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GPCR – G protein-coupled receptor 

GTPγS – Guanosine 5′-[γ-thio]triphosphate 
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1. ABSTRACT 

Overactivation of the Wnt signaling pathway underlies oncogenic transformation and proliferation in 

many cancers, including the triple-negative breast cancer (TNBC) – the deadliest form of tumor in the 

breast, taking about a quarter of a million lives annually world-wide. No clinically approved targeted 

therapies attacking Wnt signaling currently exist. Repositioning of approved drugs is a promising 

approach in drug discovery. Here we show that a multi-purpose drug suramin inhibits Wnt signaling and 

proliferation of TNBC cells in vitro and in mouse models, inhibiting a component in the upper levels of 

the pathway. Through a set of investigations we identify heterotrimeric G proteins and regulation of Wnt 

endocytosis as the likely target of suramin in this pathway. G protein-dependent endocytosis of plasma 

membrane-located components of the Wnt pathway was previously shown to be important for 

amplification of the signal in this cascade. Our data identify endocytic regulation within Wnt signaling 

as a promising target for anti-Wnt and anti-cancer drug discovery. Suramin, as the first example of such 

drug, or its analogs might pave the way for appearance of first-in-class targeted therapies against TNBC 

and other Wnt-dependent cancers. 

2. INTRODUCTION 

Suramin is a rather large (Mr=1297) symmetric polysulphated polyaromatic compound. It was introduced 

in 1916 as a drug against the trypanosome Trypanosoma brucei, the cause of sleeping sickness [1]. 

Decades of application and investigations on this compound revealed its numerous off-target activities; 

moreover, it seems that even in its target organism trypanosome it acts through multiple mechanisms 

[2,3]. Normally, the off-target activities of drugs are highly undesirable. However, in the case of suramin 

the cheapness, high bioavailability, excellent solubility and absence of acute toxicity of this compound 

contributed to its popularity and numerous studies of the mechanisms of its action. Among the off-target 

activities of suramin are its activities as: antagonist of P2 receptors [4], agonist of ryanodine receptors 

[5], and inhibitor of growth factors and topoisomerases [6]. Suramin is also known to negatively affect 

cellular folate transport [7] and steroidogenesis [8]. Finally, it was shown to be an inhibitor of G protein 

activation [9,10]. 

Suramin was also proposed to affect the Wnt signaling – the developmentally and medically important 

pathway controlling multiple steps in embryogenesis and misactivated in many cancers [11–13]. Wnt 

signaling is initiated by the interaction of secreted lipoglycoproteins of the Wnt family with the cell 

surface receptors of the FZD family. Pathways initiated by Wnt ligands are diverse, and different co-

receptors, such as LRP5/6 are thought to play directional role in choosing between them. In the present 

work we are focusing on the “canonical” Wnt pathway, widely considered to be the main one involved 

in carcinogenesis and cancer sustaining. Inside the cell, the key transducer of the “canonical” Wnt 

pathway is β-catenin, which in the absence of the pathway activation is sent to degradation through the 

action of the Axin-based complex of proteins, additionally containing APC and glycogen synthase kinase 

3β (GSK3β) and casein kinase. When the signaling is activated, this destruction complex becomes 

inactivated, leading to stabilization of β-catenin and its translocation into the nucleus, leading to 

activation of LEF/TCF-dependent transcription [11,14]. 

In the context of the Wnt pathway, suramin was reported to induce release of the Wnt proteins from the 

cell surface by an undescribed mechanism, thus reducing Wnt/FZD interactions and activation of the 

pathway [15]. In the present work, we identify suramin as an inhibitor of the Wnt signaling pathway, 

acting through suppression of the Wnt endocytosis by the Wnt-responding cells. We provide evidence 

showing that this effect is achieved through inhibition of heterotrimeric G proteins by suramin rather 

than by effects of this drug on the surface adhesion of Wnts as was suggested before. These findings 

therefore shed light on the participation of the heterotrimeric G proteins in Wnt signaling in mammals as 

well as indicating G protein-dependent endocytosis as a potential drug target in this pathway. We further 

demonstrate the ability of suramin to arrest proliferation of triple-negative breast cancer cells in vitro and 
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in mouse models. 

3. MATERIALS AND METHODS 

.3.1. Luciferase-based assay of the Wnt-dependent transcriptional activity 

HEK293T and BT-20 cells stably transfected with M50 Super 8x TOPFlash plasmid [16] were used to 

analyze the Wnt inhibitory activity of suramin (Sigma, St. Gallen, Switzerland, cat.#S2671). The assay 

was performed in white tissue-culture treated 96-well plates (Greiner, cat.# 655073). The HEK293-Tf or 

BT-20-Tf cells were seeded in 100µl DMEM medium containing 10% FCS at ~10000 cells/well and 

subsequently stimulated by 0.5µg/ml mouse Wnt3a purified as described [17] or 20mM LiCl in the 

medium in presence or absence of the drug for 12 hours. 1µg/ml pertussis toxin (PTX, Enzo) and gallein 

(Tocris) pretreatments were done overnight before the assay. For investigation of suramin effects on 

Wnt3a, purified ligand was incubated with 1mM suramin overnight and then suramin was removed by 

100-fold dilution by the Wnt3a buffer (20mM HEPES pH 7.4, 150mM NaCl, 1% CHAPS) followed by 

concentration using Amicon 10K centrifugal concentrators. To account for effects of increased CHAPS 

concentrations and residual suramin (~1µM in the medium during assays), identical procedure was 

performed with the Wnt3a buffer only. 

If indicated, the cells were additionally transfected by the pCMV-RL plasmid for constitutive expression 

of Renilla luciferase (kindly provided by Konrad Basler [18]) using X-tremeGENE 9 reagent (Roche, 

Basel, Switzerland) according to the manufacturer's protocol. The medium was subsequently removed, 

and 15µl of the lysis buffer (25mM Glycylglycine pH 7.8, 1% Triton X-100, 15mM MgSO4, 4mM EGTA, 

1mM DTT) were pipetted into each well. After incubation for 5 minutes at room temperature the 96-well 

plate was analyzed using the Victor3 Multilabel Counter (PerkinElmer, Waltham, USA) with the two-

channel dispensing unit primed with the buffer solutions for activity measurements of firefly and Renilla 

luciferase (if necessary) (prepared as described in [19]). The final volumes dispensed per well were 50µl 

of firefly and 50µl of Renilla solutions. 

.3.2. β-catenin stabilization assay 

Analysis of β-catenin stabilization in response to cell activation by Wnt3a was modified from [20]. The 

following densities were used for different cell types: L-cells – ~50000 cell/well in 48-well plates; 

HEK293T, BT-20 and HeLa – ~70000/well in 24-well plates. The next day the old medium was removed 

and replaced by either the vehicle or suramin-containing fresh one. 1 hour pre-incubation was used in all 

experiments involving suramin; PTX and gallein pretreatment were done overnight, the HeLa cells were 

additionally transfected by FZD7 subcloned in pcDNA3.1 plasmid as described. Subsequently, purified 

Wnt3a or vehicle buffer were directly added into the wells to the final concentration of 1µg/ml and 

incubated at 37oC for 2 hours in case of L-cells or 12 hours in case of BT-20, HEK293 or HeLa cells. 

Subsequently the medium was removed, the cells in each well washed once with 500µl of 1x PBS 

(Biochrom AG, Berlin, Germany) and lysed directly in the well by addition of 50µl of ice-cold RIPA 

buffer for 10 minutes on ice. The cells were then resuspended, the debris was removed by 10 min 

centrifugation at 16000g, 4oC, the probes were further analyzed by Western blot with antibodies against 

β-catenin (BD, Allschwil, Switzerland, cat.# 610153) and α-tubulin (Sigma, St. Gallen, Switzerland, 

cat.# T9026). 

.3.3. Wnt internalization and surface binding 

For internalization or surface adhesion of exogenous Wnt3a, wild-type HeLa cells were seeded at 5x105 

cells/well in 6-well plates. Next day, Wnt3a-HA conditioned medium or purified Wnt3a was added to the 

cells and incubated either at 37oC (internalization) or 4oC (surface adhesion; cells were preincubated on 

ice for 1h prior to addition) for indicated amounts of time in presence or absence of 1mM suramin. 
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Subsequently the medium was removed and cells were washed 2x with ice-cold 1x PBS and then lysed 

in 1x RIPA buffer and analyzed by Western blotting. 

For quantification of endogenous Wnt3a-HA, the monoclonal HeLa cell line stably transfected with 

Wnt3a-HA subcloned into the pcDNA3.1 vector (Invitrogen, Lucerne, Switzerland) was seeded at 5×105 

cells/well. Next day, the cells were preincubated on ice for 30min, then washed 2x by ice-cold 1xPBS 

and then incubated with 0.5mg/ml of NHS-SS-Biotin (Pierce, Zug, Switzerland) solution in 1x PBS for 

1h, afterwards the NHS-SS-Biotin was quenched by 2x wash with 1xTBS solution and further incubation 

of cells for 30min in 1xTBS. The cells were subsequently lysed in 200µl RIPA buffer without reducing 

agents, lysates were cleared by centrifugation for 10min at 16000g. Biotinylated membrane proteins were 

isolated by incubation of lysates with 30µl/sample of Streptavidin beads (Pierce, Zug, Switzerland) for 

1h at 4oC and subsequent 4x wash with 30x beads volume of 1xTBS/1%Triton X-100. Membrane 

proteins were eluted by addition of the sample buffer and boiling for 10min. These samples were 

subsequently separated and analyzed by SDS-PAGE/Western blot. 

.3.4. BODIPY-GTPγS binding assay 

The assay was performed essentially as described [21]. 1µM His6-Gαo or His6-Gαo[Q205L] was mixed 

with indicated amounts of suramin. BODIPY-FL-GTPγS (both from Invitrogen, Lucerne, Switzerland) 

was added to the mixture after 25min to a final concentration of 1µM. The kinetics of in vitro G-protein 

activation was measured by the VICTOR3 multiwell reader (PerkinElmer, Waltham, USA). For suramin 

preloading of Gαo, 10µM protein in 1xTBS buffer was adjusted to 20mM MgCl2 and supplemented with 

1mM of suramin and incubated for 1h at 37oC. The unbound suramin was removed at 4oC by the 10000-

fold buffer exchange into 1xTBS on Amicon 10K ultracentrifugation concentrators and the proteins were 

used in the fluorescent measurements as described. 

.3.5. Transferrin and Dextran uptake analysis. 

For quantitative analysis of suramin influence on endocytosis, we used fluorescent labeled transferrin -

DyLight 488 (Jackson Immunoresearch, West Grove, PA, USA) and TexasRed-Dextran 3000 

(Invitrogen, Zug, Switzerland) in the medium at final concentrations of 1µg/ml and 1mM essentially as 

described before [22,23] with the following modifications. After incubation of HeLa cells with the labels 

for 30min at 37oC they were detached by collagenase solution Accutase (BD, Franklin Lakes, NJ, USA), 

resuspended in 1xPBS/1%FCS and subsequently analyzed on Gallios flow cytometer (Beckman, Nyon, 

Switzerland). At least 10000 cells were counted for a single assay point. For data representation, the 

mean fluorescence of cell was used. 

.3.6. Proliferation, scratch-wound and colony formation assays with BT-20 TNBC cells 

For proliferation assay, BT-20 cells were seeded at the initial concentration of 7000 cells/well in 96-well 

plates. BT-20 were grown in DMEM (Invitrogen, Lucerne, Switzerland) supplemented with 10% FCS 

(PAA, Cölbe, Germany). Next day after seeding the medium was replaced with a fresh batch containing 

indicated concentrations of suramin or vehicle. Every 48h the medium was replaced with a fresh batch 

containing the same concentration of suramin. The cell numbers were quantified by incubation of cells 

for 2h in 1mg/ml thiazolyl blue solution in 1x PBS followed by lysis in 50µl DMSO and reading of the 

absorbance at 570nm. 

For migration analysis, the scratch-wound assay was used. BT-20 cells were seeded at 30 000 cells/well 

in 96-well flat-bottom plates. Next day, monolayer in each well was wounded by a single strike of 10µl 

pipette tip. The detached cells were removed by 2x wash with 1x PBS. For each experimental well, a 

random area of the scratch was labeled and its phase-contrast picture was taken. The cells were left for 

12h in presence of indicated amounts of suramin. Afterwards, the pictures of the same area were taken 

and the migration of the cell front was analyzed in ImageJ. 
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For colony formation assay, BT-20 cells were seeded at 1000 cells/well in 6-well plates. Next day the 

indicated amount of suramin was added. Colonies of 70-100 cells were formed after 8-9 days, were fixed 

by incubation in 4% PFA in 1x PBS, pH 7.4 and visualized by staining with crystaline violet solution and 

the number of colonies was counted. 

.3.7. Mouse xenograft experiments 

The experiments were approved by the Swiss Federal Veterinary Office and carried out in accordance 

with the local animal welfare act. 7 NOD-SCID-gamma (NSG) mice were each injected intramammary 

with 50µl suspension 1×106 BT-20 cells stably transfected with pcDNA3-Luciferase construct (Addgene, 

Cambridge, MA, USA). For injection, the cells were detached by trypsin, washed 2x with ice-cold PBS 

and resuspended in ice-cold Matrigel (BD, Franklin Lakes, NJ, USA, cat.#356237). Tumor volume 

(mm3) was determined using the following formula: tumor volume = length×(width)2×π/6. The drug 

treatment was started as soon as the tumor reached the volume of ~100mm3. Mice were separated in two 

groups. The drug treatment group received 300mg/kg dose of suramin solution in water weekly. In vivo 

imaging was performed using IVIS Lumina II (Xenogen) system. Mice were injected with 50mg/kg D-

luciferin solution (Goldbio St. Louis, MO, USA) and the luminescence was measured 10min post-

injection. Intensity (expressed as photon flow) was quantified using Living Image (PerkinElmer, 

Waltham, USA) software. 

4. RESULTS 

.4.1. Suramin inhibits at least two targets in the Wnt pathway 

Existing reports on suramin effects in the Wnt signaling pathway [15,24,25] presume that this substance 

might interfere with Wnt ligand adhesion and receptor interaction. However, it was unclear to which 

extent this would impose on the downstream signaling in the Wnt pathway. We first addressed this 

question by analysis of the Wnt3a-induced activation of the pathway using the HEK293T cell line stably 

transfected with the TOPFlash reporter plasmid and additionally transiently co-transfected with the 

constitutive Renilla luciferase construct [16]. According to our expectations, we found that suramin 

inhibited Wnt3a-induced signal transduction in a dose-dependent manner (green curve, Fig. 1A). This 

activity did not correspond to any significant decrease of Renilla luciferease levels (data not shown), 

indicating that suramin does not affect transcription/translation or general cell well-being unspecifically 

during the time required for the assay. 

To roughly estimate the level at which suramin inhibited Wnt signaling, we also analyzed the 

transcriptional response to 20mM LiCl in the same setting. LiCl directly inhibits GSK3β, a negative 

downstream component of the Wnt pathway, and thus stimulates downstream elements of the pathway 

independently of the Wnt protein. To our surprise, suramin also efficiently inhibited the LiCl-induced 

activation of the Wnt pathway; moreover, the IC50 of this effect was identical to that of the Wnt3a-

stimulated activity (Fig. 1B). These data point to the existence of a suramin target downstream in the 

Wnt pathway, i.e. at the level below GSK3β, and speak against the mode of action of suramin at the level 

of the interaction of Wnt ligands with cell surface receptors or cell surface in general. 

To complement our analysis of the action of suramin on Wnt signaling, we used the β-catenin 

stabilization assay as a secondary readout monitoring pathway activation upon treatment of cells with 

Wnt3a and LiCl (Fig. 1C). These experiments were performed on two cell types: L-cells and HEK293T 

cells. The former have virtually no β-catenin in the non-stimulated state and therefore provide much 

better signal-to-background ratio in this assay. Surprisingly, in this assay we found that suramin blocked 

β-catenin stabilization induced by Wnt3a, but not that induced by LiCl, in both cell types (Fig. 1C). This 

observation argues for existence of two different components of the Wnt pathway being the molecular 

targets of suramin – one acting above β-catenin, and the other – below β-catenin. This idea is further 
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supported by the observation that the effects of suramin on the two proposed targets occur at different 

concentrations. Indeed, while the IC50 for suramin inhibition of Wnt3a- and LiCl-induced transcriptional 

response is close to 15µM (green curve on the Fig. 1A), inhibition of the Wnt3a-induced β-catenin 

stabilization occurs with the IC50 of about 150µM (Fig. 1D, see red curve on the Fig. 1A for 

quantification). 

Cumulatively, these data suggest that one molecular target of suramin, playing at ‘upstream’ levels of the 

pathway between Wnt3a and GSK3β, is inhibited by suramin with the IC50 of about 150µM, while the 

other molecular target, playing at ‘downstream’ levels between GSK3β and the transcriptional induction, 

is inhibited with the IC50 of about 15µM (Fig. 1E). 

.4.2. Wnt3a ligand endocytosis but not surface adhesion are affected by suramin 

We next decided to address in details by which mechanism suramin inhibits the Wnt signal transduction 

chain between the step of ligand-receptor interaction and the step of β-catenin accumulation. Previous 

studies suggested that suramin could increase accumulation of the Wnt protein in the extracellular 

medium through its solubilization from the cell surface [24]. We thus suspected that the ability of the 

drug to inhibit the Wnt pathway might result from the interference of the drug with the surface adhesion 

of the Wnt ligand. We decided to verify this proposition directly by assessing the levels of the HA-tagged 

and untagged Wnt3a ligand remaining on the cell surface after treatment in presence and absence of 

suramin at 4oC, when the endocytic uptake is inhibited. We first analyzed the binding of untagged Wnt3a 

to the HEK293 cells; however, due to instability of the HEK293 monolayer at 4oC, we used a suspension 

of these cells produced by gentle detachment using commercially available collagenase. To achieve more 

physiologically relevant conditions in presence of the intact extracellular matrix, we also employed HeLa 

cells for this assay due to their superior adhesive properties during prolonged incubations on cold. Due 

to lower sensitivity of anti-Wnt3a antibodies, HA-tagged version of Wnt3a ligand was employed in this 

assay. 

Contradictory to previous conclusions, we found out that suramin was unable to affect the surface content 

of endogenously expressed HA-tagged Wnt3a, nor was it able to prevent adhesion of HA-tagged or 

untagged Wnt3a provided in a medium (Fig. 2A). 

We next checked if the inhibitory effect of suramin might be due to its irreversible activity towards the 

Wnt protein, such as denaturation or binding, as recently shown for some natural products affecting the 

Wnt signaling [26]. Purified Wnt3a was incubated with 1mM suramin and the drug was subsequently 

removed by the buffer exchange on centrifugal filters. As shown on Fig. 2B, Wnt3a retained its full 

activity after this treatment. A certain decrease in both control and suramin-treated Wnt3a activity after 

the buffer exchange compared to the non-treated protein is attributed to the effects of accumulation of 

the CHAPS detergent, a necessary component of the Wnt buffer, which micelles are to some extent 

retained by the filter. 

As suramin failed to show any direct effect on the Wnt protein, we decided to check its influence on 

other steps required for Wnt pathway activation. After binding to its cognate FZD surface receptors, the 

Wnt protein undergoes endocytosis, which is essential for the proper pathway functioning [23,27]. To 

analyze effects of suramin on the Wnt protein endocytosis, we analyzed its accumulation inside the cells 

in a pulse-chase experiment. As shown on Fig. 2C, in the absence of suramin wild-type HeLa cells readily 

accumulate HA-tagged Wnt3a protein provided from the conditioned medium in the course of several 

hours. However, presence of suramin completely abolishes this process. We next wondered if this action 

of suramin might be due to a general negative effect on endocytic uptake, and thus measured influence 

of suramin on total cell endocytic activity using fluorescently labeled dextran followed by flow cytometry 

quantification. In accordance with an earlier report [28], suramin did not affect this process (black line 

on Fig.2D). However, suramin was able to suppress internalization of fluorescently labelled transferrin 

in the same setting due to its known activity preventing suramin binding to the transferrin receptor [29]. 
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Taken together, these data suggest that, rather than affecting Wnt ligand surface and receptor binding, 

suramin exerts its inhibitory action through the prevention of endocytic uptake of Wnt3a. Thus the 

‘upstream’ level of action of suramin on the Wnt pathway (see Fig. 1E) is one of the components 

regulating Wnt ligand endocytosis. 

.4.3. Suramin acts as a nucleotide analog and a reversible inhibitor of α-subunits of 

heterotrimeric G proteins 

Heterotrimeric G proteins, being important transducers of FZD-family G protein-coupled receptors 

(GPCRs) in the Wnt pathway [30–32], have also been shown to regulate endocytic events, important for 

the amplification of the signal in the Wnt pathway [23,33]. Intriguingly, suramin has been previously 

shown to interfere with the ability of heterotrimeric G proteins to incorporate GTP and decouple them 

from their cognate GPCRs [9]. 

We decided to investigate this in further details and assessed the effects of suramin on α-subunits of 

heterotrimieric G proteins of Go/i family – key downstream effectors of Frizzled receptors [17,34,35]. 

We found that suramin has a dose-dependent reversible inhibition of the uptake of the fluorescent non-

hydrolyzable GTP analog BODIPY-GTPγS by purified Gαo (Fig. 3AB). Gαo[Q205L] – a GTPase-

deficient mutant of the G protein – is purified after recombinant production as a GTP-loaded protein, 

unlike the wild-type Gαo which is purified in the GDP state [21]. We find that the slow exchange of GTP 

from Gαo[Q205L] to BODIPY-GTPγS [21] is inhibited by suramin in a manner similar to the effect of 

the drug on the wild-type Gαo (Fig. S1AB). 

Interestingly, the IC50 of these effects was comparable but lower than the IC50 observed for suramin 

inhibition of β-catenin stabilization (see Fig. 1). We argue that inhibition of heterotrimeric G proteins by 

suramin is the mechanism of inhibition of the ‘upper’ levels of the Wnt pathway, but that higher 

concentrations of the drug are required to show the effect in intact cells than on purified G proteins as 

suramin might have a reduced ability to penetrate through cell membranes. 

To clarify whether suramin modulates Gα-subunits, locking them in the GDP-bound state, or whether it 

may rather act as a nucleotide analog, we injected suramin immediately after preloading Gαo with 

BODIPY-GTPγS (Fig. 3C). The resultant rapid drop in the fluorescence signal indicates loss of the GTP 

analog from the binding pocket of the G protein, apparently due to its substitution with the suramin 

molecule. Of note, this function of suramin as a nucleotide analog, competing for the nucleotide binding 

pocket of G proteins, is consistent with suramin functioning as purinergic antagonist [4]. Therefore, we 

speculate that the mechanism by which suramin acts on the ‘upper’ levels of the Wnt pathway is the 

inhibition of endocytosis by preventing the activation of the heterotrimeric G proteins of Gi/o family. 

.4.4. Suramin inhibits triple-negative breast cancer cell growth in vitro and in vivo 

Both proliferation and invasiveness of triple-negative breast cancer (TNBC) cells are known to depend 

on the overactivation of the Wnt pathway [36–38]. Moreover, it has been shown that this subtype of 

breast cancer is mostly dependent on overexpression of the early components of the Wnt pathway, such 

as the FZD7 receptor [11,39]. We decided to check whether inhibition of Wnt signaling by suramin could 

also inhibit growth of TNBC cells. Indeed, we found that suramin inhibited proliferation of TNBC BT-

20 cells in a concentration-dependent manner (Fig 4A). Moreover, it was able to suppress cell migration 

and colony formation (Fig. 4B and 4C). Interestingly, the IC50 of these effects is close to the IC50 value 

of suramin’s inhibition of Wnt endocytosis and heterotrimeric G proteins, indicating that this effect on 

the ‘upper floors’ of the Wnt pathway might be causative for the inhibition of TNBC cell proliferation. 

Encouraged by these data, we further proceeded to an in vivo proof of anti-TNBC activity of suramin. 

Being an approved drug, suramin is well-described in terms of its pharmacological properties. We 

analyzed NOD-SCID-gamma mice bearing intramammary xenograft of human TNBC BT-20 cells stably 

transfected with a luciferase reporter. Half of the mice received treatment with 300mg/kg IV dose of 
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suramin weekly, which was expected to produce and maintain therapeutically relevant Wnt-inhibitory 

plasma levels of the drug of around ~100µM. The tumor growth monitored over 5 weeks demonstrated 

clear inhibition of the tumor growth compared to control treatment (Fig. 5D), thus indicating efficiency 

of suramin as an anti-TNBC drug. 

.4.5. Suramin effects on Wnt signaling are mimicked by pharmacological inhibitors of G 

protein signaling. 

We next wanted to confirm that effects of suramin on upper levels of Wnt signaling are indeed mediated 

by its ability to inhibit G protein signaling. To this end we have chosen two well-characterized and broad-

scope inhibitors of G protein signaling: toxin from Bordetella pertussis (pertussis toxin, PTX), which is 

known to decouple G proteins of Go/i family from their cognate GPCRs through attachment of ADP-

ribose moiety to the Gα subunits [40], and gallein, which was shown to be medium-affinity specific and 

non-toxic inhibitor of Gβγ signaling [41]. Effects of these agents on Wnt signaling were analyzed on 

TNBC cell line BT-20 as well as HeLa cells, which were transfected by FZD7 which has emerged as the 

main mediator of Wnt signaling in TNBC [39]. Indeed, such treatments resulted in significant, albeit 

incomplete, reduction in Wnt3a-induced β-catenin levels (Fig. 5A and 5B) as well as overall Wnt 

signaling as measured in TopFlash assay (Fig. 5C and 5D). Notably, the IC50 of gallein in Wnt signaling 

was found to be ~1.3µM (Fig. 5C) which correlates well with the previous data showing IC50 of this 

compound for Gβγ to be about 0.5µM [41], small discrepancy being likely due to a different cell type 

and assay used as well as batch-to-batch variation. Importantly, we have also observed no toxic effects 

of PTX, gallein or their mixture during the assay time, as measured by the parallel constitutive renilla 

luciferase expression (Fig. S2A, Fig. 5C), nor any effect of the agents was observed for the levels of 

TopFlash signal in the absence of Wnt3a stimulation (Fig. S2B), both indicating specificity of observed 

effect. 

Incomplete effects of the drugs might be explained by necessity of simultaneous action of Gα and Gβγ 

subunits in Wnt signaling [42], which is reinforced by observation of additivity of the effect when both 

agents are used simultaneously (Fig. 5D). However, as even in this case inhibition failed to be complete, 

it again points towards potential involvement of G proteins from other than Go/i family or families, as 

suggested by other works [43–45], as well as to uniqueness of suramin as the tool for G protein-mediated 

signaling dissection, as its mechanism of GDP analog action presumes ability to suppress any Gα and  

Gβγ activity. Finally, the involvement of different G proteins depends on the cell type and Wnt/FZD 

landscape, as the application of PTX in some cell lines might vary from having no observable effect 

(unpublished observations of authors and other groups) to complete inhibition [46] of Wnt signaling. 

5. DISCUSSION 

Investigations of novel and approved drug compounds and small molecules in many instances resulted 

in the discovery of unexpected novel properties of such compounds as well as expanded our knowledge 

of the pathways which they regulate [47–50]. We here show that suramin, a multi-purpose drug initially 

developed against sleeping sickness, has the potential of being repositioned as an anti-triple-negative 

breast cancer (TNBC) drug. TNBC is the most aggressive type of the breast cancer, accounting for more 

than half of breast cancer-induced deaths, despite covering only ca. 15% of all breast cancer incidences 

[51]. This disproportionally high mortality is due to the lack of targeted therapies for the TNBC, which 

distinguishes this type of breast cancer from ER-positive and HER2-positive breast cancers [11,52]. 

Recently it became clear that the Wnt signaling cascade is overactivated in TNBC through 

overexpression of the LRP6 and FZD7 receptors and that downregulation of this signaling pathway leads 

to proliferation arrest of TNBC cells in vitro and mouse xenograft models [37,38,53]. These observations 

make the Wnt signaling pathway an attractive target for the anti-TNBC drug discovery. 

However, given the fact that the Wnt pathway is involved in many physiological contexts, e.g. renewal 
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of epithelial cells in the gastrointestinal tract, blunt suppression of the Wnt pathway, which is achieved 

e.g. by inhibitors acting at the downstream components of the signaling, is not desired. Instead, it is more 

promising to selectively target the upper levels of the pathway, where more variability among the 

signaling subtypes is provided [11]. 

Here we show that suramin has at least two targets within the Wnt signaling pathway, one in its ‘lower 

floors’, and the other in its ‘upper floors’ (see Fig. 1E), which are sensitive to different suramin 

concentrations. We further provide evidence suggesting that the suramin target in the ‘upper floors’ is 

heterotrimeric G proteins, regulating endocytosis of the Wnt protein (likely in the complex with its 

receptors), and that this inhibition is sufficient to block proliferation of TNBC cells in vitro and in the 

mouse xenograft model. 

Endocytic regulation of cell signaling pathways has been an intensive topic of research. Initial model, 

suggesting that internalization of receptors from the cell surface serves to shut signaling off, dominated 

in the past [54]. However, many recent observations demonstrate that in several instances internalized 

ligand-receptor complexes continue to signal from the endocytic compartments, often in a different mode 

or with an increased strength [55–57]. In the latter case, one can speak of signal amplification mediated 

by the ligand/receptor endocytosis. Such amplification has also been observed in Wnt signaling [23,27]. 

Here, receptors of the FZD family were found to employ a cunning mechanism for their endocytosis, 

relying on their GPCR activity to recruit the heterotrimeric Go protein and the small GTPase Rab5 to 

promote this process [23]. We correlated this fact with the known findings concerning the ability of 

suramin to inhibit heterotrimeric G proteins [9,10]. We further expanded these findings, showing that 

suramin is a low-µM inhibitor of the α-subunit of the heterotrimeric protein Go, the main partner of FZD 

receptor [42,58,59] and that it acts in a competitive manner. The activities of suramin we describe here 

thus support earlier observations on the involvement of heterotrimeric G proteins in the Wnt pathway in 

fruit flies and vertebrates [17,23,60]. 

Our finding prompted us to re-investigate the anti-cancer properties of suramin. We find suramin to be a 

strong anti-cancer compound in both in vitro and in vivo settings. While previous reports already pointed 

out an anti-TNBC activity of suramin, alone [61,62] or in combination with other drugs [63,64], our 

study sheds new light on these data, indicating the anti-Wnt signaling potential of suramin as the main 

mode of anti-cancer action of this drug. Importantly, suramin in the Wnt-suppressing dosages does not 

produce any overt toxicity in mice over the period of the experiment. We find that the maximum 

efficiency of suramin as an anti-TNBC agent in vivo coincides with its ability to inhibit ‘upper’ events in 

the Wnt signaling. Therapeutic levels of suramin in plasma should be thus about 100-200µM to result in 

the anti-TNBC effects, explaining why suramin previously failed to show profound anti-TNBC effects 

in clinical trials [65,66], in which suramin plasma levels were below 50µM. Our data identify regulation 

of Wnt endocytosis as a promising target for anti-Wnt drugs, and suramin serves as the first example and 

proof of concept in creation of safe pharmacological agents with such mode of action. 
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8. FIGURE LEGENDS 

Figure 1. Suramin demonstrates concentration-dependent inhibition of the Wnt pathway and has at least 

two targets in the pathway. (A) Dose-response inhibition curves measured by TOPFlash assay (green) in 

stably transfected HEK293-Tf cells or β-catenin stabilization assay in L-cells (red line). (B) Suramin 

inhibits Wnt3a- or LiCl-induced TOPFlash response with the same efficiency. (C) Suramin inhibits 

Wnt3a-induced but not LiCl-induced β-catenin stabilization in both HEK293 and L-cells. (D) Dose-

dependent inhibition of β-catenin stabilization by suramin in L-cells. See panel (A) for quantification. 

For panels (A) and (B), the data shown as mean±SEM, n=3-6; panels (C) and (D) are representatives of 

three experiments. 

Figure 2. Suramin exerts its Wnt-inhibitory properties through inhibition of Wnt ligand endocytosis. (A) 

Suramin fails to suppress Wnt surface adhesion at 4oC in suspension of HEK293 cells or in adherent 

HeLa cells both when Wnt3a-HA ligand was supplemented as conditioned medium and when membrane-

associated portion of Wnt3a-HA ligand was measured in HeLa cells stably transfected with Wnt3a-HA. 

(B) Purified Wnt3a retains its activity after incubation and subsequent removal of 1mM suramin. 

“Wnt3a” column is a reference activity induced by non-treated 0.5µg/ml Wnt3a ligand; “(Wnt3a+Sur)” 

is an activity of 0.5µg/ml Wnt3a ligand after treatment with and subsequent removal of 1mM suramin; 

“Wnt3a+Sur” is an activity mock-treated 1mM suramin solution in the Wnt3a vehicle buffer further 

supplemented with 0.5µg/ml of non-treated Wnt3a; “Wnt3a:1mM Sur” is an activity of 0.5µg/ml Wnt3a 

in continued presence of 1mM suramin. (C) 0.5mM suramin supressed intracellular accumulation of 

Wnt3a-HA ligand in HeLa cells as measured by amount of Wnt3a in total cell lysates. (D) Suramin is 

suppressing transferring uptake by inhibiting its binding to the receptor, but is not an inhibitor of general 

endocytosis as measured by amount of TxRed-Dextran uptake. For panels (B) and (D), the data shown 

as mean±SEM, n=4-6. For panel B, the significance (Student’s t-test) is shown as * (p<0.05) for 

comparison of Wnt3a and (Wnt3a+Sur) columns; for the rest, p-value was <0.001. Panels (A) and (C) 

are representatives of four experiments. 

Figure 3. Suramin is a reversible inhibitor of Gαo subunit of heterotrimeric G proteins (A) Kinetics of 

BODIPY-GTPyS loading in Gαo in presence or absence of different concentrations of suramin. (B) Dose-

response curve of Gαo inhibition by suramin. (C) Gαo regains the ability to bind BODIPY-GTPyS after 

removal of suramin; injection of suramin after complete loading of Gαo with BODIPY-GTPyS results in 

strong drop of fluorescence consistent with displacement of BODIPY-GTPyS from Gαo. For panel (B) 

the data shown as mean±SEM, n=3. Panels (A) and (C) are representatives of three and two experiments, 

respectively. 

Figure 4. Anti-TNBC properties of suramin. Suramin is inhibiting growth (A), migration (B) and colony 

formation (C) by TNBC cell line BT-20. Weekly dosage of 300mg/kg suramin resulted in a strong 

decrease of xenograft BT-20 tumor size in NGS mice after 4 weeks of treatment. For panel (A), (B) and 

(C) the data shown as mean±SEM, n=4 to 9. For panel (D), data are shown as mean±SD from 3 (control 

group) or 4 (drug-treated group) animals. For panel (D), significantly different data points are marked as 

** (p<0.01) or *** (p<0.001) from 2-way ANOVA with Bonferroni post-tests. 

Figure 5. Effects of suramin are mimicked by pharmacological inhibitors of G protein signaling. BT-20 

TNBC cells or HeLa transfected by FZD7 pretreated by PTX (A) or gallein (general Gβγ inhibitor, B) 

demonstrate significantly decreased levels of β-catenin in response for Wnt3a. Representative Western 

blottings are shown on the left side of the panel, respective quantifications are on the right side. β-

catenin/tubulin ratio was used for calculation and the data was normalized to basal levels of β-catenin in 

the cells (C). Gallein is able to suppress TopFlash response (red curve) induced by Wnt3a in a dose-

dependent manner with IC50 ~1.3µM without observable toxic or unspecific effects as measured by 

concomitant measurement of CMV-driven Renilla luciferase levels (black curve) up to 20µM. (D) PTX 
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and Gallein significantly reduced Wnt-induced TopFlash levels in both FZD7-transfected HeLa cells and 

BT-20 TNBC line stably transfected by TopFlash reporter; they also demonstrate significant additive 

effects when applied together. Data are shown as normalized mean±SEM of n=5 to 12; Western blots of 

panels (A) and (B) are representatives of 5-12 experiments. The statistical significance is shown as * 

(p<0.05), ** (p<0.01) and *** for (p<0.001) (Student’s t-test). 

Figure S1. Suramin acts as competitive inhibitor of Gαo[Q205L] (a GTPase-deficient mutant). (A) shows 

representative kinetic curves of BODIPY-GTPγS binding to purified human Gαo[Q205L] in absence or 

presence of different suramin concentrations. (B) Plato values reached in presence of different 

concentrations of suramin were used to quantify inhibition of GTP-binding to Gαo[Q205L] mutant. For 

panel (B) the data shown as mean±SD, n=3; panel (A) is a representative of three experiments. 

Figure S2. Pertussis toxin, gallein or their mixture exert no toxic effect or affect basal levels of TopFlash 

activity. (A) No observable changes were found for levels of luciferase in cells not stimulated by Wnt3a 

in TopFlash assay. (B) No apparent toxicity was observed after treatment with PTX, gallein or their 

mixture by the end of TopFlash assay as viewed by the unaffected levels of CMV-driven Renilla 

luciferase. Data shown as mean±SEM, n=6 to 9; no statistical differences were found by Student’s t-test. 
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