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Abstract
This study compares the performance of statistical methods for predicting
age-standardized cancer incidence, including Poisson generalized linear mod-
els, age-period-cohort (APC) and Bayesian age-period-cohort (BAPC) models,
autoregressive integrated moving average (ARIMA) time series, and simple lin-
earmodels. Themethods are evaluated via leave-future-out cross-validation, and
performance is assessed using the normalized root mean square error, interval
score, and coverage of prediction intervals. Methods were applied to cancer inci-
dence from the three Swiss cancer registries of Geneva, Neuchatel, and Vaud
combined, considering the five most frequent cancer sites: breast, colorectal,
lung, prostate, and skin melanoma and bringing all other sites together in a final
group. Best overall performance was achieved by ARIMA models, followed by
linear regressionmodels. Predictionmethods based onmodel selection using the
Akaike information criterion resulted in overfitting. The widely used APC and
BAPCmodels were found to be suboptimal for prediction, particularly in the case
of a trend reversal in incidence, as it was observed for prostate cancer. In general,
we do not recommend predicting cancer incidence for periods far into the future
but rather updating predictions regularly.

KEYWORDS
age-period-cohort models, age-standardized cancer incidence, autoregressive integrated mov-
ing average, Bayesian age-period-cohort models, generalized linear models, interval score,
prediction interval, root mean square error, trend reversal

1 INTRODUCTION

Cancer has progressively become a major public health problem in Western countries like Switzerland where, each year,
about 40,000 new cases are diagnosed and 17,000 induced deaths occur (OFS, 2020). Cancer is the second leading cause
of mortality in Switzerland, and the main cause in females aged 25–84 years, and in males aged 45–84 years (OFS, 2020).
Prediction of cancer incidence is an important public health issue in modern societies to plan resource allocation and
prevention interventions and to help address future cancer research.
Many prediction methods are used in the field of cancer incidence, such as age-period-cohort (APC) (Carstensen, 2007;

Holford, 1983; Rutherford et al., 2012), and Bayesian age-period-cohort (BAPC) (Riebler et al., 2012; Riebler & Held, 2017;
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Schmid & Held, 2004) models, autoregressive integrated moving average (ARIMA) time series models (Hamilton, 1994),
neural networks (Hastie et al., 2009), joinpoint regression (Lerman, 1980), Poisson and negative binomial generalized
linear models (GLM) (A. C. Cameron & Trivedi, 2013a), state space models (H. S. Chen et al., 2012; Hamilton, 1994), and
the vector autoregressive Hilbert–Huang transform (H. S. Chen et al., 2012). In a recent systematic review of 101 published
studies on lung cancer incidence prediction, the most commonly used methods were APC, BAPC, GLM, and joinpoint
(Yu et al., 2019). APCs were largely applied to predict the incidence of common cancer sites (Coupland et al., 2010; Møller
et al., 2002; Rapiti et al., 2014) as well as BAPC (J. K. Cameron & Baade, 2021; W.-Q. Chen et al., 2011; Shi et al., 2021), GLM
(NSW Cancer Institute, 2016; Yang et al., 2005; Zemni et al., 2022), and joinpoint (Lin et al., 2021; Rahib et al., 2021; Wong
et al., 2021). Other studies used ARIMA models (Earnest et al., 2019; Li et al., 2022; Tsoi et al., 2017).
Comparisons among prediction models have been carried out in the literature. For example, Møller (2003) compared

several variants of APC predicting the incidence of the most frequent cancer sites and concluded that APC models using
a power link function were superior to those adopting the canonical logarithmic link. To predict the incidence of lung,
bronchus, and trachea cancers, Riebler (2012) compared BAPC with the Lee–Carter model, a model used in the demo-
graphic field to predict mortality (Lee & Carter, 1992), showing the superiority of BAPC. ARIMA has been compared to
neural networks showing the similar performance (Zheng et al., 2020). Using USA state-level data to predict the incidence
of the most frequent cancer sites, Chen (2012) compared the performance of APC, BAPC, joinpoint regression, state space
models, and the vector autoregressive Hilbert–Huang transform and concluded the superiority of BAPC, although fol-
lowed closely by APC and state space models. In another study (Clements, 2005), generalized additive models (GAM, a
special case of GLM) have shown a better performance than BAPC to predict the incidence of lung cancer.
These comparisons were in general limited to a few models only (e.g., BAPC vs. Lee-Carter, Riebler et al., 2012; or

BAPC vs. GAM, Clements, 2005) or to different variants of the same class of models, for example, APC (Møller et al.,
2003), with the notable exception of the U.S. study (H. S. Chen et al., 2012), which, however, omitted important methods
such as GLM or ARIMA. In addition, most of these comparisons have been made in situations where the incidence was
almost constantly increasing, providing a relatively easy setting for prediction. In recent years in Switzerland, we observed
some trend reversals, as the incidence of some cancers (e.g., breast, prostate, and skin melanoma) has begun to stabilize
or decrease (OFS, 2020). This phenomenon represents an additional difficulty in predicting incidence trends, and it is of
interest to compare the different methods in this context.
In the present paper, we sought to compare a large number ofmethods for predicting the incidence of themost common

cancers, including in situations with a trend reversal, based on cancer incidence data from Switzerland. The methods
compared include Poisson GLM, of which the Lee–Carter model and joinpoint regression are special cases, APC and
BAPC models, ARIMA, and simple linear regression models. We evaluated prediction performance by repeatedly using
leave-future-out cross-validation, that is, dividing the data into a training set (on which the models are fitted) and a test
set (on which the predictions are evaluated) and considering all possible period partitions of the data in these two sets.
This allowed us to produce many prediction settings (scenarios), including some with a trend reversal at the boundary of
the training set.
This paper is organized as follows. The data used for our comparisons are presented in Section 2. Section 3 explains

how we evaluated the performance of a prediction method by leave-future-out cross-validation using different criteria.
All compared methods are described in Section 4. Our results are detailed in Section 5, and a discussion is proposed in
Section 6.

2 DATA DESCRIPTION

2.1 Data sources

Our primary data sources were population-based Swiss cancer registries of the cantons of Vaud, Geneva, and Neuchatel.
Registries record information on all incident cases of malignant neoplasms occurring in their resident population accord-
ing to international rules, such as the International Classification of Diseases for Oncology (Fritz et al., 2000). For each
incident case, information on the incidence date, the patient’s date of birth, and the cancer site are recorded, among others.
We used combined data from the three cancer registries of the cantons of Vaud, Geneva, and Neuchatel because they

are the oldest registries in Switzerland. Incidence records were available from 1982 to 2016, the latter year being the most
recent with complete data. We considered the five most frequent cancer sites: breast, colorectal, lung, prostate, and skin
melanoma and formed a final group including all other sites. Considering separately the two sexes, we thus dealt with
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F IGURE 1 Lexis diagram of an extract of the combined data from the Swiss registries of Vaud, Geneva, and Neuchatel. Selected period:
January 1, 2010–December 31, 2015. Selected age range: 65th to 70th birthday. In each triangle, the top number represents the number of
incident cases 𝐷𝑎,𝑝,𝑐 and the bottom number corresponds to the person-years 𝑌𝑎,𝑝,𝑐 for an age (a), period (p), and birth cohort (c) combination.
For example, during 2012 we had 𝐷67,2012,1944 = 21 new cases of breast cancer among women 67 years old who were born in 1944 (triangle in
bold) and 𝐷67,2012,1945 = 18 new cases among women of the same age who were born in 1945 (dashed triangle). Corresponding person-years
were 𝑌67,2012,1944 = 3663.5 and 𝑌67,2012,1945 = 3547, respectively.

five sites for women (breast, colorectal, lung, skinmelanoma, and others) and five sites for men (prostate, colorectal, lung,
skin melanoma, and others).
Our second source of information was the Swiss Federal Statistical Office (FSO), which produces population figures for

each Swiss canton, informing on how many people are alive at the beginning of a calendar year by age and sex.

2.2 Age, period, and cohort tabulation

Data were aggregated on the three dimensions of age, period, and cohort, using the well-known triangle representation
of the Lexis diagram (Figure 1). For each triangle, data include the number of incident cases for the corresponding age
a (𝑎 = 0,… , 98, 99+), period p (𝑝 = 1982, … , 2016), and birth cohort c (𝑐 = 1882, … , 2016) combination (𝐷𝑎,𝑝,𝑐), and the
number of person-years for the same combination (𝑌𝑎,𝑝,𝑐) in the general population, the latter being calculated from
population data using the classical method presented in Carstensen (2007). APC-specific incidence rates are then defined
by: 𝜆𝑎,𝑝,𝑐 = 𝐷𝑎,𝑝,𝑐∕𝑌𝑎,𝑝,𝑐. Each ratio 𝜆𝑎,𝑝,𝑐 in the Lexis diagram acts as an “observation” in most models considered (see
Section 4). Therefore, for each sex and cancer site, weworkedwith 7000 observations obtained by combining the following
factors: 35 periods (𝑝 = 1982, … , 2016), 100 ages (𝑎 = 0,… , 98, 99+), and 2 triangles (upper/lower) separating people in
two different birth cohorts (e.g., a person reaching the age of 67 in 2012 may have been born in either 1945 or 1944; see
Figure 1). Some of the models below consider only the age and period tabulation:

𝜆𝑎,𝑝 =
1

2

(
𝐷𝑎,𝑝,𝑐

𝑌𝑎,𝑝,𝑐
+
𝐷𝑎,𝑝,𝑐+1

𝑌𝑎,𝑝,𝑐+1

)
=

𝐷𝑎,𝑝

𝑌𝑎,𝑝
(with 𝑐 = 𝑝 − 𝑎) , (1)

or only the age and cohort tabulation:

𝜆𝑎,𝑐 =
1

2

(
𝐷𝑎,𝑝,𝑐

𝑌𝑎,𝑝,𝑐
+
𝐷𝑎,𝑝+1,𝑐

𝑌𝑎,𝑝+1,𝑐

)
=

𝐷𝑎,𝑐

𝑌𝑎,𝑐
(with 𝑝 = 𝑐 + 𝑎) . (2)
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TABLE 1 Summary of quantities related to the triangle tabulation of the Lexis diagram.

𝒂 Age
𝑝 Period
𝑐 Cohort
𝐷𝑎,𝑝 (𝐷𝑎,𝑐; 𝐷𝑎,𝑝,𝑐) Number of new cancer cases for age 𝑎 and period 𝑝 (respectively, age 𝑎 and period c; or age 𝑎, period 𝑝, and

cohort 𝑐)
𝑌𝑎,𝑝 (𝑌𝑎,𝑐; 𝑌𝑎,𝑝,𝑐) Person-years for age 𝑎 and period 𝑝 (respectively, age a and period c; or age 𝑎, period 𝑝, and cohort 𝑐)
𝛌𝑎,𝑝 (𝛌𝑎,𝑐; 𝛌𝑎,𝑝,𝑐) Incidence rates for age 𝑎 and period 𝑝 (respectively, age 𝑎 and period c; or age 𝑎, period 𝑝, and cohort 𝑐)
𝑌∗
𝑎 Person-years for age 𝑎 of a reference population

𝛌∗𝑝 Standardized incidence rates of year 𝑝

2.3 Standardized incidence rates

To compare incidence rates over periods using a single quantity, age-specific incidence rates should be combined taking
into account changes in the population structure over time. This can be achieved by weighting the age-specific inci-
dence rates of a period 𝑝 (𝜆𝑎,𝑝) for the age distribution of a reference population 𝑌∗

𝑎 (𝑎 = 0,… , 99+), resulting in so-called
standardized incident rates:

𝜆∗𝑝 =

∑99+

𝑎=0
𝜆𝑎,𝑝𝑌

∗
a∑99+

𝑎=0
𝑌∗
a

. (3)

It has been shown (Spiegelman & Marks, 1966) that when comparing incidence rates over time, the choice of the ref-
erence population has little impact on the results. The same is true when making predictions. In this study, we chose the
population of the year 2000 of the aggregated cantons of Vaud, Geneva, andNeuchatel as the reference for standardization.
A summary of the notations used for quantities related to the Lexis diagram is provided in Table 1.
The standardized incidence rates 𝜆∗𝑝 (𝑝 = 1982, … , 2016) can be seen in Figure 2 for each sex and cancer site. While

some rates show a monotonic trend, for example, lung cancer, which continues to increase for women and decrease for
men at the present time, other rates show a recent stabilization (breast cancer, skin melanoma) or a trend reversal, in
particular prostate cancer, whose incidence began to decrease in the 2000s after decades of increase.
While the majority of the models considered in this paper use tabulated data by age, period, and/or cohort, predicting

specific incidence rates 𝜆𝑎,𝑝 , 𝜆𝑎,𝑐 or 𝜆𝑎,𝑝,𝑐, we followed the literature (H. S. Chen et al., 2012; Clements, 2005; Møller
et al., 2003) and compared their prediction performance using the standardized incidence rates 𝜆∗𝑝 (3). This is the most
widely used choice when predicting the cancer burden (Møller et al., 2002; Rapiti et al., 2014) and allows the comparison
of the predictions by ARIMA and simple linear regression models which model directly standardized incidence rates (see
Section 4).

3 EVALUATING PREDICTION PERFORMANCE

3.1 Leave-future-out cross-validation

Models were compared by repeatedly applying the principle of leave-future-out cross-validation (Bürkner et al., 2020). The
procedure can be summarized as follows. First, for a given sex/cancer site combination, chose a cutoff time 𝑡 in the range:
𝑡 = 2001, … , 2015. Given the cutoff, the leave-future-out cross-validation consists in (a) fitting a model on incidence rates
from 𝑇0 = 1982 until year t (training set), (b) predicting incidence rates for the second part of the data (test set), that is,
from the year (𝑡 + 1) until the last year available 𝑇 = 2016, and (c) evaluating the prediction performance from (𝑡 + 1) to 𝑇
according to criteria below. Second, repeat the procedure moving 𝑡 in the range 𝑡 = 2001, … , 2015 and for each sex/cancer
site combination. The range for the cutoff 𝑡 is chosen to ensure having at least 20 observations in the training set and at
least one observation in the test set.
Because we had five cancer sites for each sex and 15 possible cutoffs for each sex/cancer site combination

(𝑡 = 2001, … , 2015), we obtained 150 different scenarios (see Figure 3). All models presented in Section 4 will be fitted
on each of these 150 scenarios.
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F IGURE 2 Standardized incidence rates per 10,000 inhabitants over the period 1982–2016 for the most common cancer sites and the two
sexes. Combined data from the Swiss registries of Vaud, Geneva, and Neuchatel. Reference for standardization: combined population of Vaud,
Geneva, and Neuchatel in 2000.
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F IGURE 3 Illustration of the 15
leave-future out cross-validation scenarios
for each sex and cancer site, based on
partitioning the time range into a training set
(blue dots) and a test set (red dots) according
to a cutoff time t (working with five cancer
sites for women and five for men resulted in
150 different scenarios).

3.2 Comparison criteria

Our main criterion of prediction performance was the normalized root mean squared error (NRMSE) (Hyndman &
Koehler, 2006), a measure of point prediction accuracy. This criterion takes the following form in each scenario, that
is, for a given cutoff time 𝑡, 𝑡 = 2001, … , 2015, and for each sex/cancer site combination:

NRMSE (𝑡) =

√∑𝑇

𝑥=𝑡+1

(
�̂�∗𝑥 − 𝜆∗𝑥

)2
∕ (𝑇 − 𝑡)∑𝑇

𝑥=𝑡+1
𝜆∗𝑥∕ (𝑇 − 𝑡)

. (4)

Here 𝜆∗𝑥 is the observed (i.e., actual) standardized incidence rates for the period x in the test set and for the considered
sex/cancer site combination, and �̂�∗𝑥 the corresponding predicted standardized incidence rate. The denominator of (4)
represents the mean standardized incidence rate in the test set, allowing normalizing of the statistics. The prediction per-
formance (prediction accuracy) of each model was evaluated by the mean NRMSE (M-NRMSE) across the 150 scenarios.
A smaller M-NRMSE value indicates better accuracy, with a minimum of 0. We also looked at three time horizons for
prediction, assessing separately the short-term M-NRMSE (1–5 years, 𝑡 + 1 ≤ 𝑥 ≤ 𝑡 + 5), medium-termM-NRMSE (6–10
years, 𝑡 + 6 ≤ 𝑥 ≤ 𝑡 + 10), and long-termM-NRMSE (11–15 years, 𝑥 ≥ 𝑡 + 11). This represented 150, 100, and 50 scenarios,
respectively.
In a first sensitivity analysis, we considered an alternative of (4), the normalized mean absolute error (NMAE), defined

as follows for a given cutoff time, 𝑡 = 2001, … , 2015, and for each sex/cancer site combination (Hyndman&Koehler, 2006):

NMAE (𝑡) =

∑𝑇

𝑥=𝑡+1
|̂𝜆∗𝑥 − 𝜆∗𝑥|∕(𝑇 − 𝑡)∑𝑇

𝑥=𝑡+1
𝜆∗𝑥∕ (𝑇 − 𝑡)

, (5)

and considered the mean NMAE (M-NMAE) across the 150 scenarios. In a second sensitivity analysis, we considered the
median (instead of the mean) of the NRMSE and the NMAE across scenarios (Med-NRMSE and Med-NMAE).



TRÄCHSEL et al. 7 of 19

As an additional comparison criterion, we evaluated the quality of the 95% prediction intervals provided by the different
methods to inform on the prediction uncertainty. For this, we used the coverage rate (CR) and the interval score (IS)
(Gneiting et al., 2007). The CR measures the empirical coverage of a prediction interval, that is, the probability that it
contains the actual standardized incidence rate and is defined as follows for a given cutoff time 𝑡 = 2001, … , 2015, and for
each sex/cancer site combination:

𝐶𝑅 (𝑡) =

∑𝑇

𝑥=𝑡+1
𝐼(𝐿𝑥 < 𝜆∗𝑥 < 𝑈𝑥)

(𝑇 − 𝑡)
, (6)

where 𝐿𝑥 and𝑈𝑥 are the lower and upper bounds of a 95% prediction interval calculated for period 𝑥 (𝑥 = 𝑡 + 1,… , 𝑇) and
𝐼 is an indicator function. The IS is a strictly proper scoring rule, which is related to the width of a prediction interval, with
a penalty in cases where the interval does not contain the actual standardized incidence rate, and is defined as follows for
a given cutoff time 𝑡 = 2001, … , 2015, and for each sex/cancer site combination (Gneiting et al., 2007):

𝐼𝑆 (𝑡) =

∑𝑇

𝑥=𝑡+1

{
(𝑈𝑥 − 𝐿𝑥) +

2

0.05
[(𝐿𝑥 − 𝜆∗𝑥) 𝐼 (𝜆

∗
𝑥 < 𝐿𝑥) + (𝜆∗𝑥 − 𝑈𝑥) 𝐼 (𝜆

∗
𝑥 > 𝑈𝑥)]

}
(𝑇 − 𝑡)

. (7)

The CR of a prediction interval should be as close to 95% as possible, while the IS should be as small as possible with a
minimum of 0. As for our primary criteria, CR and IS were averaged across the 150 scenarios, obtaining a mean CR and a
mean IS (M-CR and M-IS).
Finally,we reported the percentage of scenarios forwhich the fitting algorithmsused by the differentmethods converged

(i.e., they were able to produce predictions), which was not always 100%. Note that all the above criteria were calculated
excluding the few cases where the computation did not converge.
All models below will be evaluated and compared according to all criteria (M-NRMSE, med-NMRSE, M-NMAE, Med-

NMAE, M-CR, M-IS, and convergence rate). All detailed results are given in the Appendix of the Supporting Information.

4 PREDICTIONMETHODS

4.1 Generalized linear models

We considered the Poisson GLM as presented in Chapter 2.4 of A. C. Cameron and Trivedi (2013a). The number of cases
𝐷𝑎,𝑝 (𝐷𝑎,𝑐) in a certain area of the Lexis diagram (see Figure 1) is assumed to followaPoisson distributionwhosemean 𝜆𝑎,𝑝 ⋅
Y𝑎,𝑝 (𝜆𝑎,𝑐 ⋅ Y𝑎,𝑐) depends (usually via a log link) on the age andperiod (or age and cohort). The person-years𝑌𝑎,𝑝 (𝑌𝑎,𝑐) is an
offset of the model. Due to the age= period−cohort relationship, the three variables cannot be introduced simultaneously
in a model, so that we considered data either in squares of the Lexis diagram (age and period) or in parallelograms (age
and cohort, see Figure 1), that is, only two effects were considered at a time, with a possible interaction between the two:

log

(
𝐷𝑎,𝑧

𝑌𝑎,𝑧

)
= log

(
𝜆𝑎,𝑧

)
= 𝑛𝑠𝑘 (𝑎) + 𝑓 (𝑧) + 𝑔 (𝑎) ⋅ ℎ (𝑧) (8)

with 𝑧 = {𝑝, 𝑐}; 𝑓, 𝑔, ℎ = {∅, 𝑖𝑑, 𝑛𝑠k}; 𝑘 = 1,… , 4. The age 𝑎 was introduced into the model with natural splines 𝑛𝑠𝑘, that
is, cubic splines based on 𝑘 knots, linear outside the extreme knots (Ruppert et al., 2003). The period (or the cohort) was
either absent (𝑓 = ∅), either introduced linearly, that is, via an identity function (𝑓 = 𝑖𝑑) or by splines (𝑓 = 𝑛𝑠𝑘). Both age
and period (or age and cohort) were introduced either linearly or by splines in the interaction term, with the constraint
that the degrees of freedom for the period (or the cohort) effect must be lower or equal in the interaction term than in
the main effect. So, if the period (or the cohort) was introduced linearly as the main effect (𝑓 = 𝑖𝑑), it was not introduced
via splines in the interaction (ℎ ≠ 𝑛𝑠𝑘), and if the period (or the cohort) was not introduced as a main effect (𝑓 = ∅), it
was not in an interaction term (ℎ = ∅). For a given number of knots 𝑘, this defined five models without interaction and 12
models with interaction. Varying the number of knots between 𝑘 = 1 and 𝑘 = 4 (beyond which we encountered problems
of lack of convergence of the fitting algorithm), we obtained 4 × (5 + 12) = 68GLM. The Lee–Carter model (1992), a well-
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established model used in demography to predict mortality rates, is one of those 68 models where the age and the period
are introduced with splines, with an interaction between the two.
Finally, we considered a GLM obtained via a model selection strategy that consists in selecting among the 68 GLM

models the one that best fits the data in the training set according to the Akaike information criterion (AIC), so that a
possibly different GLM is selected in each scenario. This corresponds to a 69th GLM that we call GLM AIC.
The well-known joinpoint regression (Lerman, 1980) was included as a 70th GLM. This is an age-period model with

the period introduced with linear splines, with knots representing times where a change of trend occurs. Unlike classical
splines, where the knots are chosen a priori, knots in joinpoint regression are determined from the data according to AIC.
We only considered a single knot joinpoint model.
Predictions of incidence rates were obtained by extrapolating period, respectively, cohort effects. For age-cohortmodels,

cohort effectsmust be extrapolated for future periods, with the particularity of requiring the prediction of the effect of some
new cohorts and the removal of the effect of old cohorts, as each year some cohorts exit and new cohorts enter. Predictions
of 𝜆𝑎,𝑐 or 𝜆𝑎,𝑝 (�̂�𝑎,𝑐 or �̂�𝑎,𝑝) were then aggregated and standardized according to (3) to obtain predicted standardized
incidence rates �̂�∗𝑝. The variance of �̂�𝑎,𝑐 (or �̂�𝑎,𝑝)was estimated by the delta method as in Chapter 3 of A. C. Cameron and
Trivedi (2013b), and prediction intervals were obtained based on this variance following the implementation provided in
the R package trending (Schumacher & Jombart, 2021).

4.2 Age-period-cohort models

APC models, introduced by Holford (1983), are Poisson GLM allowing to include simultaneously age, period, and cohort
effects. In order to make the model identifiable despite the linear relationship between the three variables, some con-
straints are added (Carstensen, 2007). Whereas age, period, and cohort were originally considered as factors, forcing a
coarse tabulation of 5-year groups (Clayton & Schifflers, 1987; Holford, 1983; Møller et al., 2002), more recent develop-
ments in APC, which we followed in our study, adopted splines to model three effects (Carstensen, 2007; Carstensen
et al., 2022). With the canonical log link of Poisson GLM, a spline APC model takes the following form:

log
(
𝜆𝑎,𝑝,𝑐

)
= 𝑛𝑠𝑘 (𝑎) + 𝑛𝑠𝑘 (𝑝) + 𝑛𝑠𝑘 (𝑐) + drif t. (9)

Here the drift is a linear trend effect, ascribed to both period and cohort and 𝑛𝑠𝑘(𝑝) (respectively, 𝑛𝑠𝑘(𝑐)) are residual
nonlinear effects specific to the period (respectively, the cohort). For these splines, we considered between 𝑘 =3, 4, or
5 knots. In addition to the canonical log link, other link functions (Dunn & Smyth, 2018) have been compared in the
literature for their prediction performance, where the 1/5 power link performed best (Møller et al., 2003). For this reason,
we have adopted the 1/5 power link in our comparisons, as an alternative to the log link (9).
Two options have been adopted in the literature to extrapolate the incidence rates �̂�𝑎,𝑝,𝑐 for future periods and cohorts.

The most common one consists in extrapolating only the drift (Yu et al., 2019); the alternative consists in adding a linear
extrapolation of the nonlinear effects (Rutherford et al., 2012). Both options are compared in our study. Inwhat follows, the
two extrapolation strategies are referred to as drift only, and all effects, respectively. Varying the number of knots between
𝑘 =3, 4 or 5, and considering two link functions and two extrapolation strategies, we obtained 3 × 2 × 2 = 12APCmodels.
AswithGLM, the predictions �̂�𝑎,𝑝,𝑐 were finally aggregated and standardized as in (3) to produce predicted standardized

incidence rates �̂�∗𝑝 and prediction intervals.

4.3 Bayesian age-period-cohort models

A BAPC model (Riebler et al., 2012; Riebler & Held, 2017; Schmid & Held, 2004) has the same formulation as an APC
model, the difference being how age, period, and cohort effects are included in the model and how they are fitted. Instead
of using splines, Bayesian models are based on the first- or second-order random walk (𝑅𝑊1 or 𝑅𝑊2) specification for
each effect of the model:

log
(
𝜆𝑎,𝑝,𝑐

)
= 𝑅𝑊𝑙 (a) + 𝑅𝑊𝑙 (𝑝) + 𝑅𝑊𝑙 (𝑐) , (10)
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where 𝑙 = 1, 2 is the order of the random walk. Considering, for instance, the period effect (the same holds for age and
cohort effects), a Bayesian first-order random walk takes the following form:

𝑅𝑊1 (𝑝) = Δ𝑝 ∼ 𝑁
(
0, 𝜎21

)
, (11)

whereΔ𝑝 is the difference of the last two period effects.With the 𝑅𝑊1model, each (age, period, and cohort) effect is taken
as being equal to the previous one plus a random number from a normal distribution centered on zero, with variance 𝜎2

1
.

The latter acts as a smoothing parameter: with an infinite variance, the fitted model will pass through all the data points
in the training set, while a small prior variance will give rise to a smoother fit. We considered different choices for the
hyper-prior distribution of parameter 𝜎21 . Our first option was the most commonly adopted distribution, that is, a flat
(noninformative) gamma(1, 5e−5) for the three effects of age, period, and cohort (Riebler & Held, 2017). As alternative
options, we considered a tighter gamma(1, 5e−3), a larger gamma(1,5e−7), and PC(u=1,α=0.01) (Lindgren & Rue, 2015)
priors for the three effects, as well as an option with a gamma(1, 9e−4) for the age effect and gamma(1, 2.5e−4) for the
period and cohort effects, as in Riebler and Held (2017). Considering that we have 7000 observations in the Lexis diagram,
the hyper-prior has a limited effect. When making predictions from a Bayesian 𝑅𝑊1 model, the last fitted period and
cohort effects are extrapolated as constant.
Considering again the period effect as an example, a Bayesian second-order random walk takes the form:

𝑅𝑊2 (𝑝) = Δ2𝑝 ∼ 𝑁
(
0, 𝜎22

)
, (12)

where Δ2𝑝 is the second difference (difference of the difference) involving the last three period effects. In a 𝑅𝑊2 model,
each age, period, and cohort effect is based on the two previous effects and adding a random number from a normal
distribution centered on zero, with variance 𝜎22 . The latter acts again as a smoothing parameter: the smaller the prior
variance, the smoother the fit. The same five priors adopted for 𝜎21 were adopted for 𝜎

2
2 . In a Bayesian 𝑅𝑊2 model, the

future period and cohort effects are predicted by a linear trend based on the last two fitted effects. Compared to an 𝑅𝑊1

model, an 𝑅𝑊2 model will be generally smoother.
Since we considered five priors for each of the 𝑅𝑊1 and 𝑅𝑊2models, we included a total of 10 BAPC in our comparison.

As with GLM and APC models, the predicted rates �̂�𝑎,𝑝,𝑐 from a BAPC model should be combined to obtain predictions
of standardized incidence rates �̂�∗𝑝. Bayesian 𝑅𝑊1 and 𝑅𝑊2 models were fitted using the INLA (Lindgren & Rue, 2015)
and BAPC packages (Riebler & Held, 2017) from R software (R Core Team, 2022) to get point predictions and prediction
intervals, respectively. The package INLA is based on the works of Rue (2009), Martins (2013), and Lindgren (2011, 2008,
2015).

4.4 ARIMA time series models

ARIMA time seriesmodels are econometricmodels defined by combining a difference autoregressivemodelwith amoving
averagemodel (Hamilton, 1994). LetΔ𝑑𝜆∗𝑝 be the standardized rates 𝜆∗𝑝 differenced d times. TheARIMA(h,d,q) is expressed
as

Δ𝑑𝜆∗𝑝 = 𝛼0 + 𝛼1Δ
𝑑𝜆∗𝑝−1 + 𝛼2Δ

𝑑𝜆∗𝑝−2 +⋯+ 𝛼ℎΔ
𝑑𝜆∗

𝑝−ℎ
+ 𝜖𝑝 + 𝜃1𝜖𝑝−1 + 𝜃2𝜖𝑝−2 +⋯+ 𝜃𝑞𝜖𝑝−𝑞, (13)

where 𝜖𝑝 are normally distributed residuals, 𝛼1,. . . ,𝛼ℎ are the coefficients of the autoregressive (AR) part of the model,
𝜃1, … , 𝜃𝑞 are the coefficients of the moving average (MA) part, and 𝛼0 is a constant. In an ARIMA(h,d,q) the predictors
are lagged h data points for the autoregressive part and q residuals are considered for the moving average part, which are
all d differenced. We considered all orders from (0,0,0) to (3,3,3) for (h,d,q) which represents 43 = 64 different models. As
for GLM, we finally considered an ARIMA obtained via a model selection strategy that consists in selecting among the 64
ARIMAmodels the one that best fits the data in the training set according to the AIC, so that a possibly different ARIMA
is selected in each scenario. This corresponds to the 65th ARIMA method that we call ARIMA AIC.
Unlike themodels presented in the previous sections, the predictions obtainedwith anARIMAmodel are based directly

on an extrapolation of the standardized rates (without the need for any aggregation). We used the function ARIMA from
R (R Core Team, 2022) to fit the models, predict the incidence rates, and compute the prediction intervals.
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4.5 Linear models

In order to get another standard comparator for the above methods, we finally considered a simple linear model (LM)
fitted on the last r data points of the training set:

𝜆∗𝑝 = 𝛼 + 𝛽𝑝 + 𝜖𝑝, (14)

where 𝑝 = (𝑡 − 𝑟 + 1), … , 𝑡, 𝜖𝑝 are normally distributed residuals and 𝛼 and 𝛽 are the intercept and slope of the model,
respectively. Letting 𝑟 vary between 3 and 10 data points, we considered eight LM. In these models, predictions of stan-
dardized incidence rates are made by extrapolating the fitted trend, and prediction intervals are obtained in the classical
framework of regression models.
In summary, considering the five classes ofmodels described in this section, we compared 165 differentmodels: 70GLM,

12 APC, 10 BAPC, 65 ARIMA, and 8 LM. An exhaustive list of all the models compared can be found in Figures A1–A4 of
the Supporting Information Appendix.

5 RESULTS

Allmodels described in Section 4were fitted to the 150 available scenarios detailed in Section 3.1 and evaluated according to
the performance criteria presented in Section 3.2. For eachmodel, the NRMSE and IS distribution over the 150 scenarios is
given in Figures A1–A8 of the Supporting InformationAppendix.Most of these distributions show large variability and are
highly skewed, with M-NRMSE >Med-NRMSE, as M-NRMSE strongly penalizes the poor performance of some models
in particularly difficult scenarios, for example, in the case of a trend reversal (and the same is true for the M-IS).

5.1 Illustration of two selected scenarios

To illustrate the heterogeneity of predictions among models, we have plotted in Figure 4 two selected scenarios, one for
female lung cancer and one for (male) prostate cancer, bothwith a cutoff time of 𝑡 = 2010. In the former, incidence rates are
always increasing, representing a simple setting for predictions, while in the latter the incidences begin to decrease around
2005, giving a more challenging situation for predictions. It can be seen that in the former scenario almost all models
predict similar incidence rates, whereas in the latter the heterogeneity among predictions is impressive, as a trend reversal
occurs towards the end of the training set. In this setting, some models adapt to the new trend (e.g., an APC extrapolating
all effects, represented in green), while others fail to adapt (e.g., an APC extrapolating the drift only, represented in dark
cyan). We can observe that highly flexible models, although fitting closely to the data points in the training set, are not
necessarily the best for prediction in the test set (e.g., ARIMA (3,3,0) in red).
The Supporting Information Appendix contains more detailed results for prostate cancer. Figure A9 shows the predic-

tions of the different models for each of the 15 scenarios (i.e., varying the cutoff time 𝑡) for this cancer site. When the cutoff
time occurs before the trend reversal, all models predict excessively high incidence rates, but some models adapt quicker
than others when the cutoff time occurs during or just after the trend reversal. For each model, Figures A10–A13 give
the NMRSE distribution over the 15 scenarios for prostate cancer, showing a generally worse performance of the methods
(higher NMRSE values and more skewed distribution) than what we had in Figures A1–A4 (when considering all cancer
sites). The NRMSE and IS distributions of each model over the 15 scenarios for all 10 sites considered in this study can be
found in the Supporting Information. In what follows, we discuss and compare the prediction performance achieved by
the different models.

5.2 Comparison within classes of models

In the class of GLM (Section 4.1), recall that we varied (a) the number of knots 𝑘 of the splines between 1 and 4, and (b)
the variables included in the model and the functional forms used. Models with 𝑘 = 3 and 𝑘 = 4 knots achieved smaller
M-NMRSE (Figure 5a). Models including age and period performed better than models including only age or age and
cohort, with better performance when the period was included via splines rather than just linear, while models including
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F IGURE 4 Illustration of predictions made by the different models in one of the 15 leave-future-out cross-validation scenarios (training
set 1982–2010; test set 2011–2016) for lung (female) and prostate (male) cancer standardized incidence rates. Combined data from the Swiss
registries of Vaud, Geneva, and Neuchatel, 1982–2016. Three models are highlighted (APC extrapolating only the drift, APC extrapolating the
drift + all nonlinear effects, and ARIMA (3,3,0)). All other models are in gray. APC, age-period-cohort; ARIMA, autoregressive integrated
moving average.

an interaction term performed similarly to those without interaction (Figure 5b). The best GLM with 𝑘 = 4 knots was a
model including age and period, along with a linear interaction between the two variables (M-NRMSE = 0.138), while
the best GLM with 𝑘 = 3 knots was a model including age and period without interaction (M-NRMSE = 0.143), the latter
being simpler and converging more often than the former (100% vs. 96%). Both models performed much better than the
more complex Lee–Cartermodel (M-NRMSE= 0.180). On the other hand, the use of AIC for selecting theGLM showed an
extremely poor performance, as did the joinpointmodel (bothM-NRMSE> 7; see also FiguresA1 andA2 in the Supporting
Information Appendix).
In the APC class of models (Section 4.2), we varied the number of knots 𝑘 between 3 and 5, while considering two

possible link functions (log or 1/5 power), and two different extrapolation strategies (drift only or all effects). Results are
summarized in Figure 5c. We found that using the 1/5 power link improved the predictions compared to using the canon-
ical log link, especially when extrapolating the drift only. The optimal number of knots was 𝑘 = 3 when using the first
extrapolation strategy (drift only) and 𝑘 = 5when using the second (all effects). In general, the second extrapolation strat-
egy improved predictions compared to the first. The best APCmodel was thus a model using the 1/5 power link, with five
knots and extrapolating all effects (M-NRMSE = 0.140; see also Figure A3 in the Supporting Information Appendix).
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F IGURE 5 Mean normalized root mean square error (M-NRMSE) for GLM (a) and (b); APC, BAPC, and LM (c) across 150 scenarios (15
leave-future-out cross-validation scenarios for each sex and five cancer locations per sex) obtained on combined data from the Swiss registries
of Vaud, Geneva, and Neuchatel, 1982–2016. In the labels, “A” indicates GLM only including age; “A+P” (respectively, “A+C”) indicates GLM
including age and period (respectively, age and cohort) without interaction; “A ⋅ P” (“A ⋅ C”) indicates GLM including age, period (respectively,
age, cohort) with interaction. For APC, “drift only” and “all effects” refer to prediction strategies extrapolating only the drift, respectively, the
drift + all nonlinear effects, “log” indicates the logarithmic link, and “pw” is the 1/5 power link. For BAPC, RW1 and RW2 refer to first, and
second-order random walk. APC, age-period-cohort; BAPC, Bayesian age-period-cohort; GLM, generalized linear models; LM, linear model.

In the BAPC class of models (Section 4.3), the choice of the priors for the period, cohort, and age effects had almost
no impact on the M-NRMSE, while (using a PC hyper-prior) the performance was better for the RW1 model (M-
NRMSE= 0.127) than for the more complex RW2 model (M-NRMSE= 0.139), as summarized in Figure 5c (see also Figure
A3 in the Supporting Information Appendix).
In the ARIMA class of models (Section 4.4), we varied the autoregressive, integrated, and moving average orders from

0 to 3. Results are summarized in Figure 6. Changing the autoregressive and the moving average order did not have much
impact on the prediction performance. On the other hand, working with difference data did improve the performance
up to order 1, but got worse beyond. The smallest M-NRMSE was achieved by an ARIMA (2,1,1) (M-NRMSE = 0.078),
with a convergence of 96%, while the best ARIMA with a convergence of 100% was ARIMA (1,1,0) (M-NRMSE = 0.084).
As for GLM, using the AIC criterion to select a possibly different ARIMA model depending on the scenario resulted in a
worse prediction performance (M-NRMSE = 0.119) than when systematically opting for an ARIMA (2,1,1) or (1,1,0) (see
also Figure A4 in the Supporting Information Appendix).
Finally, in the class of LM (Section 4.5), the best performancewas achieved using the last 𝑟 = 7 data points of the training

set to fit the model (M-NRMSE = 0.117; see Figure 5c and Figure A3 of the Supporting Information Appendix).
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F IGURE 6 Mean normalized root mean square error (M-NRMSE) for ARIMA with orders of each component (AR, I, and MA) between
0 and 3, and an ARIMA AIC across 150 scenarios (15 leave-future-out cross-validation scenarios for each sex and five cancer locations per sex)
obtained on combined data from the Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016. AIC, Akaike Information Criterion; AR,
autoregressive; ARIMA, autoregressive integrated moving average; MA, moving average.

The Supporting Information Appendix also contains the same summary results as in Figures 5 and 6 for the M-IS
criterion (Figures A14 and A15). Within-class comparisons in terms of M-IS are largely consistent with that obtained
usingM-NMRSE. The best GLMwas amodel with three knots including age and period with an interaction (M-IS= 0.199;
Figures A14, A5, and A6). The best APC was a model using the 1/5 power link, with five knots and extrapolating all effects
(M-IS = 0.504; Figures A14 and A7). The best BAPC was a RW1 model using a gamma(1, 2.5e−4) prior (M-IS = 0.200;
Figures A14 and A7). In the ARIMA class, the best performance was achieved by ARIMA(1,1,0) (M-IS = 0.098; Figures
A15 and A8), while in the class of LM the best performance was obtained using the last 𝑟 = 4 data points (M-IS = 0.181;
Figures A14 and A7).

5.3 Comparison between classes of models

The performance of the best models from each class identified above based either on M-NRSME or on M-IS, as well as
of some other well-known models, is summarized in Table 2, where models are ordered in terms of M-NRSME. Based on
this criterion, simple ARIMAmodels, such as (2,1,1) and (1,1,0) and LM using the last seven data points, performed better
than the best models among the more complex (GLM, APC, and BAPC) classes of models. Looking at detailed results in
Supporting Information Appendix (Figures A1–A4), one can see that ARIMA models with orders up to (3,1,3) as well as
LM models using the last 5–10 data points were also ahead of the other methods. The AIC-based ARIMA outperformed
GLM, APC, and BAPC models, while being inferior to simple ARIMA and LM. Finally, the single knot joinpoint and
Lee–Carter models showed extremely poor performance.
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TABLE 2 Prediction performance for the best models within each class (GLM, APC, BAPC, ARIMA, and LM) according to the mean
normalized root mean square error (M-NRMSE) and to the mean interval score (M-IS), and for some other selected models, across 150
scenarios (15 leave-future-out cross-validation scenarios for each sex and five cancer locations per sex) obtained on combined data from the
Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016. Also given is the performance of short-term, medium-term, and long-term
predictions provided by M-NRMSE (1–5 years), M-NRMSE (6–10 years), and M-NRMSE (11–15 years). Alternative criteria include the median
NMRSE (Med-NRMSE), the mean and median normalized mean absolute error (M-NMAE and Med-NMAE), and the mean coverage rate
(M-CR). The last column indicates the percentage of convergence of the methods over the 150 scenarios. Models in this table are ordered
according to M-NRMSE.

M-
NRMSE

1–5
years

6–10
years

11–15
years

Med-
NRMSE

M-
NMAE

Med-
NMAE M-IS M-CR Convergence

ARIMA (2,1,1) 0.078 0.068 0.090 0.120 0.078 0.069 0.065 0.103 93.3 96
ARIMA (1,1,0) 0.084 0.071 0.101 0.141 0.079 0.075 0.069 0.098 96.7 100
LM 𝑟 = 7 0.117 0.079 0.153 0.280 0.076 0.103 0.067 0.234 88.8 100
ARIMA AIC 0.119 0.087 0.150 0.223 0.089 0.105 0.079 0.258 78.3 100
BAPC RW1
PC(u=1,α=0.01)
prior

0.127 0.085 0.175 0.297 0.083 0.111 0.076 0.205 98.3 89

BAPC RW1
gamma(1,5e-3)

0.129 0.086 0.179 0.303 0.086 0.113 0.074 0.200 99.5 88

LM 𝑟 = 4 0.131 0.091 0.168 0.293 0.083 0.116 0.075 0.181 94.6 100
GLM 𝑛𝑠4(𝑎) +

𝑛𝑠4(𝑝) + 𝑎 ⋅ 𝑝

0.138 0.087 0.188 0.357 0.088 0.120 0.074 0.377 61.6 96

BAPC RW2 PC prior 0.139 0.084 0.178 0.384 0.091 0.119 0.074 0.337 99.8 86
APC all effects, pw,
𝑘 = 5

0.140 0.088 0.178 0.360 0.093 0.123 0.078 0.504 61.1 97

GLM 𝑛𝑠3(𝑎) + 𝑛𝑠3(𝑝) 0.143 0.088 0.186 0.373 0.088 0.124 0.077 0.496 59.8 100
GLM 𝑛𝑠3(𝑎) +

𝑛𝑠3(𝑝) + 𝑛𝑠3(𝑎) ⋅ 𝑝

0.149 0.088 0.194 0.413 0.086 0.128 0.075 0.199 85.5 100

APC drift only, pw
𝑘 = 3

0.151 0.105 0.199 0.303 0.105 0.132 0.094 0.607 51.2 85

GLM Lee Carter,
𝑘 = 2

0.180 0.097 0.233 0.557 0.081 0.154 0.070 0.340 76.7 100

Joinpoint 7.519 0.440 7.982 40.299 0.096 4.327 0.088 11.329 53.7 100

Abbreviations: AIC, Akaike Information Criterion; APC, age-period-cohort; ARIMA, autoregressive integrated moving average; BAPC, Bayesian age-period-
cohort; GLM, generalized linear models; LM, linear model. pw, 1/5
power link; RW1, first-order random walk; RW2 second-order random walk.

Largely similar conclusions were obtained in terms of M-IS, with simple models outperforming more complex ones
(Table 2 and Figures A5–A8). Again, the best performance was achieved for simple ARIMA models, followed by LM
(using the last four points). These simple models also presented anM-CR fairly close to 95%. BAPCmodels had in general
wider prediction intervals, resulting also in too high coverage rates (M-CR close to 100% instead of 95% for some of them).
In contrast, coverage rates were clearly too low for GLM and APC, where M-CR could even reach values as low as 50%.
Figure 7 compares the M-NRMSE between model classes separately for each sex and cancer site. Prostate cancer is the

site with the largest variability in model accuracy, as incidence rates showed a trend reversal (Figures 4 and A5), followed
by skin melanoma for both sexes, because of a rate stabilization in recent years (Figure 2). The APC, BAPC, and GLM
models performed particularly poorly in at least one of these difficult cases, while the ARIMA models were among the
best methods whatever the cancer site. Here also, similar results were obtained in terms of M-IS (Figure A16).
When evaluating separately the M-NRMSE of the short-term (1–5 years), medium-term (6–10 years), and long-term

(11–15 years) predictions, we found that, despite inevitably less good performances for long-term predictions than for
mid- and especially short-term predictions, the ranking of the models was largely the same in all three settings (Table 2).
Results of our sensitivity analyses (Section 3.2) are also summarized in Table 2. In a first sensitivity analysis, we repeated
all calculations using M-NMAE instead of M-NRMSE. The ranking of the models stayed mostly the same. In a second
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F IGURE 7 Mean normalized root mean square error (M-NRMSE) for one model per class, by sex and cancer site (M-NRSME across 15
leave-future-out cross-validation scenarios on combined data from the Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016 per sex and
cancer site). The number of scenarios for which the fitting algorithm of a method did not converge is indicated at the bottom of the graph for
APC|BAPC. The other methods shown always converged. APC, age-period-cohort; ARIMA, autoregressive integrated moving average; BAPC,
Bayesian age-period-cohort; GLM, generalized linear models; LM, linear model.

sensitivity analysis, we looked at the Med-NRMSE and Med-NMAE. While the performance of the different models was
much closer to each other, the best models remained the simple ARIMA models.
The last column of Table 2 provides the percentage of scenarios for which the fitting algorithm of the different methods

converged, which was 100% for LM, above 95% for ARIMA and GLM, and slightly below (down to 85%) for the APC and
BAPCmodels. The computational time of Bayesian and non-Bayesianmethods is available in the Supporting Information
Appendix (Table A1).

6 DISCUSSION

The objective of this paper was to compare the performance of statistical models for predicting annual age-standardized
cancer incidence rates. The APC method was compared with its Bayesian counterpart BAPC, with simpler GLM
approaches including only age and period or age and cohort in the model, and with ARIMA models based only on time
series of incidence rates. A simple linear regression model (LM) extrapolating the trend fitted on the last few observed
incidence rates was included in the comparison. The prediction performance of each method was evaluated in terms of
point prediction accuracy, the quality of prediction intervals, and the convergence rate of the fitting algorithm on a large
set of scenarios obtained by leave-future-out cross-validation using real data from Swiss cancer registries.
In the class of GLM, including period led to better prediction performance than including cohort (in addition to age) in

the model. Including cohort in the model involves the prediction of new cohort effects mainly based on the most recent
ones containing only few observations. These models are therefore more prone to overfitting than those using period
effects concerning the whole population. On the other hand, the inclusion of a simple (linear) interaction term for age
and period did not improve prediction performance, while including complex interactions (splines) actually worsened
predictions due to overfitting. This was also the case for the Lee–Carter and joinpoint models, and for a GLM model
selected via the AIC. Prediction intervals were particularly poor for GLM as previously found by another study (Møller
et al., 2005), who estimated (aswe did) coverage rates of about 50%. TheAPCapproach, although considerably improved by
the use of a power link (Møller et al., 2003), performed poorlywhen predictionsweremade by extrapolating the drift alone.
The drift alone is, however, themostwidely used strategy to date (Yu et al., 2019). Further extrapolating all nonlinear effects
(Rutherford et al., 2012) improved the predictions in case of a trend reversal. The Bayesian APC models based on second-
order random walk performed very similarly to the classical APC models with splines, while a simpler BAPC based on
first-order randomwalk performed slightly better despite less smooth age, period, and cohort effects. For ARIMA, models
with low-order autoregressive, integrated, and moving average components are to be preferred to more complex model
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structures. A strategy based on selecting the bestARIMAmodel viaAICoverfitted the data and gaveworse predictions than
systematically choosing a simple structure. Finally, increasing the number of data points to fit a simple linear regression
model improved the prediction when including up to 7 years in the past, worsening after this lag.
Comparingmodels among classes, we obtained the best performance for simple ARIMAmodels such as (2,1,1) or (1,1,0).

Nevertheless, most of the simplest ARIMA models, including component orders up to (3,1,3), were ahead of the other
methods. The second-best performing class of models was simple linear regression, where all alternatives using 5–10 data
points to fit the trend outperformed the more complex GLM, APC, and BAPC models. Similar results in terms of ranking
of models were obtained for short, medium, and long-term predictions, and stratifying by cancer site, despite the less
good performance for long-term versus short-term predictions, and for cancers showing a trend reversal. Considering
absolute errors (NMAE) instead of square errors (NRMSE) and taking the median instead of the mean of the NRMSE (or
NMAE) across scenarios did not substantially change the ranking of themodels, still placing simple ARIMAmodels at the
top of the list. However, while the choice of the mean strongly penalizes the most difficult scenarios, the median simply
excludes these particularly complicated situations from the evaluation. For this reason, we have focused mainly on the
mean NRMSE, as it allows us to favor models and methods that do not show aberrant behavior in case of trend reversal or
stabilization, as this is becoming increasingly common (e.g., prostate, breast, and skin melanoma) and a similar pattern
will hopefully be observed in the future for other cancer sites. Finally, looking at the prediction intervals did not alter our
conclusions, with simple ARIMA models still being the best performing models.
Our first observation is that the models that offer the best fit to the data, for example, models selected using AIC, are

not necessarily the best for prediction. The use of AIC may lead to the choice of overly complex models, for example,
GLM or APC including complex interactions with splines, which are likely to overfit the data and are indeed less efficient
for prediction than simpler and smoother models. The second observation is in line with the first one by advocating for
simplicity. Approaches such as APC or BAPC estimate the effects of age, period, and/or cohort separately, considered as
proxies for epidemiological risk factors, such as smoking and other carcinogens.However, when it is amatter of prediction,
we have shown that better performance is obtained by simply extrapolating the trends using models such as ARIMA (or
even simple regression models). As Booth and Tickle (2008) have already noted in the context of mortality projection, an
extrapolation-based approach is often preferable to an explanation- or interpretation-based approach.
Our study has some limitations, all of which could motivate future work. For example, although we considered many

models, we did not include overdispersion in our Poisson models. While this would affect the coverage of the prediction
intervals, it would not greatly change the predictions and thus theNRMSE, ourmain criterion.More generally,many other
prediction models and options can be formulated, for example, using quasi-Poisson or negative binomial distributions or
trying other link functions, and it could become an interesting challenge for researchers to try to identify one that can
outperform ARIMA in comparable settings. Second, we did not take into account the effects of prevention/screening
programs and changes in medical technology and practice on cancer incidence rates. These factors can strongly influence
the (past and future) rates and help identify trend changes (Etzioni et al., 2013). Such effects are however challenging
to analyze, as they evolve over time. For example, the start of a cancer screening program leads to a short-term initial
increase in incidence, followed by a stabilization or sometimes a decrease compared to past trends. Themagnitude of these
temporal effects will depend on the adherence to these prevention programs. Considering the impact of screening when
making predictions is a subject of ongoing work. Another limitation is that we did not account for data underreporting
and its evolution over time, which may introduce artifacts into predictions. In fact, while a high degree of completeness
has been evaluated in Swiss cancer registration (Lorez et al., 2017), a slight underreporting of some cancers cannot be
discarded. Finally, we have only modeled the most common cancers. Although we assume that simpler methods, such
as ARIMA, should be suitable for rare cancers, as they are less prone to overfitting, we have not studied the prediction
performance for these cancers and cannot draw any conclusions on this point. A specific analysis of the most suitable
prediction methods for rare cancers would be another important subject of future work. The same consideration can be
made for the prediction of specific age incidence rates.
In conclusion, we recommend using lower order ARIMAmodels to predict cancer incidence, for example, the ARIMA

(2,1,1) or (1,1,0) models, which achieved the best overall performance in our comparison study. We suggest not using AIC
to select the model, as this appears not to be the best strategy for prediction because it often results in overfitting. While
APC and BAPCmodels remain the best to help interpret changes in cancer incidence trends, we recommend avoiding the
widely used APC model for prediction, especially when the extrapolation is restricted to the drift. Finally, given the large
uncertainty, particularly in the case of a trend reversal, we do not recommend predicting cancer incidence for periods far
into the future but rather updating predictions regularly.



TRÄCHSEL et al. 17 of 19

ACKNOWLEDGMENT
This work has been supported by the Krebsliga Schweiz (KFS-4385-02-2018) (Isabella Locatelli).
Open access funding provided by Universite de Lausanne.

CONFL ICT OF INTEREST STATEMENT
The authors have declared no conflict of interest.

DATA AVAILAB IL ITY STATEMENT
Population data are available on the FSO website (https://www.pxweb.bfs.admin.ch/pxweb/fr/px-x-0102020000_104/px-
x-0102020000_104/px-x-0102020000_104.px) and cancer incidence data can be requested from cancer registries after eth-
ical approval of a project. In the Supporting Information, a simulated dataset, close to the original one is available, as well
as the R code used to produce the analysis, tables, and figures presented in the article.

OPEN RESEARCH BADGES
This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to

reproduce the reported results. The data is available in the Supporting Information section.

This article has earned an open data badge “Reproducible Research” for making publicly available the code necessary
to reproduce the reported results. The results reported in this article were reproduced partially due to data confidentiality
issues.

ORCID
BastienTrächsel https://orcid.org/0000-0002-4519-094X
Jean-LucBulliard https://orcid.org/0000-0001-9750-2709

REFERENCES
Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. Annals of Actuarial Science, 3(1–2), 3–43. https://doi.
org/10.1017/S1748499500000440

Bürkner, P.-C., Gabry, J., & Vehtari, A. (2020). Approximate leave-future-out cross-validation for Bayesian time series models. Journal of
Statistical Computation and Simulation, 90(14), 2499–2523. https://doi.org/10.1080/00949655.2020.1783262

Cameron, A. C., & Trivedi, P. K. (2013a). 2.4.4 Generalized linear models. In Regression analysis of count data (2nd ed., pp. 35–38). Cambridge
University Press. https://doi.org/10.1017/CBO9781139013567

Cameron, A. C., & Trivedi, P. K. (2013b). 3 Basic count regression. In Regression Analysis of Count Data (2nd ed., p. 566). Cambridge University
Press. https://doi.org/10.1017/CBO9781139013567

Cameron, J. K., & Baade, P. (2021). Projections of the future burden of cancer in Australia using Bayesian age-period-cohort models. Cancer
Epidemiology, 72, 101935. https://doi.org/10.1016/j.canep.2021.101935

Carstensen, B. (2007). Age–period–cohort models for the Lexis diagram. Statistics in Medicine, 26(15), 3018–3045. https://doi.org/10.1002/sim.
2764

Carstensen, B., Plummer, M., Laara, E., & Hills, M. (2022). Epi: A package for statistical analysis in epidemiology. https://CRAN.R-project.org/
package=Epi

Chen, H. S., Portier, K., Ghosh, K., Naishadham, D., Kim, H.-J., Zhu, L., Pickle, L. W., Krapcho, M., Scoppa, S., Jemal, A., & Feuer, E. J. (2012).
Predicting US and state-level cancer counts for the current calendar year: Part I: Evaluation of temporal projection methods for mortality.
Cancer, 118(4), 1091–1099. https://doi.org/10.1002/cncr.27404

Chen,W.-Q., Zheng, R.-S., & Zeng,H.-M. (2011). Bayesian age-period-cohort prediction of lung cancer incidence in China: Predicted lung cancer
incidence in China. Thoracic Cancer, 2(4), 149–155. https://doi.org/10.1111/j.1759-7714.2011.00062.x

Clayton, D., & Schifflers, E. (1987). Models for temporal variation in cancer rates. II: Age–period–cohort models. Statistics in Medicine, 6(4),
469–481. https://doi.org/10.1002/sim.4780060406

Clements, M. S. (2005). Lung cancer rate predictions using generalized additive models. Biostatistics, 6(4), 576–589. https://doi.org/10.1093/
biostatistics/kxi028

Coupland, V. H., Okello, C., Davies, E. A., Bray, F., &Moller, H. (2010). The future burden of cancer in London compared with England. Journal
of Public Health, 32(1), 83–89. https://doi.org/10.1093/pubmed/fdp082

Dunn, P. K., & Smyth, G. K. (2018). Chapter 12: Tweedie GLMs. In P. K. Dunn & G. K. Smyth, Generalized linear models with examples in R (pp.
457–490). Springer. https://doi.org/10.1007/978-1-4419-0118-7_12

Earnest, A., Evans, S. M., Sampurno, F., & Millar, J. (2019). Forecasting annual incidence and mortality rate for prostate cancer in Australia
until 2022 using autoregressive integratedmoving average (ARIMA)models. BMJOpen, 9(8), e031331. https://doi.org/10.1136/bmjopen-2019-
031331

https://www.pxweb.bfs.admin.ch/pxweb/fr/px-x-0102020000_104/px-x-0102020000_104/px-x-0102020000_104.px
https://www.pxweb.bfs.admin.ch/pxweb/fr/px-x-0102020000_104/px-x-0102020000_104/px-x-0102020000_104.px
https://orcid.org/0000-0002-4519-094X
https://orcid.org/0000-0002-4519-094X
https://orcid.org/0000-0001-9750-2709
https://orcid.org/0000-0001-9750-2709
https://doi.org/10.1017/S1748499500000440
https://doi.org/10.1017/S1748499500000440
https://doi.org/10.1080/00949655.2020.1783262
https://doi.org/10.1017/CBO9781139013567
https://doi.org/10.1017/CBO9781139013567
https://doi.org/10.1016/j.canep.2021.101935
https://doi.org/10.1002/sim.2764
https://doi.org/10.1002/sim.2764
https://CRAN.R-project.org/package=Epi
https://CRAN.R-project.org/package=Epi
https://doi.org/10.1002/cncr.27404
https://doi.org/10.1111/j.1759-7714.2011.00062.x
https://doi.org/10.1002/sim.4780060406
https://doi.org/10.1093/biostatistics/kxi028
https://doi.org/10.1093/biostatistics/kxi028
https://doi.org/10.1093/pubmed/fdp082
https://doi.org/10.1007/978-1-4419-0118-7_12
https://doi.org/10.1136/bmjopen-2019-031331
https://doi.org/10.1136/bmjopen-2019-031331


18 of 19 TRÄCHSEL et al.

Etzioni, R., Gulati, R., Mallinger, L., &Mandelblatt, J. (2013). Influence of study features and methods on overdiagnosis estimates in breast and
prostate cancer screening. Annals of Internal Medicine, 158(11), 831. https://doi.org/10.7326/0003-4819-158-11-201306040-00008

Fritz, A., Percy, C., Jack, A., Shanmugaratnam,K., Sobin, L. H., Parkin, D.M.,Whelan, S. L., &WorldHealthOrganization. (2000). International
classification of diseases for oncology. [Classification internationale des maladies pour l’oncologie]. WHO IRIS. https://apps.who.int/iris/
handle/10665/42344

Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 69(2), 243–268. https://doi.org/10.1111/j.1467-9868.2007.00587.x

Hamilton, J. D. (1994). Time series analysis. Princeton University Press. https://press.princeton.edu/books/hardcover/9780691042893/time-
series-analysis

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer. https://doi.org/10.1007/978-0-387-84858-7
Holford, T. R. (1983). The estimation of age, period and cohort effects for vital rates. Biometrics, 39(2), 311–324. https://doi.org/10.2307/2531004
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
https://doi.org/10.1016/j.ijforecast.2006.03.001

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87(419), 659–671.
https://doi.org/10.1080/01621459.1992.10475265

Lerman, P. M. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society. Series C (Applied Statistics),
29(1), 77–84. https://doi.org/10.2307/2346413

Li, C., Zhu, Y., Yang, J., Xu, D., Wang, J., Chen, K., & Li, Q. (2022). Incidence of lung cancer in Jiashan, Zhejiang province: Trend analysis from
1987 to 2016 and projection from 2017 to 2019. Journal of Zhejiang University (Medical Sciences), 47(4), 367–373. https://doi.org/10.3785/j.issn.
1008-9292.2018.08.07

Lin, H., Shi, L., Zhang, J., Zhang, J., & Zhang, C. (2021). Epidemiological characteristics and forecasting incidence for patients with breast cancer
in Shantou, Southern China: 2006–2017. Cancer Medicine, 10(8), 2904–2913. https://doi.org/10.1002/cam4.3843

Lindgren, F., & Rue, H. (2008). On the second-order random walk model for irregular locations: RW2 for irregular locations. Scandinavian
Journal of Statistics, 35(4), 691–700. https://doi.org/10.1111/j.1467-9469.2008.00610.x

Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19), 1–25. https://doi.org/10.18637/
jss.v063.i19

Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic
partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423–498. https://doi.
org/10.1111/j.1467-9868.2011.00777.x

Lorez, M., Bordoni, A., Bouchardy, C., Bulliard, J.-L., Camey, B., Dehler, S., Frick, H., Konzelmann, I., Maspoli, M., Mousavi, S. M., Rohrmann,
S., & Arndt, V. (2017). Evaluation of completeness of case ascertainment in Swiss cancer registration. European Journal of Cancer Prevention,
26, S139–S146. https://doi.org/10.1097/CEJ.0000000000000380

Martins, T. G., Simpson, D., Lindgren, F., & Rue, H. (2013). Bayesian computing with INLA: New features. Computational Statistics & Data
Analysis, 67, 68–83. https://doi.org/10.1016/j.csda.2013.04.014

Møller, B., Fekjaer, H., Hakulinen, T., Sigvaldason, H., Storm, H. H., Talbäck, M., & Haldorsen, T. (2003). Prediction of cancer incidence in
the Nordic countries: Empirical comparison of different approaches: Comparison of methods for incidence prediction. Statistics inMedicine,
22(17), 2751–2766. https://doi.org/10.1002/sim.1481

Møller, B., Fekjaer, H., Hakulinen, T., Tryggvadóttir, L., Storm, H. H., Talbäck, M., & Haldorsen, T. (2002). Prediction of cancer incidence in
the Nordic countries up to the year 2020. European Journal of Cancer Prevention, 11(Suppl 1), S1–96.

Møller, B.,Weedon-Fekjær, H., &Haldorsen, T. (2005). Empirical evaluation of prediction intervals for cancer incidence. BMCMedical Research
Methodology, 5(1), 21. https://doi.org/10.1186/1471-2288-5-21

NSW Cancer Institute. (2016). Cancer incidence and projections 2011–2021. Cancer Institute.
OFS. (2020). Cancer, nouveaux cas et décès: Nombre, taux et évolution par localisation cancéreuse et période - 1987–2017 | Tableau. Office fédéral
de la statistique. https://www.bfs.admin.ch/asset/fr/14816247

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.
org/

Rahib, L., Wehner, M. R., Matrisian, L. M., & Nead, K. T. (2021). Estimated projection of US cancer incidence and death to 2040. JAMANetwork
Open, 4(4), e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708

Rapiti, E., Guarnori, S., Pastoors, B., Miralbell, R., & Usel, M. (2014). Planning for the future: Cancer incidence projections in Switzerland up
to 2019. BMC Public Health, 14(1), 102. https://doi.org/10.1186/1471-2458-14-102

Riebler, A., & Held, L. (2017). Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace
approximations: Projecting the future burden of cancer. Biometrical Journal, 59(3), 531–549. https://doi.org/10.1002/bimj.201500263

Riebler, A., Held, L., & Rue, H. (2012). Estimation and extrapolation of time trends in registry data—Borrowing strength from related
populations. The Annals of Applied Statistics, 6(1), 304–333. https://doi.org/10.1214/11-AOAS498

Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace
approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319–392. https://doi.org/10.1111/j.1467-9868.
2008.00700.x

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression (1st ed.). Cambridge University Press. https://doi.org/10.1017/
CBO9780511755453

https://doi.org/10.7326/0003-4819-158-11-201306040-00008
https://apps.who.int/iris/handle/10665/42344
https://apps.who.int/iris/handle/10665/42344
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://press.princeton.edu/books/hardcover/9780691042893/time-series-analysis
https://press.princeton.edu/books/hardcover/9780691042893/time-series-analysis
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.2307/2531004
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1080/01621459.1992.10475265
https://doi.org/10.2307/2346413
https://doi.org/10.3785/j.issn.1008-9292.2018.08.07
https://doi.org/10.3785/j.issn.1008-9292.2018.08.07
https://doi.org/10.1002/cam4.3843
https://doi.org/10.1111/j.1467-9469.2008.00610.x
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1097/CEJ.0000000000000380
https://doi.org/10.1016/j.csda.2013.04.014
https://doi.org/10.1002/sim.1481
https://doi.org/10.1186/1471-2288-5-21
https://www.bfs.admin.ch/asset/fr/14816247
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1001/jamanetworkopen.2021.4708
https://doi.org/10.1186/1471-2458-14-102
https://doi.org/10.1002/bimj.201500263
https://doi.org/10.1214/11-AOAS498
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1017/CBO9780511755453
https://doi.org/10.1017/CBO9780511755453


TRÄCHSEL et al. 19 of 19

Rutherford,M. J., Thompson, J. R., & Lambert, P. C. (2012). Projecting cancer incidence using age-period-cohortmodels incorporating restricted
cubic splines. The International Journal of Biostatistics, 8(1),33. https://doi.org/10.1515/1557-4679.1411

Schmid, V., & Held, L. (2004). Bayesian extrapolation of space-time trends in cancer registry data. Biometrics, 60(4), 1034–1042. JSTOR. https://
doi.org/10.1111/j.0006-341X.2004.00259.x

Schumacher, D., & Jombart, T. (2021). trending: Model temporal trends. https://CRAN.R-project.org/package=trending
Shi, J., Cao, M., Wang, Y., Bai, F., Lei, L., Peng, J., Feletto, E., Canfell, K., Qu, C., & Chen, W. (2021). Is it possible to halve the incidence of liver
cancer in China by 2050? International Journal of Cancer, 148(5), 1051–1065. https://doi.org/10.1002/ijc.33313

Spiegelman, M., & Marks, H. H. (1966). Empirical testing of standards for the age adjustment of death rates by the direct method. Human
Biology, 38(3), 279–292.

Tsoi, K. K. F., Hirai, H. W., Chan, F. C. H., Griffiths, S., & Sung, J. J. Y. (2017). Cancer burden with ageing population in urban regions in
China: Projection on cancer registry data from World Health Organization. British Medical Bulletin, 121(1), 83–94. https://doi.org/10.1093/
bmb/ldw050

Wong, M. C. S., Huang, J., Lok, V., Wang, J., Fung, F., Ding, H., & Zheng, Z.-J. (2021). Differences in incidence andmortality trends of colorectal
cancer worldwide based on sex, age, and anatomic location. Clinical Gastroenterology and Hepatology, 19(5), 955–966. e61. https://doi.org/10.
1016/j.cgh.2020.02.026

Yang, L., Parkin, D. M., Ferlay, J., Li, L., & Chen, Y. (2005). Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer
Epidemiology, Biomarkers & Prevention, 14(1), 243–250. https://doi.org/10.1158/1055-9965.243.14.1

Yu, X. Q., Luo, Q., Hughes, S., Wade, S., Caruana, M., Canfell, K., & O’Connell, D. L. (2019). Statistical projection methods for lung cancer
incidence and mortality: A systematic review. BMJ Open, 9(8), e028497. https://doi.org/10.1136/bmjopen-2018-028497

Zemni, I., Kacem, M., Dhouib, W., Bennasrallah, C., Hadhri, R., Abroug, H., Ben Fredj, M., Mokni, M., Bouanene, I., & Belguith, A. S. (2022).
Breast cancer incidence and predictions (Monastir, Tunisia: 2002–2030): A registry-based study. PLoS ONE, 17(5), e0268035. https://doi.org/
10.1371/journal.pone.0268035

Zheng, Y., Zhang, L., Zhu, X., & Guo, G. (2020). A comparative study of two methods to predict the incidence of hepatitis B in Guangxi, China.
PLoS ONE, 15(6), e0234660. https://doi.org/10.1371/journal.pone.0234660

SUPPORT ING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Trächsel, B., Rousson, V., Bulliard, J.-L., & Locatelli, I. (2023). Comparison of statistical
models to predict age-standardized cancer incidence in Switzerland. Biometrical Journal, e2200046.
https://doi.org/10.1002/bimj.202200046

https://doi.org/10.1515/1557-4679.1411
https://doi.org/10.1111/j.0006-341X.2004.00259.x
https://doi.org/10.1111/j.0006-341X.2004.00259.x
https://CRAN.R-project.org/package=trending
https://doi.org/10.1002/ijc.33313
https://doi.org/10.1093/bmb/ldw050
https://doi.org/10.1093/bmb/ldw050
https://doi.org/10.1016/j.cgh.2020.02.026
https://doi.org/10.1016/j.cgh.2020.02.026
https://doi.org/10.1158/1055-9965.243.14.1
https://doi.org/10.1136/bmjopen-2018-028497
https://doi.org/10.1371/journal.pone.0268035
https://doi.org/10.1371/journal.pone.0268035
https://doi.org/10.1371/journal.pone.0234660
https://doi.org/10.1002/bimj.202200046

	Comparison of statistical models to predict age-standardized cancer incidence in Switzerland
	Abstract
	1 | INTRODUCTION
	2 | DATA DESCRIPTION
	2.1 | Data sources
	2.2 | Age, period, and cohort tabulation
	2.3 | Standardized incidence rates

	3 | EVALUATING PREDICTION PERFORMANCE
	3.1 | Leave-future-out cross-validation
	3.2 | Comparison criteria

	4 | PREDICTION METHODS
	4.1 | Generalized linear models
	4.2 | Age-period-cohort models
	4.3 | Bayesian age-period-cohort models
	4.4 | ARIMA time series models
	4.5 | Linear models

	5 | RESULTS
	5.1 | Illustration of two selected scenarios
	5.2 | Comparison within classes of models
	5.3 | Comparison between classes of models

	6 | DISCUSSION
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	OPEN RESEARCH BADGES

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


