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Abstract

The method of instrumental variable (referred to as Mendelian randomization when the instrument is a genetic variant) has
been initially developed to infer on a causal effect of a risk factor on some outcome of interest in a linear model. Adapting
this method to nonlinear models, however, is known to be problematic. In this paper, we consider the simple case when the
genetic instrument, the risk factor, and the outcome are all binary. We compare via simulations the usual two-stages
estimate of a causal odds-ratio and its adjusted version with a recently proposed estimate in the context of a clinical trial
with noncompliance. In contrast to the former two, we confirm that the latter is (under some conditions) a valid estimate of
a causal odds-ratio defined in the subpopulation of compliers, and we propose its use in the context of Mendelian
randomization. By analogy with a clinical trial with noncompliance, compliers are those individuals for whom the presence/
absence of the risk factor X is determined by the presence/absence of the genetic variant Z (i.e., for whom we would
observe X = Z whatever the alleles randomly received at conception). We also recall and illustrate the huge variability of
instrumental variable estimates when the instrument is weak (i.e., with a low percentage of compliers, as is typically the case
with genetic instruments for which this proportion is frequently smaller than 10%) where the inter-quartile range of our
simulated estimates was up to 18 times higher compared to a conventional (e.g., intention-to-treat) approach. We thus
conclude that the need to find stronger instruments is probably as important as the need to develop a methodology
allowing to consistently estimate a causal odds-ratio.
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Introduction

The method of instrumental variable has been introduced

nearly one century ago in econometrics [1]. It can be used for

estimating a causal effect of a risk factor (predictor, phenotype) X

on some outcome Y in observational studies in epidemiology,

where unknown and unmeasured confounding effects U are often

unavoidable. It can also be used to correct for noncompliance in

clinical trials [3]. The method uses an ‘‘instrument’’ Z which needs

to be (i) correlated with X; (ii) independent from U; and (iii)

conditionally independent from Y given X and U [3,4], as

illustrated in Figure 1. In general, conditions (ii) and (iii) are the

problematic ones, since they cannot be verified from the data and

should be justified based on subject-matter knowledge. Examples

of instruments are the random group assignment in a clinical trial,

or a genetic variant associated to the risk factor of interest in an

observational study. In the latter case, the method of instrumental

variable is often referred to as Mendelian randomization [5].

The method of instrumental variable has been devised to

provide a consistent estimate of a causal effect of X on Y when the

relationship is linear, and thus typically applies when the outcome

is continuous. It also applies to a binary outcome if the causal

effect can be expressed as a risk difference. For a binary outcome,

however, a relationship is usually described via an odds-ratio, not a

risk difference. Some adaptation of the method of instrumental

variable have been proposed to estimate a causal odds-ratio, such

as the downloadable qvf function [6] implemented in Stata (Stata

Corp, College Station, Texas), or its adjusted version proposed by

Nagelkerke et al. [7] and by Palmer et al. [8]. However, it is not

yet totally clear in which situations and to which extent these

adaptations are valid. In their review, Bochud and Rousson [9]

identified 37 observational studies which have used the method of

Mendelian randomization between 2004 and 2010, where 23 (i.e.

about 60%) considered a binary outcome. They concluded their

review stating that ‘‘Considering the clear interest for epidemiol-

ogists to apply this concept for dichotomous outcomes such as

diseases, it would be important, and even urgent, to clarify the

issues of the validity of the instrumental variable approach in this

context’’. Some recent clarification in this regard have been made

in Didelez, Meng and Sheehan [10], in Vansteelandt et al. [11]

and in Palmer et al. [12].

One conclusion of Palmer et al. [12] was that the above

adaptations of the method of instrumental variable should not be

used for estimating a causal odds-ratio when Z, X and Y are all

binary. However, another estimate of a causal odds-ratio, which

also uses an instrumental variable, has recently been proposed by

Lui and Chang [13] in the context of a clinical trial with
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noncompliance. In the present paper, we compare via simulations

the usual qvf method and its adjusted version with the method of

Lui and Chang [13], confirming that the latter method provides

an approximately unbiased estimate of a causal odds-ratio defined

in the subpopulation of ‘‘compliers’’, while illustrating the bias of

the former two methods. Thus, we suggest to use the latter method

rather than the former two methods in the context of a Mendelian

randomization when the genetic instrument Z, the risk factor X

and the outcome Y are all binary, and we illustrate its use with an

applied example.

The paper is organized as follows. In the Methods section, we

recall how the method of instrumental variable can be used to

estimate a causal risk difference, and we present the qvf method

and its adjusted version for estimating a causal odds-ratio, as well

as the method of Lui and Chang [13] which is derived in some

details. Our simulations are presented in the Results section, where

we also give an example and provide further comparison with

other possible estimates of a causal odds-ratio, in particular the

logistic structural mean model estimate proposed by Vansteelandt

and Goetghebeur [14]. Some concluding remarks take place in the

Discussion section.

Methods

Estimating a Causal Risk Difference
In this subsection, we recall how it is possible to estimate a

causal risk difference using the method of instrumental variable.

Let X be a risk factor, Y an outcome, and Z an instrument

satisfying the conditions (i), (ii) and (iii) outlined in the Introduc-

tion. In this paper, we consider the case where X, Y and Z are all

binary (with possible values 0 and 1). Although we shall later

switch to the problem of Mendelian randomization, we first

consider the case of a randomized clinical trial comparing two

treatments with respect to a binary outcome (for which the method

of Lui and Chang [13] has been originally derived). There Z

denotes the random group assignment, while X denotes the

treatment which is actually taken by the participants. The

variables X and Z may differ for some individuals if noncompli-

ance occurs. In what follows, we consider a sample of n individuals,

where nijk denotes the number of individuals with Z~i, X~j and

Y~k for i,j,k~0,1. We thus have the situation presented in

Table 1.

We first review in this subsection how it is possible to estimate

the causal effect of the treatment X on the outcome Y defined via a

risk difference. A naive estimate, in what follows the ‘‘as-treated’’

estimate, would simply compare the empirical proportions of

Y~1 in the groups X~1 and X~0 as follows:

bddAT~
n011zn111

n010zn110zn011zn111

{
n001zn101

n000zn100zn001zn101

:

On the other hand, another well-known estimate, the ‘‘inten-

tion-to-treat’’ estimate, compares the empirical proportions of

Y~1 in the groups Z~1 and Z~0 as follows:

bddITT~
n101zn111

n100zn110zn101zn111
{

n001zn011

n000zn010zn001zn011
:

Note that bddAT and bddITT can also be defined as the estimated

slopes in a linear regression of Y on X, respectively of Y on Z. On

the other hand, the ‘‘instrumental variable’’ estimate is a ratio of

two slope estimates, from a linear regression of Y on Z and from a

linear regression of X on Z. The numerator is therefore the

intention-to-treat estimate, while the denominator compares the

empirical proportion of X~1 in the groups Z~1 and Z~0. The

instrumental variable estimate is thus given by

bddIV~
bddITT

n110zn111

n100zn110zn101zn111
{

n010zn011

n000zn010zn001zn011

:

To see which population parameter is hence estimated, we shall

distinguish among four categories of individuals, as done in

Angrist, Imbens and Rubin [15]. The ‘‘compliers’’ are those

individuals for whom a random assignment Z~0 would imply

X~0 and a random assignment Z~1 would imply X~1. Non-

compliers include the ‘‘always-takers’’ (for whom X~1 whatever

the value of Z), the ‘‘never-takers’’ (for whom X~0 whatever the

value of Z) and the ‘‘defiers’’ (for whom Z~0 would imply X~1
and Z~1 would imply X~0). Given the data of a clinical trial,

however, it is not possible to tell which of these four categories an

individual belongs to, since one cannot infer from the data what

he/she would have done if he/she would have been assigned to

the other group. In the absence of noncompliance, the three above

estimates are identical. When noncompliance occurs, however,

these estimates usually differ from each other and converge (as

sample size increases) towards different population parameters. Let

vC , vA, vN and vD be the proportion of compliers, always-takers,

never-takers and defiers in the target population (such that

vCzvAzvNzvD~1). Let p0C , p0A, p0N and p0D be the

Figure 1. Directed acyclic graph (DAG) representing condition-
al independencies (by the absence of arrows) between the
genetic instrument Z, the risk factor X, the outcome Y and the
confounders U.
doi:10.1371/journal.pone.0035951.g001

Table 1. Allocation of the n individuals of a sample according
to Z, X and Y.

Z~0 Z~1

X~0 X~1 X~0 X~1

Y~0 n000 n010 n100 n110

Y~1 n001 n011 n101 n111

doi:10.1371/journal.pone.0035951.t001

Mendelian Randomization with All Binary Data
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proportions of Y~1 for compliers, always-takers, never-takers and

defiers in the group Z~0, and similarly let p1C , p1A, p1N and p1D

be the proportions of Y~1 in the group Z~1. Finally, let r be

the proportion of individuals with Z~1 (e.g., r~0:5 in a clinical

trial comparing two groups of equal size). Using condition (ii) in

the Introduction section, one can easily derive the following results

(in a similar spirit as was done e.g. in Greenland [2]):

NThe estimate bddAT converges towards population parameter

dAT~
rvCp1CzrvAp1Az(1{r)vAp0Az(1{r)vDp0D

rvCzvAz(1{r)vD

{

(1{r)vCp0Cz(1{r)vNp0NzrvNp1NzrvDp1D

(1{r)vCzvNzrvD

:

We here compare a group formed of compliers, always-takers and

defiers with a group formed of compliers, never-takers and defiers.

Since always-takers may have quite different characteristics than

never-takers, it is not obvious to provide this parameter with any

useful interpretation.

NThe estimate bddITT converges towards population parameter

dITT~vC(p1C{p0C)zvA(p1A{p0A)z

vN (p1N{p0N )zvD(p1D{p0D):

This parameter can be interpreted as the average causal effect of

Z on Y which can be interesting to assess the effect of a public

health policy, noncompliance in the sample mimicking the fact

that not every person in the target population will strictly follow

the official recommendations, for example.

NThe estimate bddIV converges towards population parameter

dIV~

vC(p1C{p0C)zvA(p1A{p0A)zvN (p1N{p0N )zvD(p1D{p0D)

vC{vD

:

To calculate the denominator, note that the empirical

proportion of X~1 in the group Z~1 is an estimate of

vCzvA, while the empirical proportion of X~1 in the group

Z~0 is an estimate of vDzvA, the difference being hence

vC{vD.

To get a causal interpretation for the latter estimate, note first

that condition (iii) in the Introduction section implies p1A~p0A

and p1N~p0N (the outcome Y for always-takers and never-takers

is not influenced in any respect by the value of Z), whereas

condition (i) ensures that its denominator does not converge

towards zero. One may then make the additional assumption that

(A1) there are no defiers ( v D~0):

In the terminology of Angrist, Imbens and Rubin [15], (A1) is

the ‘‘monotonicity assumption’’. Using this additional assumption,

the estimate bddIV converges thus towards population parameter

d~p1C{p0C ,

which can be interpreted as the average causal effect of X on Y in

the subpopulation of compliers [15].

In the context of a Mendelian randomization, the instrument Z

will be a genetic variant associated to a risk factor X, and the

causal parameter d which is estimated using the method of

instrumental variable can be interpreted as the risk difference that

one would get if one could intervene and change the risk factor X

from 0 to 1 in the subpopulation of compliers. By analogy with a

clinical trial with noncompliance, a complier is an individual for

whom the presence/absence of the risk factor X is determined by

the presence/absence of the genetic variant Z, i.e. for whom we

would observe X~Z whatever the alleles randomly received at

conception. This definition of a complier actually refers to a causal

link between Z and X and we shall also make this assumption in

what follows.

Estimating a Causal Odds-ratio
It is however more common to define the effect of a binary risk

factor X on a binary outcome Y as an odds-ratio rather than a risk

difference. Restricting our attention to the subpopulation of

compliers, the parameter of interest would thus become

y~
p1C(1{p0C)

p0C(1{p1C)
:

Again, in the context of a Mendelian randomization approach,

this causal parameter y can be interpreted as the odds-ratio which

one would get if one could intervene and change X from 0 to 1 in

the subpopulation of compliers. The naive, or as-treated, estimate

of y could be expressed as the odds of having Y~1 in the group

X~1 divided by the odds of having Y~1 in the group X~0,

yielding

byyAT~
(n011zn111)(n000zn100)

(n001zn101)(n010zn110)
,

while the intention-to-treat could be expressed as the odds of

having Y~1 in the group Z~1 divided by the odds of having

Y~1 in the group Z~0, yielding

byyITT~
(n101zn111)(n000zn010)

(n001zn011)(n100zn110)
:

In general, both estimates are not consistent for y if

noncompliance occurs. On the other hand, estimating the

parameter y with the classical method of instrumental variable

is not obvious. In the qvf function of Stata, one estimates log (y) as

the ratio of two slope estimates, from a logistic regression of Y on Z

and from a linear regression of X on Z, yielding

Mendelian Randomization with All Binary Data
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byyIV~ exp
log byyITT

� �
n110zn111

n100zn110zn101zn111
{

n010zn011
n000zn010zn001zn011

0
@

1
A:

Alternatively, log (byyIV ) is the estimated slope in a ‘‘second

stage’’ logistic regression of Y on , where represents the fitted

values calculated from a ‘‘first stage’’ linear regression of X on Z,

that is ~(n110zn111)=(n100zn110zn101zn111) for those individ-

uals with Z~1 and ~(n010zn011)=(n000zn010zn001zn011) for

those individuals with Z~0. Thus, the byyIV estimate is sometimes

referred to as a two-stages estimate. Nagelkerke et al. [7], as well as

Palmer et al. [8], proposed to improve this estimate by considering

in the second stage a logistic regression with Y as the response and

with two explanatory variables: and R~X{ (or equivalently, X

and R). The estimated slope associated to (respectively to X) in this

second stage regression is another estimate of log (y)9, yielding by

exponentiation the adjusted instrumental variable estimate, in what

follows byyADJ . In the econometrics literature, this estimate is known

as the ‘‘control function estimate’’. Note that Palmer et al. [8]

considered this estimate with a continuous X in the context of

Mendelian randomization. Nagelkerke et al. [7] used this estimatebyyADJ with a binary X in the context of a clinical trial with

noncompliance, and interpreted it as an estimate of a causal odds-

ratio in the subpopulation of the compliers, i.e. as an estimate of y.

There is however another method to estimate this causal odds-

ratio y, as recently proposed by Lui and Chang [13] and as

explained in what follows. While it is not possible to know for each

person who is a complier, an always-taker or a never-taker, note

that the n00~n000zn001 individuals in the first column from

Table 1 include compliers and never-takers, the n01~n010zn011

individuals in the second column are always-takers, the

n10~n100zn101 individuals in the third column are never-takers,

and the n11~n110zn111 individuals in the last column include

compliers and always-takers (recall that we assume no defiers).

Since Z is an instrumental variable (which is independent from all

possible confounding variables), we expect the same proportions of

compliers, always-takers and never-takers in both groups (Z~0
and Z~1). In the group Z~0, it is hence possible to estimate vA

without bias using bvvA~n01=(n00zn01). In the group Z~1, it is

possible to estimate vN without bias using bvvN~n10=(n10zn11).
An unbiased estimate of vC~1{vA{vN is then obtained asbvvC~1{bvvA{bvvNo. Let p1CA be the proportion of Y~1 expected

in the last column (Z~X~1) which is equal to

p1CA~
vCp1CzvAp1A

vCzvA

:

This implies

p1C~
(vCzvA)p1CA{vAp1A

vC

:

Similarly, let p0CN be the proportion of Y~1 expected in the

first column (Z~X~0) which is equal to

p0CN~
vCp0CzvNp0N

vCzvN

:

This implies

p0C~
(vCzvN )p0CN{vNp0N

vC

:

It is then possible to estimate without bias p1CA and p0CN using

the data from the last and the first column, respectively yieldingbpp1CA~n111=n11 and bpp0CN~n001=n00. It is also possible to estimate

without bias p1A and p0N using the data from the second and the

third columns, respectively yielding bpp1A~n011=n01 andbpp0N~n101=n10. It follows that consistent estimates of p1C and

p0C are given by

bpp1C~
(bvvCzbvvA)bpp1CA{bvvAbpp1AbvvC

and by

bpp0C~
(bvvCzbvvN )bpp0CN{bvvNbpp0NbvvC

,

respectively. A consistent estimate of y is then given by

byyLC~
bpp1C(1{bpp0C)

bpp0C(1{bpp1C)
,

which can also be expressed as

byyLC

~
(n00zn01)n111{(n10zn11)n011f g (n10zn11)n000{(n00zn01)n100f g

(n00zn01)n110{(n10zn11)n010f g (n10zn11)n001{(n00zn01)n101f g :

This estimate has been proposed by Lui and Chang [13],

without providing all the details about the intermediate estimatesbvvC , bvvA, bvvN , bpp1A and bpp0N given here, which also provide useful

information as illustrated in our example below. In the special case

where noncompliance occurs only in one group, this estimate

coincides with the estimate proposed by Sommer and Zeger [16].

In a more general context involving a multinomial outcome, Baker

[17] showed that the estimates bpp1C and bpp0C above are the

maximum likelihood estimates of p1C and p0C if they are lying

between 0 and 1.

Results

Simulations
In this subsection, we present the results of simulations which

were run to assess the performance of byyIV , byyADJ and byyLC as

estimates of the causal parameter y above. Estimates byyAT andbyyITT were also included in the comparison. In our simulation

design, we considered all possible combinations of the following

five factors:

1. Proportion of compliers (low, middle, high)

? The proportion of compliers was set to vC~0:1,0:5 or 0.9,

while we took equal proportions of always-takers and never-takers,

i.e. vA~vN~(1{vC)=2.

Mendelian Randomization with All Binary Data
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2. Baseline prevalence (small, medium)

? The proportion of Y~1 for compliers in the group Z~0 was

set to p0C~0:1 or 0.5.

3. Odds-ratio (no effect, medium effect, large effect)

? The true odds ratio was set to y~1,3 or 9. Thus, we took the

proportion of Y~1 for compliers in the group Z~1 as

p1C~0:1,0:25 or 0.5 when p0C~0:1, and as p1C~0:5,0:75 or

0.9 when p0C~0:5.

4. Confounding effect (small confounding, high confounding)

? The proportions of Y~1 for always-takers was chosen such that

the odds was 1.5 or 3 times higher than for compliers, while the

proportion of Y~1 for never-takers was set such that the odds was

1.5 times higher than for compliers. Thus, we took p0N and p1A

such that p0N=(1{p0N )~1:5:p0C=(1{p0C) and p1A=(1{p1A)~
1:5:p1C=(1{p1C), respectively p1A=(1{p1A)~3:p1C=(1{p1C).
This yielded p0N~1=7 when p0C~0:1, p0N~0:6 when

p0C~0:5, p1A~1=7 or 0.25 when p1C~0:1, p1A~1=3 or 0.5

when p1C~0:25, p1A~0:6 or 0.75 when p1C~0:5, p1A~9=11 or

0.9 when p1C~0:75 and p1A~27=29 or 27/28 when p1C~0:9.

5. Total sample size (small, medium)

? Two sample sizes were used, namely n~200 and n~2000,

where n denotes the total sample size over both groups Z~0 and

Z~1, the proportion of individuals with Z~1 being set to r~0:5
throughout.

For each of these 72 possible combinations of levels, we

repeated 2000 simulations. In each replication, the five estimates

have been calculated. All simulations were performed using R

(version 2.11.1) [18].

We encountered the following technical problems when

calculating byyLC . When the true proportion of compliers was low

(vC~0:1), the estimated proportion of compliers bvvC was smaller

than zero in 7.7% of the replications when n~200 (the problem

never happened when n~2000). In those cases, we set byyLC~1
since no effect can be estimated without compliers. Another

technical problem was that bpp0C and bpp1C were sometimes outside

the range of possible values (0.1). In those cases, values smaller

than 0 were set to 0 and values larger than 1 were set to 1, yielding

estimated odds-ratios of zero or plus infinity. This situation arose

in about 60% of the replications when vC~0:19 and n~200.

This problem remained in about 15% of the replications when

increasing the sample size to n~2000, but disappeared when

increasing the proportion of compliers to vC~0:5.

In each replication, the F-statistic from the first stage regression

in the instrumental variable approach (the linear regression of X

on Z) was also calculated. According to Stock, Wright and Yogo

[19], a value of Fv10 suggests a weak instrument, for which the

validity of the inference is not guaranteed. For vC~0:1 and

n~200, this happened in 95% of the replications. Since the

method of instrumental variable is not valid in that setting, we

shall not present those results in what follows, leaving us with 60

combinations of levels (this also removed most of the technical

problems mentioned above). Note that we still had a value of

Fv10 in about 10% of the replications for vC~0:1 and n~2000,

but these replications were kept to avoid a possible selection bias,

as explained in Burgess and Thompson [20]. Results are shown in

Table 2. To get a robust estimate of the bias and to cope with the

estimated odds-ratios of zero or infinity, we report in this table, for

each combination of levels and for each estimate, the median of

2000 estimates divided by the true odds-ratio (i.e. median (byy)=y).

This ratio should be approximately 1 for an unbiased method. In

addition, Spearman correlations among the three estimates of

main interest byyIV , byyADJ and byyLC calculated over the 2000

estimates are also reported.

As is well known, the intention-to-treat estimate consistently

underestimated the true odds-ratio (even in some situations with

90% of compliers), whereas the as-treated estimate might be

biased in both directions, also in cases with no effect. Among the

three estimates of main interest, we first notice that byyIV and byyADJ

did not differ much, byyADJ being usually slightly higher than byyIV

and the correlation between the two estimates being most of the

time above 0.98. Both methods were often biased, sometimes

downwards and sometimes upwards. The bias was usually larger

with higher odds ratios, larger confounding effects and a smaller

proportion of compliers. Importantly, the situation did not

improve with a larger sample size. By contrast, the bias of thebyyLC estimate was pretty small, the ratio above being comprised

between 0.95 and 1.19 in all considered situations, and the bias

would still be smaller by further increasing the sample size.

Besides the bias, we also investigated the variability of the

estimates. Figure 2 shows how the inter-quartile range (IQR)

calculated from the 2000 estimates of the log odds-ratios depends

on the proportion of compliers in the case n~2000 and for

different combinations of levels. For this, additional simulations

have been carried out with vC~0:2,0:3 and 0.4 (in addition to

vC~0:1,0:5 and 0.9). The IQR for the different estimates were

divided by the IQR achieved by byyAT , which is the reference

method in this figure (would be represented by a horizontal line

drawn at the value 1). The three instrumental variable approaches

showed a much higher variability than the as-treated and the

intention-to-treat estimates, especially when the proportion of

compliers was small. For vC~0:1, the IQR of byyIV and byyADJ were

up to 10 times higher than the IQR of byyAT , whereas the IQR ofbyyLC was up to 18 times higher in the case of a small prevalence.

For a medium baseline prevalence, the IQR of the three estimatesbyyIV , byyADJ and byyLC became more comparable with each other.

Increasing the level of the odds-ratio or of the confounding effect

did not change the results much. The complete results on the IQR

for the different estimates are available from the first author upon

request.

Figure 3 illustrates both the bias and the variability of the

different methods with the boxplots of the 2000 estimates of the log

odds-ratios calculated under various settings in the case n~2000
and vC~0:5. One can retrieve our conclusions above. We also

performed simulations using other combinations of levels, e.g.,

where the proportion of Y~1 was taken higher for compliers than

for always-takers and never-takers, and similar conclusions could

be drawn (apart from the direction of the bias for byyAT , byyIV andbyyADJ ).

Example
In this subsection, we illustrate how the method of Lui and

Chang [13] can be used in a context of Mendelian randomization

using a partly fictitious example. We consider the effect of alcohol

consumption X on hypertension Y. In what follows, X~1 refers to

individuals who drink alcohol, and Y~1 refers to people with

hypertension. It is well known that the aldehyde dehydrogenase 2

(ALDH2) genotype is strongly associated with alcohol consumption

since it encodes an enzyme involved in alcohol metabolism and

this relationship might reasonably assumed to be causal [21]. The

presence of a protective allele in one of the markers of the ALDH2

gene has been used as an instrument Z, since it is supposed to be

responsible for a decrease in alcohol consumption. In what follows,

Z~0 refers to individuals with this protective allele. In this

context, a complier is an individual whose phenotype would be

determined by his/her genotype (i.e. no alcohol consumption if the

protective allele were present (Z~X~0), and consumption if the

protective allele were absent (Z~X~1)). In contrast, an always-
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Table 2. Summary results of 2000 simulations under various situations for each of the five methods.

design bias (median (byy)=y) Spearman correlations

y p0C p1C p0N p1A vzC n byyAT
byyITT

byyIV
byyADJ

byyLC
byyIV {byyADJ

byyIV {byyLC
byyADJ {byyLC

1 0.10 0.10 0.14 0.14 0.50 200 1.006 1.000 1.000 0.999 1.000 1.00 0.97 0.97

3 0.10 0.25 0.14 0.33 0.50 200 1.003 0.531 0.849 0.896 1.033 1.00 0.91 0.91

9 0.10 0.50 0.14 0.60 0.50 200 1.007 0.280 0.707 0.851 1.071 0.99 0.85 0.86

1 0.10 0.10 0.14 0.25 0.50 200 1.533 0.995 0.990 1.003 0.997 1.00 0.96 0.96

3 0.10 0.25 0.14 0.50 0.50 200 1.444 0.494 0.725 0.776 0.996 0.99 0.91 0.91

9 0.10 0.50 0.14 0.75 0.50 200 1.369 0.264 0.639 0.723 1.078 0.99 0.85 0.86

1 0.50 0.50 0.60 0.60 0.50 200 1.008 1.001 1.002 1.004 1.002 1.00 1.00 1.00

3 0.50 0.75 0.60 0.82 0.50 200 0.993 0.585 1.043 1.067 1.020 1.00 0.99 0.99

9 0.50 0.90 0.60 0.93 0.50 200 0.991 0.319 0.940 1.257 1.027 0.98 0.88 0.89

1 0.50 0.50 0.60 0.75 0.50 200 1.364 0.987 0.972 0.966 0.972 1.00 1.00 1.00

3 0.50 0.75 0.60 0.90 0.50 200 1.281 0.602 1.091 1.136 1.029 1.00 0.99 0.99

9 0.50 0.90 0.60 0.96 0.50 200 1.278 0.334 0.999 1.480 1.076 0.97 0.89 0.92

1 0.10 0.10 0.14 0.14 0.90 200 0.990 0.961 0.956 0.955 0.952 0.99 1.00 0.99

3 0.10 0.25 0.14 0.33 0.90 200 1.019 0.870 0.971 0.988 1.025 0.98 0.97 0.97

9 0.10 0.50 0.14 0.60 0.90 200 1.011 0.738 0.908 0.957 1.023 0.91 0.95 0.90

1 0.10 0.10 0.14 0.25 0.90 200 1.137 1.005 1.006 1.009 1.006 0.99 1.00 0.98

3 0.10 0.25 0.14 0.50 0.90 200 1.103 0.824 0.912 0.946 1.007 0.96 0.97 0.95

9 0.10 0.50 0.14 0.75 0.90 200 1.083 0.708 0.879 0.876 1.019 0.82 0.95 0.82

1 0.50 0.50 0.60 0.60 0.90 200 1.003 1.001 1.001 1.001 1.001 0.99 1.00 0.99

3 0.50 0.75 0.60 0.82 0.90 200 1.017 0.903 1.015 1.009 1.009 0.98 1.00 0.97

9 0.50 0.90 0.60 0.93 0.90 200 1.014 0.790 0.978 1.041 1.012 0.96 0.97 0.95

1 0.50 0.50 0.60 0.75 0.90 200 1.069 0.999 0.999 0.996 0.999 0.98 1.00 0.98

3 0.50 0.75 0.60 0.90 0.90 200 1.043 0.912 1.014 1.011 1.005 0.98 1.00 0.98

9 0.50 0.90 0.60 0.96 0.90 200 1.067 0.804 1.003 1.063 1.032 0.95 0.97 0.94

1 0.10 0.10 0.14 0.14 0.10 2000 0.998 1.000 1.002 1.002 1.000 1.00 0.94 0.94

3 0.10 0.25 0.14 0.33 0.10 2000 0.992 0.364 0.792 0.825 1.123 1.00 0.88 0.88

9 0.10 0.50 0.14 0.60 0.10 2000 0.992 0.132 0.603 0.712 1.086 1.00 0.82 0.82

1 0.10 0.10 0.14 0.25 0.10 2000 1.908 1.001 1.007 1.010 1.000 1.00 0.93 0.93

3 0.10 0.25 0.14 0.50 0.10 2000 1.890 0.358 0.671 0.678 1.000 1.00 0.90 0.90

9 0.10 0.50 0.14 0.75 0.10 2000 1.821 0.131 0.572 0.570 1.185 1.00 0.79 0.79

1 0.50 0.50 0.60 0.60 0.10 2000 0.998 0.996 0.958 0.958 0.958 1.00 1.00 1.00

3 0.50 0.75 0.60 0.82 0.10 2000 0.996 0.375 1.069 1.124 1.048 1.00 0.98 0.98

9 0.50 0.90 0.60 0.93 0.10 2000 0.999 0.139 1.019 1.531 1.146 1.00 0.83 0.84

1 0.50 0.50 0.60 0.75 0.10 2000 1.834 1.000 1.002 0.998 1.002 1.00 1.00 1.00

3 0.50 0.75 0.60 0.90 0.10 2000 1.787 0.381 1.249 1.418 1.084 1.00 0.98 0.98

9 0.50 0.90 0.60 0.96 0.10 2000 1.747 0.140 1.099 2.225 1.122 1.00 0.84 0.84

1 0.10 0.10 0.14 0.14 0.50 2000 1.004 1.002 1.005 1.005 1.006 1.00 1.00 1.00

3 0.10 0.25 0.14 0.33 0.50 2000 0.998 0.530 0.843 0.877 1.003 1.00 0.94 0.94

9 0.10 0.50 0.14 0.60 0.50 2000 0.986 0.280 0.705 0.846 1.015 0.99 0.89 0.90

1 0.10 0.10 0.14 0.25 0.50 2000 1.534 1.001 1.003 1.006 1.004 1.00 1.00 1.00

3 0.10 0.25 0.14 0.50 0.50 2000 1.444 0.501 0.754 0.792 1.012 1.00 0.93 0.94

9 0.10 0.50 0.14 0.75 0.50 2000 1.343 0.266 0.636 0.721 1.008 0.99 0.88 0.89

1 0.50 0.50 0.60 0.60 0.50 2000 1.003 1.003 1.007 1.007 1.006 1.00 1.00 1.00

3 0.50 0.75 0.60 0.82 0.50 2000 0.987 0.587 1.035 1.065 0.996 1.00 0.99 0.99

9 0.50 0.90 0.60 0.93 0.50 2000 0.986 0.321 0.928 1.222 1.012 0.98 0.90 0.91

1 0.50 0.50 0.60 0.75 0.50 2000 1.365 1.001 1.001 0.999 1.001 1.00 1.00 1.00

3 0.50 0.75 0.60 0.90 0.50 2000 1.289 0.599 1.078 1.129 0.996 1.00 0.99 0.99
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Table 2. Cont.

design bias (median (byy)=y) Spearman correlations

y p0C p1C p0N p1A vzC n byyAT
byyITT

byyIV
byyADJ

byyLC
byyIV {byyADJ

byyIV {byyLC
byyADJ {byyLC

9 0.50 0.90 0.60 0.96 0.50 2000 1.251 0.329 0.979 1.400 1.004 0.98 0.90 0.93

1 0.10 0.10 0.14 0.14 0.90 2000 1.001 1.001 1.001 1.001 1.001 1.00 1.00 1.00

3 0.10 0.25 0.14 0.33 0.90 2000 0.995 0.861 0.955 0.971 0.999 1.00 0.98 0.98

9 0.10 0.50 0.14 0.60 0.90 2000 1.000 0.728 0.897 0.970 1.007 0.99 0.96 0.97

1 0.10 0.10 0.14 0.25 0.90 2000 1.115 1.002 1.002 1.005 1.003 1.00 1.00 1.00

3 0.10 0.25 0.14 0.50 0.90 2000 1.086 0.832 0.922 0.950 1.003 0.99 0.98 0.98

9 0.10 0.50 0.14 0.75 0.90 2000 1.056 0.699 0.858 0.932 1.005 0.98 0.96 0.97

1 0.50 0.50 0.60 0.60 0.90 2000 1.004 1.001 1.001 1.001 1.001 1.00 1.00 1.00

3 0.50 0.75 0.60 0.82 0.90 2000 0.998 0.899 1.004 1.011 1.000 1.00 1.00 1.00

9 0.50 0.90 0.60 0.93 0.90 2000 0.998 0.783 0.973 1.041 1.004 0.99 0.97 0.98

1 0.50 0.50 0.60 0.75 0.90 2000 1.060 0.996 0.995 0.995 0.995 1.00 1.00 1.00

3 0.50 0.75 0.60 0.90 0.90 2000 1.043 0.905 1.009 1.017 0.999 1.00 1.00 1.00

9 0.50 0.90 0.60 0.96 0.90 2000 1.041 0.798 0.991 1.065 1.008 0.99 0.97 0.99

doi:10.1371/journal.pone.0035951.t002

Figure 2. IQR of the log odds-ratios estimated from 2000 simulations under various situations for each of the five methods in
function of the proportion of compliers vC . IQR of estimates byyITT (dashed-dotted line), byyIV (dashed line), byyADJ (dotted line) and byyLC (solid

line) have been divided by the IQR of estimate byyAT . The sample size is n~2000.
doi:10.1371/journal.pone.0035951.g002
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taker is an individual who would drink alcohol, and a never-taker

is an individual who would not drink alcohol, whatever his/her

genotype. Recall also that we assume no defiers, i.e. there is no one

who would drink alcohol if and only if the protective allele were

present (i.e. with X~1 if Z~0 and with X~0 if Z~1), which

seems to us tenable (it is in fact not obvious to imagine a

subpopulation in which a causal gene would systematically

produce the contrary of what it is expected to, although this

cannot be verified from the data).

In the study analyzed by Amamoto et al. [22], 51.2% of

individuals own the protective allele (i.e. with Z~0). Among

persons with Z~0, 38.3% suffer from hypertension, whereas this

proportion is 48.2% in the group Z~1. According to the

population studied by Yamada et al. [23], the proportion of

individuals who drink alcohol in the group Z~1 is 90.8% while it

is 71.1% in the group Z~0. These proportions allow to calculate

the margins of a 26262 table summarizing the distribution of

(Z,X ,Y ). Unfortunately, we did not find comparable data

allowing to complete all cells of the table. For the sake of

illustration, we complete it by fixing the prevalence of hyperten-

sion at 39% in the group with X~1 and Z~0, and at 48.5% in

the group with X~1 and Z~1. Considering a total sample size of

n~2000 (to match our simulations), this leads to the fictitious data

summarized in Table 3.

Using the formulae given in the Methods section, the

proportions of always-takers and never-takers can be estimated

as bvvA~(444z284)=(188z108z444z284)~0:711 (95%CI:

[0.683; 0.739]) and bvvN~(50z40)=(50z40z456z430)~0:092
(95%CI: [0.074; 0.110]). This corresponds to an estimated

proportion of compliers of bvvC~1{0:711{0:092~0:197
(95%CI: [0.164; 0.230]) (confidence intervals for vA, vN and

vC are here obtained by adding and subtracting 1.96 times the

standard error of the corresponding estimate, and using the fact

that bvvA and bvvN are independent). The proportions of hyperten-

sion among always-takers and never-takers are estimated bybpp1A~284=(444z284)~0:390 and bpp0N~40=(50z40)~0:444.

The proportion of hypertension among compliers in the group

Figure 3. Boxplots of the log odds-ratios estimated from 2000 simulations under various situations for each of the five methods
(from left to right: byyAT , byyITT , byyIV , byyADJ , byyLC ). The sample size is n~2000 and the proportion of compliers is vC~0:5. The horizontal dashed line
represents the true log odds-ratio.
doi:10.1371/journal.pone.0035951.g003

Table 3. Allocation of the n~2000 individuals of our example
according to Z, X and Y.

Z~0 Z~1

X~0 X~1 X~0 X~1

Y~0 188 444 50 456

Y~1 108 284 40 430

doi:10.1371/journal.pone.0035951.t003

Mendelian Randomization with All Binary Data

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e35951



Z~X~1 is then estimated as

bpp1C~
(0:197z0:711)

430

456z430
{0:711:0:390

0:197
~0:829

and the proportion of hypertension among compliers in the group

Z~X~0 as

bpp0C~
(0:197z0:092)

108

188z108
{0:092:0:444

0:197
~0:328:

We note in particular that bpp1C is much higher than bpp1A, which

is informative on the importance of confounding. Finally, the

odds-ratio measuring the causal effect of X on Y for compliers is

estimated as

byyLC~
0:829(1{0:328)

0:328(1{0:829)
~9:966

(when keeping all the decimals in the previous calculations). A

95% confidence interval for this odds-ratio calculated as in Lui

and Chang [13] yields [2.094; 47.423], which is a wide interval,

although it would still indicate a causal odds-ratio which is

significantly higher than 2.

Using the other approaches, we obtain byyAT~1:276 (95%CI:

[1.017; 1.604]), byyITT~1:498 (95%CI: [1.254; 1.790]),byyIV~7:779 (95%CI: [2.978; 20.317]) and byyADJ~7:793
(95%CI: [3.128; 21.887]). The confidence interval associated tobyyIV is obtained using the qvf function in Stata, while the

confidence interval associated to byyADJ is here computed from

10000 bootstrap replications. Consistent with our simulations,

these confidence intervals are somewhat narrower than the

confidence interval associated to byyLC , but one cannot here infer

anything because of the unknown bias of these methods. We also

note that the upper bound of the narrow confidence interval

associated to the intention-to-treat estimate, whose bias is known

to be in the conservative direction, is still smaller than the lower

bound of the confidence interval associated to byyLC .

Estimating Another Causal Odds-ratio
We have considered so far as target parameter the causal odds-

ratio y for the subpopulation of compliers. Besides being not

identifiable, this subpopulation might admittedly be difficult to

apprehend in the context of Mendelian randomization and it will

depend on the chosen genetic instrument. Other causal odds-ratios

have thus been considered as target parameters in the statistical

literature.

In particular, the logistic structural mean model (LSMM)

estimate described in Vansteelandt and Goetghebeur [14] has

been introduced to estimate a causal odds-ratio y� for a

subpopulation of individuals being at risk, i.e. for whom one would

naturally observe X~1. There, the assumption (A1) is replaced by

another one:

(A2) the causal odds{ratio is the same for individuals with
X~1 and Z~0 or with X~1 and Z~1 :
Although the LSMM approach does not rely on (A1), we further

assume in what follows that there are no defiers to allow some

interesting comparison between the different estimates in that case.

According to the terminology employed here, individuals with

X~1 and Z~0 are representative of the always-takers, whereas

individuals with X~1 and Z~1 are representative of a

subpopulation composed of both the compliers and the always-

takers. Thus, using this approach, one is estimating y� assuming

that

y�~
p1A(1{p�0A)

p�0A(1{p1A)
~

p1CA(1{p�0CA)

p�0CA(1{p1CA)
,

where p�0A denotes the proportion of Y~1 for always-takers that one

would get if one could intervene and set X~0, p�0CA~(vCp0Cz

vAp�0A)=(vCzvA) and p1CA~(vCp1CzvAp1A)=(vCzvA) is as

in the Methods section. To calculate the LSMM estimate, one may

first calculate the estimate bpp�0A of p�0A as the value satisfying this

assumption, that is

bpp1A(1{bpp�0A)

bpp�0A(1{bpp1A)
~
bpp1CA(1{bpp�0CA)

bpp�0CA(1{bpp1CA)
,

where bpp�0CA~(bvvCbpp0CzbvvAbpp�0A)=(bvvCzbvvA) and where bvvA, bvvC ,bpp1CA, bpp1A, bpp1C and bpp0C are as in the Methods section. Thus, bpp�0A is

the plausible solution of the quadratic equation a(bpp�0A)2zbbpp�0Az

c~0, with a~(1{w)(u{v), b~(u{v)(wbpp0C{1)zwu and

c~{wubpp0C , and with u~bpp1A=(1{bpp1A), v~bpp1CA=(1{bpp1CA)

and w~bvvC=(bvvCzbvvA). The LSMM estimate byyLSMM of y� can

then be calculated either as

byyLSMM~
bpp1A(1{bpp�0A)

bpp�0A(1{bpp1A)

or as

byyLSMM~
bpp1CA(1{bpp�0CA)

bpp�0CA(1{bpp1CA)
:

As far as we know, this is an original formulation of the LSMM

estimate in the context considered here. One can check that it

provides the same result as the equivalent explicit formulation forbyyLSMM given in the Appendix of Vansteelandt et al. [11]. Applied

to our example from the previous subsection, one gets bpp�0A~0:116
and byyLSMM~4:893. We note however that the assumption of

having the same causal odds-ratio in the subpopulation of always-

takers and in the subpopulation of both compliers and always-

takers is a very special one (and that its validity will also depend on

the chosen genetic instrument). Because of the non-collapsibility of

the odds-ratio (when pooling two subpopulations with the same

odds-ratio, one does not in general obtain the same odds-ratio, see

e.g. Greenland, Robins and Pearl [24]), it does not even imply that

the causal odds-ratio is the same for compliers and for always-

takers.

Actually, one could alternatively assume that

(A3) the causal odds{ratio is the same for compliers,

always{takers and never{takers

and hence that
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y~
p1C(1{p0C)

p0C(1{p1C)
~

p1A(1{p�0A)

p�0A(1{p1A)
~

p�1N (1{p0N )

p0N (1{p�1N )
,

where p�1N denotes the proportion of Y~1 for never-takers that

one would get if one could intervene and set X~1. Making this

latter assumption, it would then become possible to estimate the

causal odds-ratio in the entire population, which we shall denote

by yz. Similarly to the LSMM estimate above, one would first

calculate estimates bppz
0A and bppz

1N of p�0A and p�1N as the values

satisfying

byyLC~
bpp1C(1{bpp0C)

bpp0C(1{bpp1C)
~
bpp1A(1{bppz

0A)

bppz
0A(1{bpp1A)

~
bppz

1N (1{bpp0N )

bpp0N (1{bppz
1N )

,

which are given by bppz
0A~bpp1A=(bpp1AzbyyLC(1{bpp1A)) and

bppz
1N~byyLCbpp0N=(byyLCbpp0Nz1{bpp0N ). The proportion pz

1 of Y~1

in the entire population that one would get if one could intervene

and set X~1 is then estimated as

bppz
1 ~bvvCbpp1CzbvvAbpp1AzbvvNbppz

1N ,

whereas the proportion pz
0 of Y~1 in the whole population that

one would get if one could intervene and set X~0 is then

estimated as

bppz
0 ~bvvCbpp0CzbvvAbppz

0AzbvvNbpp0N :

An estimate byyz of yz is then simply obtained by

byyz~
bppz

1 (1{bppz
0 )

bppz
0 (1{bppz

1 )
:

We did not find mention of such an estimate in the literature

and it might be interesting to study its statistical properties

(although it would rely on both assumptions (A1) and (A3) instead

of only either (A1) or (A2)). Applied to our example from the

previous subsection, one gets bppz
0A~0:060, bppz

1N~0:889,bppz
1 ~0:523, bppz

0 ~0:148 and byyz~6:282. Interestingly, Balke

and Pearl [25] have derived bounds for pz
1 and pz

0 given the

(observed) distribution of (Z,X ,Y ), which can then be used to

derive bounds for yz. Note also that yz will be necessarily

smaller in magnitude than y because of the non-collapsibility of

the odds-ratio.

Discussion

In this paper, we have considered the problem of estimating a

causal odds-ratio for assessing the effect of a risk factor X on an

outcome Y using Mendelian randomization with a genetic

instrument Z in the special case where X, Yand Z are all binary.

We have confirmed via simulations that the usual adaptations of

the method of instrumental variable such as the qvf function of

Stata, or the adjusted version considered by Nagelkerke et al. [7]

and by Palmer et al. [8] are not valid estimates of the causal odds-

ratio in the subpopulation of compliers since a large bias may

occur, even with a large sample size. Palmer et al. [12] also

recognized that these estimates are not consistent for any causal

odds-ratio in this context. By contrast, the method recently

proposed by Lui and Chang [13], while being more variable than

the two methods above, does not suffer from this bias. While

Palmer et al. [12] noted that ‘‘estimation of complier causal effects

on the odds-ratio scale is more problematic’’, it is hence

encouraging to have a valid solution in the simple case considered

here (i.e. binary X, Y and Z). Further work is needed to estimate

whether and how this solution may be extended to more

complicated cases.

We have also recalled and illustrated that an instrumental

variable approach with a weak instrument, in our context with a

low proportion of compliers, might not be very useful because of

the huge variability of the estimate. With 10% of compliers, as

there are in many examples from the literature, the variability of

the estimate of Lui and Chang [13] (measured via the inter-

quartile range) can be up to 18 times higher than that of the

conventional as-treated or intention-to-treat estimates. With 30%

of compliers, the variability can still be up to 5 times higher. In our

example, we had about 20% of compliers and the confidence

interval obtained for the causal odds-ratio was still rather wide

even with a sample size of n~2000. Thus, the need to find

stronger instruments is probably as important as the need to

develop a methodology allowing to consistently estimate a causal

odds-ratio.

Another limitation of the considered approach is that the

subpopulation of compliers on which we restrict our attention is in

the context of Mendelian randomization ‘‘at the least unnatural

and a lot harder to grasp’’ than in the context of a clinical trial

with noncompliance, as noted by one anonymous reviewer. While

we agree with this statement, the question is whether there really is

a viable alternative. If one does not restrict one’s attention to the

compliers, one is considering always-takers and never-takers. As it

is by definition not possible to observe what would be the outcome

of an always-taker if he/she had X~0, or what would be the

outcome of a never-taker if he/she had X~1, one has to make

some speculative assumption in this regard. For example, the

assumption which is made when using the logistic structural mean

model estimate of Vansteelandt and Goetghebeur [14], for which

the target parameter is the causal odds-ratio in a subpopulation of

persons being at risk, is that the effect of the risk factor on the

outcome is the same in the subpopulation containing the always-

takers (and the defiers, if any) and in the subpopulation containing

the compliers and the always-takers. While such an assumption

might be defendable in a context where the effect is assessed via a

risk difference, it seems to us much more questionable in a context

where the effect is measured via an odds-ratio (because of the non-

collapsibility of the odds-ratio, and unless it is equal to one, it

would be quite special to have the same odds-ratio in two

subpopulations which partly, but not exactly coincide). This is why

we would personally prefer to assume instead that there are no

defiers and to use the estimate of Lui and Chang [13] (even if the

no defiers assumption is certainly also questionable; we are looking

forward to hearing more opinion of geneticists about situations

where this assumption might be verified and situations where it

might not).

In conclusion, we suggest that the approach of Lui and Chang

[13] might be a valuable solution for estimating a causal odds-ratio

between a binary risk factor and a binary outcome in the context

of a Mendelian randomization with a binary instrument, if we are

ready to assume no defiers and despite having to restrict our

attention to the compliers. About this latter restriction, we believe

that having a valid estimate of the causal effect in a subpopulation
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of human beings is of scientific interest. Most physiological

phenomena have indeed been discovered in a restricted set of

people and are usually widely applicable to larger sets of people.

That the set of compliers is not an identifiable one should not

invalidate this principle.
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