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Abstract
Background: The Mediterranean island of Sardinia has a strikingly high incidence of the
autoimmune disorders Type 1 Diabetes (T1D) and Multiple Sclerosis (MS). Furthermore, the two
diseases tend to be co-inherited in the same individuals and in the same families. These
observations suggest that some unknown autoimmunity variant with relevant effect size could be
fairly common in this founder population and could be detected using linkage analysis.

Methods: To search for T1D and MS loci as well as any that predispose to both diseases, we
performed a whole genome linkage scan, sequentially genotyping 593 microsatellite marker loci in
954 individuals distributed in 175 Sardinian families. In total, 413 patients were studied; 285 with
T1D, 116 with MS and 12 with both disorders. Model-free linkage analysis was performed on the
genotyped samples using the Kong and Cox logarithm of odds (LOD) score statistic.

Results: In T1D, aside from the HLA locus, we found four regions showing a lod-score ≥1; 1p31.1,
6q26, 10q21.2 and 22q11.22. In MS we found three regions showing a lod-score ≥1; 1q42.2,
18p11.21 and 20p12.3. In the combined T1D-MS scan for shared autoimmunity loci, four regions
showed a LOD >1, including 6q26, 10q21.2, 20p12.3 and 22q11.22. When we typed more markers
in these intervals we obtained suggestive evidence of linkage in the T1D scan at 10q21.2 (LOD =
2.1), in the MS scan at 1q42.2 (LOD = 2.5) and at 18p11.22 (LOD = 2.6). When all T1D and MS
families were analysed jointly we obtained suggestive evidence in two regions: at 10q21.1 (LOD
score = 2.3) and at 20p12.3 (LOD score = 2.5).

Conclusion: This suggestive evidence of linkage with T1D, MS and both diseases indicates critical
chromosome intervals to be followed up in downstream association studies.

Background
T1D and MS are common inflammatory disorders which
result from an autoimmune attack on the pancreatic beta-
cells and the central nervous system, respectively. Both
disorders are complex, multifactorial traits resulting from
the interplay of largely unidentified predisposing genetic
variants, in the presence of unknown environmental fac-
tors. Aside from the HLA region, only a few susceptibility
variants have been detected in T1D, mainly using candi-
date gene, and more recently, genome wide association
(GWA) strategies [1-4]. Until recently, no unequivocal
identification of a non-HLA variant was reported in MS
although recent work has provided consistent evidence
that polymorphisms in the IL7R gene are associated with
disease [5,6].

A number of whole genome linkage scans have been per-
formed for both T1D and MS. These have mainly been
based on the analysis of affected sib-pairs (ASPs), and
have provided, overall, weak and conflicting results. The
low power to detect small-size effect variants with low
penetrance (typically exacerbated in linkage analysis) rep-
resents the most likely explanation for these failures. The
likely presence of locus and pathogenic heterogeneity
might have further complicated previous efforts. Contrast
these disappointing results with the very recent successes
of GWA studies [4,7] that are beginning to allow a more
systematic understanding of some complex diseases.
While the overall role of linkage analysis in multifactorial
disease research appears to be modest, in principle some

of the difficulties could be alleviated by further increasing
the number of families in consortium-type studies [8].
However, this strategy, based on the analysis of thousands
of families that have to be, perforce, collected from differ-
ent populations, may actually result in an even higher
degree of genetic heterogeneity and might still be under-
powered to detect the kind of gene effects involved in
multifactorial traits.

An alternative, still largely unexplored approach is to con-
centrate on large, genetically-isolated populations, such as
Sardinia, where the diseases of interest are common and
where there is evidence of powerful founder effects for all
genetic systems so far studied. Notably, Sardinia repre-
sents the major exception to the general North-South gra-
dient of both T1D and MS incidence in Europe. In
Sardinia, T1D and MS not only have a much higher fre-
quency compared with surrounding Mediterranean
regions but they also show an increased probability of co-
occurrence, in the same individuals and in the same fam-
ilies, which is only partially explained by shared genotype
variation within the HLA complex [9]. The two disorders
also show a correlated occurrence in other populations in
which the main HLA associations are distinct and mutu-
ally exclusive [10]. This evidence suggests that susceptibil-
ity alleles at non-HLA immune-response loci might
contribute significantly to the clustering of these two traits
[9] and that they could be highly prevalent in Sardinia.
Both the elevated frequency of these diseases and the fact
that they are consistently prevalent throughout the island,
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that is, not restricted to certain subregions or communi-
ties, suggest that the genetic variants responsible are com-
mon and uniformly distributed and presumably not due
to a large number of rare mutations. Furthermore, in this
island population, reduced locus and pathogenic hetero-
geneity are expected; factors which have most likely
impaired previous linkage efforts elsewhere. Considered
globally, these factors suggest that, in Sardinia, some chro-
mosome intervals containing variants for autoimmune
diseases might be detected with linkage analysis, generat-
ing prior hypotheses to be further tested by means of asso-
ciation studies. In addition, positive evidence of linkage
can also be used to weigh P values detected in GWA stud-
ies, thus helping to filter false positive results [11].

Here, we used a collection of Sardinian multiplex families
with T1D and MS (including some in which both disor-
ders were present in the same pedigrees) to perform a
whole genome linkage scan.

Methods
Subjects
All families selected for this study had Sardinian origins
dating back at least three generations from both the
maternal and paternal side, as established by interviewing
the parents when samples and informed consent were col-
lected. The full dataset included 175 families with at least
two affected individuals, which we refer to here as multi-
plex families, consisting of 413 affected individuals (285
with T1D, 116 with MS and 12 with both disorders) and
a total of 954 samples (pedigrees of the collected families
are provided in the online supplement). Since linkage
analysis is informative only when there are at least two
affected relatives in each pedigree, families with just one
case affected by either T1D or MS (simplex) are effective
only in the combined analysis of both diseases. As decom-
position of the family dataset into the various subsets is
complex, with some families containing both MS and
T1D cases, a Venn diagram presenting the relationships is
shown in Additional file 1. More specifically, for purposes
of linkage analysis, the T1D sample set consisted of 120
multiplex families, including 105 two-generation nuclear
families with at least two affected siblings (227 T1D
patients) and 15 multicase, multigenerational families
(62 T1D patients). Patients were selected to meet clinical
criteria of T1D and to have disease onset before 35 years
of age (average 13.1 ± 8.0 years, range from minimum 0.4
to maximum 34). This age of onset limit was used to
maintain consistency with other linkage efforts, in partic-
ular with analyses performed by the T1D global consor-
tium. The F/M ration in the T1D patients is 1.0. The MS
sample set consisted of 58 families, including 54 two-gen-
eration families with at least two affected siblings (112 MS
patients) and 4 multicase, multigenerational families (10
MS patients). The average age of onset of MS in the total

sample set is 27.2 ± 9.1 years (ranging from minimum 9
to maximum 59) with a F/M ratio of 2.2. As shown in
Additional file 1, there are 17 families in which cases of
both pathologies are seen. These comprise 51 affected per-
sons, 12 of whom have both diseases, 19 T1D, and 20 MS.
In this combined diseases family dataset, the sex ratio is
21 F/10 M (2.1) for T1D, while it is 28 F/7 M (4.0) for MS
and considering all patients, 38 F/13 M (2.9). In the fam-
ilies with only T1D, we see the expected slight male bias
with an F/M ratio of 0.9 while in the MS families, the ratio
is 1.7. These gender effects are consistent with those
observed in much larger sample sets from the same popu-
lation used in a previous analysis of HLA variants associ-
ated with these diseases [9]. Finally, in this combined
diseases family dataset, the mean age of onset was 26.4 ±
8.4 years, range (13 – 40) for MS and 18.4 ± 10.7 years,
range (7–33) for T1D patients.

Blood samples and clinical data for T1D patients were col-
lected in the following Clinical Units: Divisione Pediatria,
Ospedale G. Brotzu, Cagliari; Istituto di Clinica Medica,
Servizio di Diabetologia, Università di Sassari; Diabetolo-
gia dell'Adulto, Ospedale Zonchello, Nuoro; Divisione
Pediatria, Ospedale S. Francesco, Nuoro; Divisione Pedia-
tria, Ospedale Crobu, Iglesias; Prima Clinica Pediatrica,
Unità Operativa di Diabetologia dell'Età Evolutiva,
Cagliari; Centro Diabetologico, Ospedale G. Brotzu,
Cagliari.

Blood samples and clinical data for MS families were col-
lected at the Multiple Sclerosis Centres in Cagliari. Forty-
nine of these families had already been analysed in a pre-
vious linkage study [12]. The range and scope of the study
were explained to all prospective participants. The study
was approved by the Ethic Committee of the Universities
of Cagliari and Sassari. All participating individuals and
their parents or legal guardians signed a statement of
informed consent.

Genotyping
Genomic DNA was extracted from blood using standard
salting-out procedures, after which it was coded and
stored at -20°C until used.

A genome linkage scan was conducted for the whole sam-
ple set, initially using 474 microsatellite markers (398
purchased as commercial kits from Applied Biosystems:
ABI PRISM LINKAGE MAPPING SETS V2.5 plus 76 addi-
tional markers, selected in the laboratory for those regions
exhibiting prior evidence of linkage with T1D in other
studies: chromosome 2q32.1-37.3, containing the
IDDM12 and IDDM13 loci, the IDDM5 region of 6q16.1-
q25.3, and 16q21-23.3 indicated in the large combined
linkage study of Cox et al. [8,13-16]. After the first genome
scan linkage analysis, 114 additional microsatellite mark-
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ers were typed in the critical intervals showing evidence of
linkage in the first phase of the study. More specifically we
genotyped 31 additional markers from 1p31.1 only in the
T1D families, 15 from 1q42.2 and 10 from 18p11.22 only
in the MS families, as well as 36 from chromosome
10q21.1, 13 from 20p12.31 and 9 from chromosome
22q11.21 in both T1D and MS families.

Genotyping of microsatellites was carried out using a
semi-automated method: fluorescently-tagged PCR prod-
ucts were separated on a polyacrylamide polymer using a
MegaBACE 1000 DNA capillary sequencer. Microsatellites
were amplified by PCR using fluorescently-labelled prim-
ers in a reaction volume of 7.5 μl (containing 5.25 pmoles
of each primer, 1.5 nmoles of each of the four deoxynu-
cleotide triphosphates and 0.2 units of Amplitaq Gold
polymerase (Applied Biosystems) in a 2.5 mM MgCl2
buffer. PCR reactions were performed in MJ-PTC100 and
MJ-Tetrad thermal cyclers using a standard file for all
markers: 12' at 96°C, (30" at 94°C/30" at 55°C/30" at
72°C) × 10 times, (30" at 89°C/30" at 55°C/30" at 72°C)
× 20 times, 10' at 72°C, 15°C ad infinitum. PCR was per-
formed separately for each microsatellite marker which
were then pooled in panels of 10–20 markers. After elec-
trophoresis, the PCR fragments were sized and genotyped
using the Genetic Profiler software (Amersham Bio-
sciences). Alleles at each microsatellite were then given a
numerical value (1, 2, 3, etc.) starting with the allele with
the lowest number of base pairs.

Statistical analysis
Before performing linkage analysis, genotype data were
checked using the following procedures for quality con-
trol: 1) Mendelian inheritance was monitored using Ped-
stats [17] both for nuclear and extended pedigrees; 2)
genetic distances between adjacent markers defined as the
inter-marker recombination fraction and the relative
order across the chromosome were computed from our
data using the Best Order programme in the GAS package
(GAS package version 2.3, (c) Alan Young, 1993–98) and
cross-compared with available genetic maps (Généthon
and Marshfield Clinic Center for Human Genetics)
[18,19] and deCODE [20]. Any discrepancies were exam-
ined and, if deemed necessary, markers were retyped; 3)
double recombinations within intervals of 30 cM were
flagged and re-examined and when confirmed, were
retained. Examination of double recombinations was per-
formed using the MapMaker/SIBS programme [21]; 4) rel-
ative marker order was also compared with the available
physical maps (University of California at Santa Cruz and
Sanger Centre) [22,23]. Genotypes of markers showing
inconsistencies between our genetic map and these phys-
ical maps were re-examined and, in two cases, the marker
was discarded. After these quality control checks, only
unequivocal genotype data were accepted while ambigu-

ous data were removed. All linkage analyses were eventu-
ally performed using the genetic map [19], integrated
when necessary with physical map information from the
University of California at Santa Cruz [22].

To calculate the locus-specific sibling risk ratio for disease
(as λs value), identity by descent sharing was estimated
using the MapMaker/SIBS programme. For the purpose of
this analysis, to estimate the proportion of alleles shared
identical by descent in all available affected sib-pairs,
complex pedigrees were decomposed into nuclear pedi-
grees using the Pedmanager programme [24]. To obtain
confidence intervals for the λs values, we used the asymp-
totic method proposed by Cordell and Olson and Cordell
and Carpenter [25,26].

Linkage of microsatellite markers with T1D and MS was
evaluated in the individual disease sample sets and in the
two datasets merged together (testing for linkage with an
autoimmunity locus, treating each person with either dis-
ease as affected, and counting each family only once)
using the Merlin software. Model-free multipoint linkage
analysis was performed using the Kong and Cox modified
version of the non-parametric linkage score to identify
regions showing evidence for genetic linkage between
markers and the presence of disease in families [27]. Allele
frequencies were estimated by maximum likelihood using
the Merlin software and including all individuals (the
default option). Maximum LOD scores and correspond-
ing nominal P values were calculated using the Kong and
Cox linear model. Information content at various posi-
tions along the genome was estimated using Merlin. In
order to perform genetic linkage analysis of markers on
the X chromosome, we used the X-specific version of Mer-
lin, Minx. Finally, exclusion mapping was performed at
the canonical -2 LOD score value, for the hypothesis of λs
= 2 and 3 by using the Genehunter software, version 2.1,
release 3 [28].

Results
The mean distance between markers in the primary map
of 474 microsatellites was 7.42 cM; the minimum dis-
tance was 0.01, while only three pairs of markers were sep-
arated by a gap of >20 cM. Results of the model-free
linkage analysis with T1D, MS or both disorders on the
whole genome, performed using the Merlin software [29]
are shown in Table 1 and Figure 1. The T1D_SCAN (link-
age analysis with Type 1 Diabetes) confirmed strong link-
age to the HLA region (IDDM1), with a LOD score of 8.3
(P < 1.0 × 10-5). Estimation of the locus-specific disease
risk for siblings of affected patients (λs) for IDDM1 was
2.81 (CI 1.56–5.07). Aside from the HLA region, we
found four additional regions showing a LOD score ≥1:
1p31.1 (LOD 1.7, P = 3.0 × 10-3), 6q26 (LOD 1.1, P = 1.1
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× 10-2), 10q21.2 (LOD 1.1, P = 1.3 × 10-2) and 22q11.22
(LOD 1.5, P = 4.0 × 10-3).

In the MS_SCAN (linkage analysis with Multiple Sclero-
sis), we found three regions showing a LOD score ≥1;
1q42.2, (LOD 1.0, P = 2.0 × 10-2), 18p11.21 (LOD 1.6, P
= 3.0 × 10-3) and 20p12.3 (LOD 1.1, P = 1.3 × 10-2).

In the combined T1D-MS_SCAN (testing for shared
autoimmunity loci) in which all families were analysed
jointly, aside from the HLA, four regions showed a LOD
>1 for shared autoimmunity loci, including 6q26 (LOD
1.2 P = 9.0 × 10-3), 10q21.2 (LOD 1.4, P = 6.0 × 10-3),
20p12.3 (LOD 1.2, P = 1.0 × 10-2) and 22q11.22 (LOD
1.3, P = 8.0 × 10-3). In this T1D-MS_SCAN, evidence of
linkage in the HLA region was less significant (LOD 5.1, P
= <1.0 × 10-5) than in the T1D_SCAN. This result reflects

Table 1: Results of non-parametric linkage analysis on the whole genome implemented using Merlin software. Position (cM) refers to 
the genetic position of the maximum LOD score, while Position (bp) refers to the physical position given in build 36.1 of the genome 
(NCBI)

Scan Chromosome Position 
(cM)

Position 
(bp)

Closest 
Marker

LOD P Value λs CI % 
Information_Content

T1D_SCAN 1p31.1 109.48 82315937 D1S207 1.7 3.0 × 10-3 1.35 0.91 – 1.99 79
6p21.32 (HLA) 40.48 32734820 D6S2447 8.3 < 1.0 × 10-5 2.81 1.56 – 5.07 71

6q26 160.77 162759585 D6S1599 1.1 1.1 × 10-2 1.46 0.97 – 2.19 77
10q21.2 78.64 64077501 D10S1652 1.1 1.3 × 10-2 1.33 0.89 – 2.00 70
22q11.22 10.38 20587780 D22S539 1.5 4.0 × 10-3 1.89 1.05 – 2.57 66

MS_SCAN 1q42.2 246.27 232524978 D1S2800 1 2.0 × 10-2 2.23 1.06 – 4.70 61
18p11.21 41.24 11482730 D18S53 1.6 3.0 × 10-3 3.2 1.28 – 7.99 64
20p12.3 18.32 7607867 D20S115 1.1 1.3 × 10-2 1.8 0.93 – 3.47 76

T1D-MS_SCAN 6p21.32 (HLA) 39.65 32734723 D6S2447 5.1 < 1.0 × 10-5 1.65 1.15 – 2.34 69
6q26 157.21 162115167 D6S305 1.2 9.0 × 10-3 1.25 0.93 – 1.69 79

10q21.2 82.093 64077501 D10S1652 1.4 6.0 × 10-3 1.33 0.96 – 1.84 63
20p12.3 18.32 7607867 D20S115 1.2 1.0 × 10-2 1.39 1.00 – 1.93 71
22q11.22 10.38 20587780 D22S539 1.3 8.0 × 10-3 1.51 1.07 – 2.13 65

Non-parametric linkage analysis in T1D_SCAN, MS_SCAN and T1D-MS_SCANFigure 1
Non-parametric linkage analysis in T1D_SCAN, MS_SCAN and T1D-MS_SCAN. Reading from the left Y-axis, LOD score 
results are shown for each chromosome, proceeding from the short-arm telomere to the long arm telomere. The right Y-axis 
reports the corresponding information content for each point. The T1D and MS sample sets are described in the Materials and 
Methods section.
Page 5 of 10
(page number not for citation purposes)



BMC Medical Genetics 2008, 9:3 http://www.biomedcentral.com/1471-2350/9/3
the modest genetic effect of the HLA region in the familiar
clustering of multiple sclerosis.

Average information content for all scans was 66%.

Exclusion mapping for T1D and MS separately and, to
find shared autoimmunity loci, jointly, was carried out
testing all autosomes for the presence of a locus with a sib-
ling relative risk of either 2 or 3. For T1D we could exclude
84% and 50% for a λs of 3 and 2, respectively. For MS, we
could exclude only 41% and 29% for the presence of
genes with a λs = 3 and 2. However, in the combined data-
set of T1D and MS assessed jointly, 93% and 70% were
excluded for the presence of loci with a λs = 3 or 2 (details
are available on request).

Based on these results, we increased the density of markers
in all intervals showing evidence of linkage ≥ 1, aside from
chromosome 6q, due to the already high marker density
in that region; results are shown in Table 2. This higher
density of markers resulted in an increase of the informa-
tion content, from an average of 68.3% to 84.1% in the
critical intervals (see Table 1 and Table 2 for the informa-
tion content of the individual regions in the successive
mapping phases).

In the T1D_SCAN, suggestive evidence of linkage was
obtained after increasing the marker density in the
10q21.1 region with a maximum LOD score of 2.1 (P =
1.0 × 10-3) at marker D10S589. Estimation of the relative
risk for 10q21.1 provided a λs of 1.84 (CI 1.16–2.92). For
the 22q11.21 region, the maximum LOD score was
unchanged, 1.5, but the position of the peak score moved
to the nearby marker D22S446 (P = 4 × 10-3), while in the
interval on chromosome 1p31.1 the maximum LOD
score decreased to 1.5 at marker D1S207 (P = 4 × 10-3).

In the MS_SCAN, suggestive evidence of linkage was
obtained using the enriched map at 1q42.2 at marker
D1S251 (LOD = 2.5, P = 4.0 × 10-4) and at 18p11.22 at
marker D18S1158 (LOD = 2.6, P = 3.0 × 10-4). The λs were
4.03 (CI 1.44–11.3) and 4.27 (CI 1.48–12.32) in these
two intervals respectively. For the 20p12.3 region, we
found a LOD score of 1.6 at marker D20S194 (P = 4.0 ×
10-3) in these families.

Following analysis of the individual diseases, we then
used the enriched marker maps in the intervals showing
some initial evidence of linkage to a shared autoimmunity
locus to conduct a joint T1D and MS scan. While there was
a decrease in the LOD score (<1 at D22S446) in 22q11.21
when all T1D and MS families were analysed together,
two regions showed suggestive evidence of linkage in this
combined T1D-MS_SCAN. Notably, the 10q21.1 region
showed a LOD score of 2.3 (P = 6.0 × 10-4) with a λs of
1.58 (CI 1.13 – 2.24) at marker D10S589 and the 20p12.3
region gave a LOD score of 2.5 (P = 4.0 × 10-4) with a λs
of 1.77 (CI 1.22 – 2.56) at marker D20S194.

Discussion and Conclusion
Using a collection of Sardinian multiplex families, we
detected some suggestive evidence of linkage with T1D,
MS and both disorders together, in specific chromosome
intervals. In particular, the sample set of MS families gave
suggestive evidence of linkage to chromosome 1q and 18p
for which there were some prior claims of involvement in
some other autoimmune or inflammatory pathologies in
other populations [30-33].

Suggestive evidence of linkage with T1D was instead
obtained on chromosome 10q21. This observation was
somewhat reinforced by the joint analysis of families with
either T1D or MS patients and thus might be indicative of
a general autoimmunity locus. Consistent with this view,
evidence of linkage to the same region of chromosome 10

Table 2: Results on selected chromosome intervals after increment in marker density. Position (cM) refers to the genetic position of 
the maximum LOD score, while Position (bp) refers to the physical position given in build 36.1 of the genome (NCBI)

Scan Chromosome Position 
(cM)

Position 
(bp)

Closest 
Marker

LOD P Value λs CI % 
Information_Content

T1D_SCAN 1p31.1 109.43 82315937 D1S207 1.5 4.0 × 10-3 1.31 0.90 – 1.92 89
10q21.1 77.943 61136296 D10S589 2.1 1.0 × 10-3 1.84 1.16 – 2.92 79
22q11.21 10.38 20349111 D22S446 1.5 4.0 × 10-3 1.53 1.01 – 2.32 89

MS_SCAN 1q42.2 240.84 229780888 D1S251 2.5 4.0 × 10-4 4.03 1.44 – 11.3 93
18p11.22 37.767 10732702 D18S1158 2.6 3.0 × 10-4 4.27 1.48 – 12.32 70
20p12.3 15.43 6090696 D20S194 1.6 3.0 × 10-3 2.13 1.03 – 4.40 83

T1D-MS_SCAN 10q21.1 78.52 61136296 D10S589 2.3 6.0 × 10-4 1.58 1.13 – 2.24 83
20p12.3 15.43 6090696 D20S194 2.5 4.0 × 10-4 1.77 1.22 – 2.56 81
22q11.21 10.38 20349111 D22S446 0.9 2.0 × 10-2 1.26 0.93 – 1.70 90
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was previously detected for Rheumatoid Arthritis [34,35].
Furthermore, linkage to 10q was also reported in a meta-
analysis of MS whole genome linkage studies, although
from the binning procedure used in the meta-analysis, it
is difficult to determine with high-resolution if the peak is
co-incident with ours [31].

Another locus to consider as potentially involved in both
T1D and MS is the one we found on 20p12.3. What makes
this interesting is that the locus was identified as being
weakly significant for each disease considered individu-
ally, but only upon combining the analysis and increasing
the information content in the region were we able to find
the maximal signal and detect suggestive evidence of link-
age. Linkage of this region to autoimmune disease has not
been reported previously, but given the peculiar character-
istics of the Sardinian population, this could be due to the
presence of a founder autoimmunity variant, whose detec-
tion was in fact the underlying motivation of the study.
The overall findings of the most promising regions for the
two diseases following our typing of additional markers is
shown in Figure 2. Several issues must be considered to
give proper context to these findings.

One is that we did not see any evidence of linkage to the
intervals containing variants detected in recent GWA scans
in T1D [4], MS [5] and, in the case of the interleukin 2
receptor A on 10p15, in both diseases [5,36]. However,
this is not unexpected, since these association signals,
albeit statistically very significant, show genetic effects far
below the threshold of detection by linkage analysis. It
should be pointed out that our study was addressed to
detect non-HLA genes with relevant effects in the familial
clustering of the assessed diseases. For example, power
calculation shows that with 234 affected sib-pairs, such as
the size of the combined T1D_MS scan, we have >80%
power to detect loci conferring a sibling risk ratio of >1.56
with a LOD score of 2 or more. These size effects could
coincide with the areas of linkage detected in this study
although, as in other linkage studies, our results do not
allow unequivocal distinction between genuine evidence
of linkage and random fluctuation in allelic sharing.

Furthermore, the key question remains: in the era of GWA
scans, what is the role of linkage analysis to detect the
genes contributing to the inherited risk of common mul-
tifactorial diseases? We believe that if the kind of genetic
effects detectable with linkage analysis exist in these dis-
eases, the founder population of Sardinia – where MS and
T1D show among the highest incidences worldwide and
tend to be co-inherited -could well be the venue to look
for them using this cost effective strategy.

Hence, given the special characteristics of the Sardinian
population and the opportunity to analyse families with

both diseases jointly, the preliminary evidence of linkage
to specific intervals is indeed promising, and can be
refined in association analyses.
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Non-parametric linkage analysis of chromosome intervals showing preliminary evidence of linkage after increasing marker den-sityFigure 2
Non-parametric linkage analysis of chromosome intervals showing preliminary evidence of linkage after increasing marker den-
sity. The graphs refers to chromosome 10 in the T1D and T1D_MS scan, chromosome 20 in T1D_MS scan and chromosomes 
1 and 18 in the MS scan. Reading from the left Y-axis, LOD score results are shown for each chromosome, proceeding from 
the short-arm telomere to the long arm telomere. The right Y-axis reports the corresponding information content for each 
point. The T1D, MS and combined T1D_MS sample sets are described in the Materials and Methods section.
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Additional file 1
Family dataset. Set diagram of the families examined in this study. 
Because the two diseases may occur in the same family, and even in the 
same patient, there is overlap between the various family sets. The desig-
nation "Two generation" means that the families are nuclear families with 
at least two siblings affected by the respective disease. Multigenerational 
families are families in which there are at least two cases of the disease but 
the cases occur in different generations. Simplex families have only one 
case of a given disease (either MS or T1D) and are included here only 
when they present more than one affected child for the other disease or 
when considering both diseases together in the same family (searching for 
shared autoimmunity loci). For each designation, the minimal family 
structure with respect to each disease is considered. For example, 101 
nuclear families with at least 2 siblings with T1D and no siblings with MS 
were studied, shown as Two generation T1D, as well as 1 nuclear family 
with at least 2 T1D and 2 MS patients (shown as the intersection of the 
Two generation T1D and Two generation MS sets, and 3 nuclear families 
with at least 2 T1D patients and one (simplex) MS case.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2350-9-3-S1.JPEG]
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