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Abstract—The advancement of molecular profiling techniques
fuels biomedical research with a deluge of data. To facilitate
data sharing, the Global Alliance for Genomics and Health
established the Beacon system, a search engine designed to help
researchers find datasets of interest. While the current Beacon
system only supports genomic data, other types of biomedical
data, such as DNA methylation, are also essential for advancing
our understanding in the field. In this paper, we propose the first
Beacon system for DNA methylation data sharing: MBeacon. As
the current genomic Beacon is vulnerable to privacy attacks, such
as membership inference, and DNA methylation data is highly
sensitive, we take a privacy-by-design approach to construct
MBeacon.

First, we demonstrate the privacy threat, by proposing a
membership inference attack tailored specifically to unprotected
methylation Beacons. Our experimental results show that 100
queries are sufficient to achieve a successful attack with AUC
(area under the ROC curve) above 0.9. To remedy this situation,
we propose a novel differential privacy mechanism, namely SVT2,
which is the core component of MBeacon. Extensive experiments
over multiple datasets show that SVT2 can successfully mitigate
membership privacy risks without significantly harming utility.
We further implement a fully functional prototype of MBeacon
which we make available to the research community.

I. INTRODUCTION

The advancement of molecular profiling technologies dur-
ing the last decade has resulted in a deluge of biomedical
data becoming available. The large quantity of data is consid-
ered the fuel for the next-generation bio-engineering industry.
Leading researchers as well as practitioners have predicted the
biotech era is coming.

Data sharing is essential for advancing biomedical research.
However, large-scale data sharing has been limited, primarily
due to privacy concerns [12], [22], [2], [24]. Homer et al. [16]
have shown that an adversary can effectively predict the
presence of an individual in a genomic dataset. This attack
is known as membership inference attack [5], [35], [28],
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[31] and its implication is beyond membership status: For
instance, if the dataset is collected from individuals carrying a
certain disease, then the adversary can immediately infer this
sensitive information about her target(s). A recent study [5]
further shows that not only genomic data, but also other types
of biomedical data, are vulnerable to membership inference
attacks.

Aiming for a responsible and effective genomic data shar-
ing solution, the Global Alliance for Genomics and Health
(GA4GH)1 established the Beacon system2 in 2014. The
Beacon system is essentially a search engine indexed over
multiple Beacons. Each single Beacon is constructed by a
partner institution of the Beacon system with its own database.
Only one type of query is supported by a Beacon: whether
its database contains any record with the specified nucleotide
at a given position and chromosome, and the corresponding
response is a binary “Yes” or “No”. Upon a query from a
researcher, the search engine, i.e., the Beacon system, will
return the names of the partner institutions that answer “Yes”,
and the researcher can directly contact these institutions to
obtain access to the data.

The current Beacon system only supports genomic data.
However, other types of biomedical data, like epigenetic data,
are also essential for biomedical research. In particular, DNA
methylation, as one of the most important epigenetic elements,
has been demonstrated to be very influential to human health.
For instance, anomalous changes in the DNA methylation
patterns are frequently observed in cancer [13]. Consequently,
there exists a huge demand for methylation data sharing.

A. Contributions

We construct the first Beacon system for sharing DNA
methylation data, namely, the MBeacon system. Similar to
the current genomic Beacon system, the MBeacon system
is also a search engine. Each institution taking part in the
MBeacon system establishes its own MBeacon that implements
the following query: “Are there any patients with a certain
methylation value at a specific methylation position?”, and
provides a binary “Yes” or “No” response.

Despite the coarse-grained answer format, researchers have
shown that the genomic Beacon is vulnerable to privacy

1https://www.ga4gh.org/
2https://beacon-network.org/
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attacks, in particular membership inference attacks [36], [29],
[1], [45]. In addition, previous works have demonstrated the
serious privacy risks stemming from sharing DNA methyla-
tion data [3], [8]. Therefore, we follow a privacy-by-design
approach to construct the MBeacon system.

Membership Inference Attack. The first step towards a
privacy-preserving MBeacon is to evaluate the privacy threat
of membership inference attacks against a plain (unprotected)
methylation Beacon. Since existing attacks on the current
Beacons are tailored to genomic data only, we design a
membership inference attack suitable for DNA methylation
data. Our membership inference attack relies on the likelihood-
ratio test and uses as probability estimate a normal distribution
calibrated to the mean and standard deviation of the general
population’s methylation values.

We empirically evaluate our attack on several unprotected
methylation Beacons composed of various methylation datasets
and show that the attack achieves a superior performance. For
instance, the simulated attacker can achieve an AUC value
(area under the ROC curve) of over 0.9 after submitting only
100 queries to the Beacon.

Defense Mechanism. The effectiveness of our membership
inference attack demonstrates the privacy threat of the Bea-
con system for methylation data. To mitigate this threat, we
propose a novel differential privacy mechanism, namely the
double sparse vector technique (SVT2), which is the core
component of MBeacon. We consider a MBeacon’s query
response to be highly privacy-sensitive if it differs from the ex-
pected response over the general population data. In fact, these
differences are also the major reason why our membership
inference attack is effective. A MBeacon is usually constructed
over a database collected from people with a certain disease,
and biomedical studies show that, for data of this kind, only a
few methylation regions differ from the general population.
As a consequence, only a few queries are highly privacy-
sensitive. Therefore, we aim for a solution that scales noise
to the sensitive responses in order to reduce the overall noise
level of MBeacon, thus maintaining utility.

One possible solution for the problem is the sparse vector
technique, a differential privacy mechanism that is designed to
scale noise to a subset of highly privacy-sensitive responses.
The sparse vector technique determines whether a response
is sensitive by comparing it to a fixed threshold. However, it
cannot be applied to MBeacon, as we need to check whether
the MBeacon response and the expected response agree with
each other. The novelty of our proposed SVT2 lies in checking
this agreement through two comparisons to a fixed threshold:
one for the MBeacon response, the other for the expected
response. We prove that SVT2 guarantees differential privacy.

Utility Metrics. The goal of the MBeacon system is to
facilitate DNA methylation data sharing. Therefore, the main
users of the system are researchers who want to discover
institutions that possess data of interest. In order to quantify
the impact of SVT2 on the real-world utility of our MBeacon
system, we introduce a new utility metric by simulating a
legitimate researcher who tries to find other institutions that
possess methylation data similar to her own data.

We evaluate the performance of our privacy-preserving
MBeacon through extensive experiments (simulating 2,100

researchers). The results show that the privacy loss on member-
ship inference attacks can be minimized while the researcher
utility still remains high. For carefully chosen privacy param-
eters, it is possible to decrease the attacker’s performance to
random guessing (AUC < 0.6) while preserving a high utility
for the researcher (AUC > 0.8). Furthermore, we conduct
a large-scale evaluation of privacy parameters for SVT2 and
provide the necessary tools for an institution to tune these
parameters to their needs.

In addition, we have implemented a fully-functional pro-
totype of the MBeacon system3 which we make available to
the research community.

B. Organization

The rest of the paper is organized as follows. We briefly
introduce the current Beacon system and necessary biomedical
background in Section II. MBeacon is formally defined in
Section III. Section IV and V present our membership infer-
ence attack and its evaluation, respectively. In Section VI, we
describe our defense mechanism SVT2. Section VII introduces
the utility metric. The effectiveness of our defense is evaluated
in Section VIII. The MBeacon prototype is introduced in
Section IX. We summarize the related work in Section X, and
then conclude in Section XI.

II. BACKGROUND

In this section, we provide the necessary background on
the current Beacon system as well as on DNA methylation.

A. Beacon System

Current biomedical data sharing has limited success due to
its inherent privacy risks. To tackle this problem, GA4GH has
established the Beacon system, also referred to as the Beacon
network.

The Beacon system is a search engine that allows re-
searchers to query whether any of the institutions taking part
in the system possesses data of their interests. Each partner
institution implements its own Beacon with its onsite data.
These Beacons only support one simple type of query, i.e.,
the presence of a specified nucleotide (A, C, G, T) at a
given position within a certain chromosome. The response is
a binary “Yes” or “No”. To give a concrete example, query
“13 : 32936732 G > C” stands for ”Are there any patients
that have allele C at position 32936732 (with reference allele
G) on chromosome 13?”. When the Beacon system receives
such a query, it forwards the query to each of its partner
institutions’ Beacons. If an institution’s dataset contains at
least one record matching the query, then the Beacon answers
“Yes”. The names of all Beacons with “Yes” answers are sent
back to the querier. In the end, the querier can contact the
corresponding institutions for data access offline.

B. DNA Methylation

DNA methylation is one of the most important and best
understood epigenetic elements. It consists of molecules, so-
called methyl groups, added to the nucleotides at positions

3https://mbeacon-network.github.io/MBeacon-network/
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TABLE I. NOTATIONS.

Notation Description

v A victim
m(v) Methylation profile of v
I An institution’s database
BI A MBeacon built on I
q A query to a MBeacon
−→
Q A vector of queries
K An adversary’s background knowledge
b No. of bins for methylation values
A Membership inference attack
δ Measurement error
SVT2 The defense mechanism for MBeacon
αi No. of patients for qi in MBeacon
βi Estimated No. of patients for qi
P Methylation of interest for researcher
D Methylation of no-interest for researcher
BP,D MBeacon built with P and D
BD MBeacon built with D
T MBeacon responses “Yes” if there are

p ≥ T patients with the requested value

where a C nucleotide is followed by a G nucleotide (called
CpG-dinucleotides). Usually, DNA methylation at a given
CpG-dinucleotide is measured as a real value between 0 and 1.
This value represents the fraction of methylated dinucleotides
at this position. The whole DNA methylation profile of an
individual can thus be represented as a vector of real values
between 0 and 1. Intermediate values occur due to DNA
methylation varying between copies of the DNA within the
same cell, or due to mixtures of cells from different tissues
being measured.

Whether the DNA is methylated at certain positions affects
the DNA activity and structure [17], [33]. Some anomalous
changes in methylation patterns are correlated with cancer [13],
leading to activation of genes such as oncogenes, or the si-
lencing of tumor suppressor genes. Meanwhile, environmental
factors, such as pollution, smoking and stress, can cause the
changes of methylation values [7], [40], [42], [41]. Therefore,
an increasing number of studies concentrate on methylation,
which require large amounts of DNA methylation data, and
thus data sharing.

In this paper, we propose the first Beacon system for
sharing DNA methylation data, namely the MBeacon system.
Since an individual’s methylation data may carry information
about her current disease status and environmental factors
influencing her health, methylation data is considered highly
privacy-sensitive. Also, a recent study has shown that methy-
lation data can be re-identified by inferring the corresponding
genomes [3] given an individual’s methylation profile. There-
fore, our MBeacon system is built following a privacy-by-
design approach.

III. MBEACON DESIGN

The MBeacon system is a search engine that indexes
over multiple MBeacons. Each MBeacon is established by
an institution with its own database, and this institution is
referred to as a partner of the MBeacon system. We denote an
institution by I and its MBeacon by BI. Without ambiguity, we
also use I to represent the institution’s database itself, which
consists of multiple patients’ methylation profiles. Moreover,
we denote a patient by v, and her methylation profile, i.e., the
sequenced methylation values, by a vector m(v) ∈ RM[0,1]. The

vector length M is equal to the total number of methylation
positions considered, e.g., M = 450, 000.

Similar to the genomic Beacon, our MBeacon supports one
type of query, that is “Are there any patients with this methy-
lation value at a specific methylation position?”. Formally, we
define a query q as a tuple (pos, val) where pos represents
the queried position and val represents the queried value. A
Beacon BI is essentially a function,

BI : q → {0, 1}, (1)

where 0 represents “No” and 1 represents “Yes”. It is worth
noting that this general query format also allows researchers
to infer answers to more complex queries, such as “Are there
any patients with methylation value above some threshold for
a specific position?”. When a researcher issues a query to the
MBeacon system, the system forwards this query to all the
MBeacons, and returns the names of those MBeacons with
“Yes” answers to the researcher.

For presentation purposes, we summarize the notations
introduced here and in the following sections in Table I.

IV. MEMBERSHIP INFERENCE ATTACK

To demonstrate the privacy risks of unprotected methy-
lation Beacons, we propose a membership inference attack
against them. In this section, we first present the considered
adversarial model, then the methodology of our attack.

A. Threat Model

In general, the goal of membership inference attacks is
to predict whether the victim is a member of the database
given certain knowledge about the victim. For instance, an
attacker with access to the sequenced methylation values of
her victim aims to infer whether the victim is in the database
containing methylation data collected from some HIV carriers.
By knowing who is member of the study, the attacker is able
to infer the HIV status of her victim, even though (to the best
of our knowledge) the HIV status is not directly detectable
from the methylation values. This example demonstrates the
severe consequence of membership inference. Moreover, all
the existing attacks against genomic Beacons are membership
inference attacks [36], [29], [1], [45].

We assume that the adversary has access to the victim’s
methylation data m(v) and additional background knowledge
K that we instantiate later. The adversary’s goal is to perform
an attack A, to decide whether v is in the database of institution
I by querying the MBeacon BI. Formally, the membership
inference attack is defined as follows:

A : (m(v), BI,K )→ {0, 1}, (2)

where 1 means that the victim is in the MBeacon database and
0 that she is not. If v’s methylation values are indeed part of
the MBeacon’s database (m(v) ∈ I) and the attack output is
1, then the attack achieves a true positive for v. If the output
is 0, then it is a false negative. However, if v’s methylation
values are not part of BI (i.e., m(v) /∈ I) and the attack output
is 0, this is a true negative, otherwise, if the output is 1, it is
a false positive.
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B. Attacking Methylation Beacons

We rely on the likelihood-ratio (LR) test to realize our
membership inference attack for two main reasons. First, by
the Neyman-Pearson Lemma [20], [37], the LR test achieves
the highest power (true-positive rate) for a given false-positive
rate in binary hypothesis testing if the theoretical preconditions
are met. Second, the LR test has been successfully used by
Shringarpure and Bustamante [36] and Raisaro et al. [29] for
attacking genomic Beacons.

In general, the LR test formulates a null hypothesis H0

and an alternative hypothesis H1, and compares the quotient
of the two hypotheses’ likelihoods to a threshold. Our null
hypothesis H0 is defined as the queried victim v not being in
the MBeacon (m(v) /∈ I), and the alternative hypothesis H1

as the queried victim being in the MBeacon (m(v) ∈ I).

The adversary submits a series
−→
Q = 〈q1, . . . , qn〉 (n ≤

M ) of queries to BI with her victim’s methylation values,
i.e., m(v), and get a list of responses, denoted by BI(

−→
Q ) =

〈BI(q1), . . . , BI(qn)〉. Assuming that the different responses
are independent,4 the log-likelihood of the responses is

L(BI(
−→
Q )) =

n∑
i=1

BI(qi) log(Pr(BI(qi)= 1))+

(1−BI(qi)) log(Pr(BI(qi) = 0)).

(3)

To implement the two hypotheses H0 and H1, we need to
model Pr(BI(q) = 1) and Pr(BI(q) = 0). The approach
in [36] cannot be directly applied as it is designed for genomic
data, which is discrete. In contrast to that, methylation data is
represented as a continuous value between 0 and 1. We propose
to bin the methylation values into b equal-width bins that
represent the range of values the querier might be interested
in.5 Here, b is a parameter of the MBeacon system, and we
empirically study the influence of different values for b on the
attack performance in Section V.

Thus, we represent a methylation Beacon as Bb
I . The

probability Pr(Bb
I (q) = 0) to get a “No” answer, respectively

Pr(Bb
I (q) = 1) to get a “Yes” answer can be described in our

case as:

Pr(Bb
I (q) = 0) =(1− τb(q))N (4)

Pr(Bb
I (q) = 1) =1− (1− τb(q))N (5)

Here, N is the number of patients in the Beacon. Following
previous works on genomic Beacons [36], [29], we assume
N to be publicly known and therefore being part of the
attacker’s background knowledge K . Meanwhile, τb is the
probability of a patient having a methylation value in the

4We assume the adversary does not submit a single query for multiple
times, and we assume correlations between different methylation positions
are not exploited, because they are not (yet) well studied. Note that the
same independence assumption has been used in previous works on genomic
Beacons [36], [29].

5There are two reasons why we only study equal-width bins: First, without
further knowledge about the data distribution underlying the Beacon, it is
hard to define a suitable bin width. Second, all Beacons should share the
same interface to combine the answers in a well-defined way. This would not
be possible if the bins vary across different Beacons based on the dataset they
are composed of.

interval determined by the respective bin. We can assume
that the adversary has the exact probability as part of her
background knowledge K . However, if the exact probability
is not available and the adversary only knows the mean and
standard deviation of people’s methylation values at a certain
position, she can approximate the probability with normal
(Gaussian) distribution using µpos as the mean and σpos as the
standard deviation of the queried position.6 Concretely, τb(q)
is estimated as:

τ̃b(q) = τ̃b((pos, val)) =

cdf(µpos , σpos , br)− cdf(µpos , σpos , bl)
(6)

where cdf is the cumulative distribution function of the normal
distribution, and br (bl) denotes the value of the corresponding
bin’s right (left) edge. Notice that, like in the genomic setting,
the general probability of having a specific allele is required
as well, and it is realized by assuming the population’s allele
frequencies are part of the attacker’s background knowledge
K .

By inserting the probabilities from Equations 4 and 5 into
Equation 3, we get

LH0
(Bb

I (
−→
Q )) =

n∑
i=1

Bb
I (qi) log(1− (1− τb(qi))

N )+

(1−Bb
I (qi)) log((1− τb(qi))

N )

(7)

LH1
(Bb

I (
−→
Q )) =

n∑
i=1

Bb
I (qi) log(1−δ(1−τb(qi))

N−1)+

(1−Bb
I (qi)) log(δ(1−τb(qi))

N−1).

(8)

Notice that for the H0 hypothesis, we consider all N patients
in the database. However, for the H1 hypothesis where we
assume the target being part of the database, we consider only
N−1 other patients that contribute to the answer in addition to
the target. It might occur that two measurements of methylation
data from the same patient and tissue type differ, either due to
measurement errors or changes over time. Thus, the target may
be part of the Beacon, but the attacker’s data differs from the
data entry in the Beacon. Similar to previous works, we denote
this probability, i.e., measurement error, by δ and empirically
evaluate its influence on our attack. We assume δ to be part
of the attacker’s background knowledge.

In the end, the log of the likelihood-ratio is given by:

Λ =LH0
(Bb

I (
−→
Q ))− LH1

(Bb
I (
−→
Q ))

=

n∑
i=1

(1−Bb
I (qi)) log

(
(1− τb(qi))

N

δ(1− τb(qi))N−1

)
+

Bb
I (qi) log

(
1− (1− τb(qi))

N

1− δ(1− τb(qi))N−1

)
.

(9)

If Λ is lower than some threshold t, we reject the null
hypothesis and predict that the victim is in the MBeacon
database. Otherwise, we conclude that the victim is not.

Finally, the choice of the set of queries 〈q1, . . . , qn〉 in-
fluences the attack performance as well. We follow the same

6We experimentally found that the normal distribution fits methylation data
best, using the Kolmogorov-Smirnov test and a p-value of 0.1. Other ways to
approximate the probability are left for future work.
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TABLE II. DATASETS USED FOR OUR EXPERIMENTS.

Abbreviation Description number of patients GSE identifier by

Ependymoma Ependymoma 48 GSE45353 [30]
GBM glioblastoma 136 GSE36278 [38]

PA pilocytic astrocytoma 61 GSE44684 [19]
ETMR-PNET embryonal brain tumor and primitive neuroectodermal tumor 38 GSE52556 [18]

mHGA 4 different subtypes of pediatric glioblastomas 96 GSE55712 [14]
DIPG diffuse intrinsic pontine glioma 28 GSE50022 [9]

IBD CD Crohn’s disease 77 GSE87640 [43]
IBD UC ulcerative colitits 79 GSE87640 [43]

approach as Raisaro et al. [29] to rank all possible queries with
their expected information gain: For each methylation position
pos, the attacker computes the difference between the victim’s
methylation value m(v)pos and the general population’s value
τ̃b(pos,m(v)pos). The larger this difference, the higher the
probability of getting a “Yes” answer if the target is part of
the Beacon, and simultaneously, the higher the probability of
getting a “No” answer if the target is not part of the Beacon.
Therefore, we assume the attacker decides on the set of queries
〈q1, . . . , qn〉 using this difference and querying the n most
informative queries.

V. ATTACK EVALUATION

In this section, we evaluate the performance of our mem-
bership inference attack against simulated methylation Bea-
cons to demonstrate the privacy threat.

A. Datasets

For our experiments, we rely on eight diverse datasets
containing methylation profiles of patients carrying specific
diseases. In total, we use methylation profiles of 563 individ-
uals. The datasets are available online in the Gene Expression
Omnibus database (GEO),7 and we summarize them in Ta-
ble II. We use six brain tumor datasets, where the methylation
data was sequenced from the respective brain tumor. Moreover,
we also make use of an additional dataset with two types of
inflammatory bowel disease, where the methylation data was
sequenced from blood samples, reported in the last two lines
of Table II. All of these data were generated with the Illumina
450k array, effectively determining the DNA methylation at
450,000 fixed positions.

Preprocessing. Most of the datasets have missing methylation
sites for specific patients or even for all the patients sharing the
same disease. We remove all methylation positions with miss-
ing data, which leaves us with 299,998 different methylation
sites for the combination of all our eight datasets.

Human Subjects and Ethical Considerations. All datasets
are publicly available in their anonymized form. Moreover,
they have been stored and analyzed in anonymized form with-
out having access to non-anonymized data. The membership
inference we carry out does not reveal any more information
than previously known by us.

B. Evaluation Results

We use our three largest8 datasets, i.e., GBM, and both
IBD datasets (referred to as IBD CD and IBD UC), to simulate

7https://www.ncbi.nlm.nih.gov/geo/
8We exclude the mHGA dataset, since it is not uniform but a combination

of 4 subtypes.

three methylation Beacons, respectively. For each methylation
Beacon, we randomly sample 60 patients to construct its
Beacon database. We follow the approach of previous works
on Beacons testing with uniform sets of patients [36], [29],
[1], [45]. This ensures the attacker can only exploit individual
variances and not disease-induced systematic differences, i.e.,
variances that are unavoidably in the data. Later in Sec-
tion VIII, we explore another attack scenario on heterogeneous
methylation sets.

We assume the adversary has access either to a randomly
chosen sample from the methylation Beacon (“in” patient), or
from the patients with the same disease who are not included in
the methylation Beacon (“out” patient). For the “out” patients,
we use the remainder of the patients that we do not sample
into the methylation Beacon. For the “in” patients, we sample
the same number of patients from the methylation Beacon to
not introduce a bias between “in” and “out” test patients. To
reduce the size bias between GBM and the two IBD sets, we
sample at most 25 test patients. We repeat the random split
of patients into methylation Beacon and testing set 10 times,
which corresponds to a simulation of 500 attackers for GBM,
340 for IBD CD and 300 for IBD UC.

The attackers carry out the LR test as described previously
in Section IV. We simulate attackers without access to the
exact probability τb(q), because it is an unrealistic assumption
that these are available. In fact, if such knowledge would be
available, a lot of privacy would already be lost. Instead, we
model attackers estimating the probabilities from a general
background population. We combine the main datasets GBM,
IBD UC, IBD CD with the other datasets (Ependymoma,
mHGA, ETMR-PNET, PA and DIPG) as an estimate for the
general population.9 From this combined background data, we
compute the attacker’s background knowledge K as mean and
standard deviation for each methylation position. Apart from
being used in the LR test to estimate frequencies, the means
are used to rank possible queries by their expected information
gain, as discussed in Section IV.

We adopt the AUC, i.e., area under the ROC curve, as
our evaluation metric since it does not involve picking a
specific threshold for the LR test. The ROC curve is a 2D
plot which reflects the relation between true positive rate and
false positive rate over a series of thresholds for the LR test.
The AUC summarizes the ROC curve as a single value. A ROC
curve closer to top-left border of the plot, thus a larger AUC
value, indicates a better prediction performance. Moreover,

9Since general population statistics do not exist yet for methylation values,
we had to estimate them. If the estimate was not accurate and a realistic
attacker could get better estimates, the attack performance could increase.
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Fig. 1. Influence of number of bins used and number of queries submitted on attacker’s performance of the membership inference attack (a) on IBD CD, (b)
IBD UC and (c) GBM.

there exists a conventional standard10 to interpret AUC values:
AUC = 0.5 is equivalent to random guessing, whereas an AUC
greater than 0.9 shows the prediction is excellent. It is worth
noting that AUC has been adopted by many recent works for
assessing privacy attacks [5], [25], [15], [23], [6], [26], [28].

To get an overview of the attack and the influence of
various parameters, we vary the number of bins b from 3 to 20,
and let the attacker submit 10, 100, and 100,000 unique queries
to the respective methylation Beacon. We vary δ between 0.1
and 10−6.

Figure 1 shows the attacker’s performance as a function
of b. Different numbers of queries submitted are displayed
in different colors, and line styles indicate two choices for
δ. As expected, the number of bins influences the attacker’s
performance. The more bins, the fewer patients’ values are
expected in each of them, which makes the membership
inference easier.

The attacker’s performance is high as soon as the number
of bins is reasonably large (larger than 3), no matter whether
100,000 or just 10 queries are submitted. This demonstrates the
privacy risk of unprotected methylation Beacons. Nevertheless,
the GBM curve for only 10 queries demonstrates that asking
too few queries may just not be enough for a successful
attack. The choice of δ has only little influence on the attack
performance in case more than 100 queries are submitted.

We observe a different attack performance depending on
the dataset, which is expected because we are testing different
populations, diseases and tissues here. We note that both IBD
datasets provide similar high AUCs, which can be explained
by the fact that they are taken from the same tissue, namely
blood cells.

As the increase in the attacker’s performance is only slight
for more than 10 bins, we fix the number of bins to 10 in
the remainder of the experiments to reduce the number of
parameters and simplify the presentation. Additionally, we fix

10http://gim.unmc.edu/dxtests/roc3.htm

δ to 10−6 to model the worst-case for privacy, even though
the privacy risk differs not much for other choices of δ.

VI. DEFENSE

The results in Section V demonstrate the privacy risks
stemming from unprotected methylation Beacons. To mitigate
this threat, we present our defense mechanism, the double
sparse vector technique (SVT2). We first explain the intuition
behind it and then the defense mechanism in detail. In the end,
we prove that our defense mechanism is differentially private.

A. Intuition

Recall that we assume the background knowledge K
contains the means and standard deviations of the general
population at the methylation positions of interest. That means,
if one judges by the background knowledge that there should
(or should not) be an individual with some value in a MBeacon
and the MBeacon output confirms this, then not much privacy
is lost. Yet, if MBeacon’s answer deviates from the background
knowledge, one learns an additional piece of information about
the real distribution in the MBeacon for the queried position. In
consequence, the privacy of patients in the MBeacon is at risk.
More formally, we consider a MBeacon response as highly
privacy-sensitive if it deviates from the answer we expect from
the general population.

A MBeacon is usually built with data collected from people
with certain disease. According to biomedical research [39],
[41], [43], for data of this kind, only a few methylation regions
differ from the general population. This indicates that just
a few query responses are expected to be privacy-sensitive.
Therefore, we aim for a solution that calibrates the noise
specifically to those few responses in order to reduce the
overall noise level of MBeacon, thus maintaining utility.

B. Background on SVT

One possible solution in such a scenario is the sparse vector
technique (SVT), a differential privacy mechanism which is
designed to scale noise to a subset of sensitive responses.
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In SVT, whether a response is sensitive or not is determined
by a threshold T defined by the data owner: A response α ≥ T
is considered as privacy-sensitive, and one assumes most re-
sponses will yield α < T . SVT guarantees differential privacy
while scaling noise only to the privacy-sensitive answers. To
this end, SVT has an additional privacy parameter c which
refers to as the maximal amount of answers α ≥ T the
mechanism can give over its whole lifetime. SVT adds noise
to all queries (no matter whether they are privacy sensitive or
not) before comparing to the threshold to ensure differential
privacy. However, this noise is scaled to c instead of the much
larger number of queries in total. For a detailed and formal
description of SVT, we refer the reader to [11].

Algorithm 1: A outputs whether the database and prior
agree on the number of patients in the queried position
being above the threshold in a differentially private
manner.

Input: base threshold T , privacy parameters ε1, ε2 and
c, query sensitivity ∆, query vector

−→
Q , database

I and prior frequency P
Result: sanitized responses R such that ri ∈ {⊥,>} for

each i
1 z1 = LAP( ∆

ε1
); z2 = LAP( ∆

ε1
);

2 count = 0;
3 for each query qi in

−→
Q do

4 yi = LAP( 2c∆
ε2

); y′i = LAP( 2c∆
ε2

);
5 get αi from I and βi from P;
6 if (αi + yi < T + z1 and βi + yi < T + z1) or

(αi + y′i ≥ T + z2 and βi + y′i ≥ T + z2) then
7 ri = ⊥ ;
8 else
9 ri = >;

10 count = count + 1 ;
11 z1 = LAP( ∆

ε1
); z2 = LAP( ∆

ε1
);

12 end
13 if count ≥ c then
14 Halt
15 end
16 end

Algorithm 2: B transforms the output of Algorithm 1 to
the MBeacon output format.

Input: base threshold T , privacy parameters ε1, ε2 and
c, query sensitivity ∆, query vector

−→
Q ,

database I and prior frequency P

Result: sanitized MBeacon responses BI(
−→
Q )

1
−→
R = A(T, ε1, ε2, c,∆,

−→
Q , I, P) ;

2 for each query qi in
−→
Q do

3 get ri from
−→
R ; get βi from P;

4 if ri = ⊥ then
5 BI(qi) = βi ≥ T ;
6 else
7 BI(qi) = ¬(βi ≥ T );
8 end
9 end

C. SVT2

However, we cannot directly apply SVT to protect our
methylation Beacon, as our privacy-sensitive responses depend
on whether we expect a “No” or a “Yes” answer, thus cannot
be judged by a simple, fixed threshold. Concretely, suppose
that we expect β patients in the queried bin, then the true
number of patients in the bin, i.e., α, is privacy-sensitive if β
and α lie on opposite sides of a predefined threshold T and
the Beacon gives another answer than the one we expected.
This means we need two comparisons to determine whether
the answer is privacy-sensitive. Therefore, we propose double
sparse vector technique (SVT2) to protect MBeacon. Since
SVT is not applicable, we cannot compare our new technique
SVT2 to SVT.

Formally, the ith query is not privacy-sensitive if the
following expectation is met:

((αi + yi < T + z1) ∧ (βi < T + z1))

∨((αi + y′i ≥ T + z2) ∧ (βi ≥ T + z2))
(10)

where αi is the number of patients in the MBeacon that corre-
sponds to the query qi, βi is the estimated number of patients
given by the general population,11 and T is the threshold
determining whether the αi and βi agree with each other.
This (dis-)agreement is used to check whether the current
query is privacy-sensitive or not: Only Condition 10 being
false implies the query is privacy-sensitive. Moreover, z1, z2

and yi, y′i are noise variables sampled independently from the
Laplace distribution. The sampling procedure is explained in
detail later in this section.

Similar to the sparse vector technique, SVT2 bounds the
total number of highly privacy-sensitive queries by maintaining
a counter. Each privacy-sensitive query increases the counter. If
a predefined maximal budget c is exceeded, the algorithm stops
answering. In practice, that would mean that the corresponding
MBeacon goes offline. We study when this is the case and
whether this negatively influences the MBeacon utility in
Section VIII.

We disassemble our method SVT2 into Algorithms 1 and 2,
also referred to as A and B, for technical reasons of the differ-
ential privacy proof. Algorithm 1 answers whether the Beacon
returns the requested answer in a differentially private way,
Algorithm 2 then transforms this into the desired MBeacon
answer format. Moreover, we formulate the expected answer
as a query to a database to allow practitioners to instantiate
it with the most suitable estimation for their purpose. In our
evaluation, we use the normal distribution fitted to population-
wide means and standard deviations, since the LR test also
relies on their knowledge.

Algorithm 1 determines whether the prior and the MBeacon
database agree on the answer. Condition 10 can be found in its
generalized form in line 6 of Algorithm 1, where noise is added
to the prior as well. This removes the assumption that β is
publicly known from Algorithm 1. In the less privacy relevant
case, answer can be directly given (line 7); in the more privacy
relevant case, the privacy budget has to be decreased and the
noise for the threshold T has to be re-sampled (lines 10 and

11We assume the number of patients in the MBeacon database to be publicly
known, so we can set βi = τb(qi)

N .
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11) in addition to returning the answer. If the current privacy
budget count exceeds the maximal budget c, the algorithm has
to stop answering (lines 13 and 14).

Algorithm 2 takes the output of Algorithm 1 and provides
the differentially-private MBeacon answer by flipping the
expected answer if necessary (line 7).

Notice that genomic Beacons usually set T = 1, but we
generalize that setting by allowing other threshold values in
a k-anonymity like fashion. For low values of T , the regions
where the MBeacon answer differs from the expected answer
grow, while for higher values they shrink. Furthermore, a user
might not ask all queries at once, but in an adaptive manner.
This is taken into consideration by SVT and consequently
by SVT2, another important aspect in the on-line setting of
MBeacon.

Repeated Queries. All differential privacy mechanisms, in-
cluding our proposed mechanism, assume all queries are
unique. Otherwise, the noise might eventually cancel out. A
single person has no (legitimate) interest in asking the same
query multiple times, but in an online Beacon setting, multiple
users might ask the same question. However, the assumption
is not a limitation: we maintain a database of responses and,
if a question has been asked before, we answer the same way
we did before. Initially, such a database can be empty and it
gets filled with responses over time. Its size is in O(number of
methylation regions×number of bins), but the total MBeacon
database is O(number of methylation regions×number of
patients) and we expect much more patients than bins, so the
space overhead is acceptable.

D. Differential Privacy Proof

We first prove that Algorithm 1, i.e., A, is differentially
private. Then, we show that the transformation of its output
to our desired MBeacon output using Algorithm 2, i.e., B, is
also differentially private. The combination of these arguments
proves that SVT2 is differentially private.

Theorem 1. Algorithm 1 is 2(ε1 + ε2)-differentially private.

We present a proof sketch of Theorem 1 in the following,
the full proof is presented in the appendix.

Proof sketch. Consider any output of A as a vector
−→
R ∈

{>,⊥}l, we refer to its elements as
−→
R = 〈r1, ...., rl〉. We

define two sets I> = {i : ri = >} and I⊥ = {i : ri = ⊥} of
indices for the different answers. For the analysis, let the noise
values yi, y′i for all i ∈ I>∪I⊥ be arbitrary but fixed [11]. We
concentrate on the probabilities over the randomness of z1, z2,
i.e., the noise added to the threshold T . Moreover, let the two
databases I and I′ be arbitrary but fixed, such that I and I′ are
neighboring databases.

We begin by disassembling the probability of Algorithm 1
getting a specific answer

−→
R from I as follows.12

Pr[A(I) =
−→
R ] =

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z1 ∧ ρ2 = z2]

fI(z1, z2)gI(z1, z2)dz1dz2

(11)

12As the other inputs are fixed, we use A(I) to represent Algorithm 1 in
the proof, omitting the other input parameters for better readability.

where

fI(z1, z2) = Pr[∧i∈I⊥ri = ⊥|ρ1 = z1 ∧ ρ2 = z2] (12)

gI(z1, z2) = Pr[∧i∈I>ri = >|ρ1 = z1 ∧ ρ2 = z2] (13)

To prove the theorem, it is sufficient to show that, for
sensitivity ∆, the following inequalities hold:

fI(z1, z2) ≤ fI′(z1 + ∆, z2 −∆) (14)

gI(z1, z2) ≤ e2ε2gI′(z1 + ∆, z2 −∆) (15)

Pr[ρ1=z1∧ρ2=z2]≤e2ε1 Pr[ρ1 =z1+∆∧ρ2 =z2−∆] (16)

which gives us the required connection between the two
neighboring databases I and I′.

To prove Inequality 14, we utilize only the sensitivity ∆,
i.e., |αi − α′i| ≤ ∆ and |βi − β′i| ≤ ∆. For Inequality 15,
as g argues about the negation of the query formulation, if
we simply follow the proof for Inequality 14, we would get
gI′(z1 −∆, z2 + ∆). Therefore, we rely on the fact that noise
values yi are Laplace distributed (formally, LAP( 2c∆

ε2
)) and use

Inequalities 17 and 18 to prove it.

Pr[ρ = yi] ≤ e
ε2
c Pr[ρ = vi + 2∆] (17)

Pr[ρ = yi] ≤ e
ε2
c Pr[ρ = vi − 2∆] (18)

To prove Inequality 16, we use the fact that z1 and z2 are
sampled from LAP( ∆

ε1
).

In the end, by combining Inequalities 14, 15 and 16, we
prove Theorem 1 as follows:

Pr[A(I) =
−→
R ]

=

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z1 ∧ ρ2 = z2]

fI(z1, z2)gI(z1, z2)dz1dz2

≤
∫ ∞
−∞

∫ ∞
−∞

e2ε1 Pr[ρ1 = z1 + ∆ ∧ ρ2 = z2 −∆]

fI′(z1 + ∆, z2 −∆)e2ε2gI′(z1 + ∆, z2 −∆)dz1dz2

=e2ε1+2ε2

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z′1 ∧ ρ2 = z′2]

fI′(z
′
1, z
′
2)gI′(z

′
1, z
′
2)dz′1dz

′
2

=e2(ε1+ε2) Pr[A(I′) =
−→
R ]

�

The purpose of Algorithm 1 is to answer whether the
database is approximated well by the background knowledge
in a differentially private way. To output a Beacon answer
of the format “Yes, such data is available” resp. “No, such
data is not available”, we need to remove the background
knowledge from Algorithm 1’s answer. This is performed by
Algorithm 2, which preserves the differential privacy of the
answer. Intuitively, the transformation maintains differential
privacy due to the composition and post-processing theorems.
However, these theorems are not directly applicable due to our
database format. Therefore, we prove the following theorem.

Theorem 2. Algorithm 2 is 2(ε1 + ε2)-differentially private.
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Proof. Once the prior frequency P is fixed, the output of
Algorithm 2 only depends on the output of Algorithm 1,
namely, whether the prior is correct or has to be flipped.
Formally, we describe this as follows.

First, fixing any output
−→
R ∈ { “Yes”, “No” }l of Algo-

rithm 2 on Q = 〈q1, ..., ql〉, we have:

Pr[B(T, ε1, ε2, c,Q , I, P) =
−→
R]

Pr[B(T, ε1, ε2, c,Q , I′, P) =
−→
R]

= ∗

As Algorithm 2 is deterministic, we have:

∗ =
Pr[A(T, ε1, ε2, c,Q , I, P) =

−→
R ]

Pr[A(T, ε1, ε2, c,Q , I′, P) =
−→
R ]

= ∗

Algorithm 1 is 2(ε1 + ε2)-differentially private, thus:

∗ ≤ e2(ε1+ε2)

�

Notice that, for technical reasons, we disassemble our
proposed method into two stages. However, one can of course
perform both stages at once and directly output the MBeacon
response. Since we assume the prior frequency is publicly
known, we do not have to add noise to its result, which yields
Condition 10 above.

Setting the Parameters. We have shown that A is 2(ε1 + ε2)-
differentially private to make the connection between privacy-
sensitive and less privacy-sensitive queries as well as the
connection to the sparse vector technique visible. However,
for tuning parameters, it is desirable to have only a single
privacy parameter ε in addition to the budget c. Lyu et al. [21]
showed that the ratio ε1 : ε2 = 1 : (2c)

2
3 maximizes utility,

while preserving ε = ε1 + ε2. We adopt Lyu’s ratio between ε1
and ε2. The sensitivity ∆ is 1 in our case, since removing a
participant’s entry from the database or changing it can affect
the bin count by at most one. For a given privacy parameter
and using ∆ = 1, we set:

ε1 =
ε
2

(2c)
2
3 + 1

ε2 = (2c)
2
3 ε1

Application to other Domains. We emphasize that SVT2 is a
general differential privacy mechanism, and can be applied in
other cases beyond MBeacon: SVT2 is useful for comparing
a database to a general belief in a differentially-private way.
Moreover, comparing two databases is possible using Algo-
rithm 1 since it applies noise to both databases α and β. In
the future, we plan to apply SVT2 to other data domains, such
as location data [27], [46], social network data [23], [47], and
other types of biomedical data [4].

VII. RESEARCHER UTILITY

The goal of the MBeacon system is to facilitate biomedical
data sharing among the research community. Therefore, we
quantify the utility of MBeacon as the ability of a legitimate
researcher to find methylation data of interest.

Concretely, a researcher is interested in methylation profiles
of people with a certain phenotype or disease. We use the
set P to represent all these methylation profiles. Moreover,

the researcher already has multiple profiles in P on her site,
denoted by P ′ with P ′ ⊂ P . Then, her goal is to find those
MBeacons with methylation profiles from P\P ′. A central
assumption here is that methylation profiles in P are similar
to each other.

As the MBeacon system only supports queries on single
methylation positions, the researcher also relies on the LR test
to find MBeacons that contain patients in P . Moreover, there
often exist measurement errors when collecting methylation
values. To increase the reliability of her LR test, the researcher
further averages all the methylation profiles in P ′.

Ideally, the researcher queries a MBeacon BP only contain-
ing patients of interest. To simulate a more realistic case, we
assume the existence of another population D the researcher
is not interested in. Notice that D might also be a mixture
of populations. The researcher tries to distinguish a MBeacon
BD containing no patients of interest from a MBeacon BP,D
containing some patients of interest. In the worst case, there
are only a few patients from P in BP,D. In that case, the
contribution of patients from P is small and may be hidden
due to the SVT2 protection.

To get the lower bound of the MBeacon utility, we concen-
trate on this worst case scenario. Figure 2a depicts a graphical
summary of the researcher setup. The researcher achieves a
true positive if the MBeacon she selects contains some profiles
in P . A false positive indicates that the MBeacon she finds
does not have the data of her interest. True negative and
false negative are defined accordingly. Given these numbers,
in particular the true-positive and false-positive rates, we can
derive the AUC as our core utility metric.

Attack Scenarios. In order to find a good trade-off between
utility and privacy, we have to evaluate the attacker’s success
under the same scenario as the researcher. The attacker’s goal
is to detect with high probability whether a target is part of
the MBeacon database or not. Of course, the attacker does not
know whether she is querying a MBeacon of the form BP,D
or BD, similar to the researcher not knowing the distinction
a priori. Moreover, the attacker’s target might be a patient in
D or in P . We refer to such an attacker as “full” attacker; a
graphical overview is displayed in Figure 2b.

The evaluation of the “full” attacker is comparable to the
researcher evaluation, but not to existing works [36], [29], [1],
[45], where the MBeacon and the victim are from one uniform
dataset. Therefore, we additionally model an attacker querying
only BD and trying to infer whether a victim in D is part of the
MBeacon. We refer to this second attacker as the “standard”
attacker, since it is the same as the one considered in Section V.

VIII. DEFENSE EVALUATION

We evaluate our defense mechanism SVT2 in this section
with respect to the attack performance and utility as defined
in Section VII.

A. Experimental Setup

For the set of researcher’s interest, P , we use Ependy-
moma, which contains data from 48 patients. For the set D
the researcher is not interested in, we use either GBM, IBD
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P D

BP,D

BD

P ′

p

(a) The researcher knows patient(s) from P ′ and is interested in
patients from P in BP,D , shown exemplified by patient p. The
researcher’s task is to find thatBD is not interesting for research, while
BP,D is interesting. We focus on the worst-case of the researcher by
assuming P being a minority in BP,D to give a lower bound on utility.

P D

BP,D

BD

pp′ d

d′

p′ d

d′

(b) The attacker either queries BP,D or BD (without knowing which
one), and might have a target p from P outside the MBeacon, a target
p′ from P in the MBeacon or a target d resp. d′ from D in resp.
outside of the MBeacon. To compare side-by-side with the researcher,
we again assume P to be a minority in BP,D .

Fig. 2. A graphical overview on the general utility setup for researcher (a) and the general utility setup for the attacker (b).

CD or IBD UC as before, forming three different types of
MBeacons.

Each of these MBeacons consists of a certain number of
patients in P , we test 7 different choices for this number
including 1, 3, 5, 10, 13, 15 and 20. The remaining patients
are randomly sampled from the respective D such that a total
size of 60 is reached. Moreover, we sample randomly 60
patients from the respective D to construct BD. We simulate
5 researchers querying each pair of corresponding MBeacons
BP,D and BD. The researcher possesses P ′ containing 5
randomly sampled patients in P that are not used in the
MBeacon.13 As mentioned in Section VII, the researcher
averages these patients’ profiles to reduce measurement errors.
The whole sampling process is repeated 10 times to ensure the
observations are not due to randomness.

For the attacker simulations, we re-use the MBeacons we
constructed before for the researcher, but sample test patients
differently. The “full” attacker has access to only a single
patient. We randomly sample 12 patients from each of BP,D
and BD as the ones in the MBeacon. Accordingly, we sample
24 patients from P ∪ D as the patients that are outside the
MBeacon. Since we assume throughout the experiments that
patients in P are the minority, we use only up to a third of
patients in P and the remainder in D. As before, we repeat
random sampling 10 times. The “best” attacker does not have
access to BP,D and, consequently, does not get test patients in
P . Instead, we sample 24 test patients from BD and 24 test
patients from D \BD for each of the BD MBeacons.

We assume both researchers and attackers have access to
the mean and standard deviation of the general population, that
we estimate by a union of all our available datasets as before.
These means and standard deviations are used to carry out

13If the researcher averages fewer patients, the performance could decrease
slightly since individual, non-disease related changes in the patients’ methy-
lation values become more pronounced in the search.

LR tests and rank queries, up to 250,000 queries are allowed
per researcher resp. attacker. Moreover, both researchers and
attackers sort their queries based on expected information
gain as explained in Section IV and used in the previous
experiments in Section V.

To sum up, we test three different choices for D, and 7
different numbers of patients from P in BP,D, simulate 5
researchers querying each of the MBeacons and re-sample the
experiments 10 times, so simulate in total 2,100 researchers.
Due to the attackers not averaging over multiple patients,
we can simulate more membership inference attacks: 10,500
carried out by the “full” and the “standard” attacker each.

B. Evaluation of SVT2

First, we evaluate the influence of the number of patients in
P in the MBeacons of type BP,D. We observe that if there are
5 or more patients of interest, the researcher’s performance is
maximized. The “full” attacker, however, suffers from more
patients in P , probably due to the higher variance in the
MBeacon.

Second, we focus on SVT2. Our protection mechanism has
three parameters: a threshold T determining how many patients
have to be in the respective bin to answer “Yes”, as well as
the privacy parameter ε and the query budget c, which both
calibrate the noise.

The Privacy Budget. We aim for parameters that drop
the “standard” attackers’ performance to about 0.5 AUC,
equivalent to random guessing, while minimizing the noise.
Moreover, exceeding the query budget is something MBeacon
providers would want to avoid, because the MBeacon has to
stop answering in that case. Therefore, we choose a budget that
is never exceeded in our simulations. The researchers and the
two different types of attackers (“standard” and “full”) are all
simulated separately, so our budget has to be sufficient for 50
attackers submitting 12,500,000 (50×250,000) queries in total.
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Fig. 3. Comparison of researchers’ and attackers’ performances in unprotected MBeacon (black, abbreviated as “unpr.”) and protected MBeacon (red) using
GBM (left), IBD UC (middle) and IBD CD (right) as D using up to 100,000 queries. Additionally, we plot the researchers’ performances for 1,000 queries in
blue (unprotected) and magenta (protected). AUCs with values smaller than 0.5 are displayed as 0.5.
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Fig. 4. Comparison of researchers’ and attackers’ performances when setting T = 3 in unprotected MBeacon (black, abbreviated as “unpr.”) and protected
MBeacon (red) using GBM (left), IBD UC (middle) and IBD CD (right) as D using up to 100,000 queries. Additionally, we plot the researchers’ performances
for 1,000 queries in blue (unprotected) and magenta (protected). AUCs with values smaller than 0.5 are displayed as 0.5.

Notice that not all of those queries are expected to be unique
and not all of them fall into the category of privacy-sensitive
queries for which the budget must be reduced.

Threshold T = 1. We start with the default threshold T = 1,
i.e., the MBeacon answers “Yes” if there is at least one
patient’s methylation value in the queried bin. A budget of
c = 600, 000 is sufficient for our simulations. This might
seem large at first glance, but notice that, having 10 bins, there
are 300,000×10 different queries that can be asked, so our c
corresponds to about 20% of them. Due to space constraints,
we report the privacy level that we found as a suitable trade-off
between privacy and utility at εc = 0.05. We report the privacy
levels as in [34].

As shown in Figure 3, the privacy level is sufficient to drop
the “standard” attackers’ performance to less than 0.6 AUC
which shows that the privacy threat can be mitigated success-
fully. In the more realistic “full” attacker scenario, however,
the attacker’s performance is higher, which is explained by
the fact that membership attacks with patients from P against
the BD MBeacon are most successful. Nevertheless, we see a

significant drop in performance due to the application of SVT2.

The researcher’s performance is still good with 0.8 AUC
or more, depending on the number of patients from P in the
MBeacon.

The impact of noise gets even more pronounced if we
assume the researcher to submit only 1,000 queries. On the
unprotected methylation Beacon, the AUC is about the same,
however, the researcher cannot get good answers from an
SVT2-protected MBeacon. This shows the price of the SVT2

protection: more queries have to be submitted.

Threshold T = 3. Next, we increase the threshold. We keep
the same budget c and privacy level ε since we just want to
study the influence of the increased threshold. Figure 4 shows
the result, we see an overall slight decrease in performance.
This decrease is even smaller with T = 2, which we do not
show here for space constraints. A threshold T > 3 would
probably not be accepted by researchers given this MBeacon
sizes, therefore, we did not experiment with higher thresholds.

Setting the Parameters. The above results demonstrate that
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the threshold and other privacy parameters have to be chosen
dependent on the use case to maximize utility and minimize the
privacy loss. We believe that our general method of parameter
tuning, namely, setting a budget c that is not exceeded, then
changing values of ε based on attacker’s and researcher’s
performance and increasing c if needed by a higher noise level
(or reducing it if the consumed budget is much smaller), yields
a good trade-off between utility and privacy for any dataset and
MBeacon size.

IX. PROTOTYPE

We implement a fully functional prototype of our MBeacon
system, which can be accessed at https://mbeacon-network.
github.io/MBeacon-network/. Our prototype is built based
on the same algorithms used in our experiments. All our
implementation is done in Python, with packages including
Pandas, Numpy, and Scipy. We rely on Flask14 to build the
web frontend. This allows us to seamlessly integrate our
implementation into the backend, forming a centralized service
as part of our prototype.

The backend of our prototype is responsible to query the
datasets and to return the MBeacon output after SVT2 has been
applied. As an input, it takes a CpG identifier as well as the
methylation value at this position to look for. Upon getting a
query, our MBeacon system will return all the institutions that
have the corresponding data.

In the future, we envision our prototype to be run in a
decentralized manner, so that every data provider runs their
own MBeacon service. In this scenario, the centralized service
is only required to provide the frontend.

X. RELATED WORK

Homer et al. [16] are among the first to perform a mem-
bership inference attack on genomic data. In their attack,
summary statistics are used as the adversary’s background
knowledge and the L1 distance to measure the similarity
between summary and victim. Sankararaman et al. [32] further
improved Homer’s attack by incorporating the LR test in
the algorithm. More recently, Backes et al. [5] have shown
that membership inference attacks can be also successfully
performed on epigenetic data, such as microRNA. Due to the
threat demonstrated by the attacks, sharing biomedical data
(or even summary statistics) has to take privacy into account
which often prolongs the process for researchers to get data.
In response, GA4GH established the Beacon system [10] to
facilitate genomic data sharing.

Attacks on Genomic Beacons. Shringarpure and Busta-
mante [36] showed that even only given binary responses, it
is possible to infer whether a patient is in a Beacon with the
LR test. Moreover, their attack’s probability estimation is not
dependent on the allele frequencies, but the more stable allele
distribution. While they studied the influence of several factors
(population structure, Beacon size and others) on the attack’s
effectiveness, they did not propose any feasible solutions to
establish a privacy-preserving genomic Beacon.

Raisaro et al. [29] extended the attack in [36] by adopting
a sophisticated selection strategy. The attacker in this setting

14http://flask.pocoo.org/

has direct access to allele frequencies and selects the most
informative positions to query first. This setup serves as a
blueprint for our attack against MBeacons.

The authors of [44] proposed an attack using the cor-
relations between different single nucleotide polymorphisms
(SNPs) to infer alleles that are missing or systematically
hidden. This attack drops the number of queries necessary to
infer membership with strong confidence, and renders privacy-
preserving mechanisms based on hiding low-frequency SNPs
useless. However, for DNA methylation, such correlations are
not (yet) well studied. Therefore, we decide to postpone an
in-depth study about the influence of correlations between
methylation positions on the privacy risks to future work.

Privacy Protection for Beacons. Besides the attack, Raisaro et
al. [29] proposed three protection mechanisms and experimen-
tally showed their effectiveness even in their stronger attacker
setting. However, they do not provide any formal guarantees
on their protection mechanisms.

Wan et al. [45] further analyzed the protection mechanisms
presented in [29], and additionally proposed a new one. They
empirically evaluated utility, privacy and effectiveness of the
protection methods under several settings with respect to the
hyperparameters. Here, the corresponding utility, privacy and
effectiveness measures were proposed in the iDASH challenge
for genomic data.

Two additional privacy protection mechanisms are pro-
posed by Al Aziz et al. [1], one of which, the biased random-
ized response, is proven to be differentially private. Apart from
that, they analyzed both mathematically and experimentally
how the decision boundary for membership relates to the
number of queries and the number of patients in the Beacon.

To the best of our knowledge, the existing attacks are
all conducted on genomic Beacons, and we propose the first
membership inference attack on Beacons with DNA methyla-
tion data. Moreover, by simulating legitimate and adversarial
behavior, we believe that our utility measures provide a more
realistic picture. It is worth noting that the privacy and utility
measures we propose in this paper are not limited to MBea-
cons, we leave their application on other types of biomedical
data as a future work.

XI. CONCLUSION

In this paper, we propose the first Beacon system for shar-
ing DNA methylation data, namely, the MBeacon system. Due
to the severe privacy risks stemming from DNA methylation
data, our construction of MBeacon follows a privacy-by-design
approach.

We first illustrate the severe privacy risks by conducting
a membership inference attack based on the LR test. Ex-
perimental results on multiple datasets show that with 100
queries, the adversary is able to achieve a superior perfor-
mance. Then, we propose a defense mechanism, SVT2, to
implement our privacy-preserving MBeacon. Our SVT2 is
an advancement of the sparse vector technique, one type of
differential privacy algorithms. We theoretically prove that
SVT2 is differentially private. Since the goal of MBeacon is to
facilitate biomedical data sharing, we propose a new metric for
measuring researchers’ utility considering a realistic scenario.
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Extensive experiments demonstrate that, using carefully chosen
parameters, MBeacon can degrade the performance of the
membership inference attack significantly without substantially
hurting the researchers’ utility.

There are two directions we want to explore in the future.
First, we plan to extend the Beacon-style system to other types
of biomedical data, such as gene expression, microRNA or
laboratory tests. In particular, this requires to adapt the estimate
of the general population accordingly. Second, the current
Beacon systems only support queries on a single position. We
plan to extend the Beacon system to support multiple-position
queries. On one hand, this new system should improve the
utility for the researchers. On the other hand, it will raise new
privacy challenges.

ACKNOWLEDGEMENTS

The authors from CISPA are partially supported by the
German Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) (FKZ: 16KIS0656). The author from
the Swiss Data Science Center is supported by the grant
#2017-201 of the Strategic Focus Area “Personalized Health
and Related Technologies (PHRT)” of the ETH Domain. The
authors from Indiana University are supported in part by Na-
tional Science Foundation CNS-1408874 and National Health
Institute U01EB023685. The authors would like to thank Dr.
Rose Hoberman for her valuable comments on the submitted
manuscript.

REFERENCES

[1] M. M. Al Aziz, R. Ghasemi, M. Waliullah, and N. Mohammed,
“Aftermath of bustamante attack on genomic beacon service,” BMC
medical genomics, vol. 10, no. 2, p. 43, 2017.

[2] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and G. Tsudik, “Whole
Genome Sequencing: Revolutionary Medicine or Privacy Nightmare?”
Computer, pp. 58–66, 2015.

[3] M. Backes, P. Berrang, M. Bieg, R. Eils, C. Herrmann, M. Humbert,
and I. Lehmann, “Identifying Personal DNA Methylation Profiles by
Genotype Inference,” in Proceedings of the 38th IEEE Symposium on
Security and Privacy (S&P). IEEE, 2017, pp. 957–976.

[4] M. Backes, P. Berrang, A. Hecksteden, M. Humbert, A. Keller, and
T. Meyer, “Privacy in Epigenetics: Temporal Linkability of MicroRNA
Expression Profiles,” in Proceedings of the 25th USENIX Security
Symposium (USENIX). USENIX Association, 2016, pp. 1223–1240.

[5] M. Backes, P. Berrang, M. Humbert, and P. Manoharan, “Membership
Privacy in MicroRNA-based Studies,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security (CCS). ACM,
2016, pp. 319–330.

[6] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring
Social Links from Mobility Profiles,” in Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS). ACM,
2017, pp. 1943–1957.

[7] T. Bauer, S. Trump, N. Ishaque, L. Thu rmann, L. Gu, M. Bauer,
M. Bieg, Z. Gu, D. Weichenhan et al., “Environment-induced Epigenetic
Reprogramming in Genomic Regulatory Elements in Smoking Mothers
and Their Children,” Molecular Systems Biology, vol. 12, no. 3, pp.
861–861, 2016.

[8] P. Berrang, M. Humbert, Y. Zhang, I. Lehmann, R. Eils, and M. Backes,
“Dissecting privacy risks in biomedical data,” in Proceedings of the 3rd
IEEE European Symposium on Security and Privacy (Euro S&P). IEEE,
2018.

[9] P. Buczkowicz, C. Hoeman, P. Rakopoulos, S. Pajovic, L. Letourneau,
M. Dzamba, A. Morrison, P. Lewis, E. Bouffet, U. Bartels et al.,
“Genomic analysis of diffuse intrinsic pontine gliomas identifies three
molecular subgroups and recurrent activating ACVR1 mutations,” Na-
ture genetics, vol. 46, no. 5, pp. 451–456, 2014.

[10] J. Burn, “A federated ecosystem for sharing genomic, clinical data,”
Science, vol. 352, pp. 1278–1280, 2016.

[11] C. Dwork, A. Roth et al., “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[12] Y. Erlich and A. Narayanan, “Routes for Breaching and Protecting
Genetic Privacy,” Nature Reviews Genetics, vol. 15, no. 6, pp. 409–
421, 2014.

[13] M. Esteller and J. G. Herman, “Cancer as an Epigenetic Disease:
DNA Methylation and Chromatin Alterations in Human Tumours,” The
Journal of Pathology, vol. 196, no. 1, pp. 1–7, 2002.

[14] A. M. Fontebasso, S. Papillon-Cavanagh, J. Schwartzentruber,
H. Nikbakht, N. Gerges et al., “Recurrent somatic mutations in ACVR1
in pediatric midline high-grade astrocytoma,” Nature genetics, vol. 46,
no. 5, pp. 462–466, 2014.

[15] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in Pharmacogenetics: An End-to-end Case Study of Person-
alized Warfarin Dosing,” in Proceedings of the 23rd USENIX Security
Symposium (USENIX). USENIX Association, 2014, pp. 17–32.

[16] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig,
“Resolving Individuals Contributing Trace Amounts of DNA to Highly
Complex Mixtures Using High-density SNP Genotyping Microarrays,”
PLoS Genet, vol. 4, no. 8, p. e1000167, 2008.

[17] P. A. Jones, “Functions of DNA Methylation: Islands, Start Sites, Gene
Bodies and Beyond,” Nature Reviews Genetics, vol. 13, no. 7, pp. 484–
92, 2012.

[18] C. L. Kleinman, N. Gerges, S. Papillon-Cavanagh, P. Sin-Chan, A. Pra-
matarova, D.-A. K. Quang, V. Adoue, S. Busche, M. Caron, H. Djam-
bazian et al., “Fusion of TTYH1 with the C19MC microRNA cluster
drives expression of a brain-specific DNMT3B isoform in the embryonal
brain tumor ETMR,” Nature genetics, vol. 46, no. 1, pp. 39–44, 2014.

[19] S. R. Lambert, H. Witt, V. Hovestadt, M. Zucknick, M. Kool, D. M.
Pearson, A. Korshunov, M. Ryzhova, K. Ichimura, N. Jabado et al.,
“Differential expression and methylation of brain developmental genes
define location-specific subsets of pilocytic astrocytoma,” Acta neu-
ropathologica, vol. 126, no. 2, pp. 291–301, 2013.

[20] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses.
Springer Science & Business Media, 2006.

[21] M. Lyu, D. Su, and N. Li, “Understanding the Sparse Vector Technique
for Differential Privacy,” Proceedings of the VLDB Endowment, vol. 10,
no. 6, pp. 637–648, 2017.

[22] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P.
Hubaux, B. A. Malin, and X. Wang, “Privacy in the Genomic Era,”
ACM Computing Surveys, vol. 48, p. 6, 2015.

[23] M. Ni, Y. Zhang, W. Han, and J. Pang, “An Empirical Study on User
Access Control in Online Social Networks,” in Proceedings of the
2016 ACM Symposium on Access Control Models and Technologies
(SACMAT). ACM, 2016, pp. 12–23.

[24] B. Oprisanu and E. De Cristofaro, “Anonimme: Bringing anonymity
to the matchmaker exchange platform for rare disease gene discovery,”
bioRxiv, p. 262295, 2018.

[25] J. Pang and Y. Zhang, “Location Prediction: Communities Speak Louder
than Friends,” in Proceedings of the 2015 ACM Conference on Online
Social Networks (COSN). ACM, 2015, pp. 161–171.

[26] J. Pang and Y. Zhang, “DeepCity: A Feature Learning Framework for
Mining Location Check-Ins,” in Proceedings of the 2017 International
Conference on Weblogs and Social Media (ICWSM). AAAI, 2017, pp.
652–655.

[27] J. Pang and Y. Zhang, “Quantifying Location Sociality,” in Proceedings
of the 2017 ACM Conference on Hypertext and Social Media (HT).
ACM, 2017, pp. 145–154.

[28] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock Knock,
Who’s There? Membership Inference on Aggregate Location Data,”

13



in Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS), 2018.
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XII. APPENDIX

We begin by disassembling the probability of getting a
specific answer

−→
R from a database I as in Equation 19.

Pr[A(I) =
−→
R ] =

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z1 ∧ ρ2 = z2]

fI(z1, z2)gI(z1, z2)dz1dz2

(19)

where

fI(z1, z2) = Pr[∧i∈I⊥ri = ⊥|ρ1 = z1 ∧ ρ2 = z2] (20)

gI(z1, z2) = Pr[∧i∈I>ri = >|ρ1 = z1 ∧ ρ2 = z2] (21)

Intuitively, g deals with the positive answers indicating
highly privacy-sensitive results and f deals with the negative
answers. We will show that, for sensitivity ∆,

fI(z1, z2) ≤ fI′(z1 + ∆, z2 −∆) (22)

gI(z1, z2) ≤ e2ε2gI′(z1 + ∆, z2 −∆) (23)

Pr[ρ1=z1∧ρ2=z2]≤e2ε1 Pr[ρ1 =z1+∆∧ρ2 =z2−∆] (24)

which gives us the required connection between the two
neighboring databases I and I′.

Proof of Inequality 22. Due to the independence of the
database entries Equation 20 is equivalent to

fI(z1, z2) =
∏
i∈I⊥

Pr[ri = ⊥|ρ1 = z1 ∧ ρ2 = z2] = ∗

By plugging in our query formula, we have:

∗ =
∏
i∈I⊥

Pr[(αi + yi < T + z1 ∧ βi + yi < T + z1)

∨ (αi + y′i ≥ T + z2 ∧ βi + y′i ≥ T + z2)]

=
∏
i∈I⊥

Pr[(yi < T + z1 − αi ∧ yi < T + z1 − βi)

∨ (y′i ≥ T + z2 − αi ∧ y′i ≥ T + z2 − βi)] = ∗

Next, we want to exploit the sensitivity to change to the
other database. We know that |αi − α′i| ≤ ∆ leads to

αi ≤ α′i + ∆ and αi ≥ α′i −∆. (a)

Similarly, |βi − β′i| ≤ ∆ indicates

βi ≤ β′i + ∆ and βi ≥ β′i −∆. (b)

By using Equation (a) and (b), we have the following relation.

∗≤
∏
i∈I⊥

Pr[(yi<T+z1−(α′i−∆)∧yi<T+z1−(β′i−∆))

∨(y′i≥T+z2−(α′i+∆)∧y′i≥T+z2−(β′i+∆))]

=
∏
i∈I⊥

Pr[(α′i+yi<T+(z1+∆)∧β′i+yi<T+(z1+∆))

∨ (α′i+y
′
i≥T+(z2−∆)∧β′i+y′i≥T+(z2−∆))]

= fI′(z1+∆, z2−∆)
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Therefore, Inequality 22 if proven. Notice that the last step of
simplification would not be possible if we had just used one
noise variable z = z1 = z2. �

Proof of Inequality 23. Again, by independence of the
database entries and the negation of our query formulation,
we have:

gI(z1, z2)=
∏
i∈I>

Pr[¬((αi + yi<T + z1 ∧ βi + yi<T + z1)

∨(αi + y′i≥T + z2 ∧ βi + y′i≥T + z2))] = ∗

We push the negation inwards:

∗ =
∏
i∈I>

Pr[(αi + yi ≥ T + z1 ∨ βi + yi ≥ T + z1)

∧ (αi + y′i < T + z2 ∨ βi + y′i < T + z2)] = ∗

The sensitivities |αi−α′i| ≤ ∆ and |βi− β′i| ≤ ∆ allow us to
introduce the other database I′ similar to before:

∗≤
∏
i∈I>

Pr[(yi ≥ T + z1 − α′i −∆ ∨ yi ≥ T + z1 − β′i −∆)

∧(y′i<T+z2−α′i+∆∨y′i<T+z2−β′i+∆)] = ∗

We could go on as before with f , but it would not provide
the desired bounds, as the signs of ∆ would be flipped. Instead,
we exploit that the noise values yi are LAP( 2c∆

ε2
) distributed:

Pr[ρ = yi] ≤ e
ε2
c Pr[ρ = yi + 2∆] (c)

Pr[ρ = yi] ≤ e
ε2
c Pr[ρ = yi − 2∆] (d)

We cannot use that directly, as we have a logical formula in
the probabilities. The outer conjunction can be rewritten to a
multiplication due to independence of the noise variables vi, v′i.
The inner disjunction is not problematic, as we show below.
We prove it generally for any x, x′, Y1, Y2, Y3, Y4 to increase
readability. Later, we just need the following instantiations:

x = yi x′ = y′i
Y1 = T + z1 − αi −∆ Y2 = T + z1 − βi −∆

Y3 = T + z2 − αi + ∆ Y4 = T + z2 − βi + ∆

We want to re-formulate Pr[x≥Y1∨x≥Y2] for some arbitrary,
but fixed x, Y1, Y2. For probabilities, the following holds:

Pr[x ≥ Y1 ∨ x ≥ Y2] = Pr[x ≥ min(Y1, Y2)]

Then, we apply (c):

Pr[x ≥ min(Y1, Y2)] = Pr[x ≥M ] =

∫ ∞
M

Pr[x = m]dm

≤ e
ε2
c

∫ ∞
M

Pr[x=m+2∆]dm (substitute t=φ(m)=m+2∆)

= e
ε2
c

∫ φ(∞)

φ(M)

Pr[x = t]dt = e
ε2
c Pr[x ≥ φ(M)]

= e
ε2
c Pr[x ≥ min(Y1, Y2) + 2∆]

= e
ε2
c Pr[x− 2∆ ≥ min(Y1, Y2)]

= e
ε2
c Pr[x− 2∆ ≥ Y1 ∨ x− 2∆ ≥ Y2]

(25)

Similarly, we re-formulate Pr[x′ < Y3∨x′ < Y4] for some
arbitrary, but fixed x′, Y3, Y4.

Pr[x′ < Y3 ∨ x′ < Y4] = Pr[x′ < max(Y3, Y4)]

Now, we apply (d) as above:

Pr[x′<max(Y3, Y4)] ≤ e
ε2
c Pr[x′<max(Y3, Y4)− 2∆]

=e
ε2
c Pr[x′+2∆<max(Y3,Y4)]=e

ε2
c Pr[x′+2∆<Y3∨x′+2∆<Y4]

(26)

Now, we come back to the proof for Inequality 23. Since vi
and v′i are independent, we have the following.

∗ =
∏
i∈I>

Pr[yi≥T+z1−α′i−∆∨yi≥T+z1−β′i−∆]

Pr[y′i<T+z2−α′i+∆∨y′i<T+z2−β′i+∆] = ∗
Next, by utilizing Inequalities 25 and 26, we have:

∗≤
∏
i∈I>

e
ε2
c Pr[yi≥T + z1 − α′i + ∆∨yi≥T + z1 − β′i + ∆]

e
ε2
c Pr[y′i<T + z2 − α′i −∆∨y′i<T + z2 − β′i −∆]

=
∏
i∈I>

e2
ε2
c Pr[yi≥T+z1−α′i+∆∨yi≥T + z1 − β′i + ∆]

Pr[y′i < T + z2 − α′i −∆ ∨ y′i < T + z2 − β′i −∆]

=e
2ε2|I>|

c

∏
i∈I>

Pr[yi≥T+z1−α′i+∆∨yi≥T+z1−β′i+∆]

Pr[y′i < T + z2 − α′i −∆ ∨ y′i < T + z2 − β′i −∆] = ∗
As we have at most c answers for privacy-sensitive queries,
i.e., |I>| ≤ c, thus we have:

∗ ≤ e2ε2
∏
i∈I>

Pr[((yi≥T+z1−α′i+∆)∨(yi≥T+z1−β′i+∆))

∧ ((y′i<T+z2−α′i−∆) ∨ (y′i<T+z2−β′i−∆))]

= e2ε2gI′(z1 + ∆, z2 −∆) �

Proof of Inequality 24. As ρ1 and ρ2 are sampled indepen-
dently, Pr[ρ1 = z1 ∧ ρ2 = z2] equals to:

Pr[ρ1 = z1 ∧ ρ2 = z2] = Pr[ρ1 = z1] Pr[ρ2 = z2] = ∗

Moreover, as ρ1 and ρ2 are sampled from LAP( ∆
ε1

), we have

∗ ≤eε1 Pr[ρ1 = z1 + ∆] ∗ eε1 Pr[ρ2 = z2 −∆]

=e2ε1 Pr[ρ1 = z1 + ∆ ∧ ρ2 = z2 −∆] �

Let us wrap up using the above proofs on Inequalities 22
to 24 on 19.

Pr[A(I) =
−→
R ]

=

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z1 ∧ ρ2 = z2]fI(z1, z2)gI(z1, z2)dz1dz2

≤
∫ ∞
−∞

∫ ∞
−∞

e2ε1 Pr[ρ1 = z1 + ∆ ∧ ρ2 = z2 −∆]

fI′(z1 + ∆, z2 −∆)e2ε2gI′(z1 + ∆, z2 −∆)dz1dz2

=e2ε1+2ε2

∫ ∞
−∞

∫ ∞
−∞

Pr[ρ1 = z′1 ∧ ρ2 = z′2]

fI′(z
′
1, z
′
2)gI′(z

′
1, z
′
2)dz′1dz

′
2

=e2(ε1+ε2) Pr[A(I′) =
−→
R ]

�
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