by the penalty method as follows, see Mitchell

[90]

min
δ
f(δ), where f(δ) = g(δ) + r

(
Φ[h1(δ)] + Φ[h2(δ]

)
, (3.5.1)

where 
g(δ) =

∑N
j=1 Pj(1 + δj)πj(Pj, δj),

h1(δ) = −
∑N

j=1 πj(Pj, δj) + `1,

h2(δ) =
∑N

j=1 πj(Pj, δj)− `2,

and Φ and r are the penalty function and the penalty coe�cient respectively.

The penalty function Φ penalize infeasible solutions (solutions that will not satisfy
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the constraints of the optimisation problem) by reducing their values in the objective

function, thus favoring feasible solutions in the selection process, see Yeniay [126].

In most cases, Φ[g(x)] = g(x)2 and the solution (3.5.1) tends to a feasible solution

of (3.2.1) when r is large.

The algorithm is described under the following steps.

Step 1: Set a maximum number of generation nmax.

Step 2: Select an initial set of solution estimates chosen randomly (in contrast with

the SQP method described below where one estimation point for δ is needed). In

the sequel, the set and the solution estimates are referred to as initial population

and members respectively.

Step 3: The GA method relies on three operators in the following order:

1. Reproduction: This function consists in reproducing copies of the members of the

initial population according to the value of their objective function. Typically, the

members with the highest value of the objective function, i.e. |g(δ)|, have a higher

probability in contributing to the next generation. This operator can be seen as a

biased roulette wheel where each member has a roulette wheel slot proportional to

the value of its objective function. Therefore, to reproduce, we spin the roulette ps
times, where ps is the size of the initial population, in order to get the new members

of the next generation.

2. Crossover: It follows the reproduction one. This operator mainly produces new

members of the new generation by mating and swapping each pair of strings of two

members from the new generation at random with probability pc.

3. Mutation: This operator alternates randomly the position of two or more values

for the same member with probability pm (very small in general).

Step 4: The algorithm stops when the maximum number of generation is attained.

The optimal δ is chosen based on the highest value of its objective function |g(δ)|.

Remarks 3.5.1. i) It should be noted that GA operates on a coding of the solution

estimates in the form of strings often chosen to be a concatenation of binary repre-

sentation.

ii) To guarantee the success of the method, the crossover and mutations operators

play an important role in �nding the optimal solution as they generate new solution

estimates and remove the less desired ones.

iii) The linear constraints and the upper and lower bounds are satis�ed throughout

the optimisation.

iv) The optimisation problem (3.2.2) is solved in a similar way.
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3.6 Appendix B: Solution of (3.2.1) and (3.2.2) us-

ing (3.3.2)

(3.2.1) can be reformulated as follows:

min
δ
g(δ),

subject to h1(δ) 6 0, h2(δ) 6 0

and f1(δj) 6 0, f2(δj) 6 0 for j ≤ N.

(3.6.1)

where g, h1 and h2 are de�ned in (3.5.1) and f1(δj) = δj −Mj, f2(δj) = −δj + mj

for j ≤ N .

Step 1: The Lagrangian function relative to (3.6.1) is given by

L := L(δ, λ, β,µ,γ) = g(δ) + λh1(δ) + βh2(δ) +
N∑
j=1

µjf1(δj) +
N∑
j=1

γjf2(δj),

where λ, α ∈ R and µ,γ ∈ RN are the Lagrangian multipliers.

Let (δ0, λ0, β0, µ0, γ0) be an estimate of the solution at t = 0.

Step 2: The SQP is an iterative process. Therefore, we de�ne the next point iterate

at t+1 as follows

δt+1 = δt + αst for t ≥ 0,

where α ∈ (0, 1) is the step length and st is a step vector.

st := (sδt , s
λ
t , s

β
t , s

µ
t , s

γ
t ) shall solve the following quadratic sub-problem evaluated at

(δt, λt, βt,µt,γt) and de�ned as follows

min
st

1

2
s>t Qst +∇g(δt)

>st,

subject to

∇h1(δt)
>st + h1(δt) ≤ 0,

∇h2(δt)
>st + h2(δt) ≤ 0,

∇f1(δt,i)
>st + f1(δt,i) ≤ 0 for i ≤ N,

∇f2(δt,i)
>st + f2(δt,i) ≤ 0 for i ≤ N.

(3.6.2)

Q is an approximation of the Hessian matrix of L updated at each iteration by the
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BFGS quazi Newton formula, ∇g the gradient of the objective function and ∇h1,

∇h2 , ∇f1 and ∇f2 the gradient of the constraint functions.

To guarantee the existence and uniqueness of a solution at each iteration, Q main-

tains its sparsity and positive de�niteness properties.

Whereas, α is chosen as such

φ(δt + αst) ≤ φ(δt),

with φ a merit function whose role is to ensure convergence of the SQP method to

a global solution after each iteration. φ is given by

φ(x) = g(x)+r
(
h1(x)+h2(x)+

N∑
j=1

f1(xj)+
N∑
j=1

f2(xj)
)
and r > max

1≤i≤N
(|λ|, |β|, |µi|, |γi|).

Step 3: If the new point iterate satis�es the KKT conditions de�ned in Remark

3.6.1, then it is a local minimum and the SQP converges to that point. If not, set

t = t+ 1 and go back to Step 2.

Remarks 3.6.1. The success of the SQP algorithm is governed by the KKT con-

ditions. Typically, if the point iterate doesn't satisfy these conditions, the SQP al-

gorithm do not converge to the local/global optima. Thus, we shall de�ne the KKT

conditions as follows

∇L = 0,

λ∗h1(δ∗) = 0,

β∗h2(δ∗) = 0,

µif1(δ∗j ) = 0 for j ≤ N,

γjf2(δ∗j ) = 0 for j ≤ N,

h1(δ∗) ≤ 0, h2(δ∗) ≤ 0,

f1(δ∗j ) ≤ 0, f2(δ∗j ) ≤ 0 for j ≤ N

λ ≥ 0, β ≥ 0, µ ≥ 0, γ ≥ 0.

(3.6.3)



Chapter 4

On some new dependence models

derived from multivariate collective

models in insurance applications

This chapter is based on E. Hashorva, G. Ratovomirija and M. Tamraz: On some

new dependence models derived from multivariate collective models in insurance

applications, published in Scandinavian Actuarial Journal, 8:730-750, 2016.

4.1 Introduction

Modelling the dependence structure between insurance risks is one of the main tasks

of actuaries. For instance, the determination of a risk capital in the risk manage-

ment framework needed to cover unexpected losses of an insurance portfolio and the

allocation of the latter to each line of business is of importance when choosing the

best model of dependence for multivariate insurance risks. As discussed in Nelsen

[93], copulas are a popular multivariate distribution when modelling the dependency

between insurance risks as they separate the marginals from the dependence struc-

ture, see Embrechts [34], Genest et al. [46] and references therein. With motivation

from Zhang and Lin [127], in this contribution we propose a �exible family of cop-

ulas derived from the joint distribution of the largest claim sizes of two insurance

portfolios.

Next, in order to introduce our model, we consider the classical collective model over

a �xed time period of two insurance portfolios with (Xi, Yi) modelling the ith claim

size of both portfolios and N the total number of such claims. If N = 0, then there

are no claims, so the largest claims in both portfolios are equal to 0. When N ≥ 1,

then (XN :N , YN :N) denotes the maximal claim amounts in both portfolios. Com-
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monly, claim sizes are assumed to be positive, however here we shall simply assume

that (Xi, Yi), i ≥ 1 are independent with common distribution function (df) G and

N is independent of everything else. Such a model is common for proportional rein-

surance. In that case Yi = cXi with c being a positive constant. Another instance

is if Xi's model claim sizes and Yi's model the expenses related to the settlement of

Xi's, see Denuit et al. [27] for statistical treatments and further applications. The

df of (XN :N , YN :N) denoted by F ∗ is given by

F ∗(x, y) = LN(− lnG(x, y)), x, y ≥ 0, (4.1.1)

with LN the Laplace transform of N . Clearly, F ∗ is a mixture df given by

F ∗(x, y) = P {N = 0}+ P {N ≥ 1}F (x, y), x, y ≥ 0,

where

F (x, y) = LΛ(− lnG(x, y)), x, y ≥ 0, (4.1.2)

with Λ = N |N ≥ 1 and LΛ its Laplace transform.

Since both distributional and asymptotic properties of F ∗ can be easily derived from

those of F , in this paper we shall focus on F assuming throughout that Λ ≥ 1 is an

integer-valued random variable.

When the df G is a product distribution, F above corresponds to the frailty model,

see e.g., Denuit et al. [27], whereas the special case that Λ is a shifted geometric

random variable is dealt with in Zhang and Lin [127]. We mention three tractable

cases for Λ:

Model A: In Zhang and Lin [127], Λ is assumed to have a shifted Geometric dis-

tribution with parameter θ ∈ (0, 1) which leads to

F (x, y) =
θG(x, y)

1− (1− θ)G(x, y)
, x, y ≥ 0. (4.1.3)

Model B: Λ has a shifted Poisson distribution with parameter θ > 0, i.e., Λ = 1+K

with K being a Poisson random variable with mean θ > 0, which implies

F (x, y) = G(x, y)e−θ[1−G(x,y)], x, y ≥ 0. (4.1.4)
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Model C: Λ has a truncated Poisson distribution with P {Λ = k} = e−θθk/(k!(1−
e−θ)), k ≥ 1 and thus

F (x, y) =
e−θ

1− e−θ
[eθG(x,y) − 1], x, y ≥ 0. (4.1.5)

Since the distributions F and their copulas are indexed by an unknown parameter

θ, the new mixture copula family has several interesting properties. In particular, it

allows to model highly dependent insurance risks and therefore our model is suitable

for numerous insurance applications including risk aggregation, capital allocation

and reinsurance premium calculations. In this contribution we investigate �rst the

basic distributional and extremal properties of F for general Λ. As it will be shown in

Section 3, interestingly the extremal properties of F are similar to those of G. With

some motivation from Zhang and Lin [127], which investigates Model A and its

applications, in this paper, we shall discuss parameter estimation and Monte Carlo

simulations for parametric families of bivariate df's induced by F . In particular,

we apply our results to actuarial modelling of concrete data sets from actuarial

literature. Moreover we shall consider the implications of our �ndings for a new real

data set from a Swiss insurance company. In several cases Model B and Model

C give both satisfactory �t to the data. For the case of Loss and ALAE data set

we model further the stop loss and the excess of loss reinsurance premium. One of

the applications of the joint distribution of the largest claims (XN :N , YN :N) of two

insurance portfolios is the analysis of the impact of their sum on the risk pro�le

of the portfolios. Over the last decades, many contributions have been devoted

on the study of the in�uence of the largest claims on aggregate claims, see e.g.,

Peng [98], Asimit and Chen [12] for an overview of existing contributions on the

topic. This analysis is important when designing risk management and reinsurance

strategies especially in non proportional reinsurance. Ammeter [2] is one of the �rst

contribution which addressed the impact of the largest claim XN :N on the moments

of the total loss of an insurance portfolio
∑N

i=1Xi, see also Asimit and Chen [12]

for recent results. In this paper we demonstrate by simulation the in�uence of the

sum of the largest claims observed in two insurance portfolios XN :N + YN :N on the

distribution of SN . Moreover, using the covariance capital allocation principle we

quantify the impact ofXN :N and YN :N on the total loss SN . The paper is organised as

follows. We discuss next some basic distributional properties of F . An investigation

of the coe�cient of upper tail dependence and the max-domain of attractions of F

is presented in Section 3. Section 4 is dedicated to parameter estimation and Monte

Carlo simulation with special focus on the cases covered by Model A-C above. We
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present three applications to concrete insurance data set in Section 5. All the proofs

are relegated to Appendix.

4.2 Basic Properties of F

Let G denote the df of (X1, Y1) and write G1, G2 for its marginal df's. Suppose that

Gi's are continuous and thus the copula Q of G is unique. For Λ = N |N ≥ 1, we

have that the marginal df's of F are

Fi(x) = LΛ(− lnGi(x)), i = 1, 2, x ∈ R.

Hence, the generalised inverse of Fi is

F−1
i (q) = G−1

i (e−L
−1
Λ (q)), q ∈ (0, 1),

where G−1
i is the generalised inverse of Gi, i ≤ d. Consequently, since the continuity

of Gi's implies that of Fi's, the unique copula C of F is given by

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2))

= LΛ

(
− lnG(G−1

1 (v1), G−1
2 (v2))

)
= LΛ

(
− lnQ(v1, v2)

)
, u1, u2 ∈ [0, 1], (4.2.1)

where we set

vi = e−L
−1
Λ (ui).

Remarks 4.2.1. The df of the bivariate copula in (5.1.2) can be extended to the

multivariate case. Let X
(i)
j be the jth claim size of the portfolio i, i = 1, . . . , d and

j = 1, . . . , N . Thus, the df of (X
(1)
N :N , . . . , X

(d)
N :N) is given by

F (z1, . . . , zd) = LΛ

(
− lnG(z1, . . . , zd)

)
, z1, . . . , zd ∈ R,

where G is the df of (X
(1)
1 , . . . , X

(d)
1 ). Similarly to the bivariate case one may express

the copula of F as follows

C(u1, . . . , ud) = LΛ

(
− lnQ(v1, . . . , vd)

)
, u1, . . . , ud ∈ [0, 1],

where Q is the copula of G. Without loss of generality, we present in the rest of the

paper the results for the bivariate case.
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Next, if G has a probability density function (pdf) g, then Q has a pdf q given by

q(u1, u2) =
g(G−1

1 (u1), G−1
2 (u2))

g1(G−1
1 (u1))g2(G−1

2 (u2))
, u1, u2 ∈ [0, 1],

with g1, g2 the marginal pdf's. Consequently, the pdf c of C is given by (set t =

− lnQ(v1, v2))

c(u1, u2) =
∂v1

∂u1

∂v2

∂u2

Q2(v1, v2)

((
L′Λ(t) + L′′Λ(t)

)∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

− L′Λ(t)Q(v1, v2)q(v1, v2)

)
,

(4.2.2)
where

L′Λ(s) = −E
{

Λe−sΛ
}
and L′′Λ(s) = E

{
Λ2e−sΛ

}
. The explicit form of c for tractable

copulas Q and Laplace transform LΛ is useful for the pseudo-likelihood method of

parameter estimation treated in Section 4. To this end, we brie�y discuss the corre-

lation order and its implication for the dependence exhibited by F . Clearly, for any

x, y non-negative

F (x, y) ≤ G(x, y).

Consequently, in view of the correlation order, see e.g., Denuit et al. [27] we have

that Kendall's tau τ(XΛ:Λ, YΛ:Λ), Spearman's rank correlation ρS(XΛ:Λ, YΛ:Λ) and the

correlation coe�cient ρ(XΛ:Λ, YΛ:Λ) (when it is de�ned) are bounded by the same

dependence measures calculated to (X1, Y1) with df G, respectively.

Moreover, if E {Λ} <∞, then by applying Jensen's inequality (recall Λ ≥ 1 almost

surely) for any x, y non-negative

Ga(x, y) ≤ GE{Λ}(x, y) = eE{Λ} lnG(x,y) ≤ E
{
eΛ lnG(x,y)

}
≤ F (x, y), (4.2.3)

with a the smallest integer larger than E {Λ}. Since Ga is a df, say of (S, T ), then

again the correlation order implies that τ(XΛ:Λ, YΛ:Λ) ≥ τ(S, T ), and similar bounds

hold for Spearman's rank correlation and the correlation coe�cient. In the following

we shall write also τ(C) and τ(Q) (if a = 1) instead of τ(XΛ:Λ, YΛ:Λ) and τ(S, T ),

respectively. Similarly, we denote ρS(C) and ρS(Q) instead of ρS(XΛ:Λ, YΛ:Λ) and

ρS(S, T ), respectively.

4.3 Extremal Properties of F

In this section, we investigate the extremal properties of F and its copula. Assume

that Λ = Λn depends on n and write Cn instead of C. Suppose for simplicity that
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E {Λn} = n and G has unit Fréchet margins. Assume additionally the following

convergence in probability

Λn

n

p→ 1, n→∞. (4.3.1)

The above conditions can be easily veri�ed in concrete examples, in particular it

holds if Λn = n almost surely.

In order to understand the dependence of Cn, we can calculate Kendall's tau τ(Cn) as

n→∞. For instance, as shown in the simulation results in Table 5.2.1, if the cop-

ulaQ of G has a coe�cient of upper tail dependence µQ = 0, then limn→∞ τ(Cn) = 0.

Note that by de�nition if µQ exists, then it is calculated by

µQ = 2− lim
u↓0

u−1[1−Q(1− u, 1− u)] ∈ [0, 1]. (4.3.2)

The following result establishes the convergence of both Kendall's tau for Cn and

Spearman's rank correlation ρS(Cn) to the corresponding measures of dependence

with respect to an extreme value copula QA which approximates Q, i.e.,

lim
n→∞

sup
u1,u2∈[0,1]

∣∣∣∣(Q(u
1/n
1 , u

1/n
2 ))n −QA(u1, u2)

∣∣∣∣ = 0, (4.3.3)

where

QA(u1, u2) = (u1u2)A(y/(x+y)), x = lnu1, y = lnu2 (4.3.4)

for any (u1, u2) ∈ (0, 1]2 \ (1, 1), with A : [0, 1] → [1/2, 1] a convex function which

satis�es

max(t, 1− t) ≤ A(t) ≤ 1, ∀t ∈ [0, 1]. (4.3.5)

In the literature, see e.g. Falk et al. [38], Molchanov [91], Aulbach et al. [14, 15],

Bücher and Segers [19], A is referred to as the Pickands dependence function.

Proposition 4.3.1. If the copula Q satis�es (4.3.3) and further (4.3.1) holds, then

lim
n→∞

τ(Cn) = τ(QA), lim
n→∞

ρS(Cn) = ρS(QA). (4.3.6)

If QA is di�erent from the independence copula, and therefore A(t) < 1 for any
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t ∈ (0, 1), then we have (see e.g., Molchanov [91])

τ(QA) =

∫ 1

0

t(1− t)
A(t)

dA′(t), ρS(QA) = 12

∫ 1

0

1

(1 + A(t))2
dt− 3. (4.3.7)

To illustrate the results stated above, we compare by simulations the dependence

properties of both C and Q. To this end, we simulate random samples from both

copulas and compute the empirical dependence measures. Speci�cally, we generate

a random sample from C in which Step 1-Step 4 in Subsection 4.4.2 are repeated

10′000 times. Also, we simulate Λ from Model B and two cases of Q namely, a

Gumbel copula with parameter 10 and a Clayton copula with parameter 10. Table

5.2.1 describes the simulated empirical Kendall's tau and Spearman's rho for the

random samples generated from C and Q.

Q: Gumbel copula with θ = 10 Q: Clayton copula with θ = 10

E{Λ} τ(C) τ(Q) ρS(C) ρS(Q) τ(C) τ(Q) ρS(C) ρS(Q)

10 0.9059 0.9022 0.9871 0.9862 0.3533 0.8343 0.5030 0.9588

100 0.8980 0.9002 0.9848 0.9854 0.0518 0.8348 0.0775 0.9589

1'000 0.9007 0.9004 0.9856 0.9856 0.0043 0.8334 0.0064 0.9577

10'000 0.9016 0.9018 0.9857 0.9859 0.0019 0.8324 0.0027 0.9573

100'000 0.8997 0.8996 0.9851 0.9854 -0.0104 0.8316 -0.0156 0.9569

Table 4.3.1: Empirical Kendall's Tau and Spearman's rho according to Λ.

The table above shows that for the Gumbel copula case, the level of dependence of a

bivariate risk governed by C is lower or approximately equal to the one corresponding

to Q when E {Λ} increases. For the case of Clayton copula, the bigger E {Λ}, the
weaker the dependence associated with C. In particular, for a copula Q with no

upper tail dependence, Clayton copula in our example, it can be seen that when

E {Λ} increases, C tends to the independence copula. However, when Q is an

extreme value copula, Gumbel copula in our illustration, the rate of decrease in the

level of dependence with respect to E {Λ} is small. These empirical �ndings are

due to the correlation order demonstrated in (4.2.3). To verify the results obtained

from simulations, we show that, under (4.3.7), for α = 10, we obtain τ(QA) = 0.9

and ρS(QA) = 0.9855 for the Gumbel copula which are in line with the simulation
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results presented in Table 5.2.1.

It should be noted that for the Gumbel copula, the Pickands dependence function

can be written as follows

A(t) = (t1/α + (1− t)1/α)α, t ∈ (0, 1), α ∈ (0, 1)

leading to a closed form for τ(QA) given by

τ(QA) = 1− 1

α
.

Also, it is well-known that for Clayton copula (4.3.3) holds with QA being the

independence copula, hence for this case by (4.3.6) we have limn→∞ τ(Cn) = 0,

which con�rms the �ndings in Table 1. This section is concerned with the extremal

properties of the df F introduced in (4.1.1) in terms of G and Λ. The natural

question which we want to answer here is whether the extremal properties of G

and F are the same. Therefore, we shall assume that G is in the max-domain of

attraction of some max-stable bivariate distribution H. Without loss of generality

we shall assume that H has unit Fréchet marginal df's. Hence, our assumption is

that

lim
n→∞

Gn(nx, ny) = H(x, y), x, y ∈ [0,∞). (4.3.8)

The max-stability of H and the fact that its marginal df's are unit Fréchet imply

H t(tx, ty) = H(x, y), ∀x, y, t ∈ (0,∞) (4.3.9)

see e.g., Falk et al. [38]. In case Λ is a shifted geometric random variable as inModel

A, then the above assumptions imply for any x, y non-negative (set q := 1− θ)

n[1− F (nx, ny)] = n
[
1− θG(nx, ny)

1− qG(nx, ny)

]
= n

1−G(nx, ny)

1− qG(nx, ny)

→ −1

θ
lnH(x, y), n→∞.

Hence

lim
n→∞

F n(nx, ny) = H1/θ(x, y) (4.3.10)
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or equivalently, using (4.3.9)

lim
n→∞

F n(nx/θ, ny/θ) = H1/θ(x/θ, y/θ) = H(x, y), x, y ∈ (0,∞) (4.3.11)

and thus F is also in the same max-domain of attraction as G. Our result below

shows that the extremal properties of G are preserved for the general case when

E {Λ} is �nite. This assumption is natural in collective models, since otherwise we

cannot insure such portfolios.

Proposition 4.3.2. If E {Λ} is �nite then µQ = µC. Moreover, if (4.3.8) holds,

then

lim
n→∞

F n(anx, any) = H(x, y), x, y ∈ (0,∞), (4.3.12)

where an = E {Λ}n.

Remarks 4.3.3. i) It is well-known, see e.g. Falk et al. [38] that if G is in the

max-domain of attraction of H, then the coe�cient of upper tail dependence µQ of

G with copula Q exists and

µQ = 2 + lnH(1, 1) = 2− 2A(1/2).

By the above proposition, F is also in the max-domain of attraction of H, and thus

µC = 2− 2A(1/2) = µQ ∈ [0, 1]. (4.3.13)

ii) Although F and G are in the same max-domain of attraction, the above proposi-

tion shows that the normalising constant an = E {Λ}n for F is di�erent that for G

(here an = n) if E {Λ} 6= 1.

4.4 Parameter Estimation & Monte Carlo Simula-

tions

4.4.1 Parameter Estimation

This section focuses on the estimation of the parameters of the new copula C i.e.,

θ of N and α of the copula Q. Hereafter, we denote Θ = (θ, α). There are three

widely used methods for the estimation of the copula parameters. The classical one

is the maximum likelihood estimation (MLE). Another popular method is the in-

ference function for margins (IFM), which is a step-wise parametric method. First,
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the parameters of the marginal df's are estimated and then the copula parameter Θ

are obtained by maximizing the likelihood function of the copula with the marginal

parameters replaced by their �rst-stage estimators. Typically, the success of this

method depends upon �nding appropriate parametric models for the marginals, see

Kim et al. [70].

Finally, the pseudo-maximum likelihood (PML) method, introduced by Oakes [97]

consists also of two steps. In the �rst step, the marginal df's are estimated non-

parametrically. The copula parameters are determined in the second step by max-

imizing the pseudo log-likelihood function. Speci�cally, let X ∼ G1 and Y ∼ G2

where G1 and G2 are the unknown marginals df's of X and Y . For instance, if the

data is not censored, a commonly used non-parametric estimator of G1 and G2 is

their sample empirical distributions which are speci�ed as follows

Ĝ1(x) =
1

n

n∑
i=1

1(Xi ≤ x), Ĝ2(y) =
1

n

n∑
i=1

1(Yi ≤ y). (4.4.1)

Therefore, in order to estimate the parameter Θ, we maximize the following pseudo

log-likelihood function

l(Θ) =
n∑
i=1

ln cΘ(U1i, U2i), U1i =
n

n+ 1
Ĝ1(xi), U2i =

n

n+ 1
Ĝ2(yi), (4.4.2)

where cΘ denotes the pdf of the copula. This rescaling is used to avoid di�culties

arising from the unboundedness of the pseudo log-likelihood function in (4.4.2) as

Ĝ1(xi) or Ĝ2(yi) tends to 1, see Genest et al. [45].

Kim et al. [70] show in a recent simulation study that the PML approach is better

than the well-known IFM and MLE methods when the marginal df's are unknown,

which is almost always the case in practice. Moreover, it is shown in Genest et al.

[45] that the resulting estimators from the PML approach are consistent and asymp-

totically normally distributed.

Therefore, for our study, we shall use the PML method for the estimation of Θ

which takes into account the empirical counterparts of the marginal df's to �nd the

parameter estimators.

As described in the Introduction, we consider three types of distributions for the

random variable Λ:

• Model A: Λ follows a shifted Geometric distribution with parameter θ ∈
(0, 1).

The pdf of the Geometric copula is given by
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cΘ(u1, u2) = W (v1, v2)

(
(1− (1− θ)v1)2(1− (1− θ)v2)2

θ(1− (1− θ)Qα(v1, v2))3

)
, (4.4.3)

where vi = ui
θ+(1−θ)ui , i = 1, 2 and

W (v1, v2) = (1−(1−θ)Qα(v1, v2))

(
∂2Qα(v1, v2)

∂v1∂v2

)
+2(1−θ)

(
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

)
,

which yields the following pseudo log-likelihood function

l(Θ) =
n∑
i=1

(
2 ln(1− (1− θ)v1i) + 2 ln(1− (1− θ)v2i)− ln(θ)

−3 ln(1− (1− θ)Qα(v1i, v2i)) + lnW (v1i, v2i)
)
.

• Model B: Λ follows a Shifted Poisson distribution with parameter θ > 0.

The pdf of the shifted Poisson copula is of the form

cΘ(u1, u2) = W (v1, v2)

(
eθ(Qα(v1,v2)+1−v1−v2)

(1 + θv1)(1 + θv2)

)
, (4.4.4)

where vj = f−1(uj) with f(x) = x exp(θ(x− 1)) and

W (v1, v2) = (1+θQα(v1, v2))

(
∂2Qα(v1, v2)

∂v1∂v2

)
+θ(2+θQα(v1, v2))

(
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

)
.

The corresponding pseudo log-likelihood of the above copula is thus given by

l(Θ) =
n∑
i=1

(
θ(Qα(v1i, v2i) + 1− v1i − v2i)− ln(1 + θv1i)− ln(1 + θv2i) + lnW (v1i, v2i)

)
.

• Model C: Λ follows a Truncated Poisson distribution with parameter θ > 0.

The joint density of the truncated Poisson copula is given by

cΘ(u1, u2) =
1

θ
(1− e−θ)W (v1, v2)eθ(1−v1−v2+Qα(v1,v2)), (4.4.5)
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where

W (v1, v2) = θ
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+
∂2Qα(v1, v2)

∂v1∂v2

,

vj =
1

θ
ln

(
1 +

uj(1− e−θ)
e−θ

)
, j = 1, 2.

The resulting pseudo log-likelihood of the above copula can be written as

follows

l(Θ) =
n∑
i=1

(
ln
(1− e−θ

θ

)
+ θ(1− v1i − v2i) + θQα(v1i, v2i) + lnW (v1i, v2i)

)
.

Remarks 4.4.1. The copula Cθ of Model A and Model B include the corresponding

original copula Q. In particular, if θ = 1 the pdf cθ in (4.4.3) becomes the pdf of

the original copula Q, see e.g. Zhang and Lin [127], while the copula Cθ of Model

B reduces to the original copula Q when θ = 0.

Next, we generate random samples from the proposed copula models C.

4.4.2 Monte Carlo Simulations

Based on the distributional properties of F derived in Section 2, we have the follow-

ing pseudo-algorithm for the simulation procedure which depends on the choice of

Λ and Q:

• Step 1: Generate a value λ from Λ.

• Step 2: Generate λ random samples (U1,i, U2,i), i = 1, . . . , λ, from the original

copula Q.

• Step 3: Calculate (M1,M2) as follows

Mj = max
i=1,...,λ

Uj,i, j = 1, 2.

• Step 4: Return (V1, V2), such that

Vj = LΛ(− lnMj), j = 1, 2.

Simulation results are important for exploring the dependence of F . The simulation

results in the table below complete those presented already in Table 5.2.1. In this

regard, we generate random samples from the Joe copula with parameter α = 10.
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Q: Joe copula with α = 10

E{Λ} τ(C) τ(Q) ρS(C) ρS(Q)

10 0.8982 0.8194 0.9849 0.9504

100 0.9005 0.8190 0.9857 0.9509

1'000 0.8997 0.8164 0.9855 0.9492

10'000 0.9004 0.8209 0.9857 0.9520

100'000 0.8999 0.8206 0.9852 0.9513

Table 4.4.1: Empirical Kendall's Tau and Spearman's rho according to E {Λ}.

For the Joe copula, the Pickands dependence function can be written as follows

A(t) = 1− ((ψ1(1− t))−α + (ψ2t)
−α)−

1
α

where ψ1, ψ2 ≤ 1 , t ∈ (0, 1) and α ∈ (0, 1).

By using (4.3.7) and for α = 10 and ψ1 = ψ2 = 1, we obtain τ(QA) = 0.9066 and

ρS(QA) = 0.9874 which are in line with the simulation results observed in Table

4.4.1 for τ(C) and ρS(C) as E {Λ} increases.
Another bene�t of our simulation algorithm is that we can assess the accuracy of

our estimation method proposed above. Therefore, we simulate random samples

of size n from the copula C with di�erent distributions for Λ: Model A, Model

B and Model C and two types of copula for Q: the Gumbel copula and the Joe

copula. Hereof, the parameters θ of Λ and α of Q are estimated from the dataset

described in Subsection 4.5.1 and are presented in Table 4.4.2 .

Q: Joe copula Q: Gumbel copula

Model for Λ θ α θ α

Model A 0.3254 2.3727 0.7630 2.2758

Model B 0.9537 2.6634 0.1490 2.3276

Model C 1.8660 2.5885 0.3133 2.3240

Table 4.4.2: Parameters used for sampling from C.
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Model A Model B Model C

n θ̂ Di�. α̂ Di�. θ̂ Di�. α̂ Di�. θ̂ Di�. α̂ Di�.

100 0.2461 -24% 2.2255 -6% 1.0765 13% 2.6597 0% 1.7400 -7% 2.2535 -13%

1'000 0.3353 3% 2.3262 -2% 0.9906 4% 2.6999 1% 1.9238 3% 2.6491 2%

10'000 0.3304 2% 2.3260 -2% 0.9795 3% 2.6651 0% 1.8996 2% 2.5999 0%

100'000 0.3285 1% 2.3462 -1% 0.9541 0% 2.6600 0% 1.8721 0% 2.5877 0%

Table 4.4.3: Parameters used for sampling from C where Q is the Joe Copula.

Model A Model B Model C

n θ̂ Di�. α̂ Di�. θ̂ Di�. α̂ Di�. θ̂ Di�. α̂ Di�.

100 0.9565 25% 2.3595 4% 0.1712 15% 2.4308 4% 0.3164 1% 2.3675 2%

1'000 0.7376 -3% 2.3076 1% 0.1563 5% 2.3458 1% 0.3084 -2% 2.3126 0%

10'000 0.7660 0% 2.3083 1% 0.1545 4% 2.3476 1% 0.3136 0% 2.3185 0%

100'000 0.7596 0% 2.2639 -1% 0.1506 1% 2.3232 0% 0.3279 5% 2.3063 -1%

Table 4.4.4: Parameters used for sampling from C where Q is the Gumbel Copula.

It can be seen from Table 4.4.3 and Table 4.4.4 that the estimated parameters from

the simulated samples tend to the true value of the parameters as the sample size n

increases, thus indicating the accuracy of our proposed models.

4.4.3 In�uence of XN :N + YN :N on Total Loss

In this subsection, we focus on the distribution of the aggregate claim of two in-

surance portfolios by excluding the largest claim of each portfolio. Speci�cally, we

analyse the aggregate in�uence of MN := XN :N + YN :N on some risk measures of

the total loss SN =
∑N

i=1(Xi + Yi). Moreover, by considering the joint distribution

of (XN :N , YN :N) we quantify the individual impact of XN :N and YN :N on the distri-

bution of SN . Let S∗N be the aggregate claim excluding the largest claims, based on

some risk measure ρ(.) and suppose that Xi, Yi's have a �nite second moment, the

in�uence of the largest claims on the aggregate claim is evaluated as follows

I∗ = ρ(SN)− ρ(S∗N).
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By the covariance capital allocation principle, the contribution of XN :N on the

change of the distribution of SN is given by

I(XN :N ,MN) =
cov(XN :N ,MN)

var(MN)
I∗.

To illustrate our results we have implemented the following simulation pseudo-

algorithm:

• Step 1: Generate the number of claims N from Λ.

• Step 2: GenerateN random samples (u1,i, u2,i), i = 1, . . . , N, from the original

copula Q.

• Step 3: For each portfolio, simulate N claim sizes by using the inverse method

as follows

Xb
i = F−1

1 (u1,i), Y b
i = F−1

2 (u2,i), i = 1, . . . , N,

where Fi, i = 1, 2, is the df of X and Y , respectively.

• Step 4: Evaluate the total loss with and without the largest claims, respec-

tively

SbN =
N∑
i=1

(Xb
i + Y b

i ), S∗bN .

To obtain the simulated distribution of SN and S∗N Step 1-4 are repeated B times.

The results presented in Table 4.4.5 is in millions and is obtained from the following

assumptions:

• number of simulations B = 100′000,

• the original copula is a Gumbel copula with dependence parameter α = 2.324,

• the number of claims follows the Shifted Poisson (Model B) with parameter

θ = 1′000,

• the claim sizes are Pareto distributed as follows

Xi ∼ Pareto(10′000, 2.2), Yi ∼ Pareto(50′000, 2.5).
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Risk measures (ρ) SN S∗N I∗ I∗ (in %) I(XN :N ,MN) I(YN :N ,MN)

Mean 101.77 100.21 1.57 1.54 0.38 1.19

Standard deviation 4.41 3.91 0.50 11.24 0.15 0.35

VaR (99 %) 112.75 109.65 3.10 2.74 0.90 2.20

TVaR (99 %) 117.08 111.03 6.05 5.17 1.75 4.30

Table 4.4.5: In�uence of the largest claims on the total loss.

It can be seen that a signi�cant proportion of the aggregate claims is consumed

by XN :N + YN :N . For instance, based on the standard deviation as risk measure,

11.24% of the total loss is driven by the largest claims. In this regards, XN :N

has more important contribution to I∗ than YN :N . This result is helpful for the

insurance company when choosing the appropriate reinsurance treaty in the sense

that the main source of volatility of the correlated portfolios is quanti�ed.

4.5 Real insurance data applications

In this section, we illustrate the applications of the new copula families in the mod-

elling of three real insurance data. Speci�cally, we shall consider four copula families

for Qα: Gumbel, Frank, Student and Joe and three mixture copulas in which Λ with

parameter θ follows one of the three distributions: Shifted Geometric, Shifted Pois-

son and Truncated Poisson. The AIC criteria is used to assess the quality of each

model �t relative to each of the other models.

4.5.1 Loss ALAE from accident insurance

We shall model real insurance data from a large insurance company operating in

Switzerland. The dataset consists of 33'258 accident insurance losses and their cor-

responding allocated loss adjustment expenses (ALAE) which includes mainly the

cost of medical consultancy and legal fees. The observation period encompasses the

claims occurring during the accident period 1986-20141.

Let Xi be the ith loss observed and Yi its corresponding ALAE.

Some statistics on the data are summarised in Table 4.5.1.

1
Data set can be downloaded here http://dx.doi.org/10.13140/RG.2.1.1830.2481

http://dx.doi.org/10.13140/RG.2.1.1830.2481
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Loss ALAE

Min 10 1

Q1 13'637 263

Q2 32'477 563

Q3 95'880 1'509

Max 133'578'900 2'733'282

No. Obs. 33'258 33'258

Mean 292'715 5'990

Std. Dev. 2'188'622 42'186

Table 4.5.1: Statistics for Loss ALAE data from accident line.

The scatterplot of (ALAE, loss) on a log scale is depicted in Figure 4.5.1. It can

be seen that large values of loss are likely to be associated with large values of

ALAE. In addition, the empirical estimator of some dependence measures in Table

4.5.2 suggests a positive dependence between Xi and Yi. For instance, the empirical

estimator of the upper tail dependence of 0.6869 indicates that there is a strong

dependence in the tail of the distribution of Xi and Yi.

Figure 4.5.1: Scatterplot for log ALAE and log Loss: accident insurance data.
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Dependence measures Values

Pearson's Correlation 0.7460

Spearman's Rho 0.7465

Kendall's Tau 0.6012

Upper tail dependence 0.6869

Table 4.5.2: Empirical dependence measures for Loss ALAE data from accident line.

Referring to the marginals' estimator in (4.4.1), the estimation results for each cop-

ula model are found by maximizing (4.4.2) and are summarized in Table 4.5.3 below.

Model θ α m AIC

Gumbel - 2.3876 - -32'073

Gumbel Geometric 0.7630 2.2758 - -32'128

Gumbel Truncated Poisson 0.3133 2.3240 - -32'104

Gumbel Shifted Poisson 0.1490 2.3276 - -32'059

Frank - 8.0774 - -30'137

Frank Geometric 0.9999 8.0772 - -30'134

Frank Truncated Poisson 0.0001 8.0773 - -30'135

Frank Shifted Poisson 0.0001 8.0773 - -30'135

Student - 0.8142 1.9805 -32'909

Student Geometric 0.1137 0.5492 1.9992 -38'088

Student Truncated Poisson 0.0001 0.7841 9.6744 -28'672

Student Shifted Poisson 0.0001 0.7885 8.7113 -29'042

Joe - 3.0967 - -30'655

Joe Geometric 0.3254 2.3727 - -33'015

Joe Truncated Poisson 1.8660 2.5885 - -32'578

Joe Shifted Poisson 0.9537 2.6634 - -32'411

Table 4.5.3: Copula families parameters estimates.

It can be seen that the model which best �ts the data is the Student Geometric

copula followed by the Joe Geometric copula. We note in passing that the Student

copula Qα has an additional parameter m which is the degree of freedom.
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4.5.2 Loss ALAE from general liability insurance

This data set describes the general liability claims associated with their ALAE re-

trieved from the Insurance Services O�ce available in the R package. In this respect,

the sample consists of 1'466 uncensored data points and 34 censored observations.

We refer to Denuit et al. [28] for more details on the description of the data. Let Xi

be the ith loss observed and Yi the ALAE associated to the settlement of Xi. Each

loss is associated with a maximum insured claim amount (policy limit) M . Thus,

the loss variable Xi is censored when it exceeds the policy limit M . We de�ne the

censored indicator of the loss variable by

δi =

{
1 if Xi 6M,

0 if Xi > M, i = 1, . . . , 1′500.

Next, we shall use the Kaplan-Meir estimator ĜX to estimate G1 and the empirical

distribution ĜY for G2 as in (4.4.1). In particular, the corresponding pseudo log-

likelihood function is given by

l(Θ) =
n∑
i=1

(
δi ln(cΘ(U1i, U2i) + (1− δi) ln

(
1− CΘ(U1i, U2i)

∂U2i

))
, (4.5.1)

where U1i = n
n+1

ĜX(xi) and U2i = n
n+1

ĜY (yi) for i = 1, . . . , n, see Denuit et al.

Denuit et al. [28]. By maximizing (4.5.1), the resulting estimators of Θ for the

considered copula models are presented in Table 5.4.10.



82

Model θ α m AIC

Gumbel - 1.4284 - -210.18

Gumbel Geometric 0.5425 1.3127 - -278.23

Gumbel Truncated Poisson 0.0001 1.4422 - -360.49

Gumbel Shifted Poisson 0.1410 1.4083 - -361.20

Frank - 3.0440 - -321.44

Frank Geometric 0.7800 2.7464 - -174.40

Frank Truncated Poisson 0.0001 3.0375 - -306.40

Frank Shifted Poisson 0.0001 3.0375 - -306.41

Student - 0.4642 10.0006 -180.99

Student Geometric 0.7095 0.4252 9.1897 -228.82

Student Truncated Poisson 1 0.4094 13.9922 -271.40

Student Shifted Poisson 1 0.4016 13.9983 -295.42

Joe - 1.6183 - -179.00

Joe Geometric 0.4379 1.3864 - -292.41

Joe Truncated Poisson 0.0607 1.6356 - -331.21

Joe Shifted Poisson 0.8075 1.4629 - -361.76

Table 4.5.4: Copula families parameters estimates.

Since the Joe Shifted Poisson copula has the the smallest AIC it represents the best

model for describing the dependence in the dataset followed by the Gumbel Shifted

Poisson copula.

4.5.3 Danish �re insurance data

The corresponding data set describes the Danish �re insurance claims collected from

the Copenhagen Reinsurance Company for the period 1980-1990. It can be retrieved

from the following website: www.ma.hw.ac.uk/ ∼ mcneil/. This data set has �rst

been considered byEmbrechts et al. [35] (Example 6.2.9) and explored by Haug

et al. [62]. It consists of three components: loss to buildings, loss to contents and

loss to pro�t. However, in this case, we model the dependence between the �rst

two components. The total number of observations is of 1'501. We only consider

the observations where both components are non-null. As indicated by the empiri-

cal dependence measures in Table 4.5.5, the level of dependence between these two

losses is low.
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Dependence measures Values

Pearson's Correlation 0.1413

Spearman's Rho 0.1417

Kendall's Tau 0.0856

Upper tail dependence 0.1998

Table 4.5.5: Dependence measures for the Danish �re insurance.

The estimation results for each copula is summarized in Table 5.4.8 below.

Model θ α m AIC

Gumbel - 1.1762 - -133.18

Gumbel Geometric 0.9999 1.1762 - -131.17

Gumbel Truncated Poisson 0.0001 1.1762 - -131.18

Gumbel Shifted Poisson 0.0001 1.1762 - -131.17

Frank - 0.8807 - -29.12

Frank Geometric 0.9999 0.8804 - -27.12

Frank Truncated Poisson 0.0001 0.8806 - -27.12

Frank Shifted Poisson 0.0001 0.8805 - -27.12

Student - 0.1574 9.5998 -47.86

Student Geometric 0.9999 0.1576 10.0063 -45.84

Student Truncated Poisson 0.0001 0.1570 9.0048 -45.81

Student Shifted Poisson 0.0001 0.1562 8.9833 -45.42

Joe - 1.3585 - -204.85

Joe Geometric 0.9999 1.3585 - -202.83

Joe Truncated Poisson 0.0001 1.3585 - -202.84

Joe Shifted Poisson 0.0001 1.3585 - -202.83

Table 4.5.6: Copula families parameters estimates.

It can be seen that the model that best �ts the data is the Joe copula followed by

the Joe Truncated Poisson copula. The Frank mixture copulas and Student mixture

copulas are not a good �t for the data as their AIC is higher by far compared to the

Gumbel and Joe mixture copulas families.
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4.5.4 Reinsurance premiums

In this section, we examine the e�ects of the dependence structure on reinsurance

premiums by using the proposed copula models. In practice, it is well known that

insurance risks dependency has an impact on reinsurance. For instance, Dhaene and

Goovaerts [31] have shown that stop loss premium is greater under the dependence

assumption than under the independence case. In what follows, we consider the

insurance claims data described in Subsection 4.5.1 where we denote X the loss

variable, Y the associated ALAE and K the number of claims for the next accident

year. In addition, two types of reinsurance treaties are analyzed namely:

• Excess-of-loss reinsurance, where the claims from Yi 's are attributed propor-

tionally to the insurer and the reinsurer. For a given observation (Xi, Yi) the

payment for the reinsurer is described as follows, see Cebrian et al. [20]

g(Xi, Yi, r) =

 0 if Xi 6 r,

Xi − r +

(
Xi−r
Xi

)
Yi if Xi > r

leading to a reinsurance premium of the form

κ(r) = E {K}E {g(Xi, Yi, r)} , (4.5.2)

where r > 0 is the retention level.

• Stop loss reinsurance, where the premium is given by

π(d) = E

{( K∑
i=1

(Xi + Yi)− d
)

+

}
(4.5.3)

and d is a positive deductible.

In order to calculate the reinsurance premiums de�ned above, Monte Carlo simu-

lations have been implemented. Hereof, we assume that K is Poisson distributed

with a mean of 156.2, representing the expected number of claims estimated by

the insurance company. Additionally, we use the empirical distributions of Xi and

Yi for the simulation of the claims amount. Regarding the dependence model, the

following copulas are considered: independent copula, Joe copula, Geometric Joe

Copula, Truncated Poisson Joe copula and the Shifted Poisson Joe copula where

the parameters are summarized in Table 4.5.3. The following steps summarize the

implemented pseudo-algorithm:
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• Step 1: Generate the number of claims K ∼ Poisson(156.2).

• Step 2: Simulate (ui, vi), i = 1, . . . , K from the considered copula C.

• Step 3: Generate the loss and ALAE claims as follows

(xi = F̂−1
X,n(ui), yi = F̂−1

Y,n(vi)), i = 1, . . . , K,

where F̂−1
X,n and F̂

−1
Y,n are the inverse of the empirical df ofX and Y respectively,

with

F̂X,n(x) =
1

n

n∑
i=1

1(Xi ≤ x), F̂Y,n(y) =
1

n

n∑
i=1

1(Yi ≤ y).

• Step 4: Calculate the reinsurance premiums κb(r) and πb(d) as in (4.5.2) and

(4.5.3) respectively.

• Step 5: Step 1 -Step 4 are repeated B times and the estimators of the

reinsurance premiums are given by

κ̂(r) =
1

B

B∑
b=1

κb(r), π̂(d) =
1

B

B∑
b=1

πb(d).

The estimation results presented in Table 4.5.7 are obtained from repeating Step 1

-Step 4 100'000 times. These amounts are expressed in CHF million.

κ̂(r) π̂(d)

Copula model r = 1 r = 5 r = 10 d = 10 d = 20 d = 30

Independent 13.1137 6.5692 3.0971 14.7530 7.5145 3.5738

Joe 13.6950 6.7776 3.2396 15.1056 7.7691 3.8233

Joe Geometric 13.4483 6.7365 3.1619 14.8975 7.6797 3.7177

Joe Truncated Poisson 13.4038 6.7183 3.0929 14.8016 7.6698 3.6493

Joe Shifted Poisson 13.4776 6.6789 3.1081 14.9250 7.6266 3.6702

Table 4.5.7: Reinsurance premiums with respect to copula models.

Table 13 shows that the reinsurance premiums κ̂(r) and π̂(d) are lower under the

independence hypothesis. Hence, the portfolio is less risky when the loss variable

Xi and the ALAE variable Yi are assumed to be independent. Furthermore, when

the retention limit r increases for the excess of loss treaty, the reinsurance premiums

estimates κ̂(r) under the Joe mixture copula models tend to the estimated values
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under the independence assumption. Conversely, for the stop loss treaty, the higher

the deductible d the higher the deviation from the independence hypothesis.

Furthermore, by comparing the results for each copula model, it can be seen that

the Joe copula generates the highest reinsurance premiums. This result is expected

given that the strongest dependence structure is obtained under the Joe copula.

On the other hand, the weakest dependence model for this data is observed under

the Joe truncated Poisson copula as the reisurance premiums κ̂(r) and π̂(d) are the

smallest for di�erent values of r and d.

4.6 Appendix

4.6.1 Proofs

Derivation of (4.4.4)-(4.4.5): We show �rst (5.1.3). The corresponding joint density

c of the df C is given by

c(u1, u2) =
∂C(u1, u2)

∂u1∂u2

=
∂LΛ(− lnQα(v1, v2))

∂u1∂u2

, (4.6.1)

where

C(v1, v2) = LΛ(− lnQα(v1, v2)), vi = e−L
−1
Λ (ui), i = 1, 2.

In view of (4.6.1), the partial derivative of C with respect to u1 is

∂LΛ(− lnQα(v1, v2))

∂u1

=
1

Qα(v1, v2)
L′Λ(− lnQα(v1, v2))

−∂Qα(v1, v2)

∂v1

∂v1

∂u1

leading to

c(u1, u2) =
∂

∂v2

(
∂LΛ(− lnQα(v1, v2))

∂u1

)
∂v1

∂u1

∂v2

∂u2

=
∂v2

∂u2

(
L′′Λ(− lnQα(v1, v2))

∂Qα(v1,v2)
∂v1

∂Qα(v1,v2)
∂v2

Q2
α(v1, v2)

+L′Λ(− lnQα(v1, v2))

−∂2Qα(v1,v2)
∂v1∂v2

Qα(v1, v2) + ∂Qα(v1,v2)
∂v1

∂Qα(v1,v2)
∂v2

Q2
α(v1, v2)

)

=
∂v1

∂u1

∂v2

∂u2

Q2
α(v1, v2)

((
L′′Λ(− lnQα(v1, v2)) + L′Λ(− lnQα(v1, v2))

)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

−L′Λ(− lnQα(v1, v2))Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

)
.
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We derive next the pdf cΘ in (4.4.4): In this case, Λ follows a shifted Poisson distri-

bution. In view of (5.1.3), we need to compute at �rst the following components:

L′Λ(− lnQα(v1, v2)) = −e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2)),

L′′Λ(− lnQα(v1, v2)) = e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + 3θQα(v1, v2) + θ2Q2
α(v1, v2)),

where for i = 1, 2, vi = e−L
−1
Λ (ui) which implies ui = vie

−θ(1−vi) and thus ∂vi
∂ui

=
e−θ(1−vi)

1+θvi
. By replacing these components into (5.1.3), we have

cΘ(u1, u2) =
1

Qα(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

((
e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + 3θQα(v1, v2) + θ2Q2

α(v1, v2))

−e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2)
)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2))Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Qα(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

(
e−θ(1−Qα(v1,v2))Qα(v1, v2)

×
(

1 + 3θQα(v1, v2) + θ2Q2
α(v1, v2)− 1− θQα(v1, v2)

)
×∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
e−θ(1−Qα(v1,v2))Qα(v1, v2)

(
2θQα(v1, v2) + θ2Q2

α(v1, v2)
)

×∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
e−θ(1−Qα(v1,v2))Q2

α(v1, v2)
(

2θ + θ2Qα(v1, v2)
)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2
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+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
e−θ(1−Qα(v1,v2))Q2

α(v1, v2)

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
θ
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

(
2 + θQα(v1, v2)

)
+(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
eθ(2−v1−v2)eθ(Qα(v1,v2)−1)

(1 + θv1)(1 + θv2)

(
∂2Qα(v1, v2)

∂v1∂v2

(1 + θQα(v1, v2))

+θ
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

(2 + θQα(v1, v2))

)
.

Next, we show (4.4.5): Since Λ follows a truncated Poisson distribution, in light of

(5.1.3), the joint density cΘ is expressed in terms of (set ηθ = e−θ/(1− e−θ))

L′Λ(− lnQα(v1, v2)) = −ηθθQα(v1, v2)eθQα(v1,v2),

L′′Λ(− lnQα(v1, v2)) = ηθθQα(v1, v2)eθQα(v1,v2)(1 + θQα(v1, v2)),

where for i = 1, 2, vi = e−L
−1
Λ (ui) and ui = e−θ

1−e−θ (vθi − 1) with ∂vi
∂ui

= 1−e−θ
θ

eθ(1−vi).

By substituting the above components in the joint density expressed in (5.1.3), we

obtain

cΘ(u1, u2) =

(
1− e−θ

θ

)2
eθ(2−v1−v2)

Q2
α(v1, v2)

[(
ηθθQα(v1, v2)eθQ(v1,v2)(1 + θQα(v1, v2))

−ηθθQα(v1, v2)eθQα(v1,v2)

)
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+ηθθQα(v1, v2)eθQα(v1,v2)Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

]

= (1− e−θ)eθ[1−v1−v2+Qα(v1,v2)]

(
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+
1

θ

∂2Qα(v1, v2)

∂v1∂v2

)
.

2

Proof of Proposition 4.3.1 Since G has Fréchet marginals, by assumption (4.3.3),

we have that

lim
n→∞

Gn(nx, ny) = G(x, y), x, y ∈ (0,∞),
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where G has copula QA and thus τ(G) = τ(QA). We have thus with Fn(x, y) =

E
{
GΛn(x, y)

}
using further (4.3.1)

lim
n→∞

Fn(nxn, nyn) = lim
n→∞

E
{
GnΛn

n (nxn, nyn)
}

= G(x, y), x, y ∈ (0,∞) (4.6.2)

for any xn, yn such that limn→∞ xn = x and limn→∞ yn = y. Consequently,

τ(Cn) = 4

∫
(0,∞)2

Fn(x, y) dFn(x, y)− 1

= 4

∫
(0,∞)2

Fn(nx, ny) dFn(nx, ny)− 1

→ 4

∫
(0,∞)2

G(x, y) dG(x, y)− 1, n→∞

= τ(G),

where the convergence above follows by Lemma 4.2 in Hashorva [58] (see also

Resnick and Zeber [102] and Kulik and Soulier [76] for more general results). Next,

the convergence in (4.6.2) implies

lim
n→∞

Fni(nsn) = lim
n→∞

E
{
G
nΛn
n

i (nsn)
}

= Gi(s), s ∈ (0,∞), i = 1, 2

for any sn, n ≥ 1 such that limn→∞ sn = s, where Fni, Gi,Gi is the ith marginal df

of Fn, G, and G, respectively. Hence, with similar arguments as above, we have

ρS(Cn) = 12

∫
(0,∞)2

Fn(x, y) dFn1(x)dFn2(y)− 3

= 12

∫
(0,∞)2

Fn(nx, ny) dFn1(nx)dFn2(nx)− 3

→ 12

∫
(0,∞)2

G(x, y) dG1(x)dG2(x)− 3, n→∞

= ρS(G)

establishing the proof. 2

Proof of Proposition 6.3.6 For v = e−L
−1
Λ (1−u) we have

1− LΛ(− ln v) ∼ u, u ↓ 0, lim
u↓0

v = 1.

By the assumption that E {Λ} is �nite we have

1− LΛ(t) ∼ −L′Λ(0)t = E {Λ} t, t→ 0. (4.6.3)
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Since further

µQ = 2− lim
u↓0

Q(1− u, 1− u)

u
= 2− lim

v↑1

lnQ(v, v)

ln v

and limv↑1Q(v, v) = 1, then using (5.1.2) and (4.6.3) we obtain

µC = 2− lim
u↓0

u−1[1− C(1− u, 1− u))]

= 2− lim
u↓0

u−1
[
1− LΛ

(
− lnQ(v, v)

)]
= 2− lim

u↓0

1− LΛ

(
− lnQ(v, v)

)
1− LΛ(− ln v)

= 2− lim
v↑1

lnQ(v, v)

ln v

= 2− [2− µQ] = µQ,

hence the �rst claim follows. Next, in view of (4.3.8) we have

lim
n→∞

n[1−G(nx, ny)] = − lnH(x, y), x, y ∈ (0,∞),

hence as n→∞

n[1−G(nx, ny)] ∼ 1−G(nx, ny)

1−G(n, n)
∼ − lnH(x, y), x, y ∈ (0,∞).

Let an, n ≥ 1 be non-negative constants such that limn→∞ an = ∞. By the above

and (4.6.3)

n[1− F (anx, any)] = n[1− LΛ(− lnG(anx, any))] ∼ E {Λ}n(− lnG(anx, any))

as n→∞. Setting now an = E {Λ}n we have thus as n→∞

n[1− F (anx, any)] ∼ an
1− F (anx, any)

E {Λ}

= an
1− LΛ(− lnG(anx, any))

E {Λ}
∼ an(− lnG(anx, any))

∼ an[1−G(anx, any)[

∼ E {Λ}
(
− lnH(xE {Λ} , yE {Λ})

)
= − lnH(x, y)

establishing the proof. 2



Chapter 5

Mixture Copulas and Insurance

Applications

This chapter is based on M. Tamraz: Mixture Copulas and Insurance Applications,

published in Annals of Actuarial Science.

5.1 Introduction

In insurance applications, modeling of multivariate data is crucial for instance for

pricing of dependent risks, risk management of di�erent portfolios or reinsurance

modeling of joint risks. The choice of tractable multivariate distributions for such

modeling purposes is large. In this contribution, we are concerned with the joint

distribution of the largest claims observed in two insurance portfolios. In this re-

spect, we denote by Xi and Yi the ith claim observed in each portfolio respectively.

We consider the classical collective model over a �xed period of time. Hence, we

de�ne N as the claim counting random variable. Clearly, when N = 0, no claims

are reported and the largest claim observed in each portfolio is null. However, we

are mainly interested in the case where N ≥ 1. Therefore, we de�ne Λ = N |N ≥ 1.

For a given bivariate distribution function G, a new class of bivariate distributions,

denoted F , can be introduced in the context of the distribution of largest claims

observed in a bivariate portfolio as illustrated in Hashorva et al. [60]. An instance

that motivates F in practice is if Xi's model the claim sizes of an insurance portfolio

and Yi's the allocated loss adjustment expense related to the settlement of Xi's,

such as legal fees, investigations of claims, etc. The dependency observed between

the largest claims of Xi and Yi is relevant when pricing an excess-of-loss reinsurance

treaty in the case where the insurer and reinsurer share the settlement costs, see

Cebrian et al. [20] for more details.

91
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More speci�cally, if Λ is a discrete random variable with P {Λ = i} = p(i) ≥ 0, i ∈ N,
then F can be de�ned by its Laplace transform, see Joe [67][Chapter 4.2]

F (x, y) = LΛ(− lnG(x, y)), x, y ≥ 0, (5.1.1)

with LΛ the Laplace transform of Λ. Moreover, if G has continuous marginal df's

G1, G2, we have that F has marginal df's

Fi(xi) = LΛ(− lnGi(xi)), i = 1, 2,

and unique copula

C(u1, u2) = LΛ

(
− lnQ(v1, v2)

)
, u1, u2 ∈ [0, 1], (5.1.2)

where we set vi = e−L
−1
Λ (ui) and Q the unique copula of G. Note that by di�erenti-

ating (5.1.2) we get the corresponding copula density c of C as follows

c(u1, u2) =
∂v1

∂u1

∂v2

∂u2

Q2(v1, v2)

((
L′Λ(t) + L′′Λ(t)

)∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

(5.1.3)

−L′Λ(t)Q(v1, v2)q(v1, v2)

)
,

where L′Λ(s) = −E
{

Λe−sΛ
}
, L′′Λ(s) = E

{
Λ2e−sΛ

}
and q the pdf of Q given by

q(u1, u2) =
g(G−1

1 (u1), G−1
2 (u2))

g1(G−1
1 (u1))g2(G−1

2 (u2))
, u1, u2 ∈ [0, 1].

Here g is the pdf of G and g1, g2 its marginal pdf's.

In the aforementioned paper, three special cases for Λ were considered by trans-

forming a discrete random variable N , namely Shifted Geometric, Shifted Poisson

or Truncated Poisson. For these choices of Λ, the density function c has a very

tractable form and therefore can be easily used for parametric estimation purposes.

As seen from (5.1.3), it is crucial that we have a tractable formula for the Laplace

transform LΛ or that of the random variable N . Instead of the Poisson choice for

N we can take for instance

N
d
= Poisson(λW ), (5.1.4)

where λ > 0 is a �xed parameter and W is a modi�er, i.e., a non-negative random

variable. Here
d
= means equality in distribution. Clearly, this idea carries over to
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other parametric models for Λ.

Another interesting choice of N is motivated by the Poisson case. Clearly, we can

write a Poisson random variable as a compound Poisson random variable. Thus,

with motivation from the collective model, we consider N to be a compound random

variable as follows

N =
Y∑
i=1

Zi, N = 0 if Y = 0, (5.1.5)

where Y is a counting random variable independent of Zi's which are discrete random

variables with values in 0, 1 . . .. Both constructions above are interesting and lead

to new classes of mixture copulas. The drawback is that in many cases, no explicit

form of the Laplace transform is available, which renders the parametric estimation

di�cult. In this paper, we shall focus on a tractable choice for Zi's, namely these

are independent copies of a Sibuya random variable Z with probability generating

function (pgf)

PZ(z) = 1− (1− z)α,

with α ∈ (0, 1] a �xed parameter. For such Z and Y a Poisson random variable

with parameter λ > 0, then N given by (5.1.5) has a discrete-stable distribution

with parameters λ > 0 and α ∈ (0, 1]. Discrete-stable distributions have been

discussed in Steutel and Van Harn [112]. These so-called discrete distributions

satisfy many interesting properties. Speci�cally, in view of Steutel and Van Harn

[112] the probability generating function (pgf) P of a discrete-stable distribution N

with parameters (α, λ) is of the form

PN(z) = e−λ(1−z)α , (5.1.6)

where λ > 0, α ∈ (0, 1] and |z| ≤ 1. By setting z = e−t in (5.1.6), we can de�ne

the distribution of N via its Laplace transform

LN(t) = E
{
e−tN

}
= e−λ[1−e−t]α , t ≥ 0, λ > 0, α ∈ (0, 1]. (5.1.7)

We have the following explicit formulas

P {N = 0} = e−λ, (5.1.8)

P {N = 1} = αλe−λ, (5.1.9)

P {N = 2} =
αλ

2
e−λ(1− α + αλ). (5.1.10)
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Clearly, we obtain the Poisson distribution for α = 1 in (5.1.7).

The case α < 1 is substantially di�erent from the Poisson case of α = 1. Indeed,

if α < 1, then E(N) = ∞ and for such α the discrete-stable distribution is heavy-

tailed.

Hereafter, we shall discuss two di�erent models for Λ based on N as above, namely

Model A: (Shifted discrete-stable) Setting Λ = N + 1, we have that

LΛ(t) = E
{
e−t(1+N)

}
= e−te−λ[1−e−t]α , t ≥ 0, (5.1.11)

hence

F (x, y) = G(x, y)e−λ[1−G(x,y)]α , x, y ≥ 0. (5.1.12)

Model B: (Truncated discrete-stable) We de�ne Λ = N |N ≥ 1. Hence p(i) =

p(i)/(1− p(0)), i ≥ 1. This implies that

E
{
e−tΛ

}
=

∞∑
i=1

p(i)

1− p(0)
e−ti +

p(0)

1− p(0)
− p(0)

1− p(0)
(5.1.13)

=
e−λ(1−e−t)α − e−λ

1− e−λ
,

leading to (set bλ := e−λ

1−e−λ )

F (x, y) =
1

1− e−λ
[e−λ[1−G(x,y)]α − e−λ] = bλ[e

λ(1−[1−G(x,y)]α) − 1], t ≥ 0. (5.1.14)

All the models introduced above lead to distribution functions F which depend on

two additional parameters α and λ. The dependence introduced by the choice of G

and (α, λ) is interesting. Even if we have the product case

G(x, y) = G1(x)G2(y), x, y ∈ R

the distribution function F is not a product distribution.

In this paper, we are interested in the main properties of F for Λ speci�ed as above

and the possible applications of such F for modeling dependent insurance data. This

paper is structured as follows. In Section 2, we study some dependence properties

of F by means of Monte Carlo simulations forModel A. Section 3 discusses various

methods for estimating the parameters of the new constructed copula as well as

goodness of �t. Finally, Section 4 is dedicated to applications of this copula to
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concrete insurance data sets.

5.2 Dependence properties of F

5.2.1 Dependence measures

We investigate the dependence properties of F and its corresponding copula C for

a given joint distribution function G with copula Q and Λ as in Model A. The

dependence between the largest claim amounts observed in two insurance portfolios,

i.e., (XΛ:Λ, YΛ:Λ), is evaluated with respect to the parameter α of the shifted discrete-

stable distribution. In this respect, we de�ne below the most commonly used non-

parametric methods. They measure di�erent aspects of the dependence structure

governed by C, see Fredricks and Nelsen [42].

For a given copula C, Kendall's τ is de�ned as

τ(C) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1,

whereas Spearman's rank correlation coe�cient ρS is given by

ρS(C) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3 = 12

∫ 1

0

∫ 1

0

uvdC(u, v)− 3.

Remarks 5.2.1. We show in the next section by simulation that for a given copula Q

with parameter θ, the level of dependence governed by C decreases as the parameter

α of the shifted discrete-stable distribution increases.

5.2.2 Monte Carlo Simulation

We study the dependence property of C by means of Monte Carlo simulations. In

order to do so, we consider two types of copula for Q, namely the Gumbel and the

Clayton copula both with parameter θ = 10 and Λ as de�ned in Model A with

λ = 10. We compare the level of dependence governed by copula C with respect

to the parameter α of the discrete-stable distribution. The simulation procedure

follows Step 1- Step 4 described below and is repeated 10′000 times.

Step 1: Generate a random value n from the discrete-stable distribution Λ.

Step 2: Generate n random vectors (U11, U21), . . . ,(U1n, U2n) from copula Q.
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Step 3: Calculate Z1 = max (U11, . . . , U1n) and Z2 = max (U21, . . . , U2n).

Step 4: Return the vector (V1, V2) with

V1 = Z1e
−λ(1−Z1)α , V2 = Z2e

−λ(1−Z2)α .

In view of Step 1, simulating a random number from the discrete-stable distribution

is not straightforward as it does not have a closed form for its probability mass

function. Therefore, Devroye [30] developed the following result.

Lemma 5.2.2. If a random variable X follows a discrete-stable distribution with

parameters (α, λ), then X follows a Poisson distribution with parameter λ1/αSα,1

where Sα,1 a positive stable random variate with parameter α.

Several methods were discussed in the literature for the choice of Sα,1. In the sequel,

we refer to the method described in Kanter [69] where the expression of Sα,1 is given

by

Sα,1 =

(
sin ((1− α)πU)

E sin (απU)

) (1−α)
α
(

sin (απU)

sin (πU)

) 1
α

with α ∈ (0, 1) and U ∼ Uniform(0, 1) being independent of the unit exponential

random variable E ∼ Exp(1).

In Table 5.2.1 below, we compute the empirical dependence measures relative to

copula C.

Q: Gumbel copula with θ = 10 Q: Clayton copula with θ = 10

α τ(C) ρS(C) τ(C) ρS(C)

1.00 0.9034 0.9863 0.3511 0.5030

0.90 0.9104 0.9882 0.3549 0.5034

0.80 0.9221 0.9911 0.3771 0.5321

0.75 0.9254 0.9919 0.4034 0.5645

0.60 0.9393 0.9946 0.4656 0.6396

Table 5.2.1: Empirical Kendall's Tau and Spearman's rho with respect to α.

Table 5.2.1 shows that as the parameter α of the discrete-stable distribution de-

creases, the level of dependence governed by copula C increases. Note that α = 1,

i.e. the Shifted Poisson case, yields the lowest level of dependence between the max-

imal claim amounts observed in the two portfolios.
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Figure 5.2.2 below highlights the results observed in Table 5.2.1. However, we reduce

the number of simulations to 1′000. We consider the Gumbel copula as a model for

Q with parameter θ = 10. It is clear that when α tends to 0, the level of dependence

is high and V1 and V2 are in some sense proportional.

Figure 5.2.1: Scatterplot of the simulated vector (V1, V2) - Gumbel copula.

For the Clayton copula with parameter θ = 10, we observe almost the same phe-

nomenon as in Figure 5.2.2. For α = 1, the observations are widely spread around

the identity line and there isn't a clear dependence structure between V1 and V2.

However, in the second graph, for α = 0.5, the observations are more condensed

around the identity line and shows some kind of dependency close to the Gumbel

case, especially in the tails.
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Figure 5.2.2: Scatterplot of the simulated vector (V1, V2) - Clayton copula.

5.3 Parameter estimation and Goodness of �t

5.3.1 Parameter Estimation

In this section, we discuss di�erent methods to estimate the parameters of the new

copula C, principally the parameter θ of the original copula Q and the parameters

(α, λ) of the discrete-stable distribution Λ. In the sequel, for the sake of simplicity,

we denote by Θ = (θ, α, λ) the parameters of the new copula. The di�erent methods

for estimating the parameters of a copula is widely discussed in the literature. We

count two parametric methods and one semi-parametric. The choice of one of these

methods depends on the willingness of the user to make assumptions or not about

the unknown margins.

Typically, when marginal distributions are known, parametric methods are more

frequently employed. The most popular method discussed in the literature is the

Maximum Likelihood Estimation (MLE). It is a fully parametric method well known

for its optimality properties. The parameters of the copula and of the marginal dis-

tributions are estimated simultaneously by maximising the log-likelihood function.

However, this method is computationally intensive especially when estimating mul-

tiple parameters. An alternative method that requires less computations is the In-

ference Functions for Margins (IFM) proposed by Joe [67]. It is a 2-steps estimation

method. In the �rst step, the parameters of the marginal distributions are estimated

separately by maximising the corresponding log-likelihood functions. Next, by re-
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placing the marginal parameters by their �rst stage estimators, the maximisation

of the log-likelihood solves for Θ in the second step. However, both methods rely

on the choice of the marginals. Kim et al. [70] shows that a misspeci�cation of the

marginals may lead to discrepancies in the performance of the estimators.

In practice, the marginal distributions are unknown and are thus estimated non-

parametrically. Genest et al. [45] described a new method for estimating the de-

pendence parameter Θ of the copula C which is a semi-parametric one known as

the Pseudo-Maximum Likelihood (PML) method. It is solely based on the ranks of

the observations. In the �rst stage, the marginals are replaced by their empirical

counterparts in the pseudo log-likelihood function. Then, in the second stage, the

maximisation of the latter returns the estimators of Θ of the new copula C. In the

sequel, we shall utilise the PML method.

Let X ∼ G1 and Y ∼ G2 where G1 and G2 are the marginals of X and Y respec-

tively. In light of the PML method, G1 and G2 are estimated by their empirical

counterparts denoted hereafter by G̃1 and G̃2 and de�ned as follows

G̃1(x) =
1

n

n∑
i=1

1{Xi ≤ x}, G̃2(y) =
1

n

n∑
i=1

1{Yi ≤ y}.

The method consists in �nding Θ that maximises the pseudo log-likelihood function

given by

l(Θ) =
n∑
i=1

log cΘ(Ui, Vi), (5.3.1)

where cΘ is the copula density de�ned in (5.1.3), Ui = n
n+1

G̃1(xi) and Vi = n
n+1

G̃2(yi)

are the pseudo-observations. The rescaling factor n
n+1

is introduced to avoid numer-

ical di�culties arising at the boundaries [0, 1]2, see Genest et al. [45]. Kim et al. [70]

shows that the PML methods performs better than the IFM and MLE methods.

Moreover, Genest et al. [45] and Shih and Louis [110] (in the presence of censorship)

show that under suitable conditions, the resulting estimator of Θ is consistent and

asymptotically normally distributed.

Below, we give the expression of the copula density for both Model A and Model

B along with the corresponding pseudo log-likelihood functions.

• Model A: Λ follows a shifted discrete-stable distribution.
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The pdf of the shifted discrete-stable copula is given by

cΘ(u1, u2) = W (v1, v2)
eλ
[

(1−v1)α+(1−v2)α−(1−Q(v1,v2))α
]

(1 + λαv1(1− v1)α−1)(1 + λαv2(1− v2)α−1)
, (5.3.2)

where

W (v1, v2) = λα(1−Q(v1, v2))α−2
[
2− (α + 1)Q(v1, v2) + λαQ(v1, v2)(1−Q(v1, v2))α

]
×∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+
[
1 + λαQ(v1, v2)(1−Q(v1, v2))α−1

]∂2Q(v1, v2)

∂v1∂v2

,

and vj = f−1(uj) such that f(vj) = vje
−λ(1−vj)α , j = 1, 2.

The resulting pseudo log-likelihood function of the above copula can be written

as follows

l(Θ) =
n∑
i=1

[
λ[(1− v1i)

α + (1− v2i)
α − (1−Q(v1i, v2i))

α]− ln(1 + λαv1i(1− v1i)
α−1)

− ln(1 + λαv2i(1− v2i)
α−1) + lnW (v1i, v2i)

]
.

• Model B: Λ follows a truncated discrete-stable distribution.

The joint density of the truncated discrete-stable copula is of the form

c(u1, u2) = W (v1, v2)(
1− e−λ

λα

eλ[(1−v1)α+(1−v2)α−(1−Q(v1,v2))α]

(1− v1)α−1(1− v2)α−1
(5.3.3)

×(1−Q(v1, v2))α−2),

where

W (v1, v2) = (1− α + λα(1−Q(v1, v2))α)
∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+(1−Q(v1, v2))
∂2Q(v1, v2)

∂v1∂v2

,

and vj = 1−
[
− ln(e−λ + uj(1− e−λ))

λ

] 1
α

, j = 1, 2.

The resulting pseudo log-likelihood function of the above copula is given by

l(Θ) =
n∑
i=1

[
ln(1− e−λ)− ln(λα) + λ[(1− v1i)

α + (1− v2i)
α − (1−Q(v1i, v2i))

α]
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−(α− 1) ln(1− v1i)− (α− 1) ln(1− v2i) + (α− 2) ln(1−Q(v1i, v2i))

+ lnW (v1i, v2i)
]
. (5.3.4)

5.3.2 Goodness of �t

Following the estimation of the parameter Θ, one need to assess the �t of the para-

metric copula CΘ to a given data set. In this respect, we consider the hypothesis tests

H0 : CΘ ∈ C0 against H1 : CΘ /∈ C0,

where C0 = {CΘ : Θ ∈ O} is a class of some known parametric copulas and O an

open subset of Rp for some integer p ≥ 1. We refer to Genest et al. [51] for a review

of the di�erent methods used to assess the goodness of �t of a parametric copula.

In the sequel, we shall use the Cramer-von Mises test statistic, denoted hereafter

by CVM. The corresponding statistic of this test is denoted by Sn and is de�ned as

follows (let Cn(u, v) =
√
n (Cn(u, v)− CΘ(u, v)))

Sn =

∫ 1

0

∫ 1

0

Cn(u, v)2dCn(u, v),

where Cn(u, v) = 1
n

∑n
i=1 1{Ui ≤ u, Vi ≤ v} is the empirical copula and CΘ the �t-

ted copula with parameter Θ. It is worth mentioning that Cn depends solely on

the pseudo-observations Ui and Vi, see Deheuvels [26], Genest and Favre [47]. Large

values for this test lead to the rejection of H0.

Moreover, one might be interested to compute the P-values associated to Sn. The

larger the P-value the less likely is the rejection of the hypothesis H0 at a signi�-

cance level p. Genest et al. [51] described a parametric bootstrap procedure for the

computation of the P-values corresponding to the goodness of �t using the CVM

test statistic. The procedure is summarized under the following steps

• Step 1: Calculate the MLE Θ̂ of Θ using the PML method.

• Step 2: Compute the value of the test Sn with Sn =
∑n

i=1

(
Cn(Ui, Vi)− CΘ̂(Ui, Vi)

)2
.

• Step 3: Let K denotes the number of bootstrap replications. Repeat Steps

4-6 for k ∈ {1, . . . , K}:

� Step 4: Generate a random sample (X̂i,k, Ŷi,k) for i ∈ {1, . . . , n} from
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CΘ̂ as described in Section 5.2.2 and compute their corresponding pseudo-

observations, i.e, Ûi,k = n
n+1

X̂i,k and V̂i,k = n
n+1

Ŷi,k.

� Step 5: Compute the empirical copula Cn,k(u, v) = 1
n

∑n
i=1 1

{
Ûi,k ≤ u, V̂i,k ≤ v

}
and estimate the MLE of Θ by Θ̂k at each iteration based on (Ûi,k, V̂i,k)

for i ∈ {1, . . . , n}.

� Step 6: Calculate Sn,k =
∑n

i=1

(
Cn,k(Ûi,k, V̂i,k)− CΘ̂k

(Ûi,k, V̂i,k)
)2

.

An approximate P-value for this test is given by

p =
1

K

K∑
k=1

1 (Sn,k ≥ Sn) .

Note that the largest the sample size, the more accurate the bootstrap procedure is,

see Genest et al. [51].

5.4 Insurance Applications

For illustration purposes, we consider real insurance data set applications. The

original copula Q can be one of the following copulas: Gumbel, Frank, Student and

Joe, see Appendix for more details on the copulas. Also, Λ with parameters (α, λ)

follows one of the two distributions: shifted discrete-stable and truncated discrete-

stable. We construct a new copula based on Q and Λ and assess the �t of this new

family of copula to insurance data sets. We use the AIC criteria to assess the quality

of each model relative to each of the other models. It is de�ned as

AIC = −2(Θ̂) + 2p

where p = 3 is the number of parameters to estimate and (Θ̂) the pseudo log-

likelihood function as in (5.3.1) evaluated at Θ̂, estimator of Θ. Moreover, we use

the CVM test to assess the goodness of �t of the copula to the data sets and compute

the corresponding P-values relative to each copula model. Additionally, we include

the root mean square error to measure the di�erences between the observed values

and the ones predicted by the model. It is denoted hereafter by RMSE and is de�ned

as follows, see Vandenberghe et al. [116] for instance

RMSE =

√√√√ 1

n

n∑
i=1

(CΘ(Ui, Vi)− Cn(Ui, Vi))2
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where Cn is the empirical copula based on the observed values and CΘ the �tted

one. Both models are then compared to other families of copulas already considered

in Hashorva et al. [60].

Remarks 5.4.1. In light of the bootstrap procedure described in Section 5.3.2 for

the computation of the P-value, we set K = 1000 that is K random samples of size n

are generated where n corresponds to the size of each data set. Generally, K should

be taken larger than the size of the data set used, see Genest et al. [51]. However,

this is computationally intensive for most of the data sets considered.

5.4.1 Loss ALAE from medical insurance

In this section, we consider the SOA Medical Group Insurance data sets describing

the medical claims observed over the years 1991-1992. These data sets can be found

on the Society of Actuaries website under the following path:

https://www.soa.org/Research/Experience-Study/group-health/91-92-group-medical-

claims.aspx. The 171′236 claims recorded in both data sets are part of a larger

database that includes the losses of 26 insurers over the period 1991-1992, see Gra-

zier et al. [54] for more description on the data. We shall investigate the dependence

between the hospital charges, corresponding to the loss variable Xi, and the Other

charges corresponding to the ALAE variable Yi associated to the settlement of Xi.

The same data set was explored in Cebrian et al. [20] where claims occurring during

accident year 1991 were considered. For our study, we work with claims occurring

during accident year 1992. The sample comprises of 75′789 claims. There are 4 dif-

ferent medical group plan types. Each policyholder belongs to one of these medical

groups.

In the sequel, we consider the 1992 records relating to Plan type 4, the loss variable

Xi exceeding 25'000 in order to have a positive dependence between the loss and

the ALAE, and strictly positive ALAE. Some statistics on the data are presented in

Table 5.4.1.
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Loss ALAE

Min 25'003 5

Q1 30'859 7'775

Q2 40'985 14'111

Q3 64'067 23'547

Max 1'404'432 409'586

No. Obs. 5'106 5'106

Mean 62'589 20'001

Std. Dev. 69'539 24'130

Table 5.4.1: Statistics for Loss ALAE data from medical insurance.

The scatterplot (ALAE, loss) on a log scale is depicted in Figure 5.4.1.

Figure 5.4.1: Scatterplot for log ALAE and log Loss.

Furthermore, we compute the empirical dependence measures between the losses and

their respective ALAE as shown in Table 5.4.2 below. The latter indicates a positive

dependence between these two variables with an empirical upper tail dependence of

0.3806.
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Dependence measures Values

Pearson's Correlation 0.4442

Spearman's Rho 0.4442

Kendall's Tau 0.3088

Upper tail dependence 0.3806

Table 5.4.2: Dependence measures for Loss ALAE data from medical insurance.

By maximizing (5.3.1), we get the estimators of the parameters Θ of the copula

models summarized hereunder in Table 5.4.3. The table below includes as well the

estimation of the parameters when Λ is either Geometric, Shifted Poisson or Trun-

cated Poisson already considered in Hashorva et al. [60].
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Original copula Q Distribution for N λ α θ m

Gumbel None - - 1.4328 -

Geometric 0.9751 - 1.4262 -

Truncated Poisson 0.0380 - 1.4278 -

Shifted Poisson 23.751 - 1.4035 -

Truncated discrete-stable 1.0243 0.6742 1.000 -

Shifted discrete-stable 1 0.8261 1.2078 -

Frank None - - 3.0482 -

Geometric 0.9999 - 3.0481 -

Truncated Poisson 0.0001 - 3.0481 -

Shifted Poisson 0.0001 - 3.0481 -

Truncated discrete-stable 1.0242 0.6742 0.0001 -

Shifted discrete-stable 1.1190 0.6102 0.0013 -

Student None - - 0.4576 11.893

Geometric 0.9999 - 0.4576 11.892

Truncated Poisson 0.0001 - 0.4576 11.890

Shifted Poisson 0.0001 - 0.4576 11.890

Truncated discrete-stable 1.1751 0.6899 0.0001 13.999

Shifted discrete-stable 0.3598 0.6404 0.2912 9.9874

Joe None - - 1.6440 -

Geometric 0.5804 - 1.4477 -

Truncated Poisson 1.0243 - 1.4832 -

Shifted Poisson 0.5626 - 1.4945 -

Truncated discrete-stable 1.0243 0.8787 1.3033 -

Shifted discrete-stable 1.0000 0.8268 1.2890 -

Table 5.4.3: Parameter estimation for the di�erent copula models

Following the estimation of the parameters, one is interested to assess the �t of these

new copula models to the data set. The table below illustrates the results.
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Original copula Q Distribution for N P-value RMSE AIC

Gumbel None 0.755 0.0039 -1,371.21

Geometric 0.740 0.0039 -1,369.28

Truncated Poisson 0.745 0.0039 -1,369.27

Shifted Poisson 0.527 0.0047 -1,328.14

Truncated discrete-stable - 0.0032 -1,384.87

Shifted discrete-stable 0.267 0.0059 -1,326.77

Frank None 0.021 0.0096 -1,137.12

Geometric 0.026 0.0096 -1,135.09

Truncated Poisson 0.021 0.0096 -1,135.10

Shifted Poisson 0.017 0.0096 -1,135.12

Truncated discrete-stable - 0.0032 -1,384.86

Shifted discrete-stable - 0.0039 -1,282.69

Student None 0.046 0.0090 -1,195.83

Geometric 0.063 0.0090 -1,193.82

Truncated Poisson 0.024 0.0090 -1,193.82

Shifted Poisson 0.045 0.0090 -1,193.82

Truncated discrete-stable - 0.0031 -1,377.86

Shifted discrete-stable 0.030 0.0065 -1,288.69

Joe None 0.055 0.0039 -1,371.21

Geometric 0.986 0.0027 -1,393.23

Truncated Poisson 0.919 0.0032 -1,386.87

Shifted Poisson 0.892 0.0034 -1,384.34

Truncated discrete-stable - 0.0032 -1,384.87

Shifted discrete-stable 0.799 0.0740 -1,370.37

Table 5.4.4: P-Values, RMSE and AIC values for the di�erent copula models

Table 5.4.4 shows that

• based on the P-values, the family of Gumbel and Joe copula are accepted at

a signi�cance level of 10% with the exception of Joe copula having a P-value

of 5.5%. Clearly, the family of Frank and Student copula do not represent a

good �t to the data due to a P-value smaller than 5%, however the Student

Geometric copula model is accepted at a signi�cance level of 5%,

• based on the RMSE, the Joe Geometric copula outperforms the other models

having the smallest RMSE,

• and �nally based on the AIC criteria, the Joe Geometric copula is the model

that best �ts the data followed by the Joe Truncated Poisson, Joe truncated
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discrete-stable and Gumbel truncated discrete-stable copulas.

5.4.2 Worker's compensation insurance data

This data set examines the losses due to permanent and partial disability of the

worker's compensation line of business. In this data, we model the dependence

between the pure premium P , de�ned as the loss due to partial and permanent

disability per dollar of payroll, and the payroll PayR. The same data was used in

Zhang and Lin [127] and Frees et al. [43]. In order to reproduce the �t of the Geo-

metric mixture copula developed by Zhang and Lin [127] we use the same estimation

procedure. Therefore, the losses and payrolls are transformed to a logarithmic scale

such that X = lnP and Y = lnPayR. Also, before replacing the marginals by their

empirical distributions for the PML estimation approach, we smooth them by using

the Gaussian non parametric kernel smoothing method de�ned for both components

as follows (see e.g., Hansen [57])

F̂X(xi) =
1

n

n∑
i=1

Φ
(xi − xj

h

)
with h = 0.2605, F̂Y (yi) =

1

n

n∑
i=1

Φ
(yi − yj

h

)
with h = 0.1290.

The empirical dependence measures are summarized in Table 5.4.5 below.

Dependence measures Values

Pearson's Correlation 0.8194

Spearman's Rho 0.8181

Kendall's Tau 0.6306

Upper tail dependence 0.6627

Table 5.4.5: Dependence measures between P and PayR.

Table 5.4.6 gathers the estimation results from maximising (5.3.1). The parameters

are estimated for all copula models including the ones considered in Hashorva et al.

[60] namely the case where Λ is either Geometric, Poisson or Truncated Poisson.
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Original copula Q Distribution for N λ α θ m

Gumbel None - - 2.4238 -

Geometric 0.3013 - 2.0356 -

Truncated Poisson 1.5530 - 2.2109 -

Shifted Poisson 4.1778 - 2.2193 -

Truncated discrete-stable 1.6537 0.9999 2.1778 -

Shifted discrete-stable 0.9458 0.9749 2.1801 -

Frank None - - 8.7858 -

Geometric 0.9267 - 10.0930 -

Truncated Poisson 0.0001 - 8.7857 -

Shifted Poisson 0.0001 - 8.6998 -

Truncated discrete-stable 1.6553 0.4523 3.1376 -

Shifted discrete-stable 0.0001 0.7991 8.6998 -

Student None - - 0.8117 12.825

Geometric 0.9999 - 0.8117 12.826

Truncated Poisson 1.0000 - 0.8015 12.999

Shifted Poisson 1.0000 - 0.8026 12.924

Truncated discrete-stable 0.0887 0.7980 0.7673 14.999

Shifted discrete-stable 0.0003 0.8000 0.8081 8.6620

Joe None - - 2.8596 -

Geometric 0.1299 - 2.0409 -

Truncated Poisson 10.1113 - 2.4120 -

Shifted Poisson 6.7874 - 2.3976 -

Truncated discrete-stable 8.3546 0.9999 2.3752 -

Shifted discrete-stable 7.2456 0.9467 2.2790 -

Table 5.4.6: Parameter estimation for the di�erent copula models

Following the estimation of the parameters, Table 5.4.7 highlights the results from

the Goodness of �t test along with the RMSE and AIC criteria for each copula

model.
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Original copula Q Distribution for N P-value RMSE AIC

Gumbel None 0.474 0.0127 -784.96

Geometric 0.389 0.0134 -808.94

Truncated Poisson 0.423 0.0130 -798.90

Shifted Poisson 0.393 0.0140 -779.87

Truncated discrete-stable 0.410 0.0135 -788.39

Shifted discrete-stable 0.403 0.0134 -786.29

Frank None 0.229 0.0158 -846.57

Geometric 0.184 0.0174 -883.23

Truncated Poisson 0.261 0.0158 -846.56

Shifted Poisson 0.239 0.0158 -839.04

Truncated discrete-stable 0.154 0.0152 -774.30

Shifted discrete-stable 0.248 0.0158 -837.04

Student None 0.313 0.0150 -803.80

Geometric 0.294 0.0150 -801.80

Truncated Poisson 0.215 0.0164 -789.33

Shifted Poisson 0.181 0.0175 -775.52

Truncated discrete-stable - 0.0143 -800.15

Shifted discrete-stable 0.281 0.0152 -795.50

Joe None 0.051 0.0241 -640.19

Geometric 0.416 0.0132 -811.03

Truncated Poisson 0.469 0.0128 -783.24

Shifted Poisson 0.445 0.0133 -772.27

Truncated discrete-stable 0.430 0.0134 -771.43

Shifted discrete-stable 0.432 0.1384 -771.99

Table 5.4.7: P-Values, RMSE and AIC values for the di�erent copula models

Table 5.4.7 shows that

• based on the P-values, all models are accepted at a signi�cance level of 10%

with the exception of Joe copula having a P-value of 5.1%,

• based on the RMSE, the Gumbel copula followed by the Joe Truncated Poisson

copula represent the best �t for the data as they have the smallest RMSE,

• and �nally based on the AIC criteria, the family of Frank mixture copulas

outperforms the others as for the majority of these copula models, the AIC is

the smallest.

Joe copula should not be used to model this data as it has the lowest P-value

(5.1%) and the greatest RMSE (0.0241) and AIC (−640.19) among all copula mod-
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els. Moreover, Table 5.4.7 shows that for the majority of the models an increase in

the P-value is associated with a decrease in the RMSE.

5.4.3 Danish �re insurance data

In this section, we shall consider the Danish data set collected from the Copen-

hagen Reinsurance Company which describes the �re insurance claims observed

over the period 1980-1990. This data set is available on the following website

www.ma.hw.ac.uk/~mcneil/. It comprises of n = 2′167 �re losses based on three

components: buildings, content and pro�t. However, in the sequel, we shall ana-

lyze the dependency between the �rst two components. Let Xi, Yi be the ith loss

observed for both components respectively. For more description on the data, we

refer to Haug et al. [62]. Table 5.4.8 below displays the estimated parameters for

each family of copula obtained when maximising the pseudo log-likelihood function

de�ned in (5.3.1).

Original Shifted discrete-stable (λ, α) Truncated discrete-stable (λ, α)

θ m λ α θ m λ α θ m

Gumbel (θ) 1.1762 - 0.0001 0.9395 1.1762 - 10.000 0.8508 1 -

Frank (θ) 0.8807 - 0.2879 0.5000 0.0001 - 10.000 0.8508 0.0001 -

Student (θ,m) 0.1574 9.59 0.3498 0.6079 0.0001 3.99 10.000 0.9761 0.0001 1.99

Joe (θ) 1.3585 - 0.0001 0.9916 1.3581 - 10.000 0.9093 1.0687 -

Table 5.4.8: Parameter estimation for the di�erent copula models

The table below summarizes the relevant measures relative to each copula model.

www.ma.hw.ac.uk/~mcneil/.
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Original copula Q Distribution for N P-value RMSE AIC

Gumbel None 0.000 0.0248 -133.18

Geometric 0.003 0.0248 -131.17

Truncated Poisson 0.001 0.0248 -131.18

Shifted Poisson 0.001 0.0248 -131.17

Truncated discrete-stable - 0.0282 -63.64

Shifted discrete-stable 0.000 0.0248 -129.28

Frank None 0.000 0.0264 -29.12

Geometric 0.001 0.0264 -27.12

Truncated Poisson 0.000 0.0264 -27.12

Shifted Poisson 0.000 0.0264 -27.12

Truncated discrete-stable - 0.0282 -63.64

Shifted discrete-stable - 0.0216 -175.81

Student None 0.000 0.0266 -47.86

Geometric 0.000 0.0266 -45.84

Truncated Poisson 0.000 0.0266 -45.81

Shifted Poisson 0.000 0.0266 -45.42

Truncated discrete-stable - 0.0310 -288.44

Shifted discrete-stable 0.009 0.0221 -172.98

Joe None 0.002 0.0224 -204.85

Geometric 0.003 0.0224 -202.83

Truncated Poisson 0.001 0.0224 -202.84

Shifted Poisson 0.007 0.0224 -202.83

Truncated discrete-stable - 0.0282 -63.64

Shifted discrete-stable 0.007 0.0224 -200.84

Table 5.4.9: P-Values, RMSE and AIC values for the di�erent copula models

For this data set, Table 5.4.9 shows that

• based on the P-values, all models are rejected at a signi�cance level of 1%,

• based on the RMSE, the Frank shifted discrete-stable copula models best the

data with the lowest error,

• and �nally based on the AIC, the copulas that best �t the data are the Student

truncated discrete-stable copula followed by the Joe copula.

However, it is clear that, for this data set, the above models do not describe well

the dependence of the maximum claim amounts and this is mainly explained by a

low dependence level between the two components, see Hashorva et al. [60].
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5.4.4 Loss ALAE from general liability insurance

We use the data set available in R collected by the Insurance Services O�ce that

examines the losses and their respective ALAE of a general liability insurance port-

folio. For more description on the data, we refer to Denuit et al. [28]. The data set

comprises of n = 1′500 claims from which 34 claims were censored. In the sequel,

Xi represents the ith loss observed and Yi the corresponding ALAE. Each loss Xi

is associated with a policy limit `i. Typically, if Xi exceeds the policy limit `i, the

observed loss corresponds to `i, i.e., the exact amount of the loss is unknown. In

this respect, we de�ne the indicator function δi as follows

δi =

{
1 if Xi 6 `i,

0 if Xi > `i, i = 1, . . . , n.

To estimate the parameters of the new copula, we shall maximise the pseudo log-

likelihood function l(Θ) de�ned in (5.3.1). Typically, Ui and Vi are the pseudo-

observations of the variables Xi and Yi respectively as de�ned in Section 5.3.1.

However, given that this data set is right-censored for the loss variable Xi, the

marginal of the latter, i.e. G̃1(x), shall be approximated by the Kaplan Meier

estimator. Thus, the resulting pseudo log-likelihood function is given by

l(Θ) =
n∑
i=1

(
δi ln cΘ(ui, vi) + (1− δi) ln

(
1− ∂CΘ(ui, vi)

∂v

))
. (5.4.1)

We shall estimate the parameter Θ of the new copula by maximizing (5.4.1). The

table below describes the estimated parameters for the di�erent families of copulas.

Original Shifted discrete-stable (λ, α) Truncated discrete-stable (λ, α)

θ m λ α θ m λ α θ m

Gumbel (θ) 1.4284 - 0.2117 0.8916 1.3613 - 0.7733 0.8427 1.1950 -

Frank (θ) 3.0440 - 0.7146 0.7000 1.2887 - 0.7206 0.7002 0.6865 -

Student (θ,m) 0.4642 10.00 0.5950 0.6502 0.2212 6.99 1.5783 0.7141 0.0001 8.99

Joe (θ) 1.6183 - 0.7333 0.9999 1.4530 - 1.3592 0.7881 1.1294 -

Table 5.4.10: Parameter estimation for the di�erent copula models

Following the estimation of the parameters, one is interested in assessing the �t of

those models to the general liability data set. The table below highlights the P-

values, RMSE and AIC criteria for each model. These models are then compared to
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the ones observed in Hashorva et al. [60], i.e., the case where Λ is either Geometric,

Shifted Poisson or Truncated Poisson.

Original copula Q Distribution for N P-value RMSE AIC

Gumbel None 0.967 0.0055 -210.18

Geometric 0.482 0.0088 -278.23

Truncated Poisson 0.939 0.0059 -360.49

Shifted Poisson 0.908 0.0062 -361.20

Truncated discrete-stable - 0.0057 -207.28

Shifted discrete-stable 0.946 0.0058 -206.92

Frank None 0.304 0.0106 -321.44

Geometric 0.185 0.0119 -174.40

Truncated Poisson 0.276 0.0105 -306.40

Shifted Poisson 0.297 0.0105 -306.41

Truncated discrete-stable - 0.0059 -206.99

Shifted discrete-stable 0.721 0.0076 -194.84

Student None 0.456 0.0089 -180.99

Geometric 0.328 0.0101 -228.82

Truncated Poisson 0.279 0.0107 -271.40

Shifted Poisson 0.223 0.0115 -295.42

Truncated discrete-stable - 0.0060 -209.58

Shifted discrete-stable 0.489 0.0088 -181.51

Joe None 0.565 0.0055 -179.00

Geometric 0.643 0.0080 -292.41

Truncated Poisson 0.702 0.0077 -331.21

Shifted Poisson 0.936 0.0058 -361.76

Truncated discrete-stable - 0.0059 -206.87

Shifted discrete-stable 0.975 0.0434 -206.01

Table 5.4.11: P-Values, RMSE and AIC values for the di�erent copula models

Table 5.4.11 shows that

• based on the P-values, all models are accepted at a signi�cance level of 10%,

• based on the RMSE, the Joe Shifted discrete-stable copula outperforms the

others having the smallest RMSE followed by the Gumbel and Joe shifted

Poisson copulas,

• and �nally based on the AIC criteria, the Frank shifted discrete-stable copula

is the model that best �ts the data, having the smallest AIC among all other

models.
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5.5 Proofs

5.5.1 Derivation of (5.3.2)-(5.3.3)

We derive �rst (5.3.2). Λ follows a shifted discrete-stable distribution with Laplace

transform de�ned in (5.1.11). In light of (5.1.3), we compute the 1st and 2nd deriva-

tives of (5.1.11) with respect to t

L
′

Λ(t) = −e−te−λ(1−e−t)α
(

1 + λαe−t(1− e−t)α−1
)
, (5.5.1)

L
′′

Λ(t) = e−te−λ(1−e−t)α
(

1 + 3λαe−t(1− e−t)α−1 + λ2α2e−2t(1− e−t)2α−2 + λαe−2t(1− e−t)α−2

−λα2e−2t(1− e−t)α−2
)
.

By setting t = − lnQ(v1, v2) in (5.5.1) with vi = e−L
−1
Λ (ui) for i = 1, 2, cΘ(u1, u2)

de�ned in (5.1.3) is given by

cΘ(u1, u2) =
eλ[(1−v1)α+(1−v2)α−(1−Q(v1,v2))α]

(1 + λαv1(1− v1)α−1)(1 + λαv2(1− v2)α−1)

[
(2λα(1−Q(v1, v2))α−1

+λ2α2Q(v1, v2)(1−Q(v1, v2))2α−2 + λαQ(v1, v2)(1−Q(v1, v2))α−2

−λα2Q(v1, v2)(1−Q(v1, v2))α−2)
∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+(1 + λαQ(v1, v2)(1−Q(v1, v2))α−1)
∂2Q(v1, v2)

∂v1∂v2

]
=

eλ[(1−v1)α+(1−v2)α−(1−Q(v1,v2))α]

(1 + λαv1(1− v1)α−1)(1 + λαv2(1− v2)α−1)

[
λα(1−Q(v1, v2))α−2

×(2− (α + 1)Q(v1, v2) + λαQ(v1, v2)(1−Q(v1, v2))α)
∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+(1 + λαQ(v1, v2)(1−Q(v1, v2))α−1)
∂2Q(v1, v2)

∂v1∂v2

]
,

where for i = 1, 2

ui = vie
−λ(1−vi)α and

∂vi
∂ui

=
eλ(1−vi)α

1 + λαvi(1− vi)α−1
.

Next, we show (5.3.3). Hereafter, Λ follows a truncated discrete-stable distribution.

Its Laplace transform is de�ned in (5.1.13) and the corresponding �rst and second
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derivatives of (5.1.13) are given by

L
′

Λ(t) =
−λαe−λ(1−e−t)αe−t(1− e−t)α−1

1− e−λ
,

L
′′

Λ(t) =
λαe−λ(1−e−t)αe−t(1− e−t)α−2

1− e−λ
(

1− αe−t + λαe−t(1− e−t)α
)
.

(5.5.2)

By replacing t in (5.5.2) with − lnQ(v1, v2), we show that (5.1.3) is given by

cΘ(u1, u2) =
(1− e−λ

λα

)2 eλ[(1−v1)α+(1−v2)α]

(1− v1)α−1(1− v2)α−1

( λα

1− e−λ
)
e−λ(1−Q(v1,v2))α(1−Q(v1, v2))α−2

×
[
(1− α + λα(1−Q(v1, v2))α)

∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+(1−Q(v1, v2))
∂2Q(v1, v2)

∂v1∂v2

]
=

1− e−λ

λα

eλ[(1−v1)α+(1−v2)α−(1−Q(v1,v2))α]

(1− v1)α−1(1− v2)α−1
(1−Q(v1, v2))α−2

[
(1− α + λα(1−Q(v1, v2))α)

∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

+(1−Q(v1, v2))
∂2Q(v1, v2)

∂v1∂v2

]
,

where for i = 1, 2

vi = 1−
(− ln[e−λ + ui(1− e−λ)]

λ

) 1
α

and
∂vi
∂ui

=
1− e−λ

λα

eλ(1−vi)α

(1− vi)α−1
.



Chapter 6

On some multivariate Sarmanov

mixed Erlang reinsurance risks:

Aggregation and Capital allocation

This chapter is based on G. Ratovomirija, M. Tamraz and R. Vernic: On some

multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and Capital

allocation, published in Insurance Mathematics and Economics, 74:197-209, 2017.

6.1 Introduction

Modern risk management usually involves complex dependent risk factors. In this

respect, several regulations were put in place in order to assess the minimum capi-

tal requirement, namely the Economic Capital (EC) that insurance and reinsurance

companies are constrained to hold according to their risk exposures. In practice,

the EC is evaluated by means of risk measures on the aggregated risk, so that the

companies will be covered from unexpected large losses.

For instance, the EC under the Solvency II framework for EU countries focuses on

a Value-at-Risk (VaR) approach at a tolerance level of 99.5% of the aggregated risk

over a one year period, while in Switzerland, the EC under the Swiss Solvency Test

(SST) is based on the Tail-Value-at-Risk (TVaR) approach at a 99% con�dence level

of the aggregated risk over a one year period. Since the EC quanti�ed in the latter

re�ects the aggregate capital needed to cover the entire loss of a company, it is also

of interest to study how this capital should be allocated among the di�erent risk

factors (e.g., lines of business) in the insurance and reinsurance companies, in other

words, how much amount of capital each individual risk contributes to the aggre-

gated EC. This allows the risk managers to identify and monitor conveniently their

117
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risks. An extensive literature has been developed on capital allocation techniques

from which we shall restrict to the TVaR method; see Dhaene et al. [32], Tasche

[114] and the references therein for more details.

Therefore, the main task of actuaries is to choose an appropriate model for the mul-

tivariate risk factors, namely the dependence structure model and the distributions

of the marginals. The aim of this contribution is to address risk aggregation and

TVaR capital allocation for insurance and reinsurance mixed Erlang risks whose

dependency is governed by the Sarmanov distribution with a certain expression of

the kernel functions. This study comes along the lines of some recent contributions:

Vernic [117] considered capital allocation based on the TVaR rule for the Sarmanov

distribution with exponential marginals; Cossette et al. [23] used the Farlie-Gumbel-

Morgenstern (FGM) distribution to model the dependency between mixed Erlang

distributed risks and applied it to capital allocation and risk aggregation; Hashorva

and Ratovomirija [59] and Ratovomirija [100] presented aggregation and capital al-

location in insurance and reinsurance for mixed Erlang distributed risks joined by

the Sarmanov distribution with a speci�c kernel function di�erent from the one

considered in this study. Note that the choice of the Sarmanov and mixed Erlang

distributions is not incidental, these distributions gained a lot of interest in the ac-

tuarial literature lately: for the Sarmanov distribution, see e.g., Yang and Hashorva

[125], Hernández-Bastida and Fernández-Sánchez [63], Abdallah et al. [1], Vernic

[118], while for the mixed Erlang distribution we refer to Lee and Lin [78], Willmot

and Lin [121], Lee and Lin [79] or Willmot and Woo [122]. One key advantage of

the Sarmanov distribution is its �exibility to join di�erent types of marginals and

its allowance to obtain exact results. An interesting property of the mixed Erlang

distributions is the fact that many risk related quantities, such as TVaR, have an

analytical form.

This paper is organized as follows: in the second section, we present some prelim-

inaries on the Sarmanov distribution, on the TVaR capital allocation problem and

on the mixed Erlang distribution, supplemented with several lemmas on this last

distribution that will be needed for the proofs of the main results. Section 3 contains

the main results on risk aggregation and capital allocation for the stop-loss reinsur-

ance, which are also particularized in the case without stop-loss reinsurance; the

main formulas of this section are illustrated with some numerical examples. The pa-

per ends with two appendices: the �rst one discusses and compares the dependence

structure of the bivariate Sarmanov distribution with mixed Erlang marginals and
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di�erent kernel functions, providing upper and lower bounds for the corresponding

Pearson correlation coe�cient, while the second appendix contains all the proofs of

the theoretical results.

6.2 Preliminaries

Throughout the paper, by convention, we assume that all the involved quantities

exist (i.e., expectations, variances, covariances etc.).

6.2.1 Multivariate Sarmanov distribution

The Sarmanov distribution caught the interest of many researchers in di�erent �elds.

It was �rst introduced by Sarmanov [107] in the bivariate case, then extended by Lee

[77] to the multivariate case. Its applications in many insurance contexts show its

�exible structure when modeling the dependence between multivariate risks given

the distribution of the marginals, see the references cited above.

According to Sarmanov [107], the joint probability density function (pdf) of a bi-

variate Sarmanov distribution is de�ned as follows

h(x1, x2) = f1(x1)f2(x2)(1 + α1,2φ1(x1)φ2(x2)), x1, x2 ∈ R, (6.2.1)

where for i = 1, 2, fi are the densities of the marginals, φi are kernel functions

assumed to be bounded, non-constant, and α1,2 is a real number satisfying the

following conditions

E(φi(Xi)) = 0, i = 1, 2, 1 + α1,2φ1(x1)φ2(x2) ≥ 0,∀x1, x2 ∈ R.

Lee [77] introduced general methods for the choice of φ. Yang and Hashorva [125]

considered the case where φ depends on some function g, being expressed as follows

φ(x) = g(x)− E(g(X)), where E(g(X)) <∞.

In the context of risk aggregation and capital allocation, Hashorva and Ratovomirija

[59] assumed that g(x) = e−x, Vernic [117] studied the case where the marginals are

exponentially distributed, while Cossette et al. [23] used the FGM distribution with

mixed Erlang marginals (the FGM is a special case of the Sarmanov distribution

for g(x) = 2(1− F (x)), with F denoting the distribution function of the marginal).
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Thus, in the sequel, we consider the following kernel function

φi(xi) = fi(xi)− E(fi(Xi)), (6.2.2)

where fi are such that E(fi(Xi)) <∞,∀i. In this case, the range of α1,2 is given by

−1

max{γ1γ2, (M1 − γ1)(M2 − γ2)}
6 α1,2 6

1

max{γ1(M2 − γ2), (M1 − γ1)γ2}
, (6.2.3)

where γi = E(fi(Xi)) and Mi = max
x∈R

fi(x),i = 1, 2. Moreover, we shall work with

a generalization of the above distribution to the multivariate case, see Lee [77].

Hereafter we let X = (X1, . . . , Xn) denote an n-dimensional random vector, x =

(x1, . . . , xn) (e.g., the observations on X) and we let In = 1, . . . , n. Therefore, we

shall model the dependency between the risks Xi having pdf fi, i ∈ In, via the

multivariate Sarmanov distribution having the following pdf

h(x) =
n∏
i=1

fi(xi)

(
1 +

∑
1≤j<l≤n

αj,lφj(xj)φl(xl)

)
,x ∈ Rn, (6.2.4)

where φi are the non-constant kernel functions de�ned in (6.2.2) and αj,l are real

numbers satisfying the condition

1 +
∑

1≤j<l≤n

αj,lφj(xj)φl(xl) ≥ 0. (6.2.5)

Remarks 6.2.1. It should be noted that a more general expression of the Sarmanov

density for the multivariate case can be written as follows

h(x) =
n∏
i=1

fi(xi)

(
1 +

n∑
l=2

∑
1≤j1<j2<...<jl≤n

αj1,...,jl

l∏
k=1

φjk(xjk)

)
,x ∈ Rn, (6.2.6)

such that E(φi(Xi)) = 0 and 1 +
∑n

l=2

∑
1≤j1<j2<...<jl≤n αj1,...,jl

∏l
k=1 φjk(xjk) ≥ 0.

However, (6.2.6) requires the estimation of all the dependence parameters, which is

in general very complex. Thus, it is often assumed that αj1,...,jl = 0 for l ≥ 3, see

Mari and Kotz [83]. For simplicity, in this paper, we consider the Sarmanov density

de�ned in (6.2.4).



121

6.2.2 Mixed Erlang distributions

The mixed Erlang distribution has many attractive distributional properties when

modeling the claim sizes of an insurance portfolio (see, e.g., Willmot and Lin [121])

and the dependence between multivariate insurance risks, see Lee and Lin [79]. Ac-

tually, during these past few years, modeling the dependence of multivariate mixed

Erlang risks raised the interest of many researchers, see also Cossette et al. [23],

Hashorva and Ratovomirija [59] or Ratovomirija [100].

In this regard, we de�ne the pdf of a mixed Erlang distribution denoted ME(β,Q)

by

f(x, β,Q) =
∞∑
k=1

qkwk(x, β), x ≥ 0, (6.2.7)

where wk(x, β) = βkxk−1e−βx

(k−1)!
is the pdf of an Erlang distribution with β > 0 the

scale parameter, k ∈ N∗ the shape parameter and Q = (q1, q2, . . .) is a vector of

non-negative mixing probabilities such that
∑∞

k=1 qk = 1. We denote by Wk the

distribution function (df) of the Erlang distribution and by W k its corresponding

survival (tail) function given, respectively, by

Wk(x, β) = 1− e−βx
k−1∑
j=0

(βx)j

j!
, W k(x, β) = e−βx

k−1∑
j=0

(βx)j

j!
, x ≥ 0.

Thus, the mixed Erlang df can be expressed in terms of the Erlang df as follows

F (x, β,Q) =
∞∑
k=1

qkWk(x, β) = 1− e−βx
∞∑
k=1

qk

k−1∑
j=0

(βx)j

j!
, x ≥ 0. (6.2.8)

Moreover, the expected value of this distribution is µ = 1
β

∑∞
k=1 kqk.

In addition, we present some distributional properties and useful results for the

mixed Erlang distributions.

Lemma 6.2.2. Let X ∼ ME(β,Q) with pdf f(x, β,Q) and E(f(X, β,Q)) < ∞.

Then c(x, β,Q) :=
f(x,β,Q)2

E(f(X,β,Q))
is again a pdf of a mixed Erlang distribution with

mixing probabilities V (Q) = (v1, v2, . . .) and scale parameter 2β, i.e., we have

c(x, β,Q) =
∞∑
k=1

vkwk(x, 2β) = f
(
x, 2β, V (Q)

)
,
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where

vk =

∑k
i=1

(
k − 1

i− 1

)
qiqk+1−i

2k

∑∞
i=1

∑∞
j=1

(
i+ j − 2

i− 1

)
qiqj

2i+j−1

. (6.2.9)

The proof of the above lemma is given in the Appendix 6.5. We shall use the

notation µ̃ for the expected value corresponding to the pdf c(·, β,Q) de�ned in this

lemma, i.e.,

µ̃ =
1

2β

∞∑
k=1

kvk. (6.2.10)

The following results have already been developed in Cossette et al. [23] and Ra-

tovomirija [100].

Lemma 6.2.3. Let X ∼ ME(β,Q) with pdf f(x, β,Q) and E(X) < ∞. Then

fG(x, β,Q) :=
xf(x,β,Q)

E(X)
is equal to the pdf f(x, β,G(Q)) of a mixed Erlang distribu-

tion with mixing probabilities G(Q) = (g1, g2, . . .) given by

gk =

0 if k = 1

(k−1)qk−1∑∞
j=1 jqj

if k = 2, 3, . . .
.

Lemma 6.2.4. Let X ∼ME(β1, Q). Then it follows that for any positive constant

β2 such that β2 ≥ β1 , we have X ∼ ME(β2,Ψ(Q)), where the elements of Ψ(Q) =

(ψ1, ψ2, . . .) are given by

ψk =
k∑
i=1

qi

(
k − 1

k − i

)(
β1

β2

)i(
1− β1

β2

)k−i
, k ≥ 1.

Lemma 6.2.5. Let X1, X2 be two independent mixed Erlang random variables (r.v.s)

such that Xi ∼ ME(β,Q
i
), i = 1, 2. Then S2 := X1 + X2 ∼ ME

(
β,Π

(
Q

1
, Q

2

))
with the components of Π

(
Q

1
, Q

2

)
given by

πl

(
Q

1
, Q

2

)
=

{
0 for l = 1∑l−1

j=1 q1,jq2,l−j for l > 1
.
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Remarks 6.2.6. According to Remark 2.1 in Cossette et al. [22], the result in

Lemma 6.2.5 can be extended to Sn :=
∑n

i=1 Xi, given that X1, . . . , Xn are indepen-

dent r.v.s and Xi ∼ ME(β,Q
i
) for i ∈ In. Thus, Sn ∼ ME

(
β,Π

(
Q

1
, . . . , Q

n

))
,

where the mixing weights are determined iteratively as follows

πl

(
Q

1
, . . . , Q

n+1

)
=

{
0 for l = 1, . . . , n∑l−1

j=n πj

(
Q

1
, . . . , Q

n

)
qn+1,l−j for l = n+ 1, n+ 2, . . .

.

Lemma 6.2.7. Given d > 0 and the r.v. X ∼ME(β,Q) , the df of Y := (X − d)+

can be expressed as

FY (y) = FX (y + d) = FX (d) +HX (y, d) , y ≥ 0, (6.2.11)

where

HX (y, d) := P (0 < Y ≤ y) =
∞∑
k=0

∆k

(
d, β,Q

)
Wk+1 (y, β) ,

with

∆k

(
d, β,Q

)
= β−1

∞∑
j=0

qj+k+1wj+1 (d, β) .

Moreover, de�ning UX(y, d) :=
∫∞
y
u ∂
∂u
HX (u, d) du, it also holds that

UX(y, d) =
1

β

∞∑
k=0

(k + 1)∆k(d, β,Q)W k+2(y, β), y > 0.

Note that with some straightforward calculation it can be proved that UX(y, d) <∞.

The following result is proved in Appendix 6.5. We introduce the convention that

an empty product equals 1.

Lemma 6.2.8. Consider the independent r.v.s Xi ∼ ME
(
β,Q

i

)
, let di > 0 and

Yi = (Xi − di)+ , i ∈ In. Then the df of Rn =
∑n

i=1 Yi can be written as

FRn (y) =
n∏
i=1

FXi (di) +
n∑
k=1

∑
1≤j1<...<jk≤n

HXj1+...+Xjk
(y, dj1 , ..., djk)

×
∏

i∈In\{j1,...,jk}

FXi (di) , y ≥ 0, (6.2.12)

where, for k ≥ 1,

H∑k
i=1Xi

(y, d1, ..., dk) := P

(
k⋂
i=1

(Xi > di) ,
k∑
i=1

(Xi − di) ≤ y

)
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=
∞∑

h1=0

...

∞∑
hk=0

∆h1

(
d1, β,Q1

)
· ... ·∆hk

(
dk, β,Qk

)
W∑k

i=1 hi+k
(y, β) .

Moreover, if

U∑k
i=1 Xi,Xk+1

(y, d1, . . . , dk+1) :=

∫ ∞
y

∫ s

0

u
∂

∂u
HXk+1

(u, dk+1)

[
∂

∂v
H∑k

i=1 Xi
(v, d1, ..., dk)

]
v=s−u

duds,

then

U∑k
i=1 Xi,Xk+1

(y, d1, . . . , dk+1) =
1

β

∞∑
h1=0

...

∞∑
hk+1=0

(hk+1 + 1) ∆h1(d1, β,Q1
) · ... ·∆hk+1

(dk+1, β,Qk+1
)

×W∑k+1
i=1 hi+k+2(y, β).

6.2.3 TVaR capital allocation

As mentioned in the introduction, it is of great interest for insurance and reinsurance

companies to quantify the total capital required for the safety of the company, and

also to determine the part of this capital to be allocated to each risk/portfolio in

order to cover its loss. Among the capital allocation techniques discussed in the

literature, we shall consider the TVaR rule. In order to present the allocation

formulas, we recall the de�nitions of the VaR and TVaR risk measures for a risk X

and tolerance level p ∈ (0, 1), i.e.,

V aRp (X) = min {x |FX (x) ≥ p} , TV aRp (X) = E (X |X > V aRp (X)) .

Let Xi denote the ith risk r.v. of an insurance portfolio and let S =
∑n

i=1Xi repre-

sent the aggregate risk of the portfolio. Then, if the total risk capital is evaluated

as TV aRp (S), the TVaR capital allocation rule naturally allocates to the ith risk

Ci(p) = TV aRp (Xi, S) := E (Xi |S > V aRp (S)) ,

which can be rewritten as

Ci(p) =
1

1− p
E
(
Xi1{S>V aRp(S)}

)
, (6.2.13)

where 1A denotes the indicator function of the setA. Clearly, TV aRp(S) =
∑n

i=1 Ci(p).
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6.3 Main results

6.3.1 Joint distribution of aggregate Sarmanov risks

We consider n insurance portfolios where each portfolio consists of k1, . . . , kn risks,

respectively. We denote by Si =
∑ki

j=1 X
(i)
j the aggregate risk of portfolio i, where

X
(i)
j is the jth individual risk from the ith portfolio having pdf f (i)

j , j = 1, . . . , ki, i ∈
In. We assume that the joint distribution ofX :=

(
X

(1)
1 , . . . , X

(1)
k1

; . . . ;X
(n)
1 , . . . , X

(n)
kn

)
is governed by Sarmanov's distribution with the pdf as de�ned in (6.2.4) and ful�ll-

ing (6.2.2) and (6.2.5) for the kernel functions φ, i.e., in this case,

h(x) =
n∏
i=1

ki∏
j=1

f
(i)
j

(
x

(i)
j

)[
1 +

∑
1≤a<b≤n

ka∑
s=1

kb∑
t=1

α
(a,b)
s,t φ(a)

s

(
x(a)
s

)
φ

(b)
t

(
x

(b)
t

)
+

n∑
a=1

∑
1≤s<t≤ka

α
(a)
s,t φ

(a)
s

(
x(a)
s

)
φ

(a)
t

(
x

(a)
t

)]
, (6.3.1)

where x =
(
x

(1)
1 , . . . , x

(1)
k1
, . . . , x

(n)
1 , . . . , x

(n)
kn

)
.

Next, we present the joint density of S = (S1, . . . , Sn) under these assumptions.

Theorem 6.3.1. The joint pdf of S can be expressed as follows

fS(s1, . . . , sn) =
n∏
i=1

fSi(si) +
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t

n∏
i=1

f̃
S

(a,b)
i;s,t

(si),

where T (s, a, b) = max
{

1, (s+ 1)1(a=b)

}
, α

(a,a)
s,t = α

(a)
s,t ,

fSi = f
(i)
1 ∗ . . . ∗ f

(i)
ki
, f̃
S

(a,b)
i;s,t

= f̃
(i;a,b)
1;s,t ∗ . . . ∗ f̃

(i;a,b)
ki;s,t

, i ∈ In, (6.3.2)

and, for i ∈ In, j = 1, . . . , ki,

f̃
(i;a,b)
j;s,t (x) =

{ (
φ

(i)
j f

(i)
j

)
(x) if (i, j) ∈ {(a, s) , (b, t)}

f
(i)
j (x) otherwise

.

Remarks 6.3.2. It should be noted that Ratovomirija [100] provided a general ex-

pression for the joint density of S in the particular case when k1 = . . . = kn = k.

Next, we derive a special case of Theorem 6.3.1 where we assume that all the

marginals are mixed Erlang distributed, i.e., X(i)
j ∼ ME(β

(i)
j , Q

(i)

j
) with Q(i)

j
=

(q
(i)
j,1, q

(i)
j,2, . . .), j = 1, . . . , ki, i ∈ In. Moreover, individual risks within and across

the portfolios are considered to be joined by Sarmanov's distribution with the joint
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pdf speci�ed in (6.3.1) and kernel functions φ(i)
j (x) = f

(i)
j (x)− E

(
f

(i)
j

(
X

(i)
j

))
. We

denote

X =
(
X

(1)
1 , . . . , X

(1)
k1

; . . . ;X
(n)
1 , . . . , X

(n)
kn

)
∼ SMEζ(β,Q,α),

where ζ =
∑n

i=1 ki,β =
(
β

(1)
1 , . . . , β

(1)
k1

; . . . ; β
(n)
1 , . . . , β

(n)
kn

)
,

Q =
(
Q(1)

1
, . . . , Q(1)

k1
; . . . ;Q(n)

1
, . . . , Q(n)

kn

)
and α consists of all the α−coe�cients of

the Sarmanov pdf (6.3.1). In the following, for simplicity, we also denote γ(i)
j =

E
(
f

(i)
j

(
X

(i)
j

))
assuming it exists.

Proposition 6.3.3. If X ∼ SMEζ(β,Q,α) with β
(n)
kn
≥ β

(i)
j , for j = 1, . . . , ki, i ∈

In, then the df of S is given by

FS (s) = ξn

n∏
j=1

F
S

(1)
j

(sj)−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

( n∏
j=1

F
S

(2;a)
j;s

(sj)

+
n∏
j=1

F
S

(2;b)
j;t

(sj)−
n∏
j=1

F
S

(3;a,b)
j;s,t

(sj)
)
,

where

ξn = 1 +
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t , (6.3.3)

S
(1)
j ∼ME

(
2β

(n)
kn
,Π
(

Ψ(Q(j)

1
), . . . ,Ψ(Q(j)

kj
)
))
, (6.3.4)

S
(3;a,b)
j;s,t ∼ME

(
2β

(n)
kn
,Π
(

Ψ
(
M

(a,b)
s,t (Q(j)

1
)
)
, . . . ,Ψ

(
M

(a,b)
s,t (Q(j)

kj
)
)))

, (6.3.5)

S
(2;a)
j;s = S

(3;a,a)
j;s,s , (6.3.6)

and

M
(a,b)
s,t

(
Q(j)

l

)
=

{
V
(
Q(j)

l

)
if (j, l) ∈ {(a, s), (b, t)}

Q(j)

l
otherwise

.

The components of V are de�ned in Lemma 6.2.2, the elements of Ψ in Lemma
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6.2.4 and the ones of Π are given in Remark 6.2.6.

6.3.2 Stop-loss mixed Erlang reinsurance risks with Sarmanov

dependence

In this section, we study the e�ect of mixed Erlang distributed risks on reinsurance.

In order to mitigate their risks, insurers enter into reinsurance agreements. There

are several types of reinsurance contracts. However, we shall only consider the stop-

loss reinsurance. In a stop-loss reinsurance contract, the reinsurer pays the part

of the loss that is greater than a certain positive amount d (the deductible). In

the following, we shall provide the distribution of the aggregated loss of several

reinsurance portfolios in the stop-loss framework, and determine the amount of

capital to be allocated to each reinsurance portfolio under the TVaR allocation

principle.

In this respect, we consider n insurance portfolios as de�ned in the last section with

aggregated losses (S1, . . . , Sn) subject to the deductibles d = (d1, . . . , dn) on the

reinsured amounts (T1, . . . , Tn), where the Ti's, i ∈ In, are de�ned as follows

Ti = (Si − di)+ =

0 if Si ≤ di

Si − di if Si > di
.

Hereafter, we shall denote by Rn =
∑n

i=1 Ti the aggregated reinsurance stop-loss

risk.

Proposition 6.3.4. Let (X
(1)
1 , . . . , X

(1)
k1

; . . . ;X
(n)
1 , . . . , X

(n)
kn

) ∼ SMEζ(β,Q,α) with

γ
(i)
j <∞ and β

(n)
kn
≥ β

(i)
j , j = 1, . . . , ki, and let di > 0 for i ∈ In. Then the df of Rn

is given by

FRn (y) = FS (d) +
n∑
k=1

∑
1≤j1<...<jk≤n

ξnHS
(1)
j1

+...+S
(1)
jk

(y, dj1 , ..., djk)
∏

i∈In\{j1,...,jk}

F
S

(1)
i

(di)

−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

H
S

(2;a)
j1;s +...+S

(2;a)
jk;s

(y, dj1 , ..., djk)
∏

i∈In\{j1,...,jk}

F
S

(2;a)
i;s

(di)

+H
S

(2;b)
j1;t +...+S

(2;b)
jk;t

(y, dj1 , ..., djk)
∏

i∈In\{j1,...,jk}

F
S

(2;b)
i;t

(di)

−H
S

(3;a,b)
j1;s,t +...+S

(3;a,b)
jk;s,t

(y, dj1 , ..., djk)
∏

i∈In\{j1,...,jk}

F
S

(3;a,b)
i;s,t

(di)

 , y ≥ 0, (6.3.7)

with

H de�ned in Lemmas 6.2.7- 6.2.8.
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Next, we shall consider capital allocation under the TVaR principle for the reinsur-

ance risks corresponding to the n portfolios de�ned above. Let Ci(p) be the amount

of capital to be allocated to portfolio i, i ∈ In, as de�ned in (6.2.13). The following

result holds.

Proposition 6.3.5. Let (X
(1)
1 , . . . , X

(1)
k1

; . . . ;X
(n)
1 , . . . , X

(n)
kn

) ∼ SMEζ(β,Q,α) such

that γ
(i)
j < ∞ and β

(n)
kn
≥ β

(i)
j , for i ∈ In, j = 1, . . . , ki. Let di > 0, i ∈ In and set

xp := V aRp(Rn). Then the capital allocated to portfolio l under the TVaR rule is

Cl(p) =
1

1− p

n−1∑
k=0

∑
1≤j1<...<jk≤n
l/∈{j1,...,jk}

ξnU∑k
i=1 S

(1)
ji
,S

(1)
l

(xp, dj1 , .., djk , dl)
∏

i∈In\{j1,...,jk,l}

F
S

(1)
i

(di)

−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

U∑k
i=1 S

(2;a)
ji;s

,S
(2;a)
l;s

(xp, dj1 , .., djk , dl)
∏

i∈In\{j1,...,jk,l}

F
S

(2;a)
i;s

(di)

+U∑k
i=1 S

(2;b)
ji;t

,S
(2;b)
l;t

(xp, dj1 , .., djk , dl)
∏

i∈In\{j1,...,jk,l}

F
S

(2;b)
i;t

(di)

−U∑k
i=1 S

(3;a,b)
ji;s,t

,S
(3;a,b)
l;s,t

(xp, dj1 , .., djk , dl)
∏

i∈In\{j1,...,jk,l}

F
S

(3;a,b)
i;s,t

(di)

 ,
where, by convention, when k = 0, we consider only one term in the sum

∑
1≤j1<...<jk≤n
l/∈{j1,...,jk}

in which each component of the type U∑k
i=1 Sji ,Sl

is replaced with USl.

Example 6.3.1. Let S1 and S2 be the aggregate risks of two insurance portfolios

consisting of k1 = 2 and k2 = 3 mixed Erlang distributed risks, respectively, with

β
(2)
3 > β

(i)
j , j = 1, . . . , ki and i = 1, 2. Hence, S1 = X

(1)
1 +X

(1)
2 and S2 = X

(2)
1 +X

(2)
2 +

X
(2)
3 . Following Propositions 6.3.3-6.3.4, the distribution of the aggregate stop-loss

reinsurance risk R2 = T1 + T2, where Ti = (Si − di)+, i = 1, 2, is given by

FR2(y) = ξ2

(
F
S

(1)
1

(d1)F
S

(1)
2

(d2) +H
S

(1)
1

(y, d1)F
S

(1)
2

(d2) +H
S

(1)
2

(y, d2)F
S

(1)
1

(d1) +H
S

(1)
1 +S

(1)
2

(y, d1, d2)
)

−
∑

1≤a≤b≤2

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

 ∑
(i,j)∈{(a,s),(b,t)}

(
F
S

(2;i)
1;j

(d1)F
S

(2;i)
2;j

(d2) +H
S

(2;i)
1;j

(y, d1)F
S

(2;i)
2;j

(d2)

+H
S

(2;i)
2;j

(y, d2)F
S

(2;i)
1;j

(d1) +H
S

(2;i)
1;j +S

(2;i)
2;j

(y, d1, d2)
)
− F

S
(3;a;b)
1;s;t

(d1)F
S

(3;a;b)
2;s;t

(d2)

−H
S

(3;a,b)
1;s,t

(y, d1)F
S

(3;a,b)
2;s,t

(d2)−H
S

(3;a,b)
2;s,t

(y, d2)F
S

(3;a,b)
1;s,t

(d1)−H
S

(3;a,b)
1;s,t +S

(3;a,b)
2;s,t

(y, d1, d2)
]
.

Furthermore, if TV aRp(R2) is the total risk capital needed to cover R2, in light of

Proposition 6.3.5, the contribution of Ti to this capital is expressed as follows

Ci(p) =
1

1− p

ξ2

(
U
S

(1)
i

(xp, di)FS(1)
j

(dj) + U
S

(1)
j ,S

(1)
i

(xp, dj, di)
)
−

∑
1≤a≤b≤2

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t
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×

 ∑
(k,l)∈{(a,s),(b,t)}

(
U
S

(2,k)
i;l

(xp, di)FS(2;k)
j;l

(dj) + U
S

(2;k)
j;l ,S

(2,k)
i;l

(xp, dj, di)
)

−U
S

(3;a,b)
i;s,t

(xp, di)FS(3;a,b)
j;s,t

(dj)− US(3;a,b)
j;s,t ,S

(3;a,b)
i;s,t

(xp, dj, di)
]}

, i 6= j ∈ {1, 2},

where ξ2 is de�ned in (6.3.3) for n = 2, while H and U are given in Lemmas 6.2.7-

6.2.8.

Numerical illustration. To numerically illustrate the just mentioned formulas,

in Table 6.3.1 we present the parameters of the individual risks X
(i)
j of the two

portfolios, where j = 1, . . . , ki and i = 1, 2, together with some related statistical

measures (for simplicity, only two decimal places were retained).

X
(i)
j β

(i)
j Q(i)

j
Mean Variance Skewness Kurtosis

Portfolio I X
(1)
1 0.12 (0.4,0.6) 13.33 127.78 1.55 6.50

X
(1)
2 0.14 (0.3,0.7) 12.14 97.45 1.49 6.28

Portfolio II X
(2)
1 0.15 (0.5,0.5) 10.00 77.78 1.62 6.80

X
(2)
2 0.16 (0.8,0.2) 7.50 53.13 1.88 8.16

X
(2)
3 0.18 (0.55,0.45) 8.06 52.39 1.66 6.97

Table 6.3.1: Statistical measures for the individual risks X(i)
j , j = 1, . . . , ki, i = 1, 2

(Example 6.3.1).

Moreover, we assume that the Sarmanov parameters αi,j are as follows

α
(1)
1,2= 16, α

(1,2)
1,1 = 8, α

(1,2)
1,2 =5, α

(1,2)
1,3 = 2, α

(1,2)
2,1 =8 ,

α
(1,2)
2,2 = 5 , α

(1,2)
2,3 = 2, α

(2)
1,2= 15, α

(2)
1,3= 17 , α

(2)
2,3= 16.

Under the stop-loss reinsurance framework, we considered the values d1 = 50 and

d2 = 45 for the deductibles of Portfolios I and II, respectively. Table 6.3.2 describes

the allocated capitals Ci(p), i = 1, 2, required to cover the losses of both portfolios

after application of the deductibles, as well as the capital needed to cover the loss R2

of the whole reinsured portfolio. We considered several values for the tolerance level

p.
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p(%) V aRp(R2) C1 = TV aRp(T1, R2) C2 = TV aRp(T2, R2) TV aRp(R2)

90.00 5.03 7.33 8.37 15.70

92.50 8.24 8.85 9.90 18.75

95.00 12.65 11.07 11.90 22.97

97.50 19.96 15.08 14.96 30.04

99.00 29.31 20.82 18.34 39.16

99.90 51.88 37.35 24.05 61.40

Table 6.3.2: Capital allocated to Portfolios I and II (Example 6.3.1).

Table 6.3.2 shows that for a tolerance level p ≥ 97.5%, Portfolio I is riskier than

Portfolio II as more capital is needed to cover the losses (this can be explained by the

fact that both risks in Portfolio I have higher expected values and variances than the

risks in Portfolio II); however, for p ≤ 95%, more capital is allocated to Portfolio

II.

6.3.3 Particular case: mixed Erlang risks with Sarmanov de-

pendency

We shall now consider the same setting as before, but in the particular case with only

one insurance portfolio, no reinsurance and no deductible. For simplicity, we denote

byX = (X1, . . . , Xk) the k individual risks with joint distribution governed by the k-

variate Sarmanov distribution with kernel functions φj(xj) = fj(xj)−γj, where γj =

E(fj(Xj)), Xj ∼ ME(βj, Qj
), j ∈ Ik, and we denote by S =

∑k
j=1Xj the aggregate

risk of the portfolio. Hence, X ∼ SMEk(β,Q,α), where β = (β1, . . . , βk), Q =

(Q
1
, . . . , Q

k
) and α = (αi,j)1≤i<j≤k. Next, we are going to present the distribution

of the aggregate risk S that can easily be derived from Proposition 6.3.3.

Proposition 6.3.6. Let X ∼ SMEk(β,Q,α), where βj ≤ βk for j = 1, . . . , k − 1.

Then the distribution of the aggregate risk S is given by

FS(u) = ξkFS(1) (u)−
∑

1≤s<t≤k

αs,tγsγt

(
F
S

(2)
s

(u) + F
S

(2)
t

(u)− F
S

(3)
s,t

(u)
)
,

where ξk = 1 +
∑

1≤s<t≤k αs,tγsγt, while

S(1) ∼ME
(

2βk,Π
(

Ψ(Q
1
), . . . ,Ψ(Q

k
)
))
,
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S
(3)
s,t ∼ME

(
2βk,Π

(
Ψ
(
Ms,t(Q1

)
)
, . . . ,Ψ

(
Ms,t(Qk

)
)))

, S(2)
s = S(3)

s,s ,

and

Ms,t

(
Q
l

)
=

{
V (Q

l
) if l ∈ {s, t}

Q
l

otherwise
.

Corollary 6.3.7. Under the assumptions of Proposition 6.3.6 it follows that S ∼
ME(2βk, P ), where the components of the vector of mixing weights P = (p1, p2, . . .)

are de�ned by

pi = ξkπi

(
Ψ(Q

1
), . . . ,Ψ(Q

k
)
)
−

∑
1≤s<t≤k

αs,tγsγt

[
πi

(
Ψ
(
Ms(Q1

)
)
, . . . ,Ψ

(
Ms(Qk

)
))

+πi

(
Ψ
(
Mt(Q1

)
)
, . . . ,Ψ

(
Mt(Qk

)
))
− πi

(
Ψ
(
Ms,t(Q1

)
)
, . . . ,Ψ

(
Ms,t(Qk

)
))]

,

where Ms = Ms,s and πi are the components of Π de�ned in Remark 6.2.6.

Example 6.3.2. Bivariate mixed Erlang risks joined by Sarmanov's distribution.

Let (X1, X2) ∼ SME2

(
β = (β1, β2), (Q

1
, Q

2
), α1,2

)
with β1 < β2. It follows that

S = X1 +X2 ∼ME(2β2, P ), where the components of the vector P are given below

pi = (1 + α1,2γ1γ2)πi

(
Ψ(Q

1
),Ψ(Q

2
)
)
− α1,2γ1γ2

[
πi

(
Ψ(V (Q

1
)),Ψ(Q

2
)
)

+πi

(
Ψ(Q

1
),Ψ(V (Q

2
))
)
− πi

(
Ψ(V (Q

1
)),Ψ(V (Q

2
))
)]
,

such that
∑∞

i=1 pi = 1.

Numerical illustration. As a numerical illustration, we considered a bivariate

vector (X1, X2) such that

(X1, X2) ∼ SME2

(
β = (0.9, 0.95), Q

1
= (0.4, 0.6), Q

2
= (0.8, 0.2), α1,2 = 2.5

)
.

Thus, the densities of X1 and X2 can be, respectively, written as follows:

f1(x) = 0.4w1(x, 0.9) + 0.6w2(x, 0.9), f2(x) = 0.8w1(x, 0.95) + 0.2w2(x, 0.95).

Moreover, from formula (6.5.2) we have

E (fi(Xi)) = βi

2∑
l=1

2∑
j=1

(
l + j − 2

l − 1

)
qi,lqi,j
2l+j−1

, i = 1, 2,

yielding γ1 = 0.261, γ2 = 0.3895. In the following, we restrict to only two decimal
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places. Then the joint pdf of (X1, X2) is given by

h(x1, x2) = f1(x1)f2(x2) (1.25 + 2.5f1(x1)f2(x2)− 0.97f1(x1)− 0.65f2(x2)) .

Table 6.3.3 summarizes some quantitative measures related to the marginals X1 and

X2.

Expected value Variance Skewness Kurtosis

X1 1.78 2.27 1.55 6.50

X2 1.26 1.51 1.88 8.16

Table 6.3.3: Quantitative measures for X1 and X2 (Example 6.3.2).

As stated above, the distribution of the aggregate risk S is again mixed Erlang with

scale parameter 2β2 = 1.9 and the mixing probabilities given in Table 6.3.4.

i pi i pi i pi i pi

1 0.0000 11 0.0262 21 0.0002 31 8.635E-07

2 0.0827 12 0.0173 22 0.0001 32 4.873E-07

3 0.1547 13 0.0112 23 7.443E-05 33 2.743E-07

4 0.1709 14 0.0071 24 4.326E-05 34 1.540E-07

5 0.1390 15 0.0045 25 2.502E-05 35 8.625E-08

6 0.1162 16 0.0028 26 1.441E-05 36 4.821E-08

7 0.0956 17 0.0017 27 8.263E-06 37 2.689E-08

8 0.0744 18 0.0010 28 4.722E-06 38 1.497E-08

9 0.0547 19 0.0006 29 2.689E-06 39 8.319E-09

10 0.0385 20 0.0004 30 1.526E-06 40 4.615E-09

Table 6.3.4: Mixing probabilities of S (Example 6.3.2).

We are now interested in quantifying the amount of capital Cj(p) to be allocated to

each risk Xj, j ∈ Ik.

Proposition 6.3.8. Let X ∼ SMEk(β,Q,α) with βj ≤ βk, j ∈ Ik, and let sp =

V aRp(S). Then the amount of capital Cj allocated to each risk Xj under the TVaR
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allocation principle as de�ned in (6.2.13) can be expressed as

Cj(p) =
1

1− p

∞∑
i=1

zi,jW i(sp, 2βk), (6.3.8)

where the mixing coe�cients zi,j are given by (here the transform Ψ is needed to

obtain the common scale parameter 2βk)

zi,j = ξkµjπi

(
Ψ
(
M̃j(Q1

)
)
, . . . ,Ψ

(
M̃j(Qk

)
))
−

∑
1≤a<b≤k

αa,bγaγb

[
ϕj;bπi

(
Ψ
(
M̃j;b(Q1

)
)
, . . . ,Ψ

(
M̃j;b(Qk

)
))

+ϕj;aπi

(
Ψ
(
M̃j;a(Q1

)
)
, . . . ,Ψ

(
M̃j;a(Qk

)
))
− ϕj;a,bπi

(
Ψ
(
M̃j;a,b(Q1

)
)
, . . . ,Ψ

(
M̃j;a,b(Qk

)
))]

, (6.3.9)

with ξk = 1 +
∑

1≤a<b≤k αa,bγaγb, µi = E(Xi) = 1
βi

∑∞
k=1 kqi,k, µ̃i = 1

2βi

∑∞
k=1 kvi,k

as de�ned in formula (6.2.10),

ϕj;a,b =

{
µj if j /∈ {a, b}
µ̃j if j ∈ {a, b}

, ϕj;a = ϕj;a,a, (6.3.10)

and

M̃j(Qi
) =

Qi
if i 6= j

G(Q
i
) if i = j

, M̃j;a,b(Qi
) =



Q
i

if i /∈ {j, a, b}

V (Q
i
) if i = a and i /∈ {j, b} or

if i = b and i /∈ {j, a}

G(Q
i
) if i = j and i /∈ {a, b}

G(V (Q
i
)) if i = j = a and i 6= b or

if i = j = b and i 6= a

,

M̃j;a = M̃j;a,a. (6.3.11)

Example 6.3.3. Capital allocation for bivariate mixed Erlang risks joined by Sar-

manov's distribution.

In the bivariate case, with the above notation, S2 = X1 +X2 is the aggregate risk of

the portfolio and we consider TV aRp(S2) to be the total capital needed to cover it,

whereas Ci is the part of this capital allocated to cover Xi, i = 1, 2. For a numerical

illustration, we consider the bivariate vector used in Example 6.3.2, but this time we

vary the value of α1,2. Table 6.3.5 summarizes the results under the TVaR capital

allocation principle assuming a tolerance level p = 99% (the second column shows

the variance of S2 denoted σ2
S2
).
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α12 σ2
S2

C1(99%) C2(99%) TV aR99%(S2)

3.4 4.0509 6.3920 4.3958 10.7878

2.5 3.9788 6.3703 4.3556 10.7259

1.5 3.8987 6.3458 4.3086 10.6544

0.5 3.8186 6.3209 4.2589 10.5798

0 3.7785 6.3083 4.2330 10.5413

-0.5 3.7385 6.2956 4.2063 10.5019

-1.5 3.6584 6.2698 4.1505 10.4203

-2.1 3.6103 6.2542 4.1154 10.3696

Table 6.3.5: TV aR99%(S2) and capital allocated to each risk Xi, i = 1, 2 (Example
6.3.3).

It can be seen from Table 6.3.5 that the total capital needed to cover S2 is dependent

on α1,2 . Actually, a larger α1,2 implies a riskier portfolio (see the corresponding

variance, σ2
S2
) and thus, more capital is needed to cover each risk. Also, it can be

seen that X1 accounts for a larger capital than X2 as it is riskier (having larger

variance and expected value, see Table 6.3.3).

6.4 Appendix: Dependence structure

In this section, we discuss the dependence structure of two mixed Erlang distributed

r.v.s (X1, X2) joined by the Sarmanov distribution with di�erent kernel functions (in

the insurance context, X1, X2 are dependent insurance risks). As before, the kernel

functions are written in the form φ(x) = g(x) − E(g(X)), with g properly chosen.

To model the dependence between the two r.v.s X1 and X2, we shall use Pearson's

correlation coe�cient denoted by ρ1,2, which in the case of Sarmanov's distribution

can be rewritten as

ρ1,2(X1, X2) =
α1,2E(X1φ1(X1))E(X2φ2(X2))

σ1σ2

, (6.4.1)

where σi =
√
V ar(Xi) > 0, i = 1, 2. Based on (6.4.1), we hereafter present this cor-

relation coe�cient for di�erent kernel functions along with its maximal and minimal

values, in the particular case of mixed Erlang marginals.

Case 1: Let g(x) = f(x) (i.e., the marginal pdf), which leads to the kernel function

φ(x) = f(x) − E(f(X)). Under the assumption Xi ∼ ME(βi, Qi
), i = 1, 2, using
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Lemmas 6.2.2 and 6.2.3, we obtain

E(Xifi(Xi)) =

∫ ∞
0

xf(x, βi, Qi
)2dx = γi

∫ ∞
0

x
f(x, βi, Qi

)2

γi
dx = γi

∫ ∞
0

xf(x, 2βi, V (Q
i
))dx = γiµ̃i,

hence E(Xiφi(Xi)) = γiµ̃i − γiµi and Pearson's coe�cient is now given by

ρ1,2(X1, X2) =
α1,2γ1γ2(µ̃1 − µ1)(µ̃2 − µ2)

σ1σ2

. (6.4.2)

Thus, from (6.2.3), the maximal and the minimal values of Pearson's correlation are

respectively given by

ρmax1,2 (X1, X2) =
γ1γ2(µ̃1 − µ1)(µ̃2 − µ2)

max{γ1(M2 − γ2), (M1 − γ1)γ2}σ1σ2

, (6.4.3)

ρmin1,2 (X1, X2) =
−γ1γ2(µ̃1 − µ1)(µ̃2 − µ2)

max{γ1γ2, (M1 − γ1)(M2 − γ2)}σ1σ2

, (6.4.4)

where we recall Mi = max
x∈R

fi(x), i = 1, 2.

Case 2: We consider g(x) = e−tx for t = 1, hence the corresponding kernel function

is given by φ(x) = e−x − E
(
e−X

)
. Pearson's correlation coe�cient along with its

lower and upper bounds can be found in Hashorva and Ratovomirija [59], where the

particular case of mixed Erlang marginals is emphasized.

Case 3: Let g(x) = xt, in which case the kernel function is given by φ(x) =

xt−E(X t). A usual choice here is t = 1, which leads to the kernel φ(x) = x−E(X)

and to the correlation ρ1,2(X1, X2) = α1,2σ1σ2. In this case, to ful�ll the condition

1+α1,2φ1(x1)φ2(x2) ≥ 0, upper truncated distributions can be considered forX1, X2,

which is not the object of our study. However, if we denote by Ti, i = 1, 2, the

corresponding upper truncation points and consider that the marginal pdf's are

de�ned only for non-negative values, then the maximal and the minimal values of

the correlation coe�cient are, respectively, given by

ρmax1,2 (X1, X2) =
σ1σ2

max{µ1(T2 − µ2), (T1 − µ1)µ2}
,

ρmin1,2 (X1, X2) =
−σ1σ2

max{µ1µ2, (T1 − µ1)(T2 − µ2)}
.

Case 4: We consider the FGM distribution already studied in Cossette et al. [23],
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obtained for g(x) = 2F (x), with the corresponding kernel function φ(x) = 1 −
2F (x). Its Pearson's correlation coe�cient is given by ρ1,2 = 1

3
α1,2. The minimal and

maximal values of ρ1,2 are −1
3
and 1

3
, respectively, which is an important drawback of

the FGM distribution. Moreover, in the particular case of mixed Erlang marginals

joined by the FGM distribution, the Pearson correlation coe�cient can be found in

Cossette et al. [23].

Example 6.4.1. Comparison of the dependency between two mixed Erlang r.v.s

joined by the Sarmanov distribution.

a) We consider the bivariate random vector

(X1, X2) ∼ SME2

(
β = (2, 2.5), Q

1
= (0.45, 0.55), Q

2
= (0.5, 0.5), α1,2

)
.

In this application, we would like to compare the dependency between X1 and X2

based on the four di�erent kernel functions described above. Therefore, we com-

pute the upper and lower bounds of the Pearson correlation coe�cients for each

kernel, together with the corresponding parameter α, as summarized in the table be-

low. As discussed above, in Case 3 we considered upper truncated distributions with

T1 = T2 = 15 such that the tail functions of X1, X2 in this truncation point are

very small, hence making this case comparable with the other not-truncated ones. It

can be seen that the largest range of dependence corresponds to the kernel consid-

ered in Case 1 (and studied in this paper) and the smallest to the truncated Case 3.

Kernel αmax ρmax αmin ρmin

Case 1 f(x)− E(f(X)) 3.2100 0.3023 -2.1289 -0.2005

Case 2 e−x − E(e−X) 3.5854 0.1921 -3.000 -0.1607

Case 3 x− E(X) 0.0896 0.0318 -0.0049 -0.0017

Case 4 1− 2F (x) 1.0000 0.2711 -1.0000 -0.2711

Table 6.4.1: Upper and lower bounds of Pearson's correlation coe�cient for di�erent
kernel functions (Example 6.4.1.a).

b) In the sequel, we assumed a common scale parameter β for both marginals and

we plotted the upper and lower bounds of the correlation coe�cient as a function of

β for the four kernel functions.

The �gure below shows that in Case 1, the dependency increases with β, in contrast
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with Case 3 (considered with T1 = T2 = 15), where the dependency decreases with β

quite rapidly from the maximum correlation coe�cient to approximately 0. Case 2

and Case 4 show an almost constant dependency structure with respect to β.

Figure 6.4.1: Peason's correlation coe�cient for the same β and di�erent kernel
functions (Example 6.4.1.b).

6.5 Proofs

Proof of Lemma 6.2.2 We have

f(x, β,Q)2 =

(
∞∑
i=1

qiwi(x, β)

)(
∞∑
j=1

qjwj(x, β)

)

=
∞∑
i=1

∞∑
j=1

qiqj
βi+jxi+j−2e−2βx

(i− 1)!(j − 1)!

=
∞∑
i=1

∞∑
k=i

qiqk+1−i
βk+1xk−1e−2βx

(i− 1)!(k − i)!
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= β
∞∑
k=1

k∑
i=1

(
k − 1

i− 1

)
qiqk+1−i

2k
wk(x, 2β). (6.5.1)

Also,

E
(
f(X, β,Q)

)
=

∫ ∞
0

f(x, β,Q)f(x, β,Q)dx

=
∞∑
i=1

∞∑
j=1

qiqj
βi+j

(i− 1)!(j − 1)!

∫ ∞
0

xi+j−2e−2βxdx

=
∞∑
i=1

∞∑
j=1

qiqj
βi+j

(i− 1)!(j − 1)!

(i+ j − 2)!

(2β)i+j−1

= β

∞∑
i=1

∞∑
j=1

(
i+ j − 2

i− 1

)
qiqj

2i+j−1
. (6.5.2)

Therefore, dividing (6.5.1) by (6.5.2), we obtain

c(x, β,Q) =

β
∑∞

k=1

∑k
i=1

(
k − 1

i− 1

)
qiqk+1−i

2k
wk(x, 2β)

β
∑∞

i=1

∑∞
j=1

(
i+ j − 2

i− 1

)
qiqj

2i+j−1

=
∞∑
k=1

vkwk(x, 2β),

where the coe�cients vk are de�ned in (6.2.9). 2

Proof of Lemma 6.2.8 We prove the result by induction. When n = 1, from Lemma

6.2.7 we have FR1 (y) = FY1 (y) = FX1 (d1) + HX1 (y, d1) , i.e., formula (6.2.12) for

n = 1. Assuming now that the formula (6.2.12) holds for n− 1, for n we obtain

FRn (y) = P (Rn ≤ y) = P (Rn = 0) + P (0 < Rn−1 + Yn ≤ y) . (6.5.3)

But

P (Rn = 0) = P (Yi = 0, i ∈ In) = P (Xi ≤ di, i ∈ In) =
n∏
i=1

FXi (di) ,

while, using the induction hypothesis,

P (0 < Rn−1 + Yn ≤ y) = P (Yn = 0, 0 < Rn−1 ≤ y) + P (Rn−1 = 0, 0 < Yn ≤ y)

+P (0 < Rn−1, 0 < Yn, 0 < Rn−1 + Yn ≤ y)

= FXn (dn)
n−1∑
k=1

∑
1≤j1<...<jk≤n−1

HXj1+...+Xjk
(y, dj1 , ..., djk)
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×
∏

i∈In−1\{j1,...,jk}

FXi (di) +

(
n−1∏
i=1

FXi (di)

)
HXn (y, dn) + IRn ,

where, with fYn denoting the pdf of the r.v. Yn,

IRn = P (0 < Rn−1, 0 < Yn, 0 < Rn−1 + Yn ≤ y)

=

∫ y

0

n−1∑
k=1

∑
1≤j1<...<jk≤n−1

HXj1+...+Xjk
(y − u, dj1 , ..., djk)

∏
i∈In−1\{j1,...,jk}

FXi (di)

 fYn (u) du

=
n−1∑
k=1

∑
1≤j1<...<jk≤n−1

 ∏
i∈In−1\{j1,...,jk}

FXi (di)

∫ y

0

HXj1+...+Xjk
(y − u, dj1 , ..., djk)H ′Xn (u, dn) du

=
n−1∑
k=1

∑
1≤j1<...<jk≤n−1

 ∏
i∈In−1\{j1,...,jk}

FXi (di)

 ∞∑
hj1=0

...

∞∑
hjk=0

∆hj1

(
dj1 , β,Qj1

)
· ... ·∆hjk

(
djk , β,Qjk

)
×

∫ y

0

W∑k
i=1 hji+k

(y − u, β)
∞∑

hn=0

∆hn

(
dn, β,Qn

)
whn+1(u, β)du

=
n−1∑
k=1

∑
1≤j1<...<jk≤n−1

 ∏
i∈In−1\{j1,...,jk}

FXi (di)

HXj1+...+Xjk+Xn (y, dj1 , ..., djk , dn) . (6.5.4)

For the last equality, apart the de�nition of H, we also used the fact that the

convolution of two Erlang distributions having the same scale parameter is again

an Erlang distribution with the same scale parameter, while its shape parameter

equals the sum of the shape parameters of the convoluted distributions. Inserting

now (6.5.4) into (6.5.4) and the result into (6.5.3) yields (6.2.12). To obtain the

formula of U, we use

U∑k
i=1 Xi,Xk+1

(y, d1, . . . , dk+1) =
∞∑

h1=0

...
∞∑

hk+1=0

∆h1

(
d1, β,Q1

)
· ... ·∆hk+1

(
dk+1, β,Qk+1

)
J,

where

J =

∫ ∞
y

∫ s

0

uwhk+1+1(u, β)w∑k
i=1 hi+k

(s− u, β) duds

=
hk+1 + 1

β

∫ ∞
y

∫ s

0

whk+1+2(u, β)w∑k
i=1 hi+k

(s− u, β) duds

=
hk+1 + 1

β

∫ ∞
y

w∑k+1
i=1 hi+k+2 (s, β) ds,

which inserted into the above formula of U immediately yields the result. 2

Proof of Theorem 6.3.1 The joint density of S = (S1, . . . , Sn) is determined in
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terms of the joint density h of
(
X

(1)
1 , . . . , X

(1)
k1

; . . . ;X
(n)
1 , . . . , X

(n)
kn

)
as follows

fS(s1, . . . , sn) =

∫
· · ·
∫

{
x=(x

(1)
1 ,...,x

(1)
k1
,...,x

(n)
1 ,...,x

(n)
kn

)
∣∣∣∑ki

j=1 x
(i)
j =si,i∈In

}h(x)dx. (6.5.5)

Based on (6.3.1),

h(x) =
n∏
i=1

ki∏
j=1

f
(i)
j

(
x

(i)
j

)
+

∑
1≤a<b≤n

ka∑
s=1

kb∑
t=1

α
(a,b)
s,t

(
φ(a)
s f (a)

s

) (
x(a)
s

) (
φ

(b)
t f

(b)
t

)(
x

(b)
t

) n∏
i=1

ki∏
j=1

(i,j)/∈{(a,s),(b,t)}

f
(i)
j

(
x

(i)
j

)

+
n∑
a=1

∑
1≤s<t≤ka

α
(a)
s,t

(
φ(a)
s f (a)

s

) (
x(a)
s

) (
φ

(a)
t f

(a)
t

)(
x

(a)
t

) n∏
i=1

ki∏
j=1

(i,j)/∈{(a,s),(a,t)}

f
(i)
j

(
x

(i)
j

)

=
n∏
i=1

ki∏
j=1

f
(i)
j

(
x

(i)
j

)
+

∑
1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t

n∏
i=1

ki∏
j=1

f̃
(i;a,b)
j;s,t

(
x

(i)
j

)
,

where T (s, a, b) = max
{

1, (s+ 1)1(a=b)

}
, α

(a,a)
s,t = α

(a)
s,t and, for i ∈ In, j = 1, . . . , ki,

f̃
(i;a,b)
j;s,t (x) =

{ (
φ

(i)
j f

(i)
j

)
(x) if (i, j) ∈ {(a, s) , (b, t)}

f
(i)
j (x) otherwise.

.

Therefore, we can express (6.5.5) as

fS(s) =
n∏
i=1

∫
· · ·
∫

Rki−1

(
ki−1∏
j=1

f
(i)
j

(
x

(i)
j

))
f

(i)
ki

(
si −

ki−1∑
j=1

x
(i)
j

)
dx

(i)
1 ...dx

(i)
ki−1

+
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t

n∏
i=1

∫
· · ·
∫

Rki−1

(
ki−1∏
j=1

f̃
(i;a,b)
j;s,t

(
x

(i)
j

))
f̃

(i;a,b)
ki;s,t

(
si −

ki−1∑
j=1

x
(i)
j

)
dx

(i)
1 ...dx

(i)
ki−1

=
n∏
i=1

fSi(si) +
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t

n∏
i=1

f̃
S

(a,b)
i;s,t

(si),

with fSi and f̃S(a,b)
i;s,t

de�ned in (6.3.2). This completes the proof. 2

Proof of Proposition 6.3.3 The df of S is determined in terms of the joint pdf h

of X as follows

FS(s) = P(S1 6 s1, . . . , Sn 6 sn) =

∫
· · ·
∫

{
x=(x

(1)
1 ,...,x

(1)
k1
,...,x

(n)
1 ,...,x

(n)
kn

)
∣∣∣∑ki

j=1 x
(i)
j ≤si,i∈In

}h(x)dx. (6.5.6)
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Starting from (6.3.1), the joint density of X is now given by

h (x) =
n∏
i=1

ki∏
j=1

f
(i)
j

(
x

(i)
j

)1 +
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t

(
f (a)
s

(
x(a)
s

)
− γ(a)

s

) (
f

(b)
t

(
x

(b)
t

)
− γ(b)

t

)
=

n∏
i=1

ki∏
j=1

f
(i)
j

(
x

(i)
j

)1 +
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t


−

∑
1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

n∏
i=1

ki∏
j=1

(
f

(i;a)
j;s

(
x

(i)
j

)
+ f

(i;b)
j;t

(
x

(i)
j

))

+
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

n∏
i=1

ki∏
j=1

f
(i;a,b)
j;s,t

(
x

(i)
j

)
,

where, for i ∈ In, j = 1, ..., ki,

f
(i;a,b)
j;s,t (x) =


(
f

(i)
j (x)

)2
/
γ

(i)
j if (i, j) ∈ {(a, s) , (b, t)}

f
(i)
j (x) otherwise

,

f
(i;a)
j;s (x) = f

(i;a,a)
j;s,s (x) .

By Lemma 6.2.2,

(
f

(i)
j

)2

γ
(i)
j

is the pdf of a mixed Erlang distribution (with twice the

scale parameter), therefore, using also the notation ξn from (6.3.3), one can write

(6.5.6) as a sum-product of convolutions of mixed Erlang distributions as follows

FS (s) = ξn

n∏
i=1

∫ si

0

∫ si−x
(i)
1

0

...

∫ si−
∑ki−2
j=1 x

(i)
j

0

ki−1∏
j=1

f
(i)
j

(
x

(i)
j

)
F

(i)
ki

(
si −

ki−1∑
j=1

x
(i)
j

)
dx

(i)
ki−1...dx

(i)
1

−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×
n∏
i=1

∫ si

0

∫ si−x
(i)
1

0

...

∫ si−
∑ki−2
j=1 x

(i)
j

0

[
ki−1∏
j=1

f
(i;a)
j;s

(
x

(i)
j

)
F

(i;a)
ki;s

(
si −

ki−1∑
j=1

x
(i)
j

)

+

ki−1∏
j=1

f
(i;b)
j;t

(
x

(i)
j

)
F

(i;b)
ki;t

(
si −

ki−1∑
j=1

x
(i)
j

)]
dx

(i)
ki−1...dx

(i)
1 +

∑
1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×
n∏
i=1

∫ si

0

∫ si−x
(i)
1

0

...

∫ si−
∑ki−2
j=1 x

(i)
j

0

ki−1∏
j=1

f
(i;a,b)
j;s,t

(
x

(i)
j

)
F

(i;a,b)
ki;s,t

(
si −

ki−1∑
j=1

x
(i)
j

)
dx

(i)
ki−1...dx

(i)
1 .

(6.5.7)

Since β(n)
kn
≥ β

(i)
j ,∀j = 1, . . . , ki, i ∈ In, by Lemma 6.2.4 each ith mixed Erlang

component of (6.5.7) can be transformed into a new mixed Erlang distribution
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with a common scale parameter 2β
(n)
kn

. In addition, according to Remark 6.2.6,

the convolution of mixed Erlang distributions belongs to the class of mixed Erlang

distributions. Therefore, (6.5.7) can be expressed as a sum-product of mixed Erlang

df's as follows

FS (s) = ξn

n∏
j=1

F
S

(1)
j

(sj)−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×

(
n∏
j=1

F
S

(2;a)
j;s

(sj) +
n∏
j=1

F
S

(2;b)
j;t

(sj)−
n∏
j=1

F
S

(3;a,b)
j;s,t

(sj)

)
,

where S(1)
j , S

(2;a)
j;s , S

(3;a,b)
j;s,t are de�ned by (6.3.4)-(6.3.6). Thus the proof is complete.

2

Proof of Proposition 6.3.4 The distribution of Rn can be expressed in terms of

the distribution of S as follows

FRn(y) = P

(
n⋂
i=1

(Ti = 0)

)
+

n∑
k=1

∑
1≤j1<...<jk≤n

P

 ⋂
i∈In\{j1,...,jk}

(Ti = 0)
k⋂
i=1

(Tji > 0)
⋂(

k∑
i=1

Tji ≤ y

)
= P

(
n⋂
i=1

(Si ≤ di)

)
+

n∑
k=1

∑
1≤j1<...<jk≤n

P

 ⋂
i∈In\{j1,...,jk}

(Si ≤ di)
k⋂
i=1

(Sji > dji)
⋂(

k∑
i=1

(Sji − dji) ≤ y

) .

Considering now the df of S given in Proposition 6.3.3 and the de�nition of H from

Lemma 6.2.8, we can rewrite FRn in the form (6.3.7), which completes the proof. 2

Proof of Proposition 6.3.5 For simplicity, we shall prove the case l = n, the proof

for a general l being similar, but with a notation more complicated. To use (6.2.13),

we must evaluate

E
(
Tn1{Rn>xp}

)
= J1 + J2, (6.5.8)

where

J1 =

∫ ∞
xp

ufTn,{Rn−1=0} (u) du with fTn,{Rn−1=0} (u) =
∂

∂u
P (0 < Tn ≤ u,Rn−1 = 0) ,

J2 =

∫ ∞
xp

∫ s

0

ufTn,Rn−1 (u, s− u) duds with fTn,Rn−1 (u, v) =
∂2

∂u∂v
P (0 < Tn ≤ u, 0 < Rn−1 ≤ v) .

We shall now use Proposition 6.3.4 and the notation from Lemma 6.2.7. We have



143

J1 =

∫ ∞
xp

u
∂

∂u

ξn(n−1∏
i=1

F
S

(1)
i

(di)

)
H
S

(1)
n

(u, dn)−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×

(
H
S

(2;a)
n;s

(u, dn)
n−1∏
i=1

F
S

(2;a)
i;s

(di) +H
S

(2;b)
n;t

(u, dn)
n−1∏
i=1

F
S

(2;b)
i;t

(di)−HS
(3;a,b)
n;s,t

(u, dn)
n−1∏
i=1

F
S

(3;a,b)
i;s,t

(di)

)]
du

= ξnUS(1)
n

(xp, dn)
n−1∏
i=1

F
S

(1)
i

(di)−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×

(
U
S

(2;a)
n;s

(xp, dn)
n−1∏
i=1

F
S

(2;a)
i;s

(di) + U
S

(2;b)
n;t

(xp, dn)
n−1∏
i=1

F
S

(2;b)
i;t

(di)− US(3;a,b)
n;s,t

(xp, dn)
n−1∏
i=1

F
S

(3;a,b)
i;s,t

(di)

)
.

On the other hand, a reasoning similar with the one in the proof of Proposition 6.3.4

yields

fTn,Rn−1 (u, v) =
∂2

∂u∂v

n−1∑
k=1

∑
1≤j1<...<jk≤n−1

P

(0 < Tn ≤ u)
⋂

i∈In−1\{j1,...,jk}

(Ti = 0)
k⋂
i=1

(Tji > 0)
⋂(

k∑
i=1

Tji ≤ v

)
=

∂2

∂u∂v

n−1∑
k=1

∑
1≤j1<...<jk≤n−1

ξnHS
(1)
n

(u, dn)H∑k
i=1 S

(1)
ji

(v, dj1 , .., djk)
∏

i∈In−1\{j1,...,jk}

F
S

(1)
i

(di)

−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

×

H
S

(2;a)
n;s

(u, dn)H∑k
i=1 S

(2;a)
ji;s

(v, dj1 , .., djk)
∏

i∈In−1\{j1,...,jk}

F
S

(2;a)
i;s

(di)

+H
S

(2;b)
n;t

(u, dn)H∑k
i=1 S

(2;b)
ji;t

(v, dj1 , .., djk)
∏

i∈In−1\{j1,...,jk}

F
S

(2;b)
i;t

(di)

−H
S

(3;a,b)
n;s,t

(u, dn)H∑k
i=1 S

(3;a,b)
ji;s,t

(v, dj1 , .., djk)
∏

i∈In−1\{j1,...,jk}

F
S

(3;a,b)
i;s,t

(di)

 ,
from where, using the notation introduced in Lemma 6.2.8, we obtain

J2 =
n−1∑
k=1

∑
1≤j1<...<jk≤n−1

ξnU∑k
i=1 S

(1)
ji
,S

(1)
n

(xp, dj1 , .., djk , dn)
∏

i∈In−1\{j1,...,jk}

F
S

(1)
i

(di)

−
∑

1≤a≤b≤n

ka∑
s=1

kb∑
t=T (s,a,b)

α
(a,b)
s,t γ(a)

s γ
(b)
t

(
U∑k

i=1 S
(2;a)
ji;s

,S
(2;a)
n;s

(xp, dj1 , .., djk , dn)

×
∏

i∈In−1\{j1,...,jk}

F
S

(2;a)
i;s

(di) + U∑k
i=1 S

(2;b)
ji;t

,S
(2;b)
n;t

(xp, dj1 , .., djk , dn)
∏

i∈In−1\{j1,...,jk}

F
S

(2;b)
i;t

(di)

−U∑k
i=1 S

(3;a,b)
ji;s,t

,S
(3;a,b)
n;s,t

(xp, dj1 , .., djk , dn)
∏

i∈In−1\{j1,...,jk}

F
S

(3;a,b)
i;s,t

(di)

 .
Inserting now the formulas of J1, J2 into (6.5.8) and the result into (6.2.13) yields
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the formula of Cn. Thus, the proof is complete. 2

Proof of Proposition 6.3.8 Without loss of generality, we assume that j < k. To

prove the stated formula of Cj, we need to �nd

E
(
Xj1{S>sp}

)
=

∫ ∞
sp

∫ s

0

∫ s−x1

0

. . .

∫ s−
∑k−2
i=1 xi

0

xjh

(
x1, x2, . . . , xk−1, s−

k−1∑
i=1

xi

)
dxk−1 . . . dx2dx1ds,

(6.5.9)

with h as de�ned in (6.2.4) with kernels (6.2.2). We denote ξk = 1+
∑

1≤a<b≤k αa,bγaγb

and �rst evaluate xjh(x) as

xjh(x) = xj

k∏
i=1

fi(xi)

[
1 +

∑
1≤a<b≤k

αa,b (fa(xa)fb(xb)− γafb(xb)− γbfa(xa) + γaγb)

]

= ξkµj

k∏
i=1

fi,j(xi)−
∑

1≤a<b≤k

αa,bγaγb

[
ϕj;b

k∏
i=1

fi,j;b(xi) + ϕj;a

k∏
i=1

fi,j;a(xi)− ϕj;a,b
k∏
i=1

fi,j;a,b(xi)

]
,

where ϕj;a,b and ϕj;a are de�ned in (6.3.10), and, for i ∈ Ik, we de�ne the following
pdf's

fi,j(x) =

{
fi(x) if i 6= j
xfj(x)

µj
if i = j

,

fi,j;a,b(x) =


fi(x) if i /∈ {j, a, b}
xfj(x)

µj
if i = j /∈ {a, b}

f2
i (x)

γi
if i ∈ {a, b}, i 6= j

x(f2
j (x)/γj)
µ̃j

if i = j ∈ {a, b}

, while fi,j;a(x) = fi,j;a,a(x).

According to Lemmas 6.2.2, 6.2.3 and 6.2.4, the just de�ned pdf's can be regarded

of mixed Erlang type with parameter 2βk. Thus, (6.5.9) becomes

E
(
Xj1{S>sp}

)
= ξkµj

∫ ∞
sp

∫ s

0

∫ s−x1

0

. . .

∫ s−
∑k−2
i=1 xi

0

fk,j

(
s−

k−1∑
i=1

xi

)
k−1∏
i=1

fi,j(xi)dxk−1 . . . dx2dx1ds

−
∑

1≤a<b≤k

αa,bγaγb

∫ ∞
sp

∫ s

0

∫ s−x1

0

. . .

∫ s−
∑k−2
i=1 xi

0

[
ϕj;bfk,j;b

(
s−

k−1∑
i=1

xi

)
k−1∏
i=1

fi,j;b(xi)

+ϕj;afk,j;a

(
s−

k−1∑
i=1

xi

)
k−1∏
i=1

fi,j;a(xi)− ϕj;a,bfk,j;a,b

(
s−

k−1∑
i=1

xi

)
k−1∏
i=1

fi,j;a,b(xi)

]
×dxk−1 . . . dx2dx1ds,

i.e., the sum of four integrals consisting of tails of convolutions of mixed Erlang

distributions, which leads to the following four mixed Erlang distributions, respec-

tively,
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ME
(

2βk,Π
(

Ψ
(
M̃j(Q1

)
)
, . . . ,Ψ

(
M̃j(Qk

)
)))

,ME
(

2βk,Π
(

Ψ
(
M̃j;b(Q1

)
)
, . . . ,Ψ

(
M̃j;b(Qk

)
)))

,

ME
(

2βk,Π
(

Ψ
(
M̃j;a(Q1

)
)
, . . . ,Ψ

(
M̃j;a(Qk

)
)))

,ME
(

2βk,Π
(

Ψ
(
M̃j;a,b(Q1

)
)
, . . . ,Ψ

(
M̃j;a,b(Qk

)
)))

,

where M̃j, M̃j;a and M̃j;a,b are de�ned in (6.3.11). Then formula (6.3.8) holds with

the mixing coe�cients zi,j de�ned in (6.3.9). This completes the proof. 2



Chapter 7

On the evaluation of multivariate

compound distributions with

continuous severity distributions and

Sarmanov's counting distribution

This chapter is based on M. Tamraz and R. Vernic: On the evaluation of multivari-

ate compound distributions with continuous severity distributions and Sarmanov's

counting distribution, published in ASTIN Bulletin, 1-30, 2018.

7.1 Introduction

Used to model the aggregate claims of a portfolio, the univariate collective model is

represented as

S =
N∑
l=0

Xl, (7.1.1)

where N is the random variable (r.v.) number of claims and (Xl)l≥1 are the cor-

responding non-negative r.v.s claim sizes with X0 = 0. The classical hypotheses

that provide the tractability of this model are independent, identically distributed

(i.i.d.) discrete claim sizes, also independent of N . There is a large amount of

literature related to the evaluation of the compound distribution of S under these

assumptions, see, e.g., Klugman et al. [73] for di�erent methods, and Sundt and

Vernic [113] for a survey of the recursive methods. However, in practice, the claim

sizes (severity) distribution is rather of continuous type, hence the usual approach

consists in two steps: in the �rst step, the severity distribution is discretized, while

146



147

in the second step, a speci�c method is applied to the resulting discrete compound

distribution. In this case, a special attention must be paid to the choice of the

discretization span: a large span can generate important errors, while a very small

span can lead to a very long running time, especially in the multivariate case. In this

respect, it is unfortunate that closed-type formulas for compound distributions with

continuous type claim sizes are so scarce; in the univariate case, apart the Gamma

severity distribution (which also includes the well-known exponential case) leading

to the so-called Tweedie compound distribution (see, e.g., Dunn and Smyth [33]),

we mention the recent work of Sarabia et al. [106], who went even further on by

considering a Pareto type dependency between the aggregated claim sizes.

In this paper, we propose closed-type formulas for some multivariate compound dis-

tributions with Sarmanov counting distribution and Erlang severity distributions;

furthermore, inspired by Sarabia et al. [106], we also include some dependency be-

tween the claim sizes. Our formulas are expressed mainly in terms of the special

hypergeometric function already implemented in the existing mathematical software,

hence making the related calculations numerically feasible without involving other

techniques. More precisely, we deal with a multivariate extension of model (7.1.1),

i.e., for m ≥ 2, we consider

(S1, ..., Sm) =

(
N1∑
l=0

X1l, ...,
Nm∑
l=0

Xml

)
, (7.1.2)

where Nj denotes the number of claims of type j and (Xjl)l≥1 the corresponding

claim sizes, where, by convention, Xj0 = 0, 0 ≤ j ≤ m. This model corresponds to

the situation where we have m di�erent types of claims generated by some related

events, hence the claim numbers (Nj)
m
j=1 are dependent. The model has been stud-

ied mostly under the assumptions that the claims of type j are i.i.d., independent of

the claim numbers and independent of the claims of type k,∀j 6= k (see, e.g., Sundt

and Vernic [113], Jin and Ren [65] or Robe-Voinea and Vernic [103]). We shall call

by �inside-type independency� the independency assumption between the claims of

same type, while by �between-types independency� we designate the independency

assumptions between claims of di�erent types. Then, similarly with Sarabia et al.

[106], we shall relax the inside-type independency condition by considering a certain

type of dependency in each set of claims (Xjl)l≥1 . Note that in the univariate case,

dependency between the individual risks has already been considered especially in

the individual model, see, e.g., Goovaerts and Dhaene [53], Genest et al. [50], Denuit

et al. [29] and the references therein.

Regarding the claim sizes distributions, we choose the Erlang distribution in the
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inside-type independency case and, when relaxing this condition, the same multi-

variate type II Pareto distribution as in Sarabia et al. [106]. This choice has been

driven by the interest in obtaining closed formulas numerically computable with the

existing software, but also by the fact that both distributions have been intensively

studied in the actuarial literature lately; for the Erlang distribution see, e.g., Will-

mot and Lin [123] or Willmot and Woo [124], while for the multivariate type II

Pareto distribution see Asimit et al. [8] or the generalizations in Asimit et al. [5],

Guillén et al. [56].

Therefore, this paper is structured as follows: in Section 2, we introduce some no-

tation and recall several special functions and distributions that will be used in

the sequel. In Section 3, we present closed-type formulas for univariate compound

distributions with Erlang severity distribution, while in Section 4 we extend these

formulas to multivariate compound distributions with Sarmanov counting distribu-

tion; moreover, Section 4 is divided into two subsections corresponding to the cases

with and without inside-type independency. In the bivariate case, a special attention

is paid to the correlation coe�cient of the resulting compound distribution, which is

expressed in terms of the correlation coe�cient of the original counting distribution,

and results smaller than the last one. To illustrate the applicability, e�ciency and

importance of the derived formulas, in Section 5 we present a numerical example

in which we compare the cumulative distribution functions (cdf's) obtained for a

particular bivariate compound distribution by using the closed-type formulas and

the usual recursion-discretization approach. The paper ends with some conclusions

and future work, followed by an Appendix containing the proofs.

7.2 Preliminaries

7.2.1 Notation, de�nitions and useful formulas

In connection with the univariate collective model (7.1.1), we denote the probability

mass function (pmf) of the discrete r.v. N by p, while h denotes the probability

density function (pdf) of the claim sizes, which are assumed to be positive, con-

tinuous and identically distributed (i.d.), not necessarily independent. Therefore,

the distribution of S is called compound with counting distribution p and severity

distribution h; we denote it by p ∨ h. Then, letting h(n) denote the pdf of the sum
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∑n
i=0Xi, where h(0) (x) =

{
1, x = 0

0, otherwise
, it holds that (see Sarabia et al. [106])

(p ∨ h) (x) =
∞∑
n=0

p (n)h(n) (x) , x ≥ 0, (7.2.1)

hence (p ∨ h) (0) = p (0) . Under the classical assumption that the claim amounts

are also independent, this formula reduces to the well-known one

(p ∨ h) (x) =
∞∑
n=0

p (n)h∗n (x) , (7.2.2)

where h∗n denotes the n-fold convolution of h.

To simplify the writing in the multivariate case, we denote X = (X1, ..., Xm) or

x = (x1, ..., xm) , 1,m = {1, 2, ...,m} ; moreover, 0 denotes the 0-vector, while x− y

and x ≥ y are considered component-wise. In what concerns the model (7.1.2), the

pmf of the random vector consisting of the (dependent) claim numbers (N1, ..., Nm)

is still denoted by p, while hj denotes the pmf of the i.d. continuous positive claim

amounts of type j, and h = (h1, ..., hm). With this notation, assuming that both

inside-type and between-types independency conditions hold, the compound pdf

(p ∨ h) of S = (S1, ..., Sm) can be written as

(p ∨ h) (x) =
∞∑

n1=0

...
∞∑

nm=0

p (n)
m∏
j=1

h
∗nj
j (xj) , x ≥ 0. (7.2.3)

However, relaxing the inside-type independency assumption while keeping the between-

types independency condition, the distribution of S becomes (we omit the proof

being similar with the one in Sarabia et al. [106])

(p ∨ h) (x) =
∞∑

n1=0

...
∞∑

nm=0

p (n)
m∏
j=1

h
(nj)
j (xj) , x ≥ 0. (7.2.4)

It follows that (p ∨ h) (0) = p (0) , and, marginally, e.g.,

(p ∨ h) (x1, 0, ..., 0) =
∞∑

n1=1

p (n1, 0, ..., 0)h
(n1)
1 (x1) , x1 > 0,

(p ∨ h) (0, x2, ..., xm) =
∞∑

n2=1

...
∞∑

nm=1

p (0, n2, ..., nm)
m∏
j=2

h
(nj)
j (xj) , x2, ..., xm > 0.

Note that in both univariate and multivariate cases, the formulas (7.2.1) and (7.2.4)
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can be used as de�nitions for a more general compounding operation involving a

discrete function p : Nm → R,m ≥ 1, which is not necessarily a pmf (see also,

Vernic [119]); however, we keep the assumption that the functions h and hjs are

pdf-s.

We shall now recall several special functions. The Laplace transform of a r.v. X is

de�ned by LX (t) = E
[
e−tX

]
.

Spence's function or dilogarithm, which is a particular case of the polylogarithm

function, is de�ned for |t| < 1 by the power series Li2 (t) =
∑∞

k=1 t
k/k2.

We let

I0 (x) =
∞∑
n=0

(x/2)2n 1

(n!)2 , I1 (x) =
∞∑
n=0

(x/2)2n+1 1

n! (n+ 1)!

denote the modi�ed Bessel functions of �rst and, respectively, second kind.

Based on the Pochhammer symbol (a)(n) = a (a+ 1)×...×(a+ n− 1) , n ≥ 1, (a)(0) =

1, the generalized hypergeometric function rFq is de�ned by

rFq ({a1, ..., ar} , {b1, ..., bq} ; z) = 1 +
∞∑
n=1

(a1)(n) × ...× (ar)(n)

(b1)(n) × ...× (bq)(n)

zn

n!
. (7.2.5)

We shall need the following result (its proof is given in the Appendix). By conven-

tion, an empty product equals 1.

Lemma 7.2.1. For n ∈ N and k ∈ N∗, it holds that

i)
1

((n+ 1) k − 1)! (n+ 1)
=

1

(k − 1)!knk
(
k+1
k

)
(n)

(
k+2
k

)
(n)
× ...×

(
k+(k−1)

k

)
(n)

(2)(n)

,

(7.2.6)

ii)
1

(nk)!
=

1

n!knk
(

1
k

)
(n)

(
2
k

)
(n)
× ...×

(
k−1
k

)
(n)

. (7.2.7)

Note that due to the convention, when k = 1 formula (7.2.6) becomes 1
n!(n+1)

= 1
(2)(n)

,

while formula (7.2.7) yields the identity 1
n!

= 1
n!
.

7.2.2 Some distributions

We shall now recall some distributions needed in the sequel.

Univariate distributions

In the discrete case, we shall use the well known Poisson distribution Po (µ) , µ > 0,

the negative binomial distributionNB (r, q) , r > 0, q ∈ (0, 1) , with pmf Γ(r+n)
n!Γ(r)

qr (1− q)n ,
n ∈ N, expected value r(1−q)

q
and variance r(1−q)

q2 , and the logarithmic distribution
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Log (θ) , θ ∈ (0, 1) , with pmf −1
ln(1−θ)

θn

n
, n ≥ 1, expected value −θ

(1−θ) ln(1−θ) and vari-

ance −θ(θ+ln(1−θ))
(1−θ)2 ln2(1−θ) .

In the continuous case, we recall the Gamma distribution Ga (α, β) , α, β > 0, whose

pdf is given by f (x) = βα

Γ(α)
xα−1e−βx, x > 0, expected value α

β
and variance α

β2 ,

where Γ (·) denotes the Gamma function; it is well-known that the n-fold convolu-

tion of Ga (α, β) is still Gamma distributed, i.e., Ga (nα, β) . In particular, when

α = k ∈ N∗, the Gamma distribution is called Erlang that we shall denote by

Erlang (k, β) . Also, Ga (1, β) is the exponential distribution denoted by Exp (β).

Another distribution that we shall encounter in the following is the beta distribu-

tion of the second kind, also called beta prime, inverted beta or Pearson type VI

distribution (for details on this distribution, see, e.g., Kleiber and Kotz [71]). The

pdf of this distribution is given by f (x) = xβ−1

B(α,β)(1+x)α+β , x > 0, where α, β > 0 and

B (α, β) = Γ(α)Γ(β)
Γ(α+β)

denotes the beta function. Introducing also a scale parameter

σ > 0, the pdf becomes

f (x) =
xβ−1

σβB (α, β) (1 + x/σ)α+β
, x > 0.

We denote this distribution by BII (β, α, σ) and note that it can be obtained as the

distribution of the ratio of two independent r.v.s, i.e., as σ Y
Z
, where Y ∼ Ga (β, 1)

and Z ∼ Ga (α, 1) .

Moreover, the ratio σ Y
Z
of two independent r.v.s, where σ > 0, Z ∼ Ga (α, 1) and

Y ∼ Exp (1) , follows a Pareto distribution Pa (α, σ) with pdf α
σ

(
1 + x

σ

)−α−1
, x > 0,

expected value σ
α−1

, α > 1, and variance ασ2

(α−1)2(α−2)
, α > 2.

Multivariate type II Pareto distribution

Starting from m i.i.d. r.v.s Y1, ..., Ym exponentially Exp (1) distributed and inde-

pendent of the r.v. Z ∼ Ga (α, 1) , α > 0, the random vector de�ned by X =(
σ Y1

Z
, ..., σ Ym

Z

)
, σ > 0, follows an m-variate Pareto of type II distribution with pdf

f (x) =
Γ (α +m)

Γ (α)σm

(
1 +

1

σ

m∑
i=1

xi

)−α−m
, x1, ..., xm > 0.

We denote this distribution by PaIIm (α, σ) and note that its marginals are all iden-

tically distributed Pa (α, σ), the covariance between components is cov(Xi, Xj) =
σ2

(α−1)2(α−2)
, α > 2, i 6= j, and the correlation ρ = 1

α
. Sarabia et al. [106] also showed

that the sum of the components
∑m

i=1Xi follows the beta distribution of the second

kind, BII (m,α, σ) . For more details on the Pareto distribution see Arnold [3].
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Sarmanov's multivariate distribution

We recall that the random vector N = (N1, ..., Nm) follows an m−variate discrete

Sarmanov distribution with joint pmf given for n ∈ Nm by (see, e.g.,Kotz et al. [75])

p (n) =

(
m∏
l=1

pl (nl)

)(
1 +

m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jk φj1 (nj1)× ...× φjk (njk)

)
,

(7.2.8)

where (pl)
m
l=1 are the marginal pmf-s, (φj)

m
j=1 are bounded non-constant kernel func-

tions, and the constants ωj1...jk ∈ R are such that the following conditions hold

∑
n∈N

φj (n) pj (n) = 0, ∀j ∈ 1,m, (7.2.9)

1 +
m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jkφj1 (nj1)× ...× φjk (njk) ≥ 0, ∀n ∈ Nm. (7.2.10)

The joint distribution of any subset of marginals of N is of the same type. The

particular forms discussed in the literature for the functions φj can be uni�ed into

a general one satisfying condition (7.2.9), i.e.,

φj (x) = fj (x)− E [fj (Nj)] , (7.2.11)

with the functions fj properly chosen such that E [fj (Nj)] <∞. For simplicity, we

denote Ej := E [fj (Nj)]. In our study, we shall consider the following particular

cases:

1. f (x) = e−δx ⇒ φ (x) = e−δx − LN (δ) ; a frequent choice is δ = 1.

2. f = p⇒ φ (x) = p (x)−
∑

n∈N p
2 (n) .

Remark 7.2.1. In the bivariate case where p (n) =
∏2

i=1 pi(ni)
(
1 + ω

∏2
i=1 φi (ni)

)
,n ∈ N2, condition (7.2.10) yields the following range of ω

max

{
− 1

m1m2

,− 1

M1M2

}
≤ ω ≤ min

{
− 1

m1M2

,− 1

m2M1

}
,

where mi = minn∈N φi (n) ,Mi = maxn∈N φi (n) . From these limits we can also obtain

the correlation range, where the correlation coe�cient is given by

ρ = ω
E [N1φ1 (N1)]E [N2φ2 (N2)]√

V ar [N1]V ar [N2]
. (7.2.12)
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7.3 Some univariate compound distributions with

Erlang severity distribution

Let us consider the univariate compound model (7.1.1) with independent claim

sizes Erlang (k, β) distributed, k ∈ N∗, β > 0. Then, according to (7.2.2), (p ∨ h) (0) =

p (0) and, for x > 0,

(p ∨ h) (x) =
∞∑
n=1

p (n)
βnk

(nk − 1)!
xnk−1e−βx. (7.3.1)

Regarding the choice of p, we consider the following three cases for which we express

the resulting pdf in terms of the generalized hypergeometric function.

Proposition 7.3.1. i) Poisson case: let N ∼ Po (µ) . Then (p ∨ h) (0) = e−µ and

for x > 0,

(p ∨ h) (x) = e−µ−βx
µ (βx)k

x (k − 1)!
0Fk

(
{} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
;µ

(
βx

k

)k)
.

ii) Negative Binomial case: assuming that N ∼ NB (r, q) , r > 0, q ∈ (0, 1) , we have

(p ∨ h) (0) = qr, while for x > 0,

(p ∨ h) (x) =
rqr (1− q) (βx)k e−βx

x (k − 1)!
1Fk

(
{r + 1} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
; (1− q)

(
βx

k

)k)
.

iii) Logarithmic case: assume that N ∼ Log (θ) , θ ∈ (0, 1). Then (p ∨ h) (0) = 0,

while for x > 0,

(p ∨ h) (x) =

 −
e−βx

x ln(1−θ)

(
eθβx − 1

)
, k = 1

− ke−βx

x ln(1−θ)

[
0Fk

(
{} ,

{
1
k
, 2
k
, ..., k−1

k

}
; θ
(
βx
k

)k)− 1
]
, k ≥ 2

.

Remark 7.3.1. The above proposition can be easily extended to the case where the

counting distribution is a mixture with the corresponding components being distri-

butions considered in the proposition. For example, if N follows a mixture of two

Poisson distributions, i.e.,

p (n) = qe−µ1
µn1
n!

+ (1− q) e−µ2
µn2
n!
, n ∈ N, q ∈ (0, 1) , µi > 0, i = 1, 2,
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then we easily obtain that for x > 0,

(p ∨ h) (x) =
e−βx (βx)k

x (k − 1)!

[
qµ1e

−µ1
0Fk

(
{} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
;µ1

(
βx

k

)k)

+ (1− q)µ2e
−µ2

0Fk

(
{} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
;µ2

(
βx

k

)k)]
.

Remark 7.3.2. The distribution obtained in the �rst case (i) of Proposition 7.3.1

belongs to the class of Tweedie distributions, which in some cases can be modeled

as compound distributions with Poisson counting distribution and Gamma severity

distribution, see, e.g., Jorgensen [68].

Sarabia et al. [106] presented closed-type formulas for the univariate collective model

(7.1.1) under the assumption that the claim sizes are dependent according to the

multivariate type II Pareto distribution described in Section 7.2.2. In the following

lemma, we recall their results for the same counting distributions considered above.

Lemma 7.3.2. If the claim sizes are multivariate type II Pareto distributed with

parameters (α, σ), then:

i) Poisson case: let N ∼ Po (µ) . Then (p ∨ h) (0) = e−µ and for x > 0,

(p ∨ h) (x) =
αµe−µ

σ(1 + x/σ)1+α 1F1

(
{1 + α} , {2} ;

µx

σ + x

)
.

ii) Negative Binomial case: assuming that N ∼ NB (r, q) , r > 0, q ∈ (0, 1) , we have

(p ∨ h) (0) = qr, while for x > 0,

(p ∨ h) (x) =
rα(1− q)qr

σ(1 + x/σ)1+α 2F1

(
{1 + r, 1 + α} , {2} ;

(1− q)x
σ + x

)
.

iii) Logarithmic case: assume that N ∼ Log (θ) , θ ∈ (0, 1). Then (p ∨ h) (0) = 0,

while for x > 0,

(p ∨ h) (x) = − 1

x ln(1− θ)

[
1

(1 + (1− θ)x/σ)α
− 1

(1 + x/σ)α

]
.

7.4 Multivariate compound distributions with Sar-

manov's counting distribution

In this section, we extend the above results to the multivariate case corresponding

to model (7.1.2). We assume that the vector number of claims follows Sarmanov's



155

multivariate distribution. Regarding the claim sizes, we �rst assume the existence of

both inside-type and between-types independencies, then we relax the inside-type

independency condition similarly to Sarabia et al. [106]. In both situations, the

following result holds.

Proposition 7.4.1. Consider the multivariate compound distribution (7.2.4) under

the assumption that the multivariate counting distribution p is of Sarmanov type

(7.2.8). Then the resulting compound distribution also belongs to Sarmanov's class,

satisfying for s ≥ 0,

(p ∨ h) (s) =
m∏
l=1

(pl ∨ hl) (sl) +
m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jk (7.4.1)

×
k∏
l=1

((fjlpjl) ∨ hjl − Ejl (pjl ∨ hjl)) (sjl)
m∏

l=k+1

(pjl ∨ hjl) (sjl)

=
m∏
l=1

(pl ∨ hl) (sl)

(
1 +

m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jk φ̃j1 (sj1)× ...× φ̃jk (sjk)

)
,

where the indexes {jk+1, ..., jm} = {1, ...,m}\{j1, ..., jk} and φ̃j =
(fjpj)∨hj
pj∨hj −Ej, j =

1,m.

Remark 7.4.1. From the above de�nition of φ̃j it results that φ̃j (0) =
(fjpj)(0)

pj(0)
−

Ej = fj (0) − Ej = φj (0) , from where formula (7.4.1) yields (p ∨ h) (0) = p (0) as

expected, and, e.g.,

(p ∨ h) (s, 0, ..., 0) = (p1 ∨ h1) (s)

(
m∏
l=2

pl (0)

)[
1 +

m−1∑
k=1

∑
2≤j1<...<jk≤m

ω1j1...jk φ̃1 (s)
k∏
l=1

φjl (0)

+
m−1∑
k=2

∑
2≤j1<...<jk≤m

ωj1...jk

k∏
l=1

φjl (0)

]
, s > 0.

As a consequence, the compound distribution p∨h has now continuous and discrete

parts (with pmf in 0).

In what concerns the correlation, the following proposition deals with the bivariate

case.

Proposition 7.4.2. The correlation coe�cient of the bivariate compound distribu-

tion de�ned by (7.1.2) with pdf (7.4.1) is given by

ρ (S1, S2) = ρ (N1, N2)
2∏
j=1

E [Xj]

√
V ar [Nj]

V ar [Sj]
, (7.4.2)
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where ρ (N1, N2) is the correlation coe�cient of the bivariate counting distribution

of type (7.2.8). If, moreover, the claim sizes (Xjl)l≥1 are

i) i.i.d., then

E [Xj]

√
V ar [Nj]

V ar [Sj]
=

(
E [Nj]

V ar [Nj]

V ar [Xj]

(E [Xj])
2 + 1

)−1/2

;

ii) dependent, i.d., with equal covariances cj := cov (Xji, Xjl) for any i 6= l, j = 1, 2,

then

E [Xj]

√
V ar [Nj]

V ar [Sj]
=

(
E [Nj]

V ar [Nj]

V ar [Xj]

(E [Xj])
2 +

cjE [Nj (Nj − 1)]

(E [Xj])
2 V ar [Nj]

+ 1

)−1/2

.

The following corollary states the fact that the correlation of the compound distri-

bution cannot exceed the one of the counting distribution (its proof is obvious, hence

we omit it). Note that when the claims of some type are assumed to be correlated,

it is natural to assume that their correlation is positive.

Corollary 7.4.3. Under the assumptions of Proposition 7.4.2, in both cases (i) and

(ii) with cj > 0, j = 1, 2, it holds that ρ (S1, S2) < ρ (N1, N2) .

In consequence, we need the form of ρ (N1, N2). The following result present some

particular formulas useful to the evaluation of ρ (N1, N2) in cases that will be con-

sidered later on.

Lemma 7.4.4. i) Let N be a discrete r.v. and φ (x) = e−δx−LN (δ) . It holds that:

- if N ∼ Po (µ) then LN (δ) = eµ(e
−δ−1) and E[Nφ(N)]√

V ar[N ]
=
(
e−δ − 1

)√
µe(e

−δ−1)µ;

- if N ∼ NB (r, q) then LN (δ) =
(

q
1−(1−q)e−δ

)r
and E[Nφ(N)]√

V ar[N ]
=

(e−δ−1)qr
√
r(1−q)

(1−(1−q)e−δ)
r+1 ;

- if N ∼ Log (θ) then LN (δ) =
ln(1−e−δθ)

ln(1−θ) and E[Nφ(N)]√
V ar[N ]

=
√

−θ
θ+ln(1−θ)

(
e−δ(1−θ)
1−θe−δ −

ln(1−θe−δ)
ln(1−θ)

)
.

ii) Assuming now that p denotes the pmf of N and φ (x) = p (x)−
∑

n p
2 (n) , hence

E =
∑

n∈N p
2 (n) , we have:

- if N ∼ Po (µ) then E = e−2µI0 (2µ) and E[Nφ(N)]√
V ar[N ]

=
√
µe−2µ (I1 (2µ)− I0 (2µ)) ;

- if N ∼ NB (r, q) then E = q2r
2F1

(
{r, r}, {1}; (1− q)2) and E[Nφ(N)]√

V ar[N ]
=
√
r(1− q)q2r

×
[
rq(1− q) 2F1

(
{r + 1, r + 1}, {2}; (1− q)2)− 2F1

(
{r, r}, {1}; (1− q)2)] ;

- if N ∼ Log (θ) then E =
Li2(θ2)
ln2(1−θ) and

E[Nφ(N)]√
V ar[N ]

=
(1−θ) ln(1−θ) ln(1−θ2)−θLi2(θ2)

ln2(1−θ)
√
−θ(θ+ln(1−θ))

.

We shall now have a look at some particular choices for the counting and severity

distributions.
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7.4.1 Inside-type independency case

In this section, we assume that the claim sizes of type j, i.e., (Xjl)l≥1 , are inde-

pendent for any �xed j, and also independent of all the claim sizes of other types,

i.e., of (Xkl)l≥1 ,∀k 6= j. Under these assumptions, Vernic [119] presented recursive

formulas for the evaluation of multivariate compound distributions when the claim

sizes distributions are of discrete type. We shall now see how the components of

the compound pdf look like in the particular continuous case of independent Erlang

distributed claim sizes, i.e., when Xjl ∼ Erlang (kj, βj) , l ≥ 1, j = 1,m. We also

assume that each marginal counting distribution, pj, is of Poisson, negative binomial

or logarithmic type. Then, from Proposition 7.3.1, we know the form of the pj ∨ hj
pdf-s, hence, in view of (7.4.1), we must �nd the expressions of the φ̃js. The fol-

lowing results examine the later for the two particular forms of the kernel functions

presented in Section 7.2.2.

Proposition 7.4.5. Let h be the Erlang (k, β) pdf and let φ (x) = e−δx − LN (δ) ,

hence f (x) = e−δx. It holds that

i) If N ∼ Po (µ) then ((fp) ∨ h) (0) = e−µ, while for x > 0,

((fp) ∨ h) (x) = e−δ−µ−βx
µ (βx)k

x (k − 1)!
0Fk

(
{} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
;
µ

eδ

(
βx

k

)k)
.

ii) If N ∼ NB (r, q) then ((fp) ∨ h) (0) = qr, while for x > 0,

((fp) ∨ h) (x) =
rqr (1− q) e−δ−βx (βx)k

x (k − 1)!

× 1Fk

(
{r + 1} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2

}
;
1− q
eδ

(
βx

k

)k)
.

iii) If N ∼ Log (θ) then ((fp) ∨ h) (0) = 0, while for x > 0,

((fp) ∨ h) (x) =

 −
e−βx

x ln(1−θ)

(
eθβxe

−δ − 1
)
, k = 1

− ke−βx

x ln(1−θ)

[
0Fk

(
{} ,

{
1
k
, 2
k
, ..., k−1

k

}
; θ
eδ

(
βx
k

)k)− 1
]
, k ≥ 2

.

The proof of Proposition 7.4.5 is omitted, being very similar with the proof of

Proposition 7.3.1.

Proposition 7.4.6. Let h be the Erlang (k, β) pdf and let φ (x) = p (x)−
∑

n∈N p
2 (n).

Then
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i) When N ∼ Po (µ) we have ((fp) ∨ h) (0) = e−2µ, while for x > 0,

((fp) ∨ h) (x) = e−2µ−βx µ
2 (βx)k

x (k − 1)!
0Fk+1

(
{} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2, 2

}
;µ2

(
βx

k

)k)
.

ii) When N ∼ NB (r, q) we have ((fp) ∨ h) (0) = q2r, while for x > 0,

((fp) ∨ h) (x) =
r2q2r (1− q)2 e−βx (βx)k

x (k − 1)!

× 2Fk+1

(
{r + 1, r + 1} ,

{
k + 1

k
,
k + 2

k
, ...,

2k − 1

k
, 2, 2

}
; (1− q)2

(
βx

k

)k)
.

iii) When N ∼ Log (θ) we have ((fp) ∨ h) (0) = 0, while for x > 0,

((fp) ∨ h) (x) =


θ2e−βxβx
x ln2(1−θ) 2F2 ({1, 1} , {2, 2} ; θ2βx) , k = 1
θ2e−βx(βx)k

x(k−1)! ln2(1−θ) 2Fk+1

(
{1, 1} ,

{
k+1
k
, k+2

k
, ..., 2k−1

k
, 2, 2

}
; θ2
(
βx
k

)k)
, k ≥ 2

.

Example 7.4.1. In this example, for illustration purposes, we consider the bivariate

case. Hence, for, e.g., two insurance portfolios, we de�ne the compound model

(7.1.2) as follows: (S1, S2) =
(∑N1

l=0X1l,
∑N2

l=0X2l

)
with X1l ∼ Erlang(k1 = 2, β1 =

0.9), X2l ∼ Erlang(k2 = 3, β2 = 0.95), l ≥ 1, X10 = X20 = 0, while the r.v.s

N1 ∼ Po(µ = 2), N2 ∼ NB(r = 4, q = 0.65) are joined by the Sarmanov distribution

with kernels of type φ (n) = e−n−LN (1) and dependence parameter ω = 3. Since in

this case we have E1 = LPo(2) (1) = 0.2825, E2 = LNB(4,0.65) (1) = 0.3098, the pmf

of (N1, N2) is

p (n1, n2) = p1 (n1) p2 (n2)
[
1 + ω

(
e−n1 − E1

) (
e−n2 − E2

)]
= 0.00403

2n10.35n2Γ (4 + n2)

n1!n2!

[
1 + 3

(
e−n1 − 0.2825

) (
e−n2 − 0.3098

)]
, n1, n2 ∈ N.

Note that this Sarmanov distribution joins di�erent types of marginals, i.e., one

Poisson and one Negative Binomial. Also, its correlation coe�cient results using

Lemma 7.4.4 as

ρ (N1, N2) = ω
(
e−1 − 1

)2 qr
√
µr (1− q)e(e−1−1)µ

(1− (1− q) e−1)r+1 ' 0.2015.

Note that the possible ranges of ω and ρ are in this case ω ∈ (−2.0192, 4.4983), ρ (N1, N2) ∈
(−0.1356, 0.3021).
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Thus, according to (7.4.1), the joint pdf of (S1, S2) can be written as

(p ∨ h) (s) =
2∏
l=1

(pl ∨ hl) (sl)
(

1 + ωφ̃1 (s1) φ̃2 (s2)
)
, s ≥ 0,

where φ̃j =
(fjpj)∨hj
pj∨hj − Ej with fj(x) = e−x, j = 1, 2. From Proposition 7.3.1, we

obtain the marginal pdf-s of S1 and S2 as, respectively,

(p1 ∨ h1) (s) =

{
0.1353, s = 0

0.2192se−0.9s
0F2

(
{} ,

{
3
2
, 2
}

; 0.405s2
)
, s > 0

,

(p2 ∨ h2) (s) =

{
0.1785, s = 0

0.1071s2e−0.95s
1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111s3
)
, s > 0

.

Also, from Proposition 7.4.5, the kernel functions φ̃1 and φ̃2 are expressed, respec-

tively, by

φ̃1(0) = 1− E1 = 0.7175, φ̃1(s) =
0F2

(
{} ,

{
3
2
, 2
}

; 0.405e−1s2
)

0F2

(
{} ,

{
3
2
, 2
}

; 0.405s2
)
e
− 0.2825, s > 0,

φ̃2(0) = 1− E2 = 0.6902, φ̃2(s) =
1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111e−1s3
)

1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111s3
)
e
− 0.3098, s > 0.

Then (p ∨ h) (0) = p (0) = 0.06005, while for s > 0,

(p ∨ h) (s, 0) = (p1 ∨ h1) (s) p2 (0)
(

1 + ωφ̃1 (s) φ̃2 (0)
)

= 0.0391se−0.9s
0F2

(
{} ,

{
3

2
, 2

}
; 0.405s2

)
×

[
1 + 2.0706

(
0F2

(
{} ,

{
3
2
, 2
}

; 0.405e−1s2
)

0F2

(
{} ,

{
3
2
, 2
}

; 0.405s2
)
e
− 0.2825

)]
, (7.4.3)

(p ∨ h) (0, s) = p1 (0) (p2 ∨ h2) (s)
(

1 + ωφ̃1 (0) φ̃2 (s)
)

= 0.0145s2e−0.95s
1F3

(
{5} ,

{
4

3
,
5

3
, 2

}
; 0.0111s3

)
×

[
1 + 2.1526

(
1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111e−1s3
)

1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111s3
)
e
− 0.3098

)]
.(7.4.4)

Finally, for s1 > 0, s2 > 0,

(p ∨ h) (s) = 0.0235s1s
2
2e
−0.9s1−0.95s2
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× 0F2

(
{} ,

{
3

2
, 2

}
; 0.405s2

1

)
1F3

(
{5} ,

{
4

3
,
5

3
, 2

}
; 0.0111s3

2

)
×

[
1 + 3

(
0F2

(
{} ,

{
3
2
, 2
}

; 0.405e−1s2
1

)
0F2

(
{} ,

{
3
2
, 2
}

; 0.405s2
1

)
e
− 0.2825

)

×

(
1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111e−1s3
2

)
1F3

(
{5} ,

{
4
3
, 5

3
, 2
}

; 0.0111s3
2

)
e
− 0.3098

)]
. (7.4.5)

In what concerns the correlation of this compound distribution, from Proposition

7.4.2 item (i) we obtain

ρ (S1, S2) = ρ (N1, N2)

((
1

k1

+ 1

)(
q

k2

+ 1

))−1/2

' 0.1492.

Moreover, for the actual values of the parameters, the possible range of this correla-

tion coe�cient when ω varies in its interval is ρ (S1, S2) ∈ (−0.1004, 0.2236).

7.4.2 Inside-type dependency case

We shall now relax the inside-type independency condition while keeping the between-

types independency one, i.e., the di�erent types of claims are independent of each

other. Hence, we assume that the claim sizes of each type are dependent and fol-

lows the multivariate Pareto distribution as de�ned in Section 7.2.2. As before, we

rely on formula (7.4.1) to �nd the compound distribution p ∨ h; therefore, we must

evaluate all the marginal compound distributions pj ∨ hj, as well as the quantities
(fjpj) ∨ hj involved in the φ̃js. Considering the previous three particular counting

distributions, we already know the form of each pj ∨hj from Lemma 7.3.2, while the

expressions of (fjpj)∨hj are given in the following two properties for two particular

kernels cases.

Proposition 7.4.7. Let the claim sizes be multivariate type II Pareto distributed

with parameters (α, σ) , and let φ (x) = e−δx − LN (δ) , hence f (x) = e−δx. Then

i) If N ∼ Po (µ) then ((fp) ∨ h) (0) = e−µ, while for x > 0,

((fp) ∨ h) (x) =
αµe−(µ+δ)

σ (1 + x/σ)1+α 1F1

(
{1 + α} , {2} ;

µxe−δ

σ + x

)
.

ii) If N ∼ NB (r, q) then ((fp) ∨ h) (0) = qr, while for x > 0,

((fp) ∨ h) (x) =
αrqr(1− q)e−δ

σ(1 + x/σ)1+α 2F1

(
{1 + α, 1 + r} , {2} ;

(1− q)xe−δ

σ + x

)
.
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iii) If N ∼ Log (θ) then ((fp) ∨ h) (0) = 0, while for x > 0,

((fp) ∨ h) (x) = − 1

x ln(1− θ)

[
1

(1 + (1− θe−δ)x/σ)α
− 1

(1 + x/σ)α

]
.

The proof of Proposition 7.4.7 is similar to the proof of Lemma 7.3.2 given in Sarabia

et al. [106], and therefore is omitted.

Proposition 7.4.8. Let the claim sizes be multivariate type II Pareto distributed

with parameters (α, σ) , and let φ (x) = p (x) −
∑

n∈N p
2 (n) , hence f = p and E =∑

n∈N p
2 (n) . Then

i) When N ∼ Po (µ) we have ((fp) ∨ h) (0) = e−2µ, while for x > 0,

((fp) ∨ h) (x) =
αe−2µµ2

σ(1 + x/σ)α+1 1F2

(
{1 + α} , {2, 2} ;

µ2x

σ + x

)
.

ii) When N ∼ NB (r, q) we have ((fp) ∨ h) (0) = q2r, while for x > 0,

((fp) ∨ h) (x) =
αr2q2r(1− q)2

σ(1 + x/σ)α+1 3F2

(
{1 + α, 1 + r, 1 + r} , {2, 2} ;

(1− q)2x

σ + x

)
.

iii) When N ∼ Log (θ) we have ((fp) ∨ h) (0) = 0, while for x > 0,

((fp) ∨ h) (x) = 1
αθ2

σ(1 + x/σ)α+1 ln2(1− θ) 3F2

(
{1, 1, 1 + α} , {2, 2} ;

θ2x

σ + x

)
.

Remarks 7.4.9. Similarly to Example 7.4.1, we consider the compound model

(7.1.2) in the bivariate case, i.e., (S1, S2) =
(∑N1

l=0X1l,
∑N2

l=0X2l

)
with N1 ∼

Po(µ = 2), N2 ∼ Log(θ = 0.6), while, for Ni = ni, i = 1, 2, we let (X11, . . . , X1n1) ∼
PaIIn1(α1 = 4, σ1 = 3) and (X21, . . . , X2n2) ∼ PaIIn2(α2 = 3, σ2 = 4). We assume

that the r.v.s N1 and N2 are dependent and joined by the Sarmanov distribution with

kernels of type φ(n) = e−n−LN(1) and dependence parameter ω = 4.5 (in this case,

the limiting interval is ω ∈ (−1.9148, 4.8644)). Hence, with E1 = LPo(2)(1) = 0.2825

and E2 = LLog(0.6)(1) = 0.2722, the pmf of (N1, N2) is given by

p(n1, n2) = 0.1477
2n10.6n2

n1!n2

[
1 + 4.5

(
e−n1 − 0.2825

) (
e−n20.2722

)]
, n1, n2 ∈ N, n2 > 0.

Based on Lemma 7.4.4, its correlation coe�cient is

ρ (N1, N2) = ω
(
e−1 − 1

)
e(e
−1−1)µ

√
−µθ

θ + ln (1− θ)

(
1− θ
e− θ

− ln (1− θe−1)

ln (1− θ)

)
' 0.1304.

In fact, depending on ω, the possible range of this correlation is ρ (N1, N2) ∈ (−0.0555, 0.1410).
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The joint pdf of (S1, S2) is given by

(p ∨ h) (s) =
2∏
l=1

(pl ∨ hl) (sl)
(

1 + ωφ̃1 (s1) φ̃2 (s2)
)
, s ≥ 0,

with φ̃j =
(fjpj)∨hj
pj∨hj − Ej and fj(x) = e−x, j = 1, 2. From Lemma 7.3.2, we obtain

the marginal pdf-s of S1 and S2, respectively, as

(p1 ∨ h1) (s) =

{
0.1353, s = 0

0.3609(1 + s/3)−5
1F1 ({5} , {2} ; 2s/(s+ 3)) , s > 0

,

(p2 ∨ h2) (s) =

{
0, s = 0

1.0913s−1 [(1 + 0.1s)−3 − (1 + 0.25s)−3] , s > 0
.

Also, from Proposition 7.4.7, the kernel functions φ̃1 and φ̃2 are expressed, respec-

tively, by

φ̃1(0) = 1− E1 = 0.7175, φ̃1(s) =
1F1

(
{5} , {2} ; 2e−1s

3+s

)
1F1

(
{5} , {2} ; 2s

3+s

)
e
− 0.2825, s > 0,

φ̃2(0) = 1− E2 = 0.7278, φ̃2(s) =
(1 + 0.1948s)−3 − (1 + 0.25s)−3

(1 + 0.1s)−3 − (1 + 0.25s)−3
− 0.2722, s > 0.

Then (p ∨ h) (0) = p (0) = 0, while for s > 0,

(p ∨ h) (s, 0) = (p1 ∨ h1) (s) p2 (0)
(

1 + ωφ̃1 (s) φ̃2 (0)
)

= 0 as (p2 ∨ h2) (0) = 0,

(p ∨ h) (0, s) = p1 (0) (p2 ∨ h2) (s)
(

1 + ωφ̃1 (0) φ̃2 (s)
)

= 0.1477s−1
[
(1 + 0.1s)−3 − (1 + 0.25s)−3

]
×
[
1 + 3.2289

(
(1 + 0.1948s)−3 − (1 + 0.25s)−3

(1 + 0.1s)−3 − (1 + 0.25s)−3
− 0.2722

)]
.

Finally, for s1 > 0, s2 > 0,

(p ∨ h) (s) =
0.3939

(1 + s1/3)5s2
1F1

(
{5} , {2} ;

2s1

s1 + 3

)[
1

(1 + 0.1s2)3
− 1

(1 + 0.25s2)3

]

×

1 + 4.5

 1F1

(
{5} , {2} ; 2e−1s1

3+s1

)
1F1

(
{5} , {2} ; 2s1

3+s1

)
e
− 0.2825


×
(

(1 + 0.1948s2)−3 − (1 + 0.25s2)−3

(1 + 0.1s2)−3 − (1 + 0.25s2)−3
− 0.2722

)]
.
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From Proposition 7.4.2 item (ii), using that E[N(N −1)] = V ar[N ]+E2[N ]−E[N ],

we also �nd the correlation of the compound distribution as

ρ (S1, S2) = ρ (N1, N2)

((
α1 + µ

α1 − 2
+ 1

)(
ln(1− θ)(θ + (1− θ)α2)

(α2 − 2)(θ + ln(1− θ))
+ 1

))− 1
2

' 0.0262

Considering the actual values of the parameters, when ω varies in its limiting in-

terval, the possible correlation range is ρ (S1, S2) ∈ (−0.0111, 0.0283). Moreover,

we numerically maximized (in Mathematica software) the corresponding formula of

ρ (N1, N2) with respect to the parameters µ, θ, δ1, δ2 and obtained that the maximum

possible of the correlation is ρmax (N1, N2) = 0.4702 for µ = 0.2297, θ = 0.9929, δ1 =

1.8367, δ2 = 0.0099, while ω resulted as 6.9073 (note that this time we let the δs

vary); hence, when α1 = 4 and α2 = 3, ρmax (S1, S2) = 0.1753.

7.5 Numerical example

As mentioned in the Introduction, when dealing with claim size distributions of

continuous type, the usual approach consists in discretizing these distributions, and

then in evaluating the corresponding discrete compound distribution by applying a

speci�c technique such as, e.g., the recursive method, the Fast Fourier Transform

(FFT) algorithm or simulation. Such an approach generates errors starting with the

discretization step (by span choice), errors that are usually magni�ed by applying

the speci�c technique (for some details see, e.g.,Robe-Voinea and Vernic [103] and

the references therein).

Therefore, in this example, we compare the cdf-s obtained for the bivariate com-

pound distribution presented in Example 7.4.1 by using the just described approach

based on recursions, and by direct calculation.

In what concerns direct calculation, because the formulas involve the hypergeomet-

ric function, we used the facilities provided by the software R and Mathematica to

numerically integrate the pdf-s (7.4.3)-(7.4.5). We note that the results were ob-

tained immediately, taking less than a second for each integral.

Regarding the discretization approach, due to the nature of this example, we were

able to apply to the resulting discrete compound distribution the recursive method

presented in Vernic [119]. The main problem here was the choice of a proper dis-

cretization span h; we proceeded by trials (i.e., by successively reducing its value)

and, �nally, we stopped at h = 0.001 (we took the same span for both Erlang

marginal distributions).
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For comparison, we evaluated the cdf F (s1, s2) of (S1, S2) by both methods, for

s1, s2 ∈ {0, 1, 2, ..., 20} . Some values are presented in Table 1, while in Table 2 we

display the maximum absolute error between the exact cdf values and the recursive

ones; note how important are the di�erences between di�erent spans.

On the other hand, the smaller the span is, the longer is the running time and the

needed memory space (we wrote both R and Matlab programs). For example, it

took more than one hour to evaluate the entire discretized cdf for 0 ≤ s1, s2 ≤ 20

when h = 0.001, and we had to optimize the code in order to avoid �out of mem-

ory� messages. As another example, to �nd only the value F (20, 20) , the Matlab

recursion-discretization code with the span h = 0.001 took about 25.14 seconds ,

while the exact integral value was obtained in about 1 second.

Therefore, we can see from this example that even if it involves some numerical in-

tegrals, direct calculation is more e�cient than the classical recursion-discretization

method in what concerns the accuracy of the values and the computing time.
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Table 1. Comparison of exact and recursive CDF values (di�erent spans)
(s1, s2)

CDF (0, 0) (0, 5) (0, 10) (0, 15) (0, 20)

Exact 0.006005 0.099282 0.121663 0.13011 0.133381

Rec. h = 0.001 0.006005 0.099286 0.121665 0.13011 0.133382

Rec. h = 0.01 0.006005 0.099317 0.121676 0.13011 0.133383

Rec. h = 0.1 0.006005 0.099634 0.121792 0.13016 0.133399

(5, 0) (10, 0) (15, 0) (20, 0) (5, 5)

Exact 0.141177 0.170763 0.177207 0.178323 0.326836

Rec. h = 0.001 0.141183 0.170764 0.177207 0.178323 0.326876

Rec. h = 0.01 0.141229 0.170774 0.177207 0.178321 0.327223

Rec. h = 0.1 0.141554 0.170684 0.177013 0.178106 0.330215

(10, 10) (10, 15) (15, 10) (15, 15) (20, 20)

Exact 0.683211 0.812865 0.735079 0.877797 0.955568

Rec. h = 0.001 0.683239 0.812886 0.735102 0.877809 0.955573

Rec. h = 0.01 0.683479 0.813060 0.735285 0.877902 0.955595

Rec. h = 0.1 0.684718 0.813377 0.735876 0.877289 0.954133

Table 2. Maximum absolute error between the exact and recursive CDF values for

di�erent spans
h = 1 h = 0.1 h = 0.01 h = 0.001

max
s1,s2∈{0,1,...,20}

|F − Fdisc.| (s1, s2) 0.143 0.005 0.00056 0.000045

7.6 Conclusions and future work

To conclude, in this paper we obtained some closed-type formulas for the multi-

variate pdf of some compound distributions with Sarmanov counting distribution

and Erlang severity distributions; we also included some dependency between the

claim sizes of a certain type by means of a multivariate Pareto distribution. Based

on the hypergeometric function which is already implemented in existing software,

these formulas seems to be numerically more e�cient than the classical recursion-

discretization approach, avoiding thus the typical discretization errors generated by

the span choice, and the long running time characteristic to the multivariate case.

Therefore, we think that it would be interesting to continue the search for such for-

mulas in the case of compound distributions with continuous severity distributions,

formulas expressed by means of special functions already implemented in mathe-

matical software. Moreover, we also plan to pay special attention to the statistical

inference of this type of compound distributions.
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7.7 Appendix

Proof of Lemma 7.2.1. We write

((n+ 1) k − 1)! (n+ 1) = knk [1× 2× ....× (k − 1)]

×k−n [k (2k) (3k)× ....× (nk)] (n+ 1)

×k−n [(k + 1) (2k + 1)× ....× (nk + 1)]

×k−n [(k + 2) (2k + 2)× ....× (nk + 2)]× ....×

×k−n [(k + (k − 1)) (2k + (k − 1))× ....× (nk + (k − 1))]

= (k − 1)!knk (2× (2 + 1)× ....× (2 + n− 1))

×
[
k + 1

k

(
k + 1

k
+ 1

)
× ....×

(
k + 1

k
+ n− 1

)]
×...×

[
k + (k − 1)

k

(
k + (k − 1)

k
+ 1

)
× ....×

(
k + (k − 1)

k
+ n− 1

)]
,

from where formula (7.2.6) is immediate. To obtain formula (7.2.7), we similarly

write

(nk)! = [(k + 1) (2k + 1)× ....× ((n− 1) k + 1)]

× [2 (k + 2) (2k + 2)× ....× ((n− 1) k + 2)]× ....×

× [(k − 1) (k + (k − 1)) (2k + (k − 1))× ....× ((n− 1) k + (k − 1))]

× [k (2k) (3k)× ....× (nk)]

= knk
[

1

k

(
1

k
+ 1

)
× ....×

(
1

k
+ n− 1

)]
×
[

2

k

(
2

k
+ 1

)
× ....×

(
2

k
+ n− 1

)]
× ....×

×
[
k − 1

k

(
k − 1

k
+ 1

)
× ....×

(
k − 1

k
+ n− 1

)]
n!,

hence the result. �

Proof of Proposition 7.3.1. i) In the Poisson case, based on (7.3.1) and (7.2.6)

we have for x > 0,

(p ∨ h) (x) =
∞∑
n=1

e−µ
µn

n!

βnk

(nk − 1)!
xnk−1e−βx = e−µ−βx

∞∑
n=1

(
µ (βx)k

)n
n! (nk − 1)!

x−1
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= e−µ−βx
µ (βx)k

x

∞∑
n=0

(
µ (βx)k

)n
(n+ 1)! ((n+ 1) k − 1)!

= e−µ−βx
µ (βx)k

x (k − 1)!

∞∑
n=0

(
µ
(
βx
k

)k)n
n!

1(
k+1
k

)
(n)

(
k+2
k

)
(n)
× ...×

(
k+(k−1)

k

)
(n)

(2)(n)

,

and using the de�nition (7.2.5), the formula is immediate. In the negative binomial

case (ii), (7.3.1) and (7.2.6) yields

(p ∨ h) (x) =
qre−βx

Γ (r)

∞∑
n=1

Γ (r + n)

n!
(1− q)n βnk

(nk − 1)!
xnk−1

=
qre−βx

xΓ (r)

∞∑
n=1

(
(1− q) (βx)k

)n
n!

Γ (r + n)

(nk − 1)!

=
qre−βx

x

∞∑
n=0

(
(1− q) (βx)k

)n+1

n!

Γ (r + n+ 1)

(n+ 1) ((n+ 1) k − 1)!Γ (r)

=
qr (1− q) (βx)k e−βx

x

∞∑
n=0

(
(1− q) (βx)k

)n
n! (k − 1)!knk

× r (r + 1)× ...× (r + 1 + n− 1)(
k+1
k

)
(n)

(
k+2
k

)
(n)
× ...×

(
k+(k−1)

k

)
(n)

(2)(n)

,

hence the result. Finally, for the logarithmic distribution, (7.3.1) gives

(p ∨ h) (x) = − e−βx

ln (1− θ)

∞∑
n=1

θn

n

βnkxnk−1

(nk − 1)!
= − e−βxk

x ln (1− θ)

∞∑
n=1

(
θ (βx)k

)n
(nk)!

= − ke−βx

x ln (1− θ)

∞∑
n=0


(
θ (βx)k

)n
(nk)!

− 1

 .
When k = 1 (i.e., exponentially distributed claims) we obtain

(p ∨ h) (x) = − e−βx

x ln (1− θ)
(
eθβx − 1

)
,

otherwise, using (7.2.7), we have

(p ∨ h) (x) = − ke−βx

x ln (1− θ)

∞∑
n=0


(
θ (βx)k

)n
n!knk

1(
1
k

)
(n)

(
2
k

)
(n)
...
(
k−1
k

)
(n)

− 1

 ,
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i.e., the second formula of (iii), which completes the proof. �

Proof of Proposition 7.4.1. This result was proved by Vernic [119] in the case

when both inside-type and between-types independency assumptions hold and the

claim sizes are of discrete type. Considering now the case with only between-types

independence and no inside-type independence, along with continuous claim sizes,

the proof is similar: inserting formula (7.2.8) and φl (x) = fl (x) − El into (7.2.4),

we have

(p ∨ h) (s) =
∞∑

n1=0

...

∞∑
nm=0

(
m∏
l=1

pl (nl)h
(nl)
l (sl)

)

×

(
1 +

m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jk φj1 (nj1)× ...× φjk (njk)

)

=
m∏
l=1

(
∞∑
nl=0

pl (nl)h
(nl)
l (sl)

)
+

m∑
k=2

∑
1≤j1<...<jk≤m

ωj1...jk

×
k∏
l=1

 ∞∑
njl=0

(fjl (njl)− Ejl) pjl (njl)h
(njl)
jl

(sjl)

 m∏
l=k+1

 ∞∑
njl=0

pjl (njl)h
(njl)
jl

(sjl)

 ,

from where, using (7.2.1), we obtain formula (7.4.2). This formula easily yields the

Sarmanov form (7.4.1); to verify that φ̃j is indeed in the form (7.2.11), we proceed

as follows: we denote by Sj the marginal r.v. having the compound distribution

pj ∨ hj, hence

E
[(

(fjpj) ∨ hj
pj ∨ hj

)
(Sj)

]
=

∫ ∞
0

(
(fjpj) ∨ hj
pj ∨ hj

)
(s) (pj ∨ hj) (s) ds =

∫ ∞
0

((fjpj) ∨ hj) (s) ds

=

∫ ∞
0

∞∑
k=0

(fjpj) (k)h
(k)
j (s) ds =

∞∑
k=0

(fjpj) (k)

∫ ∞
0

h
(k)
j (s) ds

=
∞∑
k=0

(fjpj) (k) = E [fj (Nj)] = Ej,

which completes the proof. �

Proof of Proposition 7.4.2. To �nd ρ (S1, S2), according to formula (7.2.12) we

must evaluate

E
[
Sjφ̃j (Sj)

]
=

∫ ∞
0

x

(
(fjpj) ∨ hj
pj ∨ hj

)
(x) (pj ∨ hj) (x) dx− EjE [Sj]

=
∞∑
n=0

(fjpj) (n)

∫ ∞
0

xh
(n)
j (x) dx− EjE [Sj] .

In both cases with independent and dependent claim sizes, it holds that E [Sj] =
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E [Nj]E [Xj] (for the dependent case see Sarabia et al. [106]); also, since h(n)
j is the

pdf of Xj1 + ...+Xjn, we have
∫∞

0
xh

(n)
j (x) dx = nE [Xj] , hence

E
[
Sjφ̃j (Sj)

]
= E [Xj]

∞∑
n=0

n (fjpj) (n)− EjE [Nj]E [Xj]

= E [Xj] (E [Njfj (Nj)]− EjE [Nj]) = E [Xj]E [Njφj (Nj)] .

Therefore,

ρ (S1, S2) = ω

2∏
j=1

E
[
Sjφ̃j (Sj)

]
√
V ar [Sj]

= ρ (N1, N2)
2∏
j=1

E [Xj]

√
V ar [Nj]

V ar [Sj]
.

i) Under the independence assumption, we have V ar [Sj] = E [Nj]V ar [Xj]+E2 [Xj]V ar [Nj] ,

which inserted into (7.4.2) easily yields the corresponding formula.

ii) Under this dependence assumption, Sarabia et al. [106] proved that

V ar [Sj] = E [Nj]V ar [Xj] + E2 [Xj]V ar [Nj] + cjE [Nj (Nj − 1)] ,

and inserting it into (7.4.2) we obtain the last formula. This completes the proof.�

Proof of Lemma 7.4.4. i) When φ (x) = e−δx − LN (δ), we have

E [Nφ (N)] = E
[
Ne−δN

]
− LN (δ)E [N ] .

For N ∼ Po (µ) ,LN (δ) = eµ(e
−δ−1), while

E [Nφ (N)] =
∞∑
n=1

ne−δne−µ
µn

n!
− µeµ(e−δ−1) = µe−µ−δ

∞∑
n=0

(
µe−δ

)n
n!

− µeµ(e−δ−1)

= µ
(
eµ(e

−δ−1)−δ − eµ(e−δ−1)
)
,

from where we immediately obtain the stated formula. For N ∼ NB (r, q) ,LN (δ) =
qr

(1−(1−q)e−δ)
r and

E
[
Ne−δN

]
=

∞∑
n=0

ne−δn
Γ (r + n)

n!Γ (r)
qr (1− q)n = qr

∞∑
n=0

n
Γ (r + n)

n!Γ (r)

(
(1− q) e−δ

)n
=

qr

(1− (1− q) e−δ)r
r (1− q) e−δ

1− (1− q) e−δ
=

r (1− q) qre−δ

(1− (1− q) e−δ)r+1 ,
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hence

E [Nφ (N)] =
r (1− q) qre−δ

(1− (1− q) e−δ)r+1 −
qr−1r (1− q)

(1− (1− q) e−δ)r

=
r (1− q) qr−1

(1− (1− q) e−δ)r
(

qe−δ

1− (1− q) e−δ
− 1

)
=

(
e−δ − 1

)
r (1− q) qr−1

(1− (1− q) e−δ)r+1 ,

which easily yields the stated formula. When N ∼ Log (θ) ,LN (δ) =
ln(1−θe−δ)

ln(1−θ) and

using

E
[
Ne−δN

]
= − 1

ln(1− θ)

∞∑
n=1

ne−δn
θn

n
= − θe−δ

ln(1− θ)

∞∑
n=0

(
e−δθ

)n
= − θe−δ

ln(1− θ)
1

1− e−δθ
,

we have

E [Nφ (N)]√
V ar [N ]

=

(
−θe−δ

(1− θe−δ) ln (1− θ)
+

θ ln
(
1− θe−δ

)
(1− θ) ln2 (1− θ)

)√
(1− θ)2 ln2 (1− θ)
−θ (θ + ln (1− θ))

=
− (1− θ)

√
θ√

− (θ + ln (1− θ))

(
−e−δ

1− θe−δ
+

ln
(
1− θe−δ

)
(1− θ) ln (1− θ)

)
,

from where results the last formula of case (i).

ii) Let now φ (x) = p (x)−
∑

n p
2 (n). If N ∼ Po (µ) we have

E =
∑
n∈N

p2 (n) =
∑
n∈N

e−2µ µ
2n

(n!)2 = e−2µI0 (2µ) ,

while

E [Nφ(N)] =
∞∑
n=1

n

(
e−µ

µn

n!

)2

− µE = µe−2µ

∞∑
n=0

µ2n+1

n! (n+ 1)!
− µe−2µI0 (2µ)

= µe−2µ (I1 (2µ)− I0 (2µ)) ,

which immediately yields the corresponding result. When N ∼ NB (r, q) , we cal-

culate

E =
∑
n∈N

[
Γ (r + n)

Γ (r)

]2
q2r (1− q)2n

(n!)2 = q2r

∞∑
n=0

(1− q)2n

n!

[r (r + 1)× ...× (r + n− 1)]2

1× 2× ...× (1 + n− 1)

= q2r
2F1

(
{r, r}, {1}; (1− q)2) ,
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and

E [Np(N)] = q2r

∞∑
n=1

n(1− q)2n

(
Γ(r + n)

Γ(r)n!

)2

= q2r(1− q)2

∞∑
n=0

(1− q)2n

n!(n+ 1)!

(
Γ(r + n+ 1)

Γ(r)

)2

= r2q2r(1− q)2

∞∑
n=0

(1− q)2n

n!

[(r + 1)× ...× (r + 1 + n− 1)]2

2× ...× (n+ 2− 1)

= r2q2r(1− q)2
2F1

(
{r + 1, r + 1} , {2} ; (1− q)2

)
.

Thus, based on the above, a straightforward calculation yields the stated formula.

For N ∼ Log(θ), we have

E =
∞∑
n=1

p2 (n) =
1

ln2 (1− θ)

∞∑
n=1

θ2n

n2
=

1

ln2 (1− θ)
Li2
(
θ2
)
,

and

E [Np(N)] =
∞∑
n=1

n

ln2(1− θ)
θ2n

n2
=

1

ln2(1− θ)

∞∑
n=1

θ2n

n
= − ln(1− θ2)

ln2(1− θ)
.

It follows that

E [Nφ (N)]√
V ar [N ]

=

(
θLi2 (θ2)

(1− θ) ln3(1− θ)
− ln(1− θ2)

ln2(1− θ)

)√
(1− θ)2 ln2 (1− θ)
−θ (θ + ln (1− θ))

,

which easily completes the proof. �

Proof of Proposition 7.4.6. i) ForN ∼ Po (µ) , we have((fp) ∨ h) (0) = (fp) (0) =

p2 (0) = e−2µ, while for x > 0, using (7.2.6) and (n+ 1)! = (2)(n),

((fp) ∨ h) (x) =
∞∑
n=1

e−2µ µ
2n

(n!)2

βnk

(nk − 1)!
xnk−1e−βx

= e−2µ−βxµ
2 (βx)k

x

∞∑
n=0

(
µ2 (βx)k

)n
[(n+ 1)!]2 ((n+ 1) k − 1)!

= e−2µ−βx µ
2 (βx)k

x (k − 1)!

∞∑
n=0

(
µ2 (βx/k)k

)n
n!

× 1(
k+1
k

)
(n)

(
k+2
k

)
(n)
× ...×

(
k+(k−1)

k

)
(n)

(2)(n) (2)(n)

,

hence the stated formula. In the case (ii) whenN ∼ NB (r, q) , we obtain ((fp) ∨ h) (0) =
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p2 (0) = q2r, and for x > 0, using (7.2.6),

((fp) ∨ h) (x) = q2re−βx
∞∑
n=1

[
Γ (r + n)

Γ (r)

]2
(1− q)2n

(n!)2

βnkxnk−1

(nk − 1)!

=
q2re−βx (1− q)2 (βx)k

x

∞∑
n=0

(
(1− q)2 (βx)k

)n
n!

× [r (r + 1)× ...× (r + 1 + n− 1)]2

(n+ 1) (n+ 1)! ((n+ 1) k − 1)!

=
r2q2re−βx (1− q)2 (βx)k

x (k − 1)!

∞∑
n=0

(
(1− q)2 (βx)k

)n
n!knk

×
(r + 1)(n) (r + 1)(n)(

k+1
k

)
(n)

(
k+2
k

)
(n)
× ...×

(
k+(k−1)

k

)
(n)

(2)(n) (2)(n)

,

which immediately yields the result. To prove the formulas in case (iii) when N ∼
Log (θ) and clearly ((fp) ∨ h) (0) = 0, for x > 0, we use

((fp) ∨ h) (x) =
e−βx

ln2 (1− θ)

∞∑
n=1

θ2n

n2

βnkxnk−1

(nk − 1)!
=
e−βxθ2 (βx)k

x ln2 (1− θ)

∞∑
n=0

(
θ2 (βx)k

)n
(n+ 1)2 ((n+ 1) k − 1)!

=
e−βxθ2 (βx)k

x ln2 (1− θ)

∞∑
n=0

(
θ2 (βx)k

)n
n!

n!

(n+ 1) ((n+ 1) k − 1)!

n!

(n+ 1)!
.

When k = 1, this gives

((fp) ∨ h) (x) =
e−βxθ2βx

x ln2 (1− θ)

∞∑
n=0

(θ2βx)
n

n!

n!

(n+ 1)!

n!

(n+ 1)!

=
θ2e−βxβx

x ln2 (1− θ) 2F2

(
{1, 1} , {2, 2} ; θ2βx

)
,

while for k ≥ 2, we apply formula (7.2.6) and obtain the result. �

Proof of Proposition 7.4.8. i) For N ∼ Po(µ), we get

((fp)) ∨ h) (x) =
∞∑
n=1

e−2µ µ
2n

(n!)2

Γ (α + n)

Γ(α)Γ(n)

xn−1

σn(1 + x/σ)n+α

=
e−2µ

x (1 + x/σ)α

∞∑
n=0

Γ(α + 1 + n)

Γ(α)Γ(n+ 1)

µ2(n+1)

[(n+ 1)!]2

(
x

σ(1 + x/σ)

)n+1

=
αµ2e−2µ

σ (1 + x/σ)1+α

∞∑
n=0

(
µ2x

σ + x

)n
1

n!

(1 + α)(n)

(2)(n)(2)n
,
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hence the result.

ii) For N ∼ NB(r, q), we have

((fp)) ∨ h) (x) =
∞∑
n=1

[
Γ(n+ r)

Γ(r)n!
qr(1− q)n

]2
Γ(α + n)

Γ(α)Γ(n)

xn−1

σn(1 + x/σ)n+α

=
q2r

x
(
1 + x

σ

)α ∞∑
n=0

(1− q)2n+2

n!

(
x

σ
(
1 + x

σ

))n+1 [
Γ(r + 1 + n)

Γ(r)(n+ 1)!

]2
Γ(α + 1 + n)

Γ(α)

=
αr2q2r(1− q)2

σ(1 + x/σ)α+1

∞∑
n=0

(
(1− q)2 x

σ + x

)n
1

n!

(1 + α)(n)(1 + r)(n)(1 + r)(n)

(2)(n)(2)(n)

,

yielding the result. In the case (iii) where N ∼ Log(θ), we write

((fp)) ∨ h) (x) =

[
1

ln(1− θ)

]2 ∞∑
n=1

(
θn

n

)2
Γ(α + n)

Γ(α)Γ(n)

xn−1

σn(1 + x/σ)n+α

=
1

ln2(1− θ)
1

x(1 + x/σ)α

∞∑
n=0

θ2n+2

(n+ 1)2

Γ(α + n+ 1)

Γ(α)Γ(n+ 1)

(
x

σ(1 + x/σ)

)n+1

=
1

ln2(1− θ)
αθ2

σ(1 + x/σ)α+1

∞∑
n=0

(
θ2x

σ + x

)n
1

n!

(α + 1)(n)

(n+ 1)2
,

which, using 1
n+1

= n!
(n+1)!

, leads to the stated formula. �



Appendix A

Copula Models

A.1 Gumbel Copula

The Gumbel copula is an Archimedean copula with generator ψθ(t) = (− ln t)θ and

distribution function de�ned as follows

Qθ(v1, v2) = e
−
[

(− ln v1)θ+(− ln v2)θ

] 1
θ

,

where θ ≥ 1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is given by

∂Qθ(v1, v2)

∂v1

=
1

v1

(− ln v1)θ−1
[
(− ln v1)θ + (− ln v2)θ

] 1
θ−1
e
−
[

(− ln v1)θ+(− ln v2)θ

] 1
θ

. (A.1.1)

By di�erentiating (A.1.1) with respect to v2, we get the joint density copula qθ(v1, v2)

de�ned below

qθ(v1, v2) =
(− ln v1)θ−1(− ln v2)θ−1

v1v2

(
[(− ln v1)θ + (− ln v2)θ]

2
θ
−2

+(θ − 1)[(− ln v1)θ + (− ln v2)θ]
1
θ
−2
)
e
−
[

(− ln v1)θ+(− ln v2)θ

] 1
θ

.
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A.2 Frank Copula

The Frank copula is an Archimedean copula with generator ψθ(t) = − ln
(
e−θt−1
e−θ−1

)
and distribution function given by

Qθ(v1, v2) =
−1

θ
ln
(

1 +
(e−θv1 − 1)(e−θv2 − 1)

e−θ − 1

)
,

where θ 6= 1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is de�ned as follows

∂Qθ(v1, v2)

∂v1

=
e−θv1(e−θv2 − 1)

(e−θ − 1) + (e−θv1 − 1)(e−θv2 − 1)
. (A.2.1)

By di�erentiating (A.2.1) with respect to v2, the joint density copula qθ(v1, v2) can

be expressed as follows

qθ(v1, v2) =
θ(1− e−θ)e−θ(v1+v2)[

(1− e−θ)− (1− e−θv1)(1− e−θv2)
]2 .

A.3 Joe copula

The Joe copula is an Archimedean copula with generator ψθ(t) = − ln(1− (1− t)θ)
and distribution function de�ned as follows

Qθ(v1, v2) = 1−
[
(1− v1)θ + (1− v2)θ − (1− v1)θ(1− v2)θ

] 1
θ
,

where θ ≥ 1 is the dependence parameter.

The partial derivative of Qθ with respect to v1 is given by

∂Qθ(v1, v2)

∂v1

= (1− v1)θ−1(1− (1− v2)θ)
(

(1− v1)θ + (1− v2)θ − (1− v1)θ(1− v2)θ
) 1
θ
−1

.(A.3.1)

By di�erentiating (A.3.1) with respect to v2, the joint density copula can be written

as

qθ(v1, v2) = (1− v1)θ−1(1− v2)θ−1
(
θ − 1 + (1− v1)θ + (1− v2)θ − (1− v1)θ(1− v2)θ

)
×(

(1− v1)θ + (1− v2)θ − (1− v1)θ(1− v2)θ
) 1
θ
−2

.
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A.4 Clayton copula

The Clayton copula is an Archimedean copula with generator ψθ(t) = 1
θ

(
t−θ − 1

)
and distribution function de�ned as follows

Qθ(v1, v2) =
[
max

(
u−θ + v−θ − 1; 0

)]− 1
θ

:=
(
u−θ + v−θ − 1; 0

)− 1
θ ,

where θ ∈ [−1,∞) \ {0} is the dependence parameter.

The partial derivative of Qθ with respect to v1 is given by

∂Qθ(v1, v2)

∂v1

= v
−(θ+1)
1

(
v−θ1 + v−θ2 − 1

)− 1
θ
−1
. (A.4.1)

By di�erentiating (A.4.1) with respect to v2, the joint density copula can be ex-

pressed as follows

qθ(v1, v2) = (θ + 1)(v1v2)−(θ+1)
(
v−θ1 + v−θ2 − 1

)− 1
θ
−2
.

A.5 Student Copula

The distribution function of the Student copula with dependence parameter θ ∈
(−1, 1) and m degrees of freedom is de�ned as follows

Qθ,m(v1, v2) = tθ,m(t−1
m (v1), t−1

m (v2))

=

∫ t−1
m (v1)

−∞

∫ t−1
m (v2)

−∞

1

2π(1− θ2)1/2

[
1 +

s2 − 2θst+ t2

m(1− θ2)

]−(m+2)/2

ds dt.

The partial derivative with respect to v1 is given by

∂Qθ,m(v1, v2)

∂v1

= tm+1

[(
t−1
m (v2)− θt−1

m (v1)
)/(√

(m+ (t−1
m (v1))2)(1− θ2)

m+ 1

)]
.(A.5.1)

By di�erentiating (A.5.1) with respect to v2, we get the joint density copula qθ(v1, v2)

de�ned below

qθ,m(v1, v2) =
1

2π
√

1− θ2

1

dt(t−1
m (v1)) dt(t−1

m (v2))

(
1 +

t−1
m (v1)

2
+ t−1

m (v2)
2 − 2θt−1

m (v1)t−1
m (v2)

m(1− θ2)

)−m+2
2

,

where dt(t−1
m (vi)) =

Γ(m+1
2

)

Γ(m
2

)
√
πm

(
1 + t−1

m (vi)
2

m

)−m+1
2

for i = 1, 2.
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