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Keep Calm and Learn Multilevel Logistic Modeling: A 
Simplified Three-Step Procedure Using Stata, R, Mplus, 
and SPSS
Nicolas Sommet and Davide Morselli

This paper aims to introduce multilevel logistic regression analysis in a simple and practical way. First, we 
introduce the basic principles of logistic regression analysis (conditional probability, logit transformation, 
odds ratio). Second, we discuss the two fundamental implications of running this kind of analysis with a 
nested data structure: In multilevel logistic regression, the odds that the outcome variable equals one 
(rather than zero) may vary from one cluster to another (i.e. the intercept may vary) and the effect of a 
lower-level variable may also vary from one cluster to another (i.e. the slope may vary). Third and finally, 
we provide a simplified three-step “turnkey” procedure for multilevel logistic regression modeling:

•	Preliminary phase: Cluster- or grand-mean centering variables
•	Step #1: Running an empty model and calculating the intraclass correlation coefficient (ICC)
•	Step #2: Running a constrained and an augmented intermediate model and performing a likelihood 
ratio test to determine whether considering the cluster-based variation of the effect of the lower-
level variable improves the model fit

•	Step #3 Running a final model and interpreting the odds ratio and confidence intervals to determine 
whether data support your hypothesis

Command syntax for Stata, R, Mplus, and SPSS are included. These steps will be applied to a study on 
Justin Bieber, because everybody likes Justin Bieber.1

Keywords: Logistic regression; multilevel logistic modeling; grand-mean centering and cluster-mean 
centering; intraclass correlation coefficient; likelihood ratio test and random random slope variance; 
three-step simplified procedure; Justin Bieber

It’s a bad day. You’ve asked your colleague whether you 
could run a linear regression analysis with a yes/no 
outcome variable. “No, you must do logistic regression, 
duh!” he replied. Then, you’ve asked him whether you 
could run this logistic regression analysis, knowing 
that you have surveyed various pupils from different 
classrooms. “No, you must do multilevel regression, 
duh!” he replied. You’re infuriated. You’ve no idea what 
multilevel logistic regression is. And you don’t want to ask 
your damned colleague, who keeps patronizing you. Well, 
keep calm, this article is made for you.

The general aim of multilevel logistic regression is to 
estimate the odds that an event will occur (the yes/no out-
come) while taking the dependency of data into account 
(the fact that pupils are nested in classrooms). Practically, 
it will allow you to estimate such odds as a function of 
lower level variables (e.g. pupil’s age), higher level varia-
bles (e.g. classroom size), and the way they are interrelated 
(cross-level interactions).

Multilevel logistic regression can be used for a variety 
of common situations in social psychology, such as when 
the outcome variable describes the presence/absence of 
an event or a behavior, or when the distribution of a con-
tinuous outcome is too polarized to allow linear regres-
sion. For instance, multilevel logistic regression has been 
used to test the influence of individuals’ experience of 
a negative life event and the quality of their neighbor-
hood on the odds of depression (Cutrona et  al., 2005), 
the influence of employees’ job satisfaction and the size 
of their department on the odds of turnover (Felps et al., 
2009), or the influence of grant applicants’ gender and 
the gender of their reviewers on the odds of funding 
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(Mutz, Bornmann & Daniel, 2015). Multilevel modeling 
can also be applied to repeated measures designs (see the 
first paragraph of the conclusion). For instance, if partici-
pants are primed with pictures, using such an approach 
will enable advanced users to take both between-stimuli 
and between-participant variations into account (Judd, 
Westfall & Kenny, 2012).

In this paper, we will first explain what logistic regression 
is. Second, we will explain what multilevel logistic regres-
sion is. Third, we will provide a simplified and ready-to-
use three-step procedure for Stata, R, Mplus, and SPSS 
(n.b., SPSS is not the most suitable software for multilevel 
modelling and SPSS users may not be able to complete the 
present procedure – is it too late now to say sorry?).

“No Pressure.” What Logistic Regression Is
A Very Brief Recap on Linear Regression
Assume you have conducted a study involving N = 2,000 
pupils in which you wanted to test the relationship 
between pupil achievement and (great!) musical taste. 
Your predictor variable is pupil’s Grade Point Average 
(GPA), which can range from 1 to 4. Your outcome variable 
is the number of hours per week pupils spent listening 
to Justin Bieber (see Figure 1). You have formulated the 
(pro-Justin) hypothesis that GPA should be a positive pre-
dictor of the time spent listening to Justin Bieber. In this 
situation, you perform a simple linear regression analy-
sis. Make sure you are familiar with the linear regression 
equation below (Eq. 1).

	 i 0 1 i iY *  XB B e= + + 	 (1)

…in which Yi is the observed value of the outcome variable 
for a pupil i (number of hours per week spent listening 
to Justin Bieber), whereas Xi is the observed value of the 
predictor variable for a pupil i (his/her GPA);

…B0 is the predicted value of Yi when Xi = 0 (i.e. the inter-
cept), whereas B1 is the coefficient estimate describing the 
relationship between Xi and Yi (i.e. the slope);

…and ei is the residual, that is, the difference between 
what is predicted by the regression model for a pupil i and 
what is actually observed for this pupil i.

If there were only one statistical index to remember, this 
would be B1. Let’s say that B1 = 2.00. This indicates that an 
increase of one unit in GPA results in an expected increase 
of 2 hours per week spent listening to Justin Bieber. There 
are two possible scenarios:

i.	 B1 is not significantly different from zero (formally 
speaking, this means that the residual ei does not 
significantly diminish when including B1 * Xi in the 
model). In such a situation, you cannot reject the null 
hypothesis (H0): There is no significant relationship 
between pupil achievement and time spent listening 
to Justin Bieber.

ii.	B1 is significantly different from zero (formally 
speaking, this means that the residual ei does 
significantly diminish when including B1 * Xi in 
the model). In such a situation, you reject H0 and 
accept the alternative hypothesis (H1): There is a 
significant relationship between pupil achievement 
and time spent listening to Justin Bieber. Consistent 
with your prediction, brighter kids do seem to love 
Justin more and you’re ready to submit your result to 
Popstar! Magazine or Teen Vogue. For more detailed 
information on linear regression analysis, see Judd, 
McClelland and Ryan, 2017 (French readers may see 
Judd, McClelland, Ryan, Muller & Yzerbyt, 2010).

From Linear to Logistic Regression
Now assume you have operationalized your outcome 
variable differently. Rather than self-reporting the 
number of hours per week spent listening to Justin 
Bieber, pupils have indicated whether they own Purpose, 
Justin Bieber’s last album. Your outcome variable is 
binary, in that it can only take one of two values: 0 for 
“No, I don’t own the album” and 1 for “Yes, I own the 
album.”

With such a variable, a linear regression analysis is 
not appropriate. The main reason is that, in a linear 
regression analysis, the predicted value of the numeric 
outcome variable can take any value between –∞ and +∞ 
(i.e. mathematically speaking, the predicted value is not 
bounded). Thus, if you run a linear regression analysis 
using a binary outcome variable, the output might be 
under 0 or above 1 (i.e. it don’t make no sense). To fix this, 
the response function should be constrained and logistic 
regression analysis should be used.

Whereas linear regression gives the predicted mean 
value of an outcome variable at a particular value of a 
predictor variable (e.g. the number of hours per week 
spent listening to Justin Bieber for a pupil having a GPA 
of 3), logistic regression gives the conditional probability 
that an outcome variable equals one at a particular value 
of a predictor variable (e.g. the likelihood of owning 
Justin’s last album for a pupil having a GPA of 3). The 
logistic function is used to predict such a probability. It 
describes the relationship between a predictor variable 

Figure 1: Justin Bieber. Note: This file is licensed under 
the Creative Commons Attribution-Share Alike 3.0 
Unported license (https://commons.wikimedia.org/
wiki/File:The_Bet_Justin_Bieber_y_T%C3%BA_
Novela_Escrita_por_@Pretty_Jezzy_01.jpg).

https://commons.wikimedia.org/wiki/File:The_Bet_Justin_Bieber_y_T%C3%BA_Novela_Escrita_por_@Pretty_Jezzy_01.jpg
https://commons.wikimedia.org/wiki/File:The_Bet_Justin_Bieber_y_T%C3%BA_Novela_Escrita_por_@Pretty_Jezzy_01.jpg
https://commons.wikimedia.org/wiki/File:The_Bet_Justin_Bieber_y_T%C3%BA_Novela_Escrita_por_@Pretty_Jezzy_01.jpg
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Xi (or a series of predictor variables) and the conditional 
probability that an outcome variable Yi equals one 
(owning the album). This is an s-shaped function: The 
logistic regression curve is steeper in the middle, and 
flatter at the beginning (when approaching 0), and at the 
end (when approaching 1; see Figure 2, left panel). The 
function can be represented using the equation below 
(Eq. 2).

	 0 1 i
i

0 1 i

*  X
P Y 1   

1 
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( )

( )*  X

exp B B
exp B B

+
= =

+ +
	 (2)

…in which P(Yi = 1) is the conditional probability that the 
outcome variable equals one for a pupil i (that s/he owns 
Justin’s last album);

…and exp is the exponent function: “B0 + B1 * Xi” are 
defined in the same way as in Eq. 1, although a probability 
is now predicted through a function.

Taking a look at the exp stuff, you might have the feeling 
that you are lost. Admittedly, the equation seems unintel-
ligible. Fortunately, the logit transformation can be used to 
convert the s-shaped curve into a straight line and facilitate 
the reading of the results (for a graphical representation 
of such a transformation applied to our example, take a 
look at both panels of Figure 2). Instead of predicting the 
conditional probability that the outcome variable equals 
one, we can predict the logit of the conditional probabil-
ity that the outcome variable equals one (owning Justin’s 
album) over the probability that it equals zero (not owning 
Justin’s album). We will refer to this as the log-odds (or 
logit of the odds). Odds correspond to the possibility that 
something will happen rather than not. For instance, the 
odds of being on a plane with a drunken pilot are reported 
to be “1 to 117” (i.e. 1:117; see Jaeger, 2008). In another 
example, one can calculate that the odds of an American 

female teenager having dated Justin Bieber are about 1 in 
2,500,000.2 However, the logit function is the natural 
logarithm of the odds, and the post-logit transformation 
logistic regression equation – which is strictly equivalent 
to Eq. 2 – is as follows (Eq. 3):

	 ( ) 0 1 iLogit   *  Xodds B B= + 	 (3)

…in which Logit(odds) is the log-odds; it formally 
corresponds to Logit(P(Yi = 1)/(1 – P(Yi = 1)), namely the 
logit of the conditional probability that the outcome 
variable equals one (owning Justin’s album) divided by the 
probability that it equals zero (not owning Justin’s album).

Again, focus on B1. This time, let’s say that B1 = 1.50. This 
indicates that an increase of one unit in GPA results in an 
expected increase of 1.5 points in the log-odds of owning 
Justin’s last album. Hard to interpret, right?

To interpret B1, raise it to the exponent to obtain an odds 
ratio, noted OR. Formally, the odds ratio refers to the mul-
tiplicative factor by which the predicted probability of an 
event occurring rather than not occurring (i.e. “P(Yi = 1)/1 – 
P(Yi = 1)”) changes when the predictor variable Xi increases 
by one unit. In our example, OR = exp(B1) = exp(1.50) ≈ 4.5, 
indicates that the odds of owing Justin’s album (instead of 
not owning it) are 4.5:1, that is, multiplied by 4.5/1 = 4.5 
when GPA increases by one unit. Simply put, pupils are 4.5 
times more likely to own the album when GPA increases 
by one unit (a 350% increase). Now imagine that the 
sign of B1 is negative, that is, B1 = –1.50. In such a case, 
OR = exp(B1) = exp(–1.50) ≈ 0.22 indicates that the odds 
of owning Justin’s album (instead of not owning it) are 
1:0.22, that is, divided by 1/0.22 ≈ 4.5 when GPA increases 
by one unit. Simply put, pupils are 4.5 times less likely to 
own the album when GPA increases by one unit (a 350% 
decrease). As earlier, there are two possible scenarios:

Figure 2: The logistic function describes the s-shaped relationship between a predictor variable Xi and the probability 
that an outcome variable equals one P(Yi = 1) (left panel, corresponding to Eq. 2); using the logit transformation, 
one can “linearize” this relationship and predict the log-odds that the outcome variable equals one instead of zero 
Logit(P(odds)) (right panel, corresponding to Eq. 3). Notes: Data are fictitious and do not correspond to the provided 
dataset.
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i.	 OR is not significantly different from 1 (or, 
equivalently, B is not significantly different from 0). 
In practice, this indicates that the odds of an event 
occurring is multiplied by one when the predictor 
variable increases by one unit (i.e. the odds remain 
the same). In such a situation, you cannot reject H0.

ii.	OR is significantly different from 1 (or, equivalently, 
B is significantly different from 0). As in the above 
example, if OR > 1, the higher the predictor variable, 
the higher the odds of the event occurring (a positive 
effect). Conversely, if OR < 1, the higher the predictor 
variable, the lower the odds of the event occurring (a 
negative effect). In such a situation, you reject H0.

As you may have realized, there is another important dif-
ference between the linear and logistic regression model. 
This concerns residuals. With linear regression, you try 
to predict a concrete value, which may differ from what 
is actually observed for Yi. As said earlier, the distance 
between the predicted value and the observed value is the 
residual ei. Residuals can take a bunch of values (within 
the range of your outcome variable) and are assumed to 
follow a normal distribution (normality of the residual 
distribution is an assumption of linear regression). The 
residual is necessary and appears in the linear regression 
equation (cf. Eq. 1).

With logistic regression, you do not try to predict a 
concrete value, but a probability. Technically, the distance 
between this probability and the observed value can only 
take one of two values: “0 – P(Yi  =  1)” when the pupil 
does not own the album and “1 – P(Yi  =  1)” when the 
pupil does own the album, thereby following a binomial 
distribution. The residual is therefore not necessary 
and does not appear in the logistic regression equation 
(cf. Eq. 2 and, by extension, Eq. 3). For more detailed 
information on logistic regression analysis, see Hosmer 
and Lemeshow, 2000; Menard, 2002.

“What Do You Mean?” What Multilevel Logistic 
Regression Is
General Principles of Multilevel Logistic Regression
Now assume your study involves N = 2,000 pupils from 
K = 100 classrooms. That is, you have N participants (level-1 
units) nested in K clusters (level-2 units; for a graphical 
representation of this data structure, see Figure 3). 
Classrooms pertain to a level (rather than a predictor 
variable), since (a) classrooms were randomly sampled 

from a population of units (classrooms around the world 
are potentially infinite and you have sampled some of 
them), and (b) classrooms have no intrinsic meaning per se 
(classrooms are interchangeable units without theoretical 
content). On the contrary, socioeconomic status would for 
instance pertain to a predictor variable (rather than a level) 
since its categories are both non-random and theoretically 
meaningful (e.g. lower, middle, and upper class are not 
“atheoretical” random units). Other examples of nested 
data are employers nested in firms, inhabitants nested in 
provinces and even observations nested in participants in 
repeated measure designs.

With such a data structure, you cannot run a standard 
logistic regression analysis. The reason is that this 
violates one of the most important assumptions in the 
linear model, namely the assumption of independence 
(or lack of correlation) of the residuals (Bressoux, 2010). 
Observations are interdependent: Participants nested in 
the same cluster are more likely to function in the same 
way than participants nested in different clusters. In our 
example, there might be some classrooms in which Justin 
Bieber is worshipped (with pupils having more chances to 
own Justin’s last album) and other classrooms in which 
Justin Bieber is abhorred (with pupils having less chances 
to own Justin’s last album). Multilevel (logistic) modeling 
notably aims to disentangle the within-cluster effects (the 
extent to which some participant characteristics are asso-
ciated with the odds of owning Justin’s last album) from 
the between-cluster effects (the extent to which some 
classroom characteristics are associated with the odds of 
owning Justin’s last album).

What about sample size? Sufficient sample size is one 
of the first indications of research quality (Świątkowski 
& Dompnier, 2017). In multilevel modelling, the num-
ber of clusters is more important than the number of 
observations per cluster (Swaminathan, Rogers & Sen, 
2011). In multilevel linear modeling, simulation studies 
show that 50 or more level-2 units are necessary to accu-
rately estimate standard errors (Maas & Hox, 2005; see 
also Paccagnella, 2011). More to the point, in multilevel 
logistic modeling, Schoeneberger (2016) showed that 
a minimum of 50 level-1 units and 40 level-2 units are 
needed to accurately estimate small fixed effects (set at 
OR = 1.70) when intercept variance is small (set at var(u0j) 
≈ 0.1), whereas 100 level-1 units and 80 level-2 units are 
needed when estimating cross-level interaction effects 
and/or when intercept variance is large (set at var(u0j) 

Figure 3: Example of a hierarchical data structure, in which N participants (pupils, lower-level units) are nested in 
K clusters (classrooms, higher-level units). Notes: Multilevel modeling is flexible enough to deal with this kind of 
unbalanced data, that is, having unequal numbers of participants within clusters.
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≈ 0.5). Insufficient sample size obviously reduces statis-
tical power (the probability of “detecting” a true effect); 
moreover, insufficient sample size at level 2  increases 
Type I error rates pertaining to level-2 fixed effect (the 
risk of “detecting” a false effect; for another simulation 
study, see Moineddin, Matheson & Glazier, 2007). To 
more accurately detect the bias in the regression coeffi-
cients and standard errors due to sample size at both lev-
els, advanced users should consider doing a Monte Carlo 
study (e.g. Muthèn & Muthèn, 2002).

Having two levels has two implications. First, the (log-)
odds that the outcome variable equals one instead of zero 
will be allowed to vary between clusters (in our example 
the chances of owning Justin’s last album may be allowed 
to vary from one classroom to another). Specifically, we 
will differentiate between the average log-odds that the 
outcome variable equals one in the overall sample (later 
referred to as the fixed intercept) and the variation of 
this log-odds from one specific cluster to another (later 
referred to as forming the random3 intercept variance). 
Second, the effect of a lower-level variable on the (log-)
odds that the outcome variable equals one instead of zero 
will also be allowed to vary between clusters (in our exam-
ple the effect of GPA may also be allowed to vary from 
one classroom to another). Specifically, we will differenti-
ate between the average effect of the lower-level variable 
in the overall sample (later referred to as the fixed slope) 
and the variation of this effect from one specific cluster 
to another (later referred to as forming the random slope 
variance; see Table 1 for a summary and a definition of 
the key notions and notations).

A First Implication: The Log-Odds May Vary Between 
Clusters
The first difference between simple and multilevel logistic 
regression is that the log-odds that the outcome variable 

equals one instead of zero is allowed to vary from one 
cluster to another. To illustrate this, go back to your study 
and imagine building an empty multilevel logistic model. 
This model still aims to estimate the log-odds of owning 
Justin’s album, while including no predictors. This empty 
multilevel logistic regression equation is shown below 
(Eq. 4):

	 ( ) 00 0jLogit   odds B u= + 	 (4)

…in which Logit(odds) is the log-odds that the outcome 
variable equals one instead of zero (i.e. the chance that a 
pupil i from a classroom j owns Justin’s last album).

…and B00 is the fixed intercept, whereas u0j is the 
deviation of the cluster-specific intercept from the fixed 
intercept (i.e. the level-2 residual).

First, remember that we are not trying to predict the 
log-odds of owning Justin’s album for a simple participant 
i; we are trying to predict such log-odds for a participant i 
in a classroom j.

Second, we are now estimating two types of parameters 
pertaining to the intercept: The fixed intercept and the 
random intercept variance. Let’s take things one step at a 
time. The fixed intercept B00 is a general constant term. 
Since there are no predictors here, the fixed intercept B00 
corresponds to the overall log-odds of owning Justin’s 
album (instead of not owning it) for a typical pupil belong-
ing to a typical classroom. Keep in mind that we are still esti-
mating the log-odds (or the logit of the odds). If you want to 
calculate the average probability of owning the album, you 
must convert the fixed intercept using the logit transfor-
mation (see Eq. 2 and Eq. 3). In your study, B00 = 0.10, thus 
P(Yij = 1) = exp(B00)/(1 + exp(B00) = 1.10/(1 + 1.10) ≈ 0.52, 
that is, pupils have on average 52% chances of owning 
Justin’s album across all classrooms.

Table 1: Summary of main notation and definition (level-1 and level-2 sample size and variables, as well as fixed and 
random intercept and slope).

Sample size N
Level-1 sample size (number of observations)

K
Level-2 sample size (number of clusters)

Variables x1ij, x2ij, …, xNij

Level-1 variables (observation-related characteristics)
X1j, X2j, …, XKj

Level-2 variables (cluster-related characteristics)

Intercept B00

Fixed intercept (average log-odds that the outcome 
variable equals one instead of zero Logit(P(odds)), 
when all predictor variables are set to zero)

u0j

Level-2 residual (deviation of the cluster-specific log-odds 
that the outcome variable equals one instead of zero 
from the fixed intercept; the variance component var(u0j) 
is the random intercept variance)

Level-1 effect B10, B20, …, BN0,
Fixed slope (average effect of a level-1 variable in the  
overall sample; it becomes the odds ratio when raised 
to the exponent exp(B) = OR)

u1j, u2j, …, uNj

Residual term associated with the level-1 predictor x1ij, 
x2ij, …, xNij (deviation of the cluster-specific the effect of 
the level-1 variable from the fixed intercept; the variance 
component var(u1j) is the random slope variance)

Level-2 effect B01, B02, …, B0K,
Necessarily fixed slope (average effect of a level-2 
variable in the overall sample; it becomes the odds 
ratio when raised to the exponent exp(B) = OR)

Notes: For the sake of simplicity, no distinction is made between sample and population parameters and only Latin letters are used.
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But as noted earlier, the log-odds may vary from one 
cluster to another. In other words, the intercept is not 
the same in every cluster. The level-2 residual u0j will pro-
vide information regarding the extent of the intercept 
variation. Since there are no predictors here, the level-2 
residual u0j corresponds to the deviation of the specific 
log-odds of owning Justin’s album in a given classroom 
from the overall log-odds of owning Justin’s album across 
all classrooms (the mean of these deviations is assumed 
to be zero). The variance component of such a deviation 
is the random intercept variance var(u0j). This is the key 
element here: The higher the random intercept variance, 
the larger the variation of the log-odds of owning Justin’s 
album from a cluster to another; this indicates that pupils 
have more chances of owning Justin’s album in some 
classrooms than in others (for a graphical representation 
of the fixed intercept and random intercept variance, see 
Figure 4).

A Second Implication: The Effect of a Lower-level 
Variable May Vary Between Clusters
The second change with multilevel logistic modeling is 
that the effect of a lower-level variable is allowed to vary 
from one cluster to another. Before going into details, we 
should distinguish between level-1 variables, noted xij (in 
lowercase), and level-2 variables noted Xj (in uppercase and 
bold). On the one hand, level-1 variables are lower-level 
observation characteristics (e.g. pupil’s age). The value of 
a level-1 variable may change within a given cluster (there 
might be pupils of different ages within the same class-
room). On the other hand, level-2 variables are higher-

level cluster characteristics (e.g. class size). The value of a 
level-2 variable cannot change within clusters (class size is 
obviously the same for all pupils within a classroom).

We can understand that the effect of a level-1 vari-
able – but not that of a level-2 variable(!) – may vary 
from one cluster to another. For instance, the effect 
of pupil’s age on some outcome variable may be posi-
tive in some classrooms and negative in others. This 
also means that the average effect could be statisti-
cally non-significant, because it is positive in half of 
the classrooms and negative in the other half. Hence, 
considering only the fixed effect in the presence of 
between-classroom differences may wrongly lead one 
to conclude that the effect is negligible, when in fact 
the effect is positive (or stronger) in some clusters and 
negative (or weaker) in others.

To illustrate this, go back to your study and imagine 
building a simple multilevel logistic regression model. 
This model aims to estimate the log-odds of owning 
Justin’s album using GPA as the sole predictor. This sim-
ple multilevel logistic regression equation is shown below 
(Eq. 5):

	 ( ) 00 10 1j ij 0jLogit     *( )  xodds B B u u= + + + 	 (5)

…in which xij is the observed value of the predictor variable 
for a pupil i in a classroom j (his/her GPA);

…and B10 is the fixed slope, whereas u1j is the devia-
tion of the cluster-specific slope from the fixed slope 
(i.e. the residual term associated with the level-1 
variable).

Figure 4: Graphical representation of the fixed intercept B00 and the level-2 residual u0j (cf. Eq. 4); the fixed intercept B00 
corresponds to the overall mean log-odds of owning Justin’s album across classrooms; the random intercept variance 
var(u0j) corresponds to the variance of the deviation of the classroom-specific mean log-odds from the overall mean 
log-odds (here represented by the double-headed arrow for the 1st, 2nd, 3rd, and 200th classrooms only). Notes: Data 
are fictitious and do not correspond to the provided dataset.
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In addition to (still) having two types of parameters 
pertaining to the intercept (the fixed intercept B00 and 
the random intercept variance var(u0j), we now have two 
types of parameters pertaining to the level-1 effect: The 
fixed slope and the random slope variance. Again, let’s take 
things one step at a time.

The fixed slope B10 is the general effect of the level-1 
variable xij. The interpretation is similar to the case of a 
single-level logistic regression analysis: An increase of one 
unit in GPA results in a change of B10 in the overall log-odds 
of owning Justin’s album for a typical pupil belonging to 
a typical classroom. Once again, in order to interpret B10, 
raise it to the exponent to obtain the odds ratio. In your 
study, B10  =  0.70, OR  =  exp(B10)  =  exp(0.70) ≈ 2, that is, 
when GPA increases by one unit, pupils are twice as likely 
to own Justin’s album instead of not owning it across all 
classrooms (i.e. a 100% increase).

Just as for the intercept, this effect may vary from one 
cluster to another. The residual term associated with the 
level-1 predictor u1j will provide information regarding 
the extent of the effect variation. Specifically, this residual 
u1j corresponds to the deviation of the specific effects of 
the level-1 variable xij in a given classroom from the overall 
effect of the level-1 variable xij across all classrooms (the 
mean of these deviations is assumed to be zero). The vari-
ance component of such a deviation is the random slope 
variance var(u1j). This is the key element here: The higher 

the random slope variance, the larger the variation of the 
effect of GPA from a cluster to another (for a graphical rep-
resentation of the fixed intercept and the random slope 
variance, see Figure 5). Note that a non-significant ran-
dom slope variance would mean that the variation of the 
effect of GPA is very close to zero and that B10 is virtually 
the same in all the classrooms. For more detailed informa-
tion on multilevel logistic regression, see Heck, Thomas & 
Tabata, 2013; Rabe-Hesketh & Skrondal, 2012b; Snijders & 
Bosker, 2004.

“I’ll Show You.” A Three-Step  
Simplified Procedure for Multilevel  
Logistic Regression
You should have understood that: (a) multilevel logistic 
regression enables one to predict the log-odds that an out-
come variable equals one instead of zero (mark my words: 
some software packages, e.g. SPSS, do the opposite and esti-
mate the probability of the outcome being zero instead of 
one),4 (b) the average log-odds is allowed to vary from one 
cluster to another (forming the random intercept variance), 
and (c) a lower-level effect may also be allowed to vary from 
one cluster to another (forming the random slope variance).

But where should we begin when running the analysis? 
We propose a three-step “turnkey” procedure for mul-
tilevel logistic regression modeling (summarized in 
Figure 6), including the command syntax for Stata 

Figure 5: Graphical representation of the fixed slope B10 and the residual term associated with the level-1 predictor 
u1j (cf. Eq. 5); the fixed slope B10 corresponds to the overall effect of pupil’s GPA on the log-odds of owning Justin’s 
album across classrooms; the random intercept variance var(u0j) corresponds to the variance of the deviation of 
the classroom-specific effects of pupil’s GPA from the overall effect of pupil’s GPA (here represented by the double-
headed arrow for the 1st, 2nd, and 3rd classroom). Notes: Data are fictitious and do not correspond to the provided 
dataset.
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(Stata/SE version 13.1), R (using the lme4 library; Bates, 
Maechler, Bolker & Walker, 2015; version 1.1–12), Mplus 
(version 8), and SPSS (version 24, although having several 
limitations). The steps of the procedure are as follows:

•	 	Preliminary phase: Preparing the data (centering 
variables)

•	 	Step #1: Building an empty model, so as to assess 
the variation of the log-odds from one cluster to 
another

•	 	Step #2: Building an intermediate model, so as to 
assess the variation of the lower-level effect(s) from 
one cluster to another

•	 	Step #3: Building a final model, so as to test the 
hypothesis(/-es)

It should be stressed that this is a simplified version of 
the procedure usually found in the literature (e.g. Aguinis, 
Gottfredson & Culpepper, 2013; Hox, 2010). The few 
limitations due to such a simplification are footnoted.

Examples, Dataset, and Syntax Files
Let’s go back to our example, that is, your N  =  2,000 
pupils nested from K  =  100 classrooms. Now imagine 
you have two predictor variables. The first predictor 
variable is still GPA (ranging from 1 to 4). Again, this 
is a level-1 variable, since it may vary within clusters 
(i.e. pupils in any one classroom may have different 
GPA). The second predictor is called “teacher’s fond-
ness for Bieber”: This is whether the classroom teacher 
is a “belieber” (i.e. a fan of Justin Bieber), coded 0 for 
“the teacher is not a belieber” and 1 for “the teacher is 
a belieber.” This is a level-2 variable, since it cannot vary 
within clusters (i.e. pupils in any one classroom neces-
sarily have the same teacher). For the sake of simplicity, 
we will assume that there is only one teacher per class-
room and that teachers are all from the same schools. 
Note that the independence assumption should be met 
for level-2 residuals (e.g. classroom teachers need not to 
be nested in different higher-level units, such as schools, 
neighborhoods, or countries).

Figure 6: Summary of the three-step simplified procedure for multilevel logistic regression.
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You’re still trying to predict the odds of owning Justin’s 
last album and you formulate two hypotheses. First, you 
predict that pupils’ music taste will be influenced by their 
teacher’s music taste (a teacher-to-pupils socialization 
hypothesis):

The main effect hypothesis: Pupils have more 
chance to own Justin’s album when their teacher 
is a belieber than when s/he is not.

Second, you posit that high-achievers tend to self-identify 
more with their teachers and, as such, that they should be 
particularly influenced by their teacher’s music taste; con-
versely, low-achievers should be less influenced by their 
teacher:

The cross-level interaction hypothesis: Pupils with a 
high GPA have more chance to own Justin’s album 
when their teacher is a belieber than when s/he is not; 
this effect will be weaker for pupils with a low GPA.

The (fictitious) dataset is provided as supplementary mate-
rial, in .csv format, .dta (for Stata), .rdata (for R), .dat (for 
Mplus), and .sav (for SPSS). You will find the syntax files in 
.do format (for Stata), .R (for R), .inp (for Mplus), and .sps (for 
SPSS), all of which provide the commands to be used at each 
stage of the procedure. In running the syntax file you will 
obtain the same estimates as those reported in the main 
text. In addition, for each software, a series of sub-appendi-
ces also provided in supplementary material describes the 
way to handle each stage of the procedure, namely:

•	 	The preliminary phase: Sub-Appendix A
•	 	Step #1: Sub-Appendix B
•	 	Step #2: Sub-Appendix C
•	 	Step #3: Sub-Appendix D

Thus, you can read the three-step simplified procedure 
while working on your favorite software and/or 
going back and forth between the main text and the 
Sub-Appendixes A–D. As mentioned in the opening 
paragraph, SPSS users may not be able complete the 
procedure as the software often, if not always, fails 
to estimate the random slope variance (in Step #2). 
Supplementary material (i.e. datasets, syntax files, 
and appendices) can be found at https://figshare.
com/s/78dd44e7a56dc19d6eaa (DOI: https://doi.
org/10.6084/m9.figshare.5350786).

Preliminary Phase. Preparing the Data: Centering
First and foremost, you might decide to center the predic-
tor variable(s). Although not strictly speaking necessary, 
such a decision may facilitate the interpretation of some 
estimates. In particular, the fixed intercept will become the 
log-odds that your outcome variable equals one when pre-
dictor variables are all set to their mean (B00 is the value of 
Logit(odds) when x1ij, x2ij, …, xNij, X1j, X2j, …, and XKj = 0).

Centering a predictor variable depends on the level to 
which it is located. A level-2 predictor variable Xj can only be 
grand-mean centered (i.e. one should subtract the general 

mean across level-2 units from the predictor variable), 
whereas a level-1 variable could either be (a) grand-mean 
centered or (b) cluster-mean centered (for Stata, R, Mplus, 
and SPSS commands, see the relevant Sub-Appendix A).

When grand-mean centering a level-1 variable x1ij, that 
is, when subtracting the general mean of the predictor 
variable (x1gcij = xij – x−00), the fixed slope B10 corresponds 
to the average general effect. A one-unit increase in the 
grand-mean centered level-1 variable x1gcij results in an 
average change of B10 in the log-odds that the outcome 
variable equals one for the overall sample. In our example, 
the fixed slope of the grand-mean centered GPA would 
pertain to the estimation of the general between-pupil 
effect of GPA, regardless of the classroom.

However, when cluster-mean centering a level-1 varia-
ble x1ij, that is, when subtracting the cluster-specific mean 
of the predictor variable (x1ccij = xij – x−0j), the fixed slope 
B10 corresponds to the cluster-specific effect. A one-unit 
increase in the cluster-mean centered level-1 variable 
x1ccij results in an average change of B10 in the log-odds 
that the outcome variable equals one for a typical cluster. 
In our example, the fixed slope of the cluster-mean cen-
tered GPA would pertain to the estimation of the within-
classroom effect of GPA, comparing the pupils nested in 
the same classroom (the difference between the higher 
and lower achievers from one class).

Beware that the type of centering (cluster- vs. grand-
mean) may affect your model and results. The choice of 
one over the other should be done depending on your 
specific research question. For instance, grand-mean cen-
tering is recommended if you are interested in the effect 
of a level-2 predictor variable or the absolute (between-
observation) effect of a level-1 predictor variable, whereas 
cluster-mean centering is recommended when the focus is 
on the relative (within-cluster) effect of a level-1 variable. 
In our example, you decide to cluster-mean center pupils’ 
GPA (i.e. subtracting the classroom-specific mean, to esti-
mate the within-classroom effect) and to center teacher’s 
fondness for Bieber using –0.5 for “not a belieber” and 
+0.5 for “belieber” because you aim to test the idea that 
the highest-achieving students of a given classroom are 
more likely to be influenced by their teacher.

Note that grand- and cluster-mean centering are appli-
cable to level-1 dichotomous predictors. In such a case, 
grand-mean centering entails removing the general mean 
of the dichotomous predictor (i.e. the proportion of cases 
across cluster; e.g. that female = 1), whereas cluster-mean 
centering entails removing the cluster-specific mean (i.e. 
the proportion of cases within cluster; e.g. testing the 
effect of the deviation of one’s gender from the propor-
tion of females in a given cluster). For more detailed 
information on centering decision, see Enders and Tofighi 
(2007), as well as some cautionary recommendations 
on group-mean centering by Kelley, Evans, Lowman and 
Lykes (2017).

Step #1. Building an Empty Model: To What Extent Do 
the Log-Odds Vary Between Clusters?
Now that you have centered your variables, you want 
to know the extent to which the odds that the outcome 

https://figshare.com/s/78dd44e7a56dc19d6eaa
https://figshare.com/s/78dd44e7a56dc19d6eaa
https://doi.org/10.6084/m9.figshare.5350786
https://doi.org/10.6084/m9.figshare.5350786
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variable equals one instead of zero varies from one cluster 
to another. In our example, you want to estimate the 
proportion of variability in the chance of owning an album 
rather than not owning it that lies between classrooms.

To do so, you need to run an empty model, that is, a 
model containing no predictors (also referred to as an 
“unconditional mean model”; cf. Eq. 3), and calculate the 
intraclass correlation coefficient (for Stata, R, Mplus, and 
SPSS commands, see the relevant Sub-Appendix B). Below 
is the formula of the Intraclass Correlation Coefficient 
(ICC; Eq. 6):
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u π
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…in which var(u0j) is the random intercept variance, that 
is, the level-2 variance component: The higher var(u0j), 
the larger the variation of the average log-odds between 
clusters;

…and (π2/3) ≈ 3.29 refers to the standard logistic distri-
bution, that is, the assumed level-1 variance component: 
We take this assumed value, as the logistic regression 
model does not include level-1 residual (cf. Eq. 3).

The ICC quantifies the degree of homogeneity of the 
outcome within clusters. The ICC represents the propor-
tion of the between-cluster variation var(u0j) (in your 
case: the between-classroom variation of the chances of 
owning the album) in the total variation (in your case: 
the between- plus the within-classroom variation of the 
chances of owning an album).

The ICC may range from 0 to 1. ICC  =  0  indicates 
perfect independence of residuals: The observations 
do not depend on cluster membership. The chance 
of owning Justin’s album does not differ from one 
classroom to another (there is no between-classroom 
variation). When the ICC is not different from zero or 
negligible, one could consider running traditional one-
level regression analysis.5 However, ICC  =  1  indicates 
perfect interdependence of residuals: The observations 
only vary between clusters. In a given classroom, either 
everyone or nobody owns Justin’s album (there is no 
within-classroom variation).

In your study var(u0j) = 1.27. Thus, ICC = 1.27/(1.27 + 3.29) 
≈ 0.28. This indicates that 28% of the chances of owning 
an album is explained by between-classroom differences 
(and – conversely – that 72% is explained by within-
classroom differences). For more detailed information 
on intraclass correlation coefficient in multilevel logistic 
regression, see Wu, Crespi, and Wong (2012).

Step #2. Building an Intermediate Model: To What 
Extent Does the Effect of a Relevant Lower-Level 
Variable Vary Between Clusters?
Now that you know the extent to which the odds vary 
from one cluster to another, you want to know the extent 
to which the effect of the relevant lower-level variable(s) 
varies from one cluster to another.

There is a debate in the literature, with some authors 
advocating the use of maximal model estimating all 
random slope variance parameters (Barr et al., 2013) 

and others underlining the risk of overparametrization, 
failure of convergence, and uninterpretable findings 
(Bates, Kliegl, Vasishth & Baayen, 2015). Our position is 
that random variations should primarily be tested when 
having theoretical reasons to do so. In our example, you 
surely want to estimate the variation of the effect of GPA 
on the odds of owning the album from one classroom to 
another, since you expect the effect of GPA to depend on 
some teacher characteristics.

To do so, you need to (a) run a constrained intermediate 
model (CIM), (b) run an augmented intermediate model 
(AIM), and (c) compare both by performing a likelihood-
ratio test (for Stata, R, Mplus, and SPSS commands, see 
the relevant Sub-Appendix C).

The constrained intermediate model contains all 
level-1 variables (in our case: GPA), all level-2 variables 
(in our case: teacher’s fondness for Bieber), as well as 
all intra-level interactions (level-1 * level-1 or level-2 
* level-2  interactions; in our case: none). Note that the 
constrained intermediate model does not contain cross-
level interactions, since the model precisely aims to esti-
mate the unexplained variation of lower-level effects. 
For instance, if your study included pupils’ sex (a second 
level-1 variable) and classroom size (a second level-2 
variable), the constrained intermediate model would 
only contain the intra-level interactions “GPA * sex” and 
“teacher’s fondness for Bieber * classroom size,” not the 
cross-level interaction like “GPA * classroom size” or “sex * 
teacher’s fondness for Bieber”).

This constrained intermediate model equation is shown 
below (Eq. 7):

	 ( ) 00 10 ij 01 j 0jLogit   *  x *odds B B B u= + + +X 	      (7)

…in which xij refers to GPA (the level-1 variable), whereas 
Xj refers to teacher’s fondness for Bieber (the level-2 
variable);

…B10 is the fixed slope of xij (the overall effect of GPA), 
and B01 is the (necessarily fixed) slope of Xj (the overall 
effect of teacher’s fondness for Bieber).

The augmented intermediate model is similar to the 
constrained intermediate model, with the exception that 
it includes the residual term associated with the relevant 
level-1 variable, thereby estimating the random slope 
variance (if you have several relevant lower-level variables, 
test them one at a time; for the procedure see the Notes 
of the relevant Sub-Appendix C).6 Remember that the 
random slope variance corresponds to the extent of the 
variation of the effect of the lower-level variable from one 
cluster to another (in our case: the extent of the variation 
of the effect of GPA from one classroom to another). Note 
that only main level-1 terms are thought to vary, not 
interaction terms.

The augmented intermediate model equation is shown 
below (Eq. 8):

	 ( ) ( )00 10 1j ij 01 j 0jLogit     *  x *odds B B u B u= + + + +X 	 (8)

…in which u1j is the deviation of the cluster-specific slope 
(i.e. the specific effect of GPA within a given classroom) 
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from the fixed slope (i.e. the average effect of GPA regard-
less of classrooms).

No need to not look at the coefficient estimates 
or variance components of the intermediate models. 
Your goal is to determine whether the augmented 
intermediate model achieves a better fit to the data than 
the constrained intermediate model. In other words, your 
goal is to determine whether considering the cluster-
based variation of the effect of the lower-level variable 
improves the model. To do so, after gathering or storing 
the deviance of the CIM and AIM, you will have to perform 
a likelihood-ratio test, noted LR χ² (1). Below is the formula 
of the likelihood-ratio test (Eq. 9):

	 ( ) ( ) ( )LR ² 1   CIM  –  AIMdeviance devianceχ = 	 (9)

…in which deviance(CIM) is the deviance of the constrained 
intermediate model, whereas deviance(AIM) is the devi-
ance of the augmented intermediate model;

…and “(1)” corresponds to the number of degrees of 
freedom (this equals one because there is only one addi-
tional parameter to be estimated in the AIM compared to 
the CIM, namely the random slope variance).

The deviance is a quality-of-(mis)fit index: The smaller the 
deviance, the better the fit. There are two possible scenarios:

i.	 The deviance of the augmented intermediated 
model is significantly lower than the deviance of the 
constrained model. That is, including the residual 
term u1j significantly improves the fit. In this case, the 
residual term u1j should be kept in the final model. In 
your study deviance(CIM) = 2,341 and deviance(AIM) 
= 2,312.7 Thus, LR χ² (1) = 2,341 – 2,312 = 29, p < .001 
(you can find the p-value using a common chi-square 
distribution table). This indicates that allowing the 
effect of GPA to vary between classrooms improves 
the fit and that it is better to take such variation into 
account.

ii.	The deviance of the augmented intermediated model 
is not significantly lower than the deviance of the 
constrained model. That is, including the residual 
term u1j does not significantly improve the fit. In this 
case, the term could perhaps be discarded to avoid 
overparametrization (Bates et al., 2015). However, 
this does not necessarily mean that the effect of the 
lower-level variable does not vary from one cluster 
to another (absence of evidence of variation is not 
evidence of absence of variation; see Nezlek, 2008). 
Importantly, a non-significant LR χ² (1) should not 
prevent you from testing cross-level interactions.8

Step #3. Building the Final Model: Do the Data 
Provide Support for Your Hypotheses?
Now that you know the extent to which the effect of the 
relevant lower-level variable varies from one cluster to 
another (and have decided whether to consider the varia-
tion of the level-1 effect and keep estimating the random 
slope variance in the final model or not), you can finally 
test your hypotheses.

To do so, you need to run the final model, adding the 
cross-level interaction(s) (for the Stata, R, Mplus, and SPSS 
commands, see the relevant Sub-Appendix D). The predictor 
variables are the same as that in the intermediated models 
(level-1 variable, level-2 variable, and intra-level interactions), 
except that the level-1 * level-2 interactions are now included 
(in our case: the GPA * teacher fondness for Bieber interac-
tion). The final model equation is shown below (Eq. 10):
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…in which B11 is the coefficient estimate associated with 
the cross-level interaction, that is, the GPA * teacher fond-
ness for Bieber interaction.

What about the children? It is now time to take a look 
at the odds ratios and to discover how pupils behave and 
whether the data support your hypotheses. With the pro-
vided commands, each of the odds ratios comes with its 
95% Confidence Interval (CI). Let’s first interpret the odds 
ratio of the hypothesized main effect and then the odds 
ratio of the hypothesized interaction effect.

Interpretation of the main effect. Regarding your main 
effect hypothesis, exp(B01) = OR = 7.50, 95% CI [5.00, 11.25]. 
Congruent with your teacher-to-pupil socialization 
hypothesis, this indicates that pupils whose classroom 
teacher is a belieber have 7.50 times more chance of own-
ing Justin’s album than pupils whose teacher is not a fan a 
Justin Bieber (i.e. the interpretation of the OR).

Since the 95% confidence interval ranges from 5.00 to 
11.25, we decide that the effect lies about between 5 and 
12 more chances of owning the album. When a 95% con-
fidence interval does not contain 1, the effect is significant 
(i.e. p < 0.05) and we reject H0, whereas when a 95% confi-
dence interval does contain 1, the effect is non-significant 
(i.e. p > 0.05) and we cannot reject H0 (with a 95% CI, the 
alpha level = 0.05). For more detailed information on con-
fidence intervals, see Cumming, 2014.9

Interpretation of the interaction effect. Regarding your 
interaction hypothesis, this is a bit more complicated. 
In logistic regression, there is a debate in the literature 
regarding the procedure to be followed for calculating the 
interaction effect (see Kolasinski & Siegel, 2010).

In (multilevel) logistic regression, the coefficient esti-
mate of the product term does not correspond math-
ematically to the interaction effect. Technically, your 
software calculates the coefficient estimate of the product 
term as for any main effect (i.e. your software calculates 
the marginal effect), despite the fact that this calculation 
does not apply to interaction effect in logistic regression 
(i.e. the marginal effect does not equal the interaction 
effect in logistic regression; Ai & Norton, 2003; see also 
Karaca-Mandic, Norton & Dowd, 2012).

In logistic regression, the sign, the value, and the 
significance of the product term is likely to be biased, 
which has made some authors advocate calculating 
the correct interaction effect using special statistical 
package (e.g. the inteff command in Stata or the intEff 
function in R; see Norton, Wang & Ai, 2004). However, 
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the calculation of the correct interaction effect (or the 
correct cross-partial derivative) is quite complex and there 
is no statistical package available for multilevel modeling. 
Moreover, other authors have shown that interpreting 
the coefficient estimate of product term was appropriate 
most (but not all) of the time (Kolasinski & Siegelm, 2010; 
see also, Greene, 2010). Pending better approach, scholars 
might rely on the simple significance-of-the-product-term 
approach. This is what we do here.

In your study, exp(B11) = OR = 3.01, 95% CI [1.86, 4.86]. 
Since the 95% confidence intervals does not contain 1, 
the effect is statistically significant. This means that the 
effect of teacher’s fondness for Bieber significantly differs 
as a function of pupils’ GPA. To be interpreted, the inter-
action needs to be decomposed: We want to know the 
effect of the level-2 predictor variable for each category 
of the level-1 variable (this could have been vice versa). 
Decomposing the interaction may be done using two 
dummy-coding models (e.g. see Preacher, Curran & Bauer, 
2004):

i.	 The first dummy coding model aims to estimate the 
effect of teacher’s fondness for Bieber for pupils 
having a low GPA (by convention: 1 SD below the 
cluster-mean). To do that, you have to add one 
standard deviation from cluster-mean centered 
GPA (with a dichotomized variable, you may fix the 
condition of interest at 0 and the other at 1). Both the 
main term xij (GPA) and the product term xij * Xj (GPA 
* teacher’s fondness for Bieber) need to be changed 
accordingly. In such a model, the coefficient estimate 
B10 of teacher’s fondness for Bieber will become the 
simple slope of teacher’s fondness for Bieber when 
GPA = 0, i.e. in this case, when GPA = –1 SD. In this 
first dummy coding model, exp(B10)  =  OR  =  3.47, 
95% CI [2.13, 5.64]. This indicates that for the lowest 
achievers of their classroom (–1 SD), having a teacher 
who is a belieber (versus not) results in a 3.50 times 
higher chance of owning Justin’s last album.10

ii.	A second dummy coding model aims to estimate 
the effect of teacher’s fondness for Bieber for pupils 
having a high GPA (by convention: 1 SD above the 
cluster-mean). To do that, you have to remove one 
standard deviation from cluster-mean centered 
GPA (with a dichotomized variable you may fix the 
condition of interest at 0 and the other at –1). Again, 
both the main term and the product term need to be 
changed accordingly. In such a model, the coefficient 
estimate B01 will become the simple slope of teacher’s 
fondness for Bieber when GPA  =  0, i.e. this time, 
when GPA  =  +1 SD. In this second dummy coding 
model, exp(B10) = OR = 16.20, 95% CI [9.21, 28.49]. 
This indicates that for the highest achievers of their 
classroom (+1 SD), having a teacher who is a belieber 
(versus not) results in a 16.20 times higher chance of 
owning Justin’s last album the significant interaction 
effect suggests that this second simple slope effect is 
stronger than the first one.

In both models, the random slope component will have 
to remain the same. In other words, the residual term 

associated with the level-1 predictor u1j will have to 
remain centered. It is worth noting that adding the GPA 
* teacher fondness for Bieber interaction term may result 
in the reduction of the random slope variance (from 
the intermediate to the final model). This is due to that 
fact that there now are fewer unexplained variations of 
the effect of GPA from one classroom to another, since 
teacher fondness for Bieber accounts for part of these 
variations. Likewise, specifically adding the teacher 
fondness for Bieber term may result in the reduction 
of the random intercept variance, because there now 
are less unexplained variations of the odds of owning 
Justin’s album from one classroom to another. However, 
importantly, adding a significant fixed term sometimes 
does not result in the decrease of residual variance 
(sometimes, it may even result in an increase) because of 
the way fixed and random effects are estimated (Snijders 
& Bosker, 1994; see also, LaHuis, Hartman, Hakoyama & 
Clark, 2014). If you observe such a phenomenon, it is not 
necessarily an issue.

Finally, using one of the syntax files provided with the 
article, you can compare the coefficient estimates obtained 
in the final model, with or without the use of multilevel 
modelling. You will realize that standard errors are deflated 
when using the traditional one-level logistic regression, 
thereby increasing the risk of Type I error.

“Where Are Ü Now.” (Your) Future Challenges 
and Conclusion
For the brave readers who wish to go further, let’s keep 
each other company for another couple of paragraphs. 
Know that multilevel (logistic) regression may be applied 
to other types of research designs, data structures, or out-
come variables. First, multilevel logistic regression may be 
applied to repeated measure designs and/or longitudinal 
data (Quené & Van den Bergh, 2004). In such a situation, 
observations are nested in participants (e.g. right or wrong 
test answers nested in examinees; but a more rigorous 
approach would be using a model in which observations 
are cross-classified by stimuli and participants; see Baayen, 
Davidson & Bates, 2008). Thus, participants are treated as 
higher-level units and the analysis aims to disentangle the 
within-participant effects from the between-participant 
effects (in such a case, one may cluster-mean center the 
level-1 predictors so as to estimate the pooled within-
participant fixed effects; Enders & Tofighi, 2007). Our 
three-step procedure may well be used in this case (with 
participant number as the level-2 identifier), although the 
database will have to be rearranged in the preliminary 
phase in order to have one line per lower-level units (for 
the Stata, R, and SPSS commands, see the relevant Sub-
Appendix E; the current version of Mplus does not per-
form data reshaping).

Second, multilevel logistic regression may be applied 
to three- (or more) level hierarchical or cross-classified 
data structure (see Rabe-Hesketh & Skrondal, 2012a). In 
a two-level cross-classified data structure, pupils (level 
1) could for example be nested in two non-hierarchical 
clusters: the school they attend (level 2a) and the 
neighborhood they live in (level 2b; see Goldstein, 
2003). This a cross-classified data structure in the sense 
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that pupils in a given cluster (school or neighborhood) 
are not “sub-classified” by the other type of cluster (i.e. 
pupils do not necessarily attend to the school of their 
neighborhood). Our three-step procedure is incomplete 
in this case, as two ICCs would have to be calculated 
in Step #1 (there is level-2a and a level-2b random 
intercept variance) and various random slope variance 
could be estimated in Step #2 (for a given level-1 
variable, there are level-2a and level-2b random slopes 
variance; for the Stata, R, and Mplus commands, see the 
relevant Sub-Appendix F; SPSS commands are not given 
due to software limitation).

Third, multilevel non-linear regression may be applied 
to a wide range of (non-normally distributed) discrete 
outcome variables, such as multinomial outcomes (three 
or more response categories), ordinal outcomes (three or 
more ordered response categories), or count outcomes 
(three or more counts of events; see Rabe-Hesketh & 
Skrondal, 2012b). As it would take too long to cover all 
the different cases, let’s focus on the last example. Count 
outcome variables typically correspond to a number of 
occurrences (e.g. the number of murders per year and 
per neighborhood) and are often right-skewed, that is, 
follow a Poisson distribution (e.g. the number of murders 
per year is zero for most neighborhoods, one for some 
rare neighborhoods, two for even rarer neighborhoods, 
and so on; see King, 1988). Our three-step procedure 
is to be modified in this case, as multilevel Poisson 
regression or negative binomial multilevel regression 
have to be carried out. Note that these regression 
models give incidence rate ratio rather odds ratio (for 
the Stata, R, and Mplus commands, see the relevant 
Sub-Appendix G; SPSS commands are not given due to 
software limitation).

In conclusion, notwithstanding the aforementioned 
future challenges, it’s a good day. Reading this article, 
you have understood that logistic regression enables the 
estimation of odds ratio and confidence interval, describ-
ing the strength and the significance of the relationship 
between a variable and the odds that an outcome variable 
equals one instead of zero. Moreover, now you know that 
multilevel logistic regression enables to estimate the fixed 
intercept and random intercept variance (i.e. the aver-
age general log-odds and its variation from one cluster 
to another), as well as the estimation of fixed slope and 
random slope variance (i.e. the average general effect of 
a lower-level variable and its variation from one cluster to 
another). And while your condescending colleague strug-
gles with complex multilevel procedures, you calmly use 
the three-step simplified procedure for multilevel logistic 
regression analysis presented in this article: In a prelimi-
nary phase, you may choose to grand- or cluster-mean 
center your variables; in Step #1, you run an empty model 
estimating the random intercept variance and calculat-
ing the ICC; in Step #2, you run a series of intermediate 
models determining whether including the residual term 
associated with the level-1 predictor (and estimating the 
random slope variance) improves the model fit with a 
LR χ² (1); in Step #3, you run a final model testing the 
hypotheses. Yes, finally, it’s a very good day. Life is worth 
living, so live another day.

Notes
	 1	 …and if you think otherwise, oh baby you should go 

and love yourself. By the way, we should add that we 
have hidden the names of all the songs of Justin’s last 
album in the manuscript, often along with some lyrics. 
Just for fun.

	 2	 The odds are about 1  in 2,500,000  since there are 
roughly 10,000,000 female teenagers in the US (US 
Census Bureau, 2016) and that Justin Bieber has so 
far had four relationships (allegedly), namely with 
Jasmine Villegas, Selena Gomez, Hailey Baldwin, and 
Sofia Richie.

	 3	 In multilevel modeling, the term “random” indicates 
that a coefficient (intercept or slope) varies across clus-
ters, as opposed to the fixed effect which is the average 
coefficient across clusters. It should not be understood 
in terms of mathematical randomness.

	 4	 By default, some software packages, as SPSS or 
Statistica, will estimate the log-odds that an outcome 
variable equals zero instead of one (rather than the 
other way around). For SPSS, we encourage you to make 
a small change to the syntax command so as to avoid 
any confusion (see Sub-Appendix A). Alternatively, you 
can recode the variable so that “0” corresponds to the 
event occurring and “1” to the event not occurring.

	 5	 The assumption of independence of residuals can be 
understood as the assumption that ICC = 0, which is 
why some authors have argued that a non-significant 
and negligible ICC may lead to the decision of treating 
the individual as the sole unit of analysis (e.g. Kenny, 
Kashy & Cook, 2006; SPSS users and R users working 
with the lme4 library will not be able to estimate the 
level of significance of the ICC). However, the inde-
pendence of residuals does not rule out the presence 
of variation in the effect of a lower-level variable and 
– by extension – the need of multilevel modeling (see 
Barr, Levy, Scheepers & Tily, 2013). An alternative to 
the ICC would be to calculate the design effect with 
the formula Design effect = 1 + (average group size – 
1) * ICC, as suggested by Muthén and Satorra (1995). 
A design effect > 2 is considered as suggesting that 
clustering should not be ignored and that multilevel 
analysis is required.

	 6	 The covariance between the random intercept variance 
and the random slope variance is assumed to be zero 
in this procedure. Although the covariance structure 
is usually tested in multilevel modeling procedures, 
the results are rarely interpreted (Hox, 1995). In the 
same way as for the random slope variance, we argue 
that this covariation should be primarily tested when 
having theoretical reasons to do so. To determine 
whether including the covariance parameter improves 
the model, one should include it in the augmented 
intermediate model. In doing so, Stata users have to 
add, cov(uns) at the end of the command; R users 
have to replace (1 + lvl1_predict || id_cluster) by 
(1 + lvl1_predict | id_cluster) in the glmer function; 
Mplus users have to add s1 WITH outcome (s1 is the 
name given to the random slope) to the %BETWEEN% 
part of the model; and SPSS users have to specify 
COVARIANCE_TYPE  =  UNSTRUCTURED in the com-
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mand. In this situation, the augmented intermediate 
model estimates two more terms than the constrained 
intermediate model (i.e. the random slope variance and 
the covariance parameter). Hence, the likelihood-ratio 
test will have two degrees of freedom instead of one.

	 7	 Deviance estimates may marginally vary from one 
software to another, as the implementation of the 
algorithms is not exactly identical. For instance, in R 
deviance(CIM) = 2342 and deviance(AIM) = 2315.

	 8	 A similar approach could be used to test whether the 
inclusion of a predictor variable improves the model 
fit (i.e. to test whether a fixed effect is significant): 
A likelihood ratio test can be used to compare a 
constrained model not including the fixed effect with 
an augmented intermediated model including the 
fixed effect (Gelman & Hill, 2007).

	 9	 Formally speaking, the interpretation of the confidence 
interval is as such: If we repeated the study an infinite 
number of time, and computed a 95% confidence 
interval each time, then 95% of these confidence 
intervals would contain the true population odds ratio 
and 5% of them would miss it (see Morey, Hoekstra, 
Rouder, Lee & Wagenmakers, 2016).

	 10	 The standard errors of the simple slopes should nor-
mally be calculated using the Delta method (Greene, 
2010); this method is not covered herein for the sake 
of simplicity.
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