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Abstract

The discovery by Japanese researchers in 1997 of small volcanoes on the ocean floor of the

Pacific plate that is subducting beneath Japan, was a great scientific surprise. The presence

of volcanoes in this region close to the subduction zone where no deep mantle plumes are

observed, has prompted questions concerning the formation of intra-plate volcanism. The

hypothesis for the formation of these volcanoes, known as petit-spot volcanoes, is that they

are linked to the flexure of the lithosphere at the subduction front. This flexure results in

extension at the base of the lithosphere allowing for the extraction of small quantities of pre-

existing melts at the base of the lithosphere. Nevertheless, this model remains a hypothesis

based only on general observations. Extraction of these melts would be associated with

the development of lithospheric-scale fractures, needed to allow melts to be transported and

form volcanoes at the surface. However, no physical model has been developed to test these

hypotheses.

The aim of this thesis is to understand the formation of petit-spot volcanoes by providing

mechanical constraints on the flexure of a lithospheric plate in a subduction zone and the

extraction of melts in a viscous medium. The first part of my thesis focuses on the resulting

stress and deformation within an oceanic lithosphere that is flexing due to subduction. Here

I aim to identify the key parameters that affect the mechanics of a subduction zone using

the 2D thermo-mechanical (TM) code, MDoodz. This numerical code utilises finite difference

(FD) and marker-in-cell methods. We test two subduction scenarios: (1) “forced subduction”

where horizontal velocities are applied to the lateral boundaries of the plates during the en-

tire simulation, and (2) “free subduction” where horizontal velocities are stopped when the

subducting slab is long enough to continue subducting without far-field horizontal velocity.

We have determined that a slab pull of 1.8 TN·m−1 is required to continue free subduction.

The major results of this study show that elasto-plastic deformation is the dominant defor-

mation mechanism in the upper part of the lithosphere and within the slab, and that viscous

deformation dominates the lower part of the lithosphere. The magnitude and distribution

of the deviatoric stresses, which illustrate the regions of compression and extension, shows
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that maximum values are in the upper lithosphere and in the region of flexure. Values are

close to zero at the base of the lithosphere and there is no significant extension at the base

of the lithosphere. We also tested the impact of elasticity and reduction of the internal angle

of friction in our simulations. The results show that elasticity has a large impact on the

magnitude and distribution of deviatoric stresses and if the internal angle of friction is too

small, it results in the detachment of the slab and slab pull can no longer be transmitted to

the plate. Comparisons of the topography and gravity anomaly of our model with natural

bathymetry and free-air gravity anomalies across the Mariana trench, demonstrates that the

chosen density fields and the modelled flexural behaviour is compatible with natural data.

The second part of this thesis examines, on the one hand, the mechanisms linked to the

percolation and extraction of melts at the base of the lithosphere, in an environment where

viscous deformation dominates, and on the other hand the physico-chemical interaction be-

tween the solid and the melt. In order to study this percolation process and to investigate

the impact of chemical differentiation on melt migration, we have developed a 1D thermo-

hydro-mechanical-chemical transport (THMC) code with two phases (melt and solid). Our

code is based on modelling porosity waves coupled to a thermodynamic database for Gibbs

free energy minimisation. Our chemical system is simple and composed of the ternary system

forsterite-fayalite-silica. All variables, such as density, MgO or SiO2 concentrations for melt

and solid are functions of pressure (P ), temperature (T ) and total silica concentration. We

use pressure and temperature conditions applicable to the base of the lithosphere and we use

two geothermal gradients, one adiabatic and one conductive, to evaluate the impact of tem-

perature on melt migration. The results show that both the total SiO2 concentrations and the

variable geotherms have a strong impact on the velocity of melt migration. The results of our

preliminary 2D model demonstrates that the melt velocity transported by the porosity wave

mechanism varies between 1 and a few hundred metres per year, depending on the viscosity of

the melt. These values are comparable to transport velocities of melt estimated at mid-ocean

ridges.

The results presented in this thesis demonstrate that the formation of petit-spot volcanoes is

more complex than once thought. The first study highlighted the lack of extension and the
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dominance of viscous deformation mechanisms in regions at the base of the lithosphere. It

therefore seems impossible to extract melts from the base of the lithosphere via the develop-

ment of fractures at the lithospheric scale. Our observations are, on the contrary, compatible

with an alternative model for the formation of petit-spot melts. Our model proposes that

small quantities of melts first percolate and interact with the base of the lithosphere. This

process will then produce a so-called ”metasomatic” enrichment of the region. A dynamic

view of this process shows that small quantities of melts, after interacting with the base of

the metasomatized lithosphere, will subsequently reach brittle portions of the lithosphere and

thus allow for the development of hydrous fractures allowing melts to rise up and reach the

surface. The second study enabled a better constraint on the mechanisms of melt percolation

in ductile regions, and investigated the processes needed to extract and percolate melt under

conditions associated with the base of the lithosphere. During this percolation, the melt will

interact with the solid resulting in compositional changes. This highlights the link between

the processes of metasomatism that are observed in petrological studies of petit-spot volcano

rocks and the physical mechanisms that control the extraction of melt.





Résumé

La découverte par des chercheurs japonais en 1997 de petits volcans sur le plancher océanique

de la plaque pacifique qui plonge sous le Japon a été une grande surprise scientifique. En

effet, la présence de volcans dans cette région, proche de la zone de subduction mais où

aucun plume mantellique profond n’est connu, remet en question l’hypothèse de formation du

volcanisme intra-plaque. L’hypothèse de formation de ces volcans, dits de type petit-spot, est

qu’ils sont liés à la flexure de la lithosphère en front de subduction. Cette flexure produirait

une extension à la base de la lithosphère permettant l’extraction de petites quantités de

magmas préexistants à la base de la lithosphère. Néanmoins, ce modèle de formation reste

une hypothèse ne reposant que sur des observations générales. Par exemple, l’extraction de ces

magmas serait associée au développement de fractures à l’échelle lithosphérique permettant

à ces magmas de remonter et de former les volcans à la surface, mais aucun modèle physique

n’a été développé pour tester ces hypothèses.

Le but de cette thèse est de comprendre la formation des volcans petit-spot en fournissant

des contraintes mécaniques sur la flexure d’une plaque lithosphérique dans une zone de sub-

duction et l’extraction de magma dans un milieu visqueux. La première partie de ma thèse

étudie les contraintes et les déformations d’une lithosphère océanique fléchie dans une zone

de subduction. Elle a pour but d’identifier les paramètres clés qui impactent la mécanique

d’une zone de subduction en utilisant le code 2D thermo-mécanique (TM) MDoodz. Ce code

numérique est basé sur la méthode des différences finies (FD) et des � marker-in-cell �. Nous

avons testé deux scénarii de subduction : (1) une subduction forcée où une vitesse horizontale

est appliquée aux bordures des plaques durant l’entier de la simulation et (2) une subduction

libre où nous stoppons la vitesse horizontale lorsque le panneau plongeant (c.-à-d. slab) est

assez long pour continuer à subduire sans aide. Nous avons déterminé qu’une force de traction

(slab pull) de 1.8 TN·m−1 est nécessaire pour continuer une subduction libre. Les résultats

majeurs de cette étude ont montré que la déformation élasto-plastique est le mécanisme de

déformation dominant dans la partie supérieure de la lithosphère et le panneau plongeant

et que la déformation visqueuse domine la partie inférieure de la lithosphère. La magnitude
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et la distribution des contraintes déviatoriques, qui illustrent les régions en compression ou

en extension, montrent que les valeurs maximales se situent dans la partie supérieure de la

lithosphère et dans la région de la flexure. Les valeurs sont proches de zéro à la base de la

lithosphère et il n’y a pas d’extension significative à la base de la lithosphère. Nous avons

également testé l’impact de l’élasticité et de la réduction de l’angle de friction interne dans

nos simulations. Les résultats montrent que l’élasticité a un grand impact sur la magnitude et

la distribution des contraintes déviatoriques et que si l’angle de friction interne est trop faible,

il cause le détachement du panneau plongeant et la force traction (slab pull) ne peut plus être

transmise à la plaque. La comparaison entre la topographie et l’anomalie de gravité de notre

modèle avec des données naturelles de bathymétrie et d’anomalie à l’air libre dans la région

de la fosse des Mariannes nous montre que les champs de densités choisis et le comportement

de la flexure modélisée sont compatibles avec des données naturelles.

La deuxième partie de cette thèse s’interroge d’une part aux mécanismes liés à la percolation

et à l’extraction de magmas à la base de la lithosphère, dans un milieu où la déformation

visqueuse domine, et d’autre part à l’interaction physico-chimique entre le solide et le magma.

Dans le but d’étudier ce processus de percolation et d’investiguer l’impact de la différenciation

chimique dans la migration du magma, nous avons développé un code de transport thermo-

hydro-mécanico-chimique (THMC) en 1D avec deux phases, une partie magma et une partie

solide. Notre code est basé sur la modélisation des vagues de porosité � porosity waves � et est

couplé à une base thermodynamique obtenue par la minimisation de l’énergie de Gibbs. Notre

système chimique est simple, composé du system ternaire forstérite-fayalite-silice. Toutes les

variables, comme la densité ou les concentrations en MgO ou SiO2 pour le magma et le solide

sont des fonctions de la pression (P ), de la température (T ) et de la concentration totale de

silice. Nous utilisons des conditions de pression et de température applicable à la base de la

lithosphère et nous utilisons deux gradients géothermiques, un adiabatique et un conductif,

pour voir quel impact a la température sur la migration du magma. Les résultats montrent

que la concentration totale en SiO2 et les différents géothermes ont un impact fort sur la

vitesse de migration du magma. Les résultats d’un modèle préliminaire en 2D mettent en

évidence que la vitesse des magmas transportés par le mécanisme de � porosity waves � varie
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entre 1 et quelques centaines de mètres par an, en fonction de la viscosité du magma. Ces

valeurs sont comparables aux vitesses de transport des magmas estimées au niveau des rides

médio-océaniques.

Les résultats présentés dans cette thèse montrent que la formation des volcans petit-spot est

plus complexe qu’il n’y parâıt. La première étude a permis de mettre en évidence le manque

d’extension à la base de la lithosphère et que la déformation visqueuse est le mécanisme

dominant dans cette région. Il semble donc impossible d’extraire des magmas de la base de

la lithosphère via le développement de fracture à l’échelle lithosphère. Nos observations sont,

au contraire, compatibles avec un modèle alternatif pour la formation des magmas de type

petit-spot. Ce modèle propose que de faibles quantités de magmas commencent par percoler

et interagir avec la base de la lithosphère. Ce processus va produire un enrichissement dit

� métasomatique � de cette région. Dans une vision dynamique de ce processus, de petites

quantités de magmas, après avoir interagi avec la base de la lithosphère métasomatisée, vont

atteindre la partie cassante de la lithosphère permettant le développement de fracture jusqu’à

la surface. La deuxième étude a permis de mieux contraindre le mécanisme de percolation des

magmas dans le domaine ductile et a permis d’investiguer comment il est possible d’extraire et

faire percoler un magma dans des conditions relatives à la base de la lithosphère. Durant cette

percolation, le magma va interagir avec le solide et changer sa composition. Ceci permet de

mettre en lumière le lien entre les processus de métasomatisme qui sont observés par l’étude

pétrologique des roches des volcans petit-spot et les mécanismes physiques qui contrôlent

l’extraction des magmas.





CHAPTER 1

General Introduction

1



2 CHAPTER 1.

1.1 Outline of the thesis

This thesis is structured as four chapters with an appendix section. Chapters 2 and 3 are

written as article format. They are supported by a general introduction in this first chapter,

which will give an overall view of the study context and the questions that we will develop

afterwards. In chapter 4, a general conclusion will provide a summary of major results

obtained during the thesis and a discussion on the perspectives of this study.

- Chapter 2: Stress and deformation mechanisms at a subduction zone: insights from 2D

thermomechanical numerical modelling.

This chapter consists of an article published in Geophysical Journal International. Co-

authors are Thibault Duretz, György Hetényi, Sébastien Pilet and Stefan M. Schmal-

holz.

Here, we present a 2D thermo-mechanical (TM) numerical model to simulate deforma-

tion in subduction zone. We investigate which mechanical parameters are important in

this geological environment, and quantify stresses. This allows to determine the distri-

bution of stress and dominant deformation mechanism around flexural regions, which

is important for the formation of petit-spot volcanoes and the potential Earthquake

location within the subducting plate.

- Chapter 3: Melt migration and chemical differentiation by reactive porosity waves.

This chapter is an article to be submitted. Co-authors are Sébastien Pilet, Yuri Y.

Podladchikov and Stefan M. Schmalholz.

This chapter aims to understand the percolation of magma in a porous viscous medium

at pressure and temperature conditions relevant for the base of the lithosphere. We

present a 1D thermo-hydro-mechanical-chemical (THMC) numerical model of porosity

waves coupled with thermodynamic data obtained from numerical Gibbs energy minimi-

sation calculations. This model allows to evaluate the chemical aspect of melt-peridotite

reaction in a simplified system MgO-FeO-SiO2 for magma rising into the ductile litho-
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spheric mantle. We will present implications for magma extraction in intraplate setting

and for the metasomatism enrichment of the lithospheric mantle.

1.2 Motivation

The motivation of this PhD thesis is to provide new constraints on the formation of petit-

spot volcanoes observed first in the oceanic plate east of Japan. The publication in Science in

2006 of the Hirano et al. paper entitled Volcanism in Response to Plate Flexure have create a

polemic in the scientific community (McNutt, 2006) as the discovery of the so-call petit-spot

volcanoes have questioned the general idea that intraplate magmas are associated to deep

mantle plumes. In the next paragraphs, I will present the context of the petit-spot discovery

and the implication for intraplate magma formation. Then I will explain the goal of this PhD

thesis, and how this study will help to constrain the mechanism of petit-spot formation.

The discovery of petit-spot volcanoes was a big scientific surprise. In 1997, during a cruise off

the coast of Japan led by JAMSTEC (Japan Marine Science and Technology Center) to test

their new KAIKO submarine, Japanese researchers observed fresh young alkaline basalts on

the ocean slope of the Japan trench (Site A on Figure 1.1) (Hirano et al., 2001, 2006). The

presence of these basalts dated from 6 to 8 Ma on the top of a 135 Ma old Pacific plate was

unexpected as most seamounts in this area has been formed during Cretaceous age and no

hot-spot are known in this region close to the subduction zone.

After this discovery, in 2004, Japanese researchers made extensive surveys in the same region

where they found the first samples (Site A), and the assumed position of emission, “Site B”,

600 km to the southeast (Figure 1.1). The estimated position of emission was determined

by calculating the distance travelled of basalts from their emission point to the trench by

knowing the speed of the Pacific plate (10 cm·yr−1; Gripp and Gordon, 1990) and their ages

at “Site A” (∼6 Ma; Hirano et al., 2001) and the current direction of the Pacific plate motion.

The age of the basalts found in “Site B” were dated from 0.05 to 1 Ma and that’s how Hirano

and coworkers found where these basalts were initially emitted. Another place close to the

Japan trench was identified and named “Site C” (Sato et al., 2017).
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Figure 1.1: Location of petit-spot volcanoes observed in front of Japan. a) general location
of the area investigated by JAMSTEC researchers. b) Location of the different sites where
petit-spot volcanoes has been described (Site A: Hirano et al., 2001; site B: Hirano et al.,
2006; Site C: Sato et al., 2017)

To understand why it is extraordinary to find these basalts, we must first describe what

is happening in a subduction zone. In plate tectonic theory, a subduction zone is the place

where two tectonic plates converge and the location of oceanic plate recycling process (Molnar,

2015). Several major geological processes take place in this subduction environment as arc

volcanism, earthquakes and metamorphism of high and ultra-high pressure. Subduction zones

are characterized by an arc volcanism on the overriding plate, a deep trench and a bulge (or

swell, outrise) on the subducting plate.

The case of petit-spot volcanoes is different as they were found in the subduction plate, close

to the trench and seaward after the bulge where normally no volcanism is expected. The

emission’s position of petit-spot volcanoes at 600 km from the trench suggests a connection

between the flexure of the subducting plate and the formation of these volcanoes. Hirano

and co-workers (2006) have interpreted petit-spot as small intraplate volcanoes produced by

extraction of low degree melts from the base of the lithosphere in response to the flexure of

the plate (Figure 1.2). In addition to Japan, several petit-spot localities have been identified
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from the Tonga (Hirano et al., 2008), Chile (Hirano et al., 2013), and Sunda trenches (Taneja

et al., 2015), or as an accreted petit-spot in Costa Rica (Buchs et al., 2013), suggesting that

petit-spot volcanism is a global process in subduction zones.

Figure 1.2: Schematic figure from Hirano et al. (2006, Fig. 3c of their paper), illustrating
the conceptual model for the formation of petit-spot volcanism. Asthenospheric magmas
escape to the surface due to extension at the base of the lithosphere made by the flexure of
the subduction plate.

The formation of petit-spot volcanoes differs from typical volcanism observed at mid-ocean

ridges, associate to mantle upwelling, in arc setting, dehydration of the subducting plate and

hydrous melting of the mantle wedge, or in oceanic islands, volcanism interpreted as the

activity of deep mantle plumes. As illustrated by the schematic figure of Yamamoto et al.

(2014), (see Figure 1.3) the proposed model for the formation of petit-spot volcanoes suggests

the presence of small melt fraction at the base of the lithosphere and the propagation of brittle

fractures in response to plate flexure until the base of the lithosphere. This later process is

postulated in order to explain the extraction of melts from the LAB to the surface.

The presence of low degree melts has been documented by various geophysical studies. Seismic

studies of the Pacific plate subducting below Japan have shown a large shear wave velocity

reduction at the lithosphere asthenosphere boundary (Kawakatsu et al., 2009). Kawakatsu



6 CHAPTER 1.

Figure 1.3: Schematic figure modified from Yamamoto et al. (2014, Fig. 2 of their paper)
illustrating the extraction of low degree melt from the base of the lithosphere in order to
explain the formation of petit-spot volcanoes at the surface.

and co-authors interpret this anomaly as partially molten asthenosphere consisting of hori-

zontal melt-rich layers embedded in meltless mantle (Figure 1.4). Similar seismic observation

has been made for the Pacific plate subducting below New Zealand (Stern et al., 2015) with

a reduction of seismic velocity at the base of the lithosphere (Figure 1.5). This 10 km thick

layer illustrated in figure 1.5b, was also interpreted as the presence of small melt fraction.

This presence of small degree melts at the top of the asthenosphere was also documented by

magnetotelluric study for the Coco plate subducting below American plate (Naif et al., 2013)

(Fig.1.6).

An important question related to the conclusion of these different geophysical studies is how

to explain the presence of low degree melts at the base of the lithosphere. The figure 1.7 shows

a pressure-temperature diagram, modified from Dasgupta et al. (2013), where the solidus for

dry-peridotite or in presence of various amount of CO2 are plotted. In addition, conductive

(lithospheric) and convective (asthenospheric) mantle geotherms are reported for the case of
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Figure 1.4: Schematic figure of upper mantle with the lithosphere-asthenosphere transition
from Kawakatsu et al. (2009, Fig. 4B of their paper). Yellow line shows the velocity profile
of a seismic S-wave, with a reduced region at the LAB.

Figure 1.5: a) Location of the seismic study for the Pacific plate subducting below con-
tinental New Zealand. b) schematic interpretation of physical properties at the base of the
Pacific plate lithosphere. Stern and co-authors interpret a channel about 10 km thick at
the LAB due to the pooling of melt. This presence of melts deduced from the vP reduction
implying changes in the percentage melt, in viscosity and strain rate. (Figures 1 and 4b
modified from Stern et al. 2015)

a mature oceanic lithosphere. This P-T diagram illustrates that no melt is expected at the

base of the lithosphere for the case of mantle containing no-volatile, because the dry solidus

of peridotite doesn’t intercept the oceanic geotherm for oceanic lithosphere characterized by
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Figure 1.6: Presence of a conductive layer, area surrounded by dotted lines, at the base of
the Coco plate subducting below American plate. Colour codes in panels a) and b) show the
resistivity and the anisotropy respectively revealed by magnetotelluric data. Figure from
Naif et al. (2013, Fig. 2 of their paper).

a 55 mW·m−2 heat flow. However, the addition of volatiles, illustrated in figure 1.7 by the

addition of CO2, depress the solidus temperature of peridotite. As the mantle contains small

amount of CO2, this figure predicts the formation of small degree volatile rich melts at the

base of the lithosphere, while the composition of this melt, carbonatitic or CO2 rich silicate

melts, will depend on the geotherm and the depth of interest. In the current example, small

volume of carbonatic melts and CO2-rich silicate melts coexist at the base of the lithosphere

and in the top of the asthenosphere. Carbonatic melts (blue area in Figure 1.7) are present at

∼70-80 km depth in the lithosphere where temperatures exceed ∼1’000◦C. As the temperature
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increase close to lithosphere-asthenosphere boundary, small volume of CO2-rich silicate melts

are formed (red area), as carbonatic to CO2 rich silicate melt transition is fixed at 25 wt.% of

CO2 in the melt (Dasgupta et al., 2013). The relative slopes of the geotherm regarding mantle

solidus changes in the asthenosphere according the convective mechanism of heat transfer.

This explains the presence of melts of CO2 rich silicate at the top of the asthenosphere, while

the composition of melts evolves to carbonatic as the depth/pressure increase (Figure 1.7).

Figure 1.7: Modified figure from Dasgupta et al. (2013) including geotherm location for
a mature oceanic lithosphere (>80 Ma old). The red and blue lines correspond to the
peridotite solidus dry or in presence of carbonates. Dash grey lines reports the stability of
melts with various CO2 contents (5 to 25 wt.%). The 25 wt.% CO2 content line corresponds
to the transition from carbonatitic to silicate composition (Dasgupta et al., 2013). The blue
and red zones indicates the P-T condition where small degree of carbonatitic and silicate
melts could exist below mature oceanic plate.

These different constraints on the solidus of peridotite and on the geotherm support the

presence of small degree melts at depth and provide a potential explanation for the low

seismic velocity zone observed at the base of the lithosphere. However, this interpretation is

based on a static view, which assume a homogeneous distribution of volatiles in the mantle

and do not take into account the amount of melt potentially present at depth. Considering
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that the convecting mantle contains only 60 ppm CO2, the amount of silicate melt that one

could produce at the base of the lithosphere is extremely low, below 0.1% (Hirschmann,

2010). Such low degree melts seem insufficient to explain the seismic anomaly observed in the

low-velocity zone, even this melts is concentrated in lenses as proposed by Kawakatsu et al.

(2009). To solve this problem, Marc Hirschmann (2010) suggests that seismic discontinuity

observed at the lithosphere-asthenosphere-boundary correspond to the accumulation of melts

at the base of the lithosphere that have migrated from greater depths in the periphery of

mid-ocean ridges or by upwelling processes as illustrated in figure 1.8. These accumulated

melts are considered as the source of magma emitted in petit-spot volcanoes.

Figure 1.8: Schematic figure illustrating the addition of melts to the LAB, either in pe-
riphery of mid-ocean ridges or by melt migration. Figure from Hirschmann (2010, Fig. 11a
of his paper).

If this idea seems mostly accepted in the literature, this model has some important implication,

in particular for the thermal state of the upwelling melts and on the mechanical aspect of the

melt rising in the asthenosphere or in the base of the lithosphere. The question related to the

migration of low degree melts within the mantle will be the main subject of the second part

of this PhD (chapter 3).
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1.3 Objectives and approach

The hypothesis proposed by Hirano and co-authors for the formation of petit-spot lavas,

i.e. extraction of low degree melt from the base of the lithosphere in response to plate

flexure, seems therefore in agreement with current geophysical and petrological knowledge on

the presence of melt at the lithosphere asthenosphere boundary. However, the mechanical

aspect of melt extraction from ∼80 km depth to the surface is mostly unconstrained. The

schematic figure from Yamamoto et al. (2014, Figure 1.3) illustrates the hypothesis of a direct

extraction of melts to the surface by the opening of deep fracture in response to plate flexure.

Nevertheless, no model has tried to quantify the extension at the base of the lithosphere. In

addition, the propagation of fracture is expected only in the brittle domains. But it remains

unclear if such brittle domain extends until the base of the lithosphere. These questions are

the motivation of the first part of this thesis (chapter 2).

1.3.1 Chapter 2: thermo-mechnical numerical simulation of plate flexure

The chapter 2 is designed as a scientific article with the motivation and the general context

of this numerical study introduced in the first sections. In the following paragraphs, I will

introduce additional general rheological concept used in this chapter.

Numerical models to study large-scale geodynamic process include some constitutive equa-

tions, flow laws or combinations of flow laws, with rheological parameters corresponding to

rocks that best represent our study area, for our purposes mantle lithologies. The definition of

rheology is the study of the material deformation and its flow in response to an applied stress.

Each rock has its own proper rheological properties, which could be determined using rock

deformation experiments. One can fit these experimental results with so-called power-law

flow law that we use in geodynamic models (e.g. Hirth and Kohlstedt, 2003; Karato, 2008;

Mei et al., 2010). Several critical parameters such as the dependence of strain rate on stress,

grain size, temperature dependence (activation energy), and pressure dependence (activation

volume) must be determined carefully.
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When we apply a force to the surface of an object, we deform this object through stress, σ.

The result is a change in size or volume called stain, ε. This force can be normal or tangential

to the surface, corresponding to normal stress or shear stress respectively. When the applied

force is released, if the object returns to its original shape, the deformation is non-permanent

(i.e. non-dissipative, reversible or recoverable). This is the case of elastic deformation. The

mathematical relation for an elastic deformation, known as Hooke’s law, between stress and

strain is linear, σ = Eε, with a constant E named Young’s modulus. E depends on the nature

of the material, and time has no impact on the deformation. By contrast, when the applied

force is released but the object keeps its change of shape, the deformation is permanent.

This is the case of frictional-plastic (i.e. brittle-plastic or Mohr-Coulomb criterion) or viscous

deformation (i.e. creep). The frictional-plastic deformation follows the Mohr-Coulomb theory.

The Coulomb failure criterion is the mathematical relation between shear and normal stress.

The frictional-plastic deformation is done by sliding and it is the normal stress that resists to

the sliding. For the viscous deformation, the mathematical relation between the stress and

the strain implies to take the time into account; σ = µε̇, where ε̇ is the strain rate and µ the

viscosity. If the deformation is slow, the stresses will be low and if the deformation is fast,

the stresses will be high. There are several types of viscous deformation as diffusion creep,

dislocation creep and Peierls creep.

Diffusion creep (i.e. linear creep) deformation (Figure 1.9) involves the movement of atoms,

ions or vacancy through a mineral by diffusion and implies punctual defects in the crystal

structure of the mineral (Kohlstedt, 2007). Diffusional creep occurs at relatively low stress,

high temperature and small grain size. The diffusion of these defects can occur along the

edge of the mineral grain; this deformation is called the Coble creep (e.g. Passchier and

Trouw, 2005; Turcotte and Schubert, 2014). If the diffusion takes place through the interior

of grain, we speak rather of Nabarro-Herring creep (e.g. Passchier and Trouw, 2005) (Figure

1.9). When the crystal is more compressed in one direction (black arrows in Figure 1.9),

the defects migrate in the direction with the lowest compression, which tends to shorten the

crystal in the compression direction. In order to move a vacancy through a crystal, chemical

bonds must be broken, which is why a certain amount of activation energy is required. If
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Figure 1.9: Schematic view of diffusion creep (Passchier and Trouw, 2005).

the temperature is higher, it will be easier to move the vacancy through the crystal. The

mathematical relation between stress σ and strain rate ε̇ is linear, stress exponent n is equal

to 1 (eq. 2.11 and Table 2.1 in chapter 2):

ε̇dif
ij = FdifAdifτ

ndif
ij d−mdif exp

(
−
E∗dif + PV ∗dif

RT

)

Dislocation creep (i.e. power law creep) is a deformation mechanism involving a collective

motion of atoms as crystal dislocations that will move and propagate in a crystal (Figure 1.10).

Dislocations in the crystal are caused by their slippage and the rise of line defects (Kohlstedt,

2007), such as the movement of caterpillars. The rate of deformation is proportional to

the density and velocity of dislocation. In general, they increase with an applied stress. A

variety of resistance forces controls the velocity of glide motion as intrinsic resistance due

to the crystal lattice or lattice impurity. The diffusion of atoms control also the movement

of dislocation, which implies that dislocation creep is sensitive to the temperature and the
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Figure 1.10: Schematic view of dislocation creep (Passchier and Trouw, 2005).

chemistry (Karato, 2008). The mathematical relation between stress σ and strain rate ε̇ is a

power law, stress exponent n is more than 3 (eq. 2.12 and Table 2.1 in chapter 2):

ε̇dis
ij = FdisAdisτ

ndis
ij d−mdis exp

(
−
E∗dis + PV ∗dis

RT

)

Peierls creep (i.e. low-temperature plasticity or exponential creep) mechanism is important

for low temperature and high stress deformation (Kameyama et al., 1999). The Peierls stress

is the stress needed to move a dislocation in a crystal without the help of thermal activation.

It is determined by the crystal structure and chemical bonding and hence is intrinsic to a

given material. The mathematical relation between stress σ and strain rate ε̇ is exponential

(eq. 2.13 in chapter 2):

ε̇pei
ij = FpeiApei exp

[
−Epei

RT
(1− γ)npei

](
τij
γσpei

)S
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During rock deformation, several types of deformation can occur, depending on the type of

material and the force applied on. For that, it is important to consider not only one de-

formation mechanism in a geodynamic model (Kohlstedt, 2007). In our model, we consider

five deformation mechanisms: elastic and frictional-plastic deformation, and for the viscous

deformation a combination of diffusion creep, dislocation creep and Peierls creep. Equa-

tions combining these different rheologies and deformation mechanisms are described in the

”Mathematical Model” section in chapter 2, (equations 2.6 to 2.15).

Numerous processes occur at a subducting zone such as metamorphic reactions, fluid and

melt transfer and earthquakes. They are all influenced by deformation and stress distribution.

Hence, it is important to quantify stresses and deformation mechanisms to understand what is

happening mechanically in a subduction zone, more precisely in the flexure of the subducting

plate. We use the 2D thermo-mechanical code MDoodz, which is based on the finite difference

and marker-in-cell method developed by Duretz et al. (2011b), to model a subduction zone

(see chapter 2 for more details). We consider two subduction scenarios: a forced subduction

where horizontal velocities are applied to the lateral boundaries of the plates during the entire

simulation and a free subduction where we stop the horizontal velocities when the slab is long

enough to continue the subduction itself without far-fiedl horizontal velocities. We found that

we need a slab pull of at least 1.8 TN·m−1 to continue the subduction in the free scenario.

The major results of the study showed that firstly elasto-plastic deformation is the dominant

mechanism in the upper region of the lithosphere and subducting slab (from ca. 5 to 60 km

depth from the top of the slab) and viscous deformation dominates in the lower region of the

lithosphere and in the asthenosphere. Secondly, elasticity has an important impact on the

magnitude and distribution of deviatoric stress. Simulations with increased shear modulus, in

order to reduce elasticity, exhibit considerably different stress fields. Thirdly, limiting absolute

stress magnitudes by decreasing the internal friction angle causes slab detachment and the

slab pull cannot be transmitted anymore to the plates. Using a combined visco-elasto-plastic

deformation behaviour is therefore important to take into account in numerical model studies.

The comparison between our modelled topography and gravity anomaly with natural data of

seafloor bathymetry and free-air gravity anomalies across the Mariana trench, showed that
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elasticity and deviatoric stress magnitudes of several hundreds of MPa are required to best fit

the natural data. This agreement suggests that the modelled flexural behaviour and density

field are compatible with natural data. In the ”Discussion” section in chapter 2, we discuss

potential applications of our results to the depth of faulting in a subducting plate and to the

generation of petit-spot volcanoes.

1.3.2 Chapter 3: Melt migration by reactive porosity waves

The thermo-mechanical numerical model for the flexure of the oceanic plate shown in chapter

2 indicates that the transition from brittle to ductile domains happened at middle lithosphere

depth (around 60 km). This conclusion calls into question the mechanism of melts extraction

from the base of the lithosphere located at 80 km depth in order to explain the formation

of petit-spot volcanoes, as fracture is unlikely to propagate within the ductile (i.e. viscous)

domain. Various arguments suggest that magma observed in petit-spot volcanoes does not

originate directly from the low-velocity zone, but first interact with the lithosphere, poten-

tially producing metasomatic enrichment of the base of the lithosphere. The first argument

comes from multiple saturation experiments from Machida et al. (2017). The figure 1.11, re-

drawn from Machida et al. (2017) study, shows mineral assemblages obtained for experiments

performed between 1’200 to 1’320◦C and pressure between 1.5 to 2.5 GPa using two distinct

primitive petit-spot compositions as starting material. Multiple saturation experiments tar-

get the condition where basaltic magma is saturated in all major peridotitic phases. These

experiments show that petit-spot melts are in equilibrium with olivine, orthopyroxene and

clinopyroxene at relatively low temperature (< 1’290◦C) and pressure (< 2.1 GPa). Such P-T

conditions are unlikely to represent asthenospheric conditions, but point out a last equilibra-

tion of petit-spot melt with peridotitic assemblage at 60 km deep, i.e. within the lithosphere.

Machida et al. (2017) conclude that low degree melts from the base of the lithosphere rise,

first, within the base of the lithosphere before to be extracted to the surface from a depth

close to brittle-ductile transition zone.
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Figure 1.11: Melting phase relations of the primary petit-spot basalts determined for two
estimated primitive petit-spot magma composition. Stable phases are shown by the filled
squares. Figure redrawn from Machida et al. (2017).

The second arguments supporting the interaction of petit-spot melt with the lithosphere is

provided by the study of mantle xenoliths sampled by petit-spot magmas (Pilet et al., 2016).

Pilet et al. (2016) indicate that, if these xenoliths show mineral assemblages typical of abyssal

peridotite (Figure 1.12a), element patterns of their clinopyroxene, indicated in red in figure

1.12b, are similar to the one from melt-metasomatized garnet peridotites sample by kimberlite

in Kaapval craton (grey lines, Figure 1.12). As trace element patterns of clinopyroxene from

Kaapval peridotites are interpreted as the percolation and interaction of low degree melt across

the base of the cratonic lithosphere, similar interpretation is proposed, by Pilet et al. (2016),

for the petit-spot xenoliths. The composition of petit-spot xenolith supports, therefore, a

metasomatic enrichment of the pacific lithosphere before the emission of petit-spot lavas.

These different arguments suggest that petit-spot magmas are not directly extracted from

the base of the lithosphere, but first rise, percolate, cool, and metasomatize the base of the

lithosphere before to be extracted to the surface from mid-lithosphere depth. The chemi-

cal consequence of melt migration across the mantle has been studied theoretically (O’Hara,

1968; Navon and Stolper, 1987), and documented by various studies on mantle xenoliths and

outcrops (e.g. Kelemen et al., 1992; Nielson and Noller, 1987; Wilshire, 1987; Nielson and

Wilshire, 1993; Harte et al., 1993). These studies indicate that melt migration across peri-
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Figure 1.12: a) Backscattered electron image of xenolith from Japanese petit-spot lavas.
b) Clinopyroxene composition normalized to primitive mantle for Japanese petit-spot peri-
dotite xenolith compared to abyssal peridotite (grey areas) and melt-metasomatized garnet-
peridotites from Kaapval craton (grey lines). Figure modified from Pilet et al. (2016).

dotitic matrix is partially controlled by melt-rock reaction which could modify the composition

of the rising melt by dissolution or precipitation of olivine or orthopyroxene (± clinopyrox-

ene) (Lambart et al., 2012; O’Hara, 1968; Pilet et al., 2008). This melt-rock reaction will

depend on the composition of the rising melt and pressure and temperature condition. The

implication on trace element budget of melt-rock reaction is also relatively well constrained

(e.g. Lambart et al., 2012; Mallik and Dasgupta, 2012; Pilet et al., 2008). However, the

mechanical aspect associated to melt percolation across the lithosphere remains mostly un-

constraint. Many studies target of the mechanical aspect of melt migration in the context of

mid ocean ridge (e.g. Spiegelman and McKenzie, 1987; Scott and Stevenson, 1989; Aharonov

et al., 1995; Kelemen et al., 1997; Katz et al., 2006), but these models neglect the thermal

effect on mechanical parameters as the thermal gradient below mid ocean ridges is limited.

The mechanical aspect of melt migration within the lithospheric mantle characterized by a

high thermal gradient is the subject of the chapter 3 of this PhD thesis.

The generation of small volcanic edifices requires the formation of high-permeability pathways

to allow the rapid extraction of low volume of melts from a deep source as low degree melt

is unable to carry sufficient heat to preclude crystallization at depth (McKenzie, 1989). Melt

migrations in the ductile domain is controlled by two-phase flow equations (McKenzie, 1984),

while the ability of a melt to separate from the residual crystals depends on the viscosity of
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the melt (e.g. McKenzie, 1985). As melt will move in the porous spaces between the grains,

another important point to consider is whether our porous network is interconnected in three-

dimension. A geometric relationship can be used to determine the distribution of the melt

with the relative surface tension between the crystal grains and the melt. This relationship

can be expressed as the dihedral angle (e.g. Watson and Brenan, 1987; Harte et al., 1993), if

the angle is smaller than 60° we say that our network is connected and that the melt can dis-

perse/propagate in our network along edge grain. Whereas if the angle is greater than 60°, the

melt will remain isolated and capture in the pores. According to a compilation from Cheadle

(1989) of experiments to determine this dihedral angle between melt and solid, the angles

are smaller than 60° for various mantle rocks (e.g. basaltic, komatiitic or carbonatitic melts).

Nevertheless, the formation of a connected network is also dependant of the homogeneity of

the system and how melts are distributed.

Melt generated in heterogeneous lithological domain leads to spatial variations in melt content

that may evolve into porosity waves (Jordan et al., 2018) which potentially allow melt to rise

up (Connolly and Podladchikov, 1998, 2007). Melt transport by porosity waves is therefore an

interesting mechanism to explain the propagation of low degree melts from the low-velocity

zone across the base of the lithosphere. However, current porosity waves models do not

involve the chemical effect of melt-rock reaction, neither consider the temperature effect on

the viscosity of the rising melt. The development of a full thermo-hydro-mechanical-chemical

(THMC) model for the extraction and the transport of melt in the ductile mantle domain is the

long-term goal of the research group at Lausanne. The study presented in chapter 3 is a first

step including the coupling of mechanical aspect of melt transport with thermodynamic data

base allowing to calculate the chemical equilibration of basaltic magma rising into peridotitic

matrix.

The motivation and the general context of this THMC numerical study is presented in the be-

ginning of the chapter 3 designed as scientific article. We present the THMC transport model

for the melt migration, which is coupled to thermodynamic results obtained from Gibbs en-

ergy minimisation, to investigate the impact of chemical differentiation on melt migration.

We consider melt migration to occur by porosity waves within a deformable viscous man-
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tle and use a simple ternary thermodynamic system of forsterite-fayalite-silica for the solid

and melt phases. We solve the one-dimensional (1D) THMC transport model numerically

with a pseudo-transient finite differenced method, a relevant and efficient method for solving

nonlinear problems, and Gibbs energy minimisations with linear programming routines using

MATLAB. Model variables, such as solid and melt densities or mass concentrations of MgO

and SiO2 in solid and melt, are functions of pressure (P ), temperature (T ) and total silica

mass fraction of the system (CSiO2
T ). These variables are pre-computed with Gibbs energy

minimisation and implemented in the THMC porosity wave transport code via parameterized

equations, determining the P -T -CSiO2
T dependence of the model variables. We consider pres-

sure (P ) and temperature (T ) conditions relevant for the base of the lithosphere and employ

adiabatic and conductive geotherms. The results show that the total silica concentration and

the geotherm have a strong impact on melt migration. We discuss results of a systematic se-

ries of 1D simulations to investigate the impact of the initial distribution of porosity and total

silica concentration on the melt velocity and present preliminary results form a 2D reactive

porosity wave model.
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Summary

Numerous processes such as metamorphic reactions, fluid and melt transfer and earthquakes

occur at a subducting zone, but are still incompletely understood. These processes are af-

fected, or even controlled, by the magnitude and distribution of stress and deformation mech-

anism. To eventually understand subduction zone processes, we quantify here stresses and de-

formation mechanisms in and around a subducting lithosphere, surrounded by asthenosphere

and overlain by an overriding plate. We use two-dimensional thermo-mechanical numerical

simulations based on the finite difference and marker-in-cell method and consider a 3200 km

wide and 660 km deep numerical domain with a resolution of 1 km by 1 km. We apply a com-

bined visco-elasto-plastic deformation behaviour using a linear combination of diffusion creep,

dislocation creep and Peierls creep for the viscous deformation. We consider two end-member

subduction scenarios: forced and free subduction. In the forced scenario, horizontal velocities

are applied to the lateral boundaries of the plates during the entire simulation. In the free

scenario, we set the horizontal boundary velocities to zero once the subducted slab is long

enough to generate a slab pull force large enough to maintain subduction without horizontal

boundary velocities. A slab pull of at least 1.8 TN·m−1 is required to continue subduction in

the free scenario. We also quantify along-profile variations of gravitational potential energy

(GPE). We evaluate the contributions of topography and density variations to GPE variations

across a subduction system. The GPE variations indicate large-scale horizontal compressive

forces around the trench region and extension forces on both sides of the trench region. Corre-

sponding vertically-averaged differential stresses are between 120 and 170 MPa. Furthermore,

we calculate the distribution of the dominant deformation mechanisms. Elasto-plastic defor-

mation is the dominant mechanism in the upper region of the lithosphere and subducting

slab (from ca. 5 to 60 km depth from the top of the slab). Viscous deformation dominates

in the lower region of the lithosphere and in the asthenosphere. Considering elasticity in the

calculations has an important impact on the magnitude and distribution of deviatoric stress;

hence, simulations with increased shear modulus, in order to reduce elasticity, exhibit consid-

erably different stress fields. Limiting absolute stress magnitudes by decreasing the internal
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friction angle causes slab detachment so that slab pull cannot be transmitted anymore to the

horizontal lithosphere. Applying different boundary conditions shows that forced subduction

simulations are stronger affected by the applied boundary conditions than free subduction

simulations. We also compare our modelled topography and gravity anomaly with natural

data of seafloor bathymetry and free-air gravity anomalies across the Mariana trench. Elas-

ticity and deviatoric stress magnitudes of several hundreds of MPa are required to best fit the

natural data. This agreement suggests that the modelled flexural behaviour and density field

are compatible with natural data. Moreover, we discuss potential applications of our results

to the depth of faulting in a subducting plate and to the generation of petit-spot volcanoes.

Keywords

Numerical modelling; Subduction zone processes; Lithospheric flexure; Rheology: mantle;

Dynamics: gravity and tectonics

2.1 Introduction

Subduction zones are critical locations on Earth where the oceanic lithosphere dives into the

convecting mantle and, hence, contributes to the cooling of the Earth and to the recycling of

rocks and water (e.g. Stern, 2002; Turcotte and Schubert, 2014; Crameri et al., 2019). Many

geophysical and geochemical processes are related to subduction zones, such as hydration of

the mantle wedge and associated melt generation related to arc magmatism (e.g. Plümper

et al., 2016), major earthquakes observed at different depths in the subducting slab and at

megathrusts (e.g. Youngs et al., 1997), water transport in subducting slabs along faults (e.g.

Faccenda et al., 2009) or the generation of petit-spot volcanoes, which might be associated

with plate flexure around subduction zones (Hirano et al., 2006; Yamamoto et al., 2014). How-

ever, many of these processes are still incompletely understood. Processes inside and around

subducting plates are, to a larger or smaller extent, controlled by the magnitude and the

type of stress (extensive, compressive or shear) and by the dominant deformation mechanism
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(elastic, frictional-plastic or viscous). Since it is not possible to study stress and deformation

mechanisms around subduction zones in situ, indirect approaches like geophysical imaging

(e.g. Kearey et al., 2009) and numerical modelling in two-dimensions (2D) (e.g. Gurnis et al.,

2004; Yamato et al., 2007; Schmeling et al., 2008; Gerya, 2011) and 3D (e.g. Schellart et al.,

2007; Yamato et al., 2009; Duretz et al., 2014) are frequently used to study subduction sys-

tems. Numerical models are suitable to quantify the magnitude of stress and the associated

distribution of deformation mechanisms for subduction systems (e.g. Č́ıžková et al., 2007;

Garel et al., 2014). A better understanding of the magnitude of stress, their distribution and

their associated dominant deformation mechanisms in subduction systems might ultimately

help us to understand subduction-related geophysical and geochemical processes.

The main aim of this study is to quantify stresses and to determine the distribution of stress

and dominant deformation mechanism around flexural regions in a subducting plate. Al-

though there are numerous studies of numerical subduction simulations, only few numerical

models quantified the distribution of stress (e.g. Hassani et al., 1997; Funiciello et al., 2003;

Sobolev et al., 2006; Č́ıžková et al., 2007; Babeyko and Sobolev, 2008; Farrington et al., 2014;

Holt et al., 2015) and deformation mechanisms (e.g. Č́ıžková et al., 2007; Garel et al., 2014).

Like all models, they have limitations in their hypotheses, such as neglecting elastic deforma-

tion (e.g Č́ıžková et al., 2007; Chertova et al., 2012; Garel et al., 2014; Holt et al., 2015), no

or only one creep deformation mechanism (e.g. Hassani et al., 1997; Funiciello et al., 2003;

Farrington et al., 2014), a prescribed slab geometry (e.g. Sobolev et al., 2006; Babeyko and

Sobolev, 2008), no free surface boundary condition (e.g. Č́ıžková et al., 2007; Holt et al.,

2015) or a yield stress being a function of depth only (e.g. Č́ıžková et al., 2007; Garel et al.,

2014) and not a function of the total pressure (negative mean stress). Here, we build on the

above mentioned models, but without the mentioned limitations with the aim to make a step

further in calculating stress and dominant deformation mechanisms at subduction systems.

We apply a high-resolution (1 km grid spacing) 2D thermo-mechanical numerical model of

the lithosphere-asthenosphere system and we consider five deformation mechanisms: elas-

tic, frictional-plastic (Mohr-Coulomb criterion), diffusion creep, dislocation creep and Peierls

creep. We apply a local iteration strategy to correctly calculate the partitioning of the strain
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rate between these five deformation mechanisms, because calculations without such iterations

overestimate the calculated stress (Schmalholz and Duretz, 2017). Furthermore, we consider

two subduction scenarios, which represent two end-member conditions with respect to the

forces driving subduction: (1) forced subduction whereby the subducting plate is pushed by

far-field horizontal velocity (e.g., by ridge push), and (2) free subduction whereby subduction

is driven only by the negative buoyancy of the subducting plate itself (slab pull). We initiate

free subduction by forced subduction but set the far-field velocity to zero once slab pull is

large enough to drive free subduction. We quantify the required minimum slab pull force

to drive free subduction for our model configuration. We also quantify along-profile varia-

tions of gravitational potential energy (e.g. Molnar and Lyon-Caen, 1988; Molnar et al., 1993;

Schmalholz et al., 2014, 2019) across the subduction system, because these GPE variations

cause horizontal forces and, hence, stresses. We also investigate whether differentiating cri-

teria between forced and free subduction exist and what these criteria are. Furthermore, we

evaluate the impact of elasticity and yield stress on the deformation and stress field around

subduction zones. We do not configure our model to fit a particular subduction system, but

in order to evaluate whether the modelled subductions are applicable to natural subduction

zones, we finally compare the modelled topography and gravity anomalies with natural data

from the Mariana subduction zone, which is a type-example for an ocean-ocean subduction

system and has often been used for comparison with theoretical models (e.g. Funiciello et al.,

2003; Turcotte and Schubert, 2014).

2.2 Mathematical model

2.2.1 Governing equations for numerical simulations

We use the 2D thermo-mechanical code MDoodz, which is based on the finite difference and

marker-in-cell method (e.g. Duretz et al., 2011b; Gerya, 2019). The steady-state force balance

equation is
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∂σij
∂xj

+ ρgi = 0 (2.1)

where i and j run from 1 to 2, 1 indicates horizontal and 2 vertical dimension, σij are the

components of the total stress tensor, xj represents the spatial coordinates, ρ is the density and

gi = [0,−g] is the gravitational acceleration vector with g being the gravitational acceleration.

The conservation of mass for incompressible material is

∂vi
∂xj

= 0 (2.2)

where vi are the components of the velocity vector. The temperature evolution equation is

ρc
dT

dt
=

∂

∂xi

(
k
∂T

∂xi

)
+HD +HR (2.3)

where d/dt represents the total time derivative, c the specific heat, k the thermal conductivity,

HR the radiogenic heat production and HD the heating due to viscous and plastic dissipative

work (here we assume that all dissipative work is converted into heat, i.e., Taylor-Quinney

coefficient is 1, since we do not model grain size reduction). The density is calculated with

the following equation of state:

ρ = ρ0[1 + β(P − P0)] · [1− α(T − T0)] (2.4)

where ρ0 is the reference density at a reference pressure P0 and temperature T0, P is the

pressure (negative mean stress), T is the temperature, α is the thermal expansion and β is

the compressibility. The components of the total stress tensor are

σij = −Pδij + τij (2.5)
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where δij is the Kronecker delta (δij =1 when i = j and δij =0 when i 6= j) and τij are

the components of the deviatoric stress tensor. We consider a visco-elasto-plastic rheology

described by a Maxwell model (Moresi et al., 2003; Popov and Sobolev, 2008):

ε̇ij = ε̇vis
ij + ε̇el

ij + ε̇pl
ij =

1

2η
τij +

1

2G

Dτij
Dt

+ γ̇
∂Q

∂τij
(2.6)

where superscripts ε̇vis
ij , ε̇el

ij and ε̇pl
ij indicate viscous, elastic and plastic deviatoric strain rate

tensors, respectively. The quantity η represents the effective viscosity, G is the shear modulus,

t is the time, D/Dt indicates the objective time derivative (e.g. Schmalholz et al., 2001), Q

is the plastic flow potential and γ̇ is a plastic multiplier rate. Frictional-plastic yielding is

described by a Drucker-Prager criterion with the yield stress, τyield

τyield = C cos(Θ) + P sin(Θ) (2.7)

where C is the cohesion and Θ is the angle of internal friction. The yield function, F , is

expressed as F = τII − τyield and the plastic potential is formulated as Q = τII, being the

square root of the second invariant of the deviatoric stress tensor. Plastic deformation occurs

whenever F ≥ 0. The plastic multiplier rate is computed as γ̇ = 2ε̇II −
τyield−τIIold

Gdt +
τyield
η or

simply γ̇ = F
ηve , where ηve = ( 1

η + 1
Gdt)

−1, τij
old are advected and rotated stress components

from the previous time step and dt is the time step. Subsequently, the plastic strain rate

tensor is evaluated as ε̇pl
ij = γ̇ ∂Q

∂τij
= γ̇

τij
2τII

. In practice, the stress state is mapped back onto

the yield surface by modifying the effective viscosity as

η = ηpl =
τyield

2ε̇eff
II

(2.8)

where ε̇eff
II is the square root of the second invariant of the effective strain rate tensor, defined

as

ε̇eff
ij = ε̇ij +

τij
old

2Gdt
(2.9)
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The viscous deformation is a linear combination of flow laws for diffusion creep (Hirth and

Kohlstedt, 2003), dislocation creep (Hirth and Kohlstedt, 2003) and Peierls creep (Kameyama

et al., 1999):

ε̇vis
ij = ε̇dif

ij + ε̇dis
ij + ε̇pei

ij
(2.10)

Diffusion creep (i.e. linear creep) is given by

ε̇dif
ij = FdifAdifτ

ndif
ij d−mdif exp

(
−
E∗dif + PV ∗dif

RT

)
(2.11)

Dislocation creep (i.e. power law creep) is given by

ε̇dis
ij = FdisAdisτ

ndis
ij d−mdis exp

(
−
E∗dis + PV ∗dis

RT

)
(2.12)

Peierls creep (i.e. low-temperature plasticity or exponential creep) is given by

ε̇pei
ij = FpeiApei exp

[
−Epei

RT
(1− γ)npei

](
τij
γσpei

)S
(2.13)

with

S =
Epei

RT
(1− γ)(npei−1)npeiγ (2.14)

In the above flow laws, F is a transformation factor to transform flow laws fitted form rock

deformation data to flow laws for tensor components (e.g. Schmalholz and Fletcher, 2011;

Gerya, 2019), A is a material constant determined from laboratory measurements, n is the

stress exponent, d is the grain size, m is the grain size exponent, E is the activation energy,

V is the activation volume, R is the gas constant, γ is an adjustable constant (Kameyama

et al., 1999) and σpei is the Peierls stress (see values in Table 2.1).

Due to the occurrence of non-Newtonian creep mechanisms, eq. 2.6 is generally non-linear.

We thus employ a local iteration method (Popov and Sobolev, 2008; Schmalholz and Duretz,
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Table 2.1: Parameters used in the numerical simulations for the plastic and viscous rhe-
ology, namely dislocation creep, diffusion creep and Peierls creep. Parameters used for dry
dislocation and dry diffusion mechanisms are from Hirth and Kohlstedt (2003). Parameters
used for Peierls creep are from Kameyama et al. (1999).

Adopted values of rheological and physical parameters

Viscous rheology Lithosphere, Asthenosphere and Weak zone and weak hydrated
crust

Dislocation Diffusion Peierls Units

F invariant for-
mulation cor-
rection factor

1/6·2(1/n)·3(n−1/2n) 1/6·2(1/n)·3(n−1/2n) 1/6·2(1/S)·3(S−1/2S) -

A pre-
exponential
constant

1.1·10−16 1.5·10−15 5.7·1011 [s−1·Pa−n·mm]

n stress expo-
nent

3.5 1 2 -

m grain size ex-
ponent

0 3 - -

E activation en-
ergy

530·103 375·103 5.4·105 [J·mol−1]

V activation vol-
ume

11·10−6 4·10−6 0 [m3
·mol−1]

γ adjustable
constant

- - 0.1 -

σpei the Peierls
stress

- - 8.5·109 [Pa]

Plastic rheology Lithosphere Asthenosphere Weak zone /
Sediments

Units

C cohesion 1·107 1·106 1·106 [Pa]

Θ Angle of inter-
nal friction

30 5 0 [°]

Constants Units

R universal gas
constant

8.31 [J·mol−1·K−1]

α thermal
expansion

8·10−6 [K−1]

β compressibility 1·10−11 [Pa−1]

d grain size 5·10−3 [m]

HR radiogenic
heat produc-
tion

1·10−10 [W·m−3]

G shear modulus 3·1010 [Pa]

g gravity 9.81 [m·s−2]
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2017) that ensures correct additive decomposition of the strain rate tensor and computation of

stress tensor.The resulting effective viscosity for dissipative deformation mechanism is equal

to the pseudo-harmonic mean of the viscosities of each dissipative deformation mechanism:

η =

(
1

ηdis
+

1

ηdif
+

1

ηpei
+

1

ηpl

)−1

(2.15)

where ηdis, ηdif , ηpei and ηpl are the effective viscosities calculated with the corresponding

second invariant of strain rate tensor for each deformation mechanism for the viscous and

the plastic deformations. In the performed simulations, we apply a minimum cut-off of the

viscosity at 1019 Pa·s and a maximum cut-off at 1025 Pa·s, allowing for viscosities in the

models with six orders of magnitude difference.

The applied method allows to calculate iteratively the individual strain rates of each defor-

mation mechanism at a given temperature and total strain rate. Figures 2.1a-d shows the

individual strain rates of each dissipative deformation mechanism, a) dislocation, b) diffusion,

c) Peierls creep and d) frictional-plasticity in a temperature versus total strain rate space.

We perform these calculations for a temperature range of 300-1′800◦C and a total strain rate

ranging from 105 to 10−50 s−1 assuming a constant pressure of 1 GPa. Several mechanisms

can be active simultaneously (Fig. 2.1). For illustrative purposes, we apply here a stress

of 500 MPa to indicate the limit between the frictional-plastic and viscous domains. In the

2D numerical simulations, the plastic yield stress is pressure-sensitive and varies in space

and time. To visualize the dominant deformation mechanism, we compare at each point in

the strain rate versus temperature domain the four individual strain rates and identify which

mechanism provides the highest strain rate. The mechanism associated with the largest strain

rate is the dominant mechanism, as shown in the dominant deformation mechanism map dis-

played in Figure 2.1e. Diffusion creep is the dominant mechanism at high temperatures for

low strain rates (in orange). Dislocation creep is dominant at high temperatures and higher

strain rates (in red). Peierls creep is dominant at low temperature and moderate strain rates

(in dark blue) and the plastic domain is dominant at low temperature and high strain rates

(in light blue).
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Figure 2.1: Individual strain rates of dissipative deformation mechanisms for (a) disloca-
tion creep, (b) diffusion creep, (c) Peierls creep and (d) plastic deformation as function of
temperature and total strain rate for the applied rheology of the mantle. In panels (a-d),
the highest individual strain rates for each deformation mechanism are shown in dark blue,
while the slower are in light beige. Calculations made at a pressure of 1 GPa with a grain
size of 5 mm. The panel (e) shows the corresponding dominant deformation mechanism
map as identified by the legend. The black and white curves are lines of constant stresses
with label values in MPa. For illustrative purposes a brittle-plastic yield stress of 500 MPa
is assumed.

2.2.2 Calculation of slab pull and gravitational potential energy

We quantify two types of forces around subduction zones, one resulting from slab pull force

and one resulting from spatial variations of the gravitational potential energy.

We calculate the slab pull force (per unit length) through time with the following integral for

a specific time step (approximated by a sum for the numerical calculation):

~FSP =

∫ HLAB

HSb

∆ρ gdV ≈
∑

∆ρ g dx dz nlith (2.16)

where ∆ρ is the density difference between the density at each point (either the density of

the lithosphere or the density of the asthenosphere) and the reference density depth profile

on the left side of the model, and dx and dz are the numerical grid spacings, respectively.
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We calculate the slab pull only in the asthenosphere, between the bottom of the model (HSb)

and the initial depth of the lithosphere–asthenosphere-boundary (HLAB). We consider only

numerical cells that include lithospheric material for the calculation of the slab pull force by

using the integer nlith, which is 1 for cells including lithospheric material and 0 otherwise.

The gravitational potential energy per unit area (GPE) corresponds to the depth-integrated

lithostatic pressure PL Nm−2, which is calculated as

PL(x, z) =

∫ St(x)

z
ρ(x, z′)gdz′ (2.17)

The GPE is then

GPE(x) =

∫ St(x)

Sb
PL(x, z)dz + const (2.18)

where St(x) is the topography of the model which can vary in the horizontal (x) direction,

z is the depth and Sb is the base of the model (for details see Schmalholz et al., 2014). To

calculate the topography in our simulations, we apply a numerical algorithm, which includes

an Eulerian-Lagrangian free surface implementation, which allows resolving topographic vari-

ations at the sub-grid level (Duretz et al., 2016).

The along-profile variation of GPE, ∆GPE, is calculated by subtracting a reference GPE

value from all other values. We choose here the GPE value on the left model side as reference

value. Along-profile variation of ∆GPE can be due to a horizontal variation of density or

a variation of the topography. The ∆GPE provides an estimate for the horizontal driving

force per unit length (e.g. Molnar and Lyon-Caen, 1988; Schmalholz et al., 2014, 2019) in

the subduction system associated to the density variation at depth due to subduction and

to the associated spatial variation of topography. Regions with a negative ∆GPE are under

compression and regions with a positive ∆GPE are under extension.
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2.3 Model configuration

2.3.1 Configuration of the thermo-mechanical models

The size of the model domain is 3’200 km in width and 660 km in height with a numerical

resolution of 1 km by 1 km, yielding 2.112 million cells. The time step is calculated according

to a Courant criterion of 0.4 in the model. We fixed the initial thickness of the lithosphere to 80

km following the seismic study from Kawakatsu et al. (2009) which localized the lithosphere-

asthenosphere-boundary (LAB) at this depth for the Pacific lithosphere subducting below

Japan. A 5 km thick layer of weak material (cohesion of 1·106 Pa and internal friction angle

of 0◦; see Table 2.1) is placed on the top of the lithosphere to mimic weak hydrated crust

(Crameri et al., 2012). The main aim of this modelling study is to quantify stresses and

determine dominant deformation mechanisms in flexural lithospheric regions. Therefore, we

apply a simple density and temperature model for the sub-lithospheric region. Initially, the

temperature of the asthenospheric mantle (Tast) is homogeneous and for simplicity fixed at

1’450◦C. For the temperature of the lithospheric mantle, we consider also for simplicity a

linear gradient from 0◦C at the surface to the temperature of the asthenospheric mantle

(Tast) at the LAB (80 km depth). The initiation of subduction was facilitated by prescribing

an oblique weak zone with an initial thickness of 10 km in the horizontal middle of the model

(Fig. 2.2b). The weak zone is characterized by a low plastic strength (see eq. 2.7 and Table

2.1) and has the same properties as the weak upper layer.

We use dry olivine for the viscous flow laws of the lithosphere and asthenosphere with the

rheological parameters reported in Table 2.1 (Hirth and Kohlstedt, 2003; Goetze and Evans,

1979 regularized by Kameyama et al., 1999). We employ the dry olivine flow law because

the weaker wet olivine is commonly too weak in numerical subduction models and does not

generate a coherent slab, but rather generates the dripping of the mantle lithosphere (e.g.

Burov, 2010).

We consider two end-member subduction configurations to compare the stress and defor-

mation mechanism in forced and free subduction models. In the forced subduction model,

subduction is driven by a horizontal velocity acting at the sides of the lithosphere. Therefore,
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Figure 2.2: Panel (a) shows the time-line sketch of our simulations. Panels (b) and (c)
show the model configurations (b) for the forced subduction and (c) for the free subduction.
Dark blue areas indicate the lithosphere. Brown areas indicate the initial weak zone. Light
blue areas indicate the asthenosphere. Weak domain’s size in panel (c) is 30 km.

the slab velocity is controlled by the applied boundary velocity. In contrast, subduction is

only driven by the negative buoyancy of the dense lithosphere in a free subduction model.

Therefore, the slab velocity can evolve freely and is controlled by the interaction of buoyancy,

flexural and viscous resistance stresses in and around the slab. In the forced subduction

model, we apply a symmetrical horizontal velocity on the lithosphere at both sides of the

model (Fig. 2.2b). We choose symmetrical boundary conditions (Chertova et al., 2012) to

have a straight slab as imaged in Japan with tomography (Liu and Zhao, 2016). The total

convergence velocity is 10 cm·yr−1, as observed in Japan for the Pacific plate (Gripp and

Gordon, 1990). These velocity profiles are implemented by specifying a material in-flux in

the top part of the model sides until a depth of twice the thickness of the lithosphere. To en-

sure conservation of the mass, an equivalent out-flux is applied in the lower part of the model

sides (Fig. 2.2b). For the boundary conditions, we use free slip at the model bottom and

specific velocity profiles at the left and right model sides (Fig. 2.2b). At the top of the crust
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we use a free surface boundary condition (Duretz et al., 2016, Fig. 2.2b), because previous

numerical studies show that the surface topography is controlled by the geometry, rheology

and density of the slab (e.g. Zhong and Gurnis, 1994) and that a free surface condition is

required to calculate realistic stresses in subducting slabs (Crameri et al., 2017).

For our model configuration (Fig. 2.2b), subduction will not initiate without horizontal

boundary velocities, because there is initially no slab and, hence, no slab pull. Therefore,

we initiate subduction in all the simulations with a weak zone in the lithosphere and with

external velocities compressing the lithosphere (e.g. Toth and Gurnis, 1998). This model

scenario is comparable to the compression-induced mode according to the classification of

subduction initiation modes of Stern and Gerya (2018). To initiate free subduction, we first

impose boundary velocities and then set the boundary velocities to zero once the slab is large

enough to drive subduction without imposed boundary velocities. To constrain the moment

when slab pull forces are sufficient to drive subduction, we perform several simulations in

which we set the boundary velocities to zero after different simulation times (Fig. 2.2c), im-

plying the absence of material flux across lateral boundaries. We also include a weak domain

(30 km thick) adjacent to right model boundary, which decouples the lithosphere from the

lateral boundary and avoids prescribing a slab-retreat dominated subduction (Fig. 2.2c). To

determine the conditions required for free subduction development, we start the model with

forced subduction, save the configuration at different times (Fig. 2.2a) and then use the saved

configurations in the free subduction model to evaluate whether subduction continues or not.

To test the impact of the applied boundary conditions, we also performed two simulations

with different boundary conditions: one forced subduction simulation for which the horizontal

velocity is only applied at the right model side and one free subduction simulation for which

we add a weak zone at both lateral model sides. An overview of the performed simulations is

given in Table 2.2.
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Table 2.2: The main model differences of the nine simulations performed for this study.

Simulations Type tfree Elasticity Friction
angle Litho-
sphere

Boundary
velocity

Boundary
weak
zone

S0 (Ref) forced - yes, G = 3·1010 30° both sides none
S1 free 1.25 Ma yes, G = 3·1010 30° none right side
S2 free 1.17 Ma yes, G = 3·1010 30° none right side
S3 forced - yes, G = 3·1012 30° both sides none
S4 forced - yes, G = 3·1013 30° both sides none
S5 forced - yes, G = 3·1010 5° both sides none
S6 forced - yes, G = 3·1010 1° both sides none
S7 forced - yes, G = 3·1010 30° right side none
S8 free 1.25 Ma yes, G = 3·1010 30° none left and

right side

2.3.2 Configuration for the gravity anomaly calculations

With the simulation results we also compute synthetic gravity anomalies in order to compare

them with real data, in particular across the Mariana trench. For the gravity anomaly cal-

culations, we use the algorithm of Won and Bevis (1987), based on the method of Talwani

et al. (1959). The calculation uses the model geometry and corresponding density field of

the numerical mesh at the final time step. To avoid edge effects, the model sides have been

extended to great distances (10’000 km each side), which ensures the far-field fit of the gravity

field. The topography in our model corresponds to the seafloor, therefore, we add a water

layer of 5 km thickness with respect to the far-field, undeformed seafloor with a density of

1’000 kg·m−3. We then calculate the gravity contribution of all numerical elements at virtual

measurement stations (10 km spacing) at sea-level to obtain a synthetic free-air anomaly

profile, which can be then compared to the anomaly profile obtained from natural data.

2.4 Results

We performed nine simulations whose characteristics and differences are listed in Table 2.2.

We employed the colour-maps “lapaz” and “vik” of Crameri (2018) for the visualization.
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2.4.1 Quantification of slab pull force and gravitational potential energy

We first compare three different simulations (Fig. 2.3) using identical material parameters,

namely simulation S0 for forced subduction scenario (Figs. 2.3a-c) and simulations S1 and

S2 for free subduction scenarios (Figs. 2.3d-i). The only difference between S1 and S2 is

the time at which we set the horizontal boundary velocities to zero. The time at which free

subduction starts is termed tfree and it is equal to 1.25 Ma in S1 and 1.17 Ma in S2. In S0

(Figs. 2.3a-c), subduction develops with a relative retreat of the trench to the right of the

model. This retreat is caused by the velocity imposed on the left side of the box. This trench

retreat is not observed in S1 and S2 because no more lithosphere is created on the left side

of the box due to the change of boundary conditions (Figs. 2.3d-i). The evolution of slab

geometry differs between models S0 and S1. At the beginning of the simulations (Figs. 2.3a

and d) slabs are similar in both models. The time of these two panels (Figs. 2.3a and d) is not

identical because for S1 we display the first time step of the free subduction simulation, which

has a different numerical time step (due to the Courant criterion which is velocity dependent)

than the forced subduction simulation. With progressive time, the dip and curvature of the

slabs evolve differently. S0 shows a more straight and vertical slab with a smaller curvature

in the deeper regions, while S1 shows a slab dip in the opposite direction than the one in the

shallower region (Fig. 2.3f). This curl-type motion is associated with the configuration of

the free subduction model, which requires the asthenospheric material to fill the region of the

detached slab at the top right region of the model.

Figures 2.3g-i shows a scenario of a failed model of free subduction development (S2). The

only difference between S1 and S2 is the time at which the horizontal boundary velocities are

set to zero (tfree). These simulations show that the difference between a successful or failed

free subduction simulation is linked to the slab pull force, associated only to the negative

buoyancy of the slab after tfree. To determine the slab pull force required to develop a free

subduction in our model configuration and to evaluate the impact of rheological parameters,

we first calculate the slab pull force for three different forced subduction simulations (Fig.

2.4b), namely S0, S4 and S5 (Table 2.2).
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Figure 2.3: Visualisations of the forced subduction model in panels (a-c), the free subduc-
tion model where the subduction continues (successful) with tfree = 1.25 Ma in panels (d-f),
and the free subduction model where the subduction stops and delaminates (failed) with
tfree = 1.17 Ma in panels (g-i). Material parameters are similar in all three simulations. The
time evolution is chosen for different slab length. Panels (a), (d) and (g) show results for
a slab of 75 km, the length of the slab required to initiate the free subduction. Panels (b),
(e) and (h) show results for a slab of 310 km and subplots (c), (f) and (i) show results for a
slab of 550 km. White lines show the isothermal contours for 200, 800 and 1′440◦C.

In S4 we increased the shear modulus to G = 3 · 1013 Pa, in order to decrease the impact

of elasticity, and in S5 we reduced the friction angle to 5°. The three simulations show a

similar increase of the slab pull force as function of time up to ca. 4 Ma (Fig. 2.4b). After 4

Ma, S5 differs from the other two simulations and shows a larger slab pull for the same time.

We apply several free subduction starting times (tfree corresponding to squares and circles in

Fig. 2.4a) for the reference forced subduction simulation S0 in order to evaluate the required

slab pull force for free subduction (Fig. 2.4a). For the applied model configuration, a slab

pull force larger than 1.8 TN·m−1 is required to develop a free subduction in the case of S0.

The time to generate this slab pull force in S0 is ca. 1.15 Ma using a horizontal boundary

velocity of 5 cm·yr−1 at each side of the model. If the slab pull is not large enough before the

horizontal boundary velocities are set to zero, then the subduction slows down and ceases,

temperature conduction heats up the slab, as illustrated by the shift of the isotherm for

1’440°C in the asthenosphere (Fig. 2.3h), and the base of the lithosphere starts to delaminate.
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Figure 2.4: Diagrams showing the evolution of slab pull force with time, panel (a) is
a zoom from panel (b). These diagrams evaluates the conditions required to develop a
free subduction from the forced subduction simulation of reference S0 (in black). Free
subduction simulations start after a period during which plates are pushed until initiation
of free subduction. The different points in panel (a) show the slab pull force for different
starting times (tfree, see Fig. 2a). This tfree is the duration of plate push to initiate
the subduction in the initial part of the free subduction model simulation. Squares show
conditions where free subduction failed, while circles show conditions where free subduction
occurs. Black arrow indicates the minimum slab pull force needed to obtain a successful
free subduction in S0 model. Inset figures, similar to panels (e) and (h) from Fig. 3, show
examples of successful and failed free subduction models. White lines show the isothermal
contours for 200, 800 and 1’440◦C.

In contrast, when slab pull is larger than 1.9 TN·m−1 in S0, the subduction continues. The

vertical velocities associated with the delamination for a failed free subduction model are

significantly slower than velocities of the subducting slab (compare times in Figs. 2.3c, f and

i).

The quantification of along-profile variations of GPE, ∆GPE, in the litho-

sphere–asthenosphere system allows quantifying the along-profile variation of horizontal

driving forces in the system. Hence, regions under overall horizontal compression or extension

are identified and the corresponding horizontal forces are quantified. To investigate these
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forces around the modelled subduction system, we quantify the relative contribution of

(i) density variations below the initial lithospheric thickness due to subduction and (ii)

topography variations due to lithospheric flexure to ∆GPE. To quantify contributions due

to sub-lithospheric density variations we calculate ∆GPE by integrating PL from the model

bottom up to a depth of 80 km, the initial lithosphere thickness. The relative variation of

the total ∆GPE and the topography agree in the right side of the subduction trench for

both forced and free subduction model (Figs. 2.5 and 2.6).

This agreement indicates that the variation of total ∆GPE is controlled by the variation of

topography created by the flexure of the lithosphere, and that the flexure of the subducting

plate does not affect the density field below the lithosphere. In contrast, relative variations

of total ∆GPE and the topography on the upper plate side of the trench do not agree. If

a significant slab has developed, then the variation of total ∆GPE on the upper plate side

of the trench agrees with the ∆GPE beneath 80 km because the variation in total ∆GPE

is there controlled by deep density variations due to subduction of the cold slab. The GPE

calculation shows that the subduction system is characterized by three regions with respect to

∆GPE variations and associated horizontal driving forces: (1) extensional horizontal driving

forces related to the flexural bulge of the subducting plate, (2) compressive horizontal driving

forces in the trench region associated to the negative topography of the trench region and

(3) extensional horizontal driving forces in the overriding plate region related to deep density

variations caused by the subducted plate (Figs. 2.5 and 2.6). The maximal difference in

total GPE for the forced subduction is ca. 80 TN·m−1 and for the free subduction ca. 110

TN·m−1 (Fig. 2.5c and 2.6c). The division of these values by the model height of 660 km

provides a minimum estimate for the vertical average of the horizontal differential stress caused

by subduction-related variations of GPE. These vertically-averaged horizontal differential

stresses are ca. 121 MPa and 167 MPa for the forced and free subduction, respectively. These

vertically-averaged differential stresses are required to maintain the subduction zone and to

avoid that the subduction system disappears immediately and returns to a state of static

equilibrium, which is characterised by vertical density variations only and no topography.



2.4. RESULTS 47

Figure 2.5: Panels (a-c) show the evolution in time, same condition then Figs 2.3a-c,
of the variations of total ∆GPE, ∆GPE beneath 80 km and topography for the forced
subduction model. Vertical left (black) axes are for the ∆GPE values and vertical right
(red) axes are for topography values. Panels (d-f) show the evolution of density in the
region of the subduction zone at corresponding model times. White line is a temperature
iso-contour for 1′440◦C representing the LAB. Black lines are iso-contours of density (3’400,
3’600 and 3’800 kg·m−3).

2.4.2 Analyses of strain rate, deformation mechanisms, effective viscosity

and horizontal deviatoric stress

Strain rate

We quantify the strain rate field with the square root of the second invariant of the deviatoric

strain rate tensor, ε̇II, for the forced (Figs. 2.7a-c, S0) and the free subduction model (Figs.
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Figure 2.6: Panels (a-c) show the evolution in time, same condition then Figs 2.3d-f, of the
variations of total ∆GPE, ∆GPE beneath 80 km and topography for the free subduction
model. Vertical left (black) axes are for the ∆GPE values and vertical right (red) axes
are for topography values. Panels (d-f) show the evolution of density in the region of the
subduction zone at corresponding model times. White line is a temperature iso-contour
for 1′440◦C representing the LAB. Black lines are iso-contours of density (3’400, 3’600 and
3’800 kg·m−3).

2.7d-f, S1). High values of ε̇II indicate regions of intense deformation whereas low values

indicate regions of little deformation. The distribution and magnitude of ε̇II, hence, indicates,

for example, whether the deformation around a subduction system and within the slab is

either more or less homogeneous or strongly heterogeneous. For both S0 and S1 the strain

rates in the upper region of the lithosphere are small away from the subduction zone (Fig.

2.7). These low strain rate regions feature high viscosity, dominantly elastic deformation
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(see following sections, Figs. 2.9 and 2.10) and an essentially rigid, plate-like behaviour. In

S0, strain rates are generally highest in the lower region of the lithosphere and in the upper

regions of the asthenosphere (Figs. 2.7a-c). These high strain rates are due to the applied

horizontal boundary velocity profile, which move material into the model domain in the upper

model region and, to conserve mass, move material out of the model in the lower regions (see

Fig. 2.2b). For S1, the strain rates in the upper plate region, in the front of the subducting

slab, are significantly smaller because no material in- and out-flow is considered (Figs 2.7d-f).

However, strain rates are also high in the lower regions of the subducting plate (right model

region) where the underlying asthenosphere is being sheared by the subducting plate (Figs.

2.7d-f).

Figure 2.7: Second strain rate invariant evolution for the forced subduction model, (a-c),
and for the free subduction model, (d-f), same configuration as Figs 2.3a-f. White lines show
the thermally controlled LAB defined as the 1’440◦C isotherm.

Deformation mechanisms

To study the relative importance of the five modelled deformation mechanisms, namely elas-

tic deformation, frictional-plastic deformation, diffusion creep, dislocation creep, and Peierls

creep we plot the individual strain rates for each deformation mechanism separately using

Equation (2.6) (Fig. 2.8).
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Figure 2.8: Zoom into the subduction zone of the forced subduction model for the time
step corresponding to Fig. 2.7c. In panels (a-f) the results of individual strain rates for
the different deformation mechanisms are displayed. Panel (a) shows total strain rate, (b)
elastic strain rate, (c) plastic strain rate, (d) diffusion strain rate, (e) dislocation strain rate
and (f) Peierls strain rate. Panel (g) shows distribution of deformation mechanism (elastic
domain in yellow, plastic domain in light blue, dislocation creep in red, Peierls creep in dark
blue and diffusion creep in orange) and panel (h) shows effective viscosity (Equation 2.15).
White or black lines correspond to the thermally controlled LAB (1’440◦C isotherm).

Figure 2.8a shows the total strain rate corresponding to the results shown in Figure 2.7c for S0.

Strain rates due to elastic deformation are significant in the upper regions of the lithosphere

in the subduction zone (Fig. 2.8b). Strain rates due to frictional-plastic deformation are

significant (i) in the weak zone between the overriding and subducting plate and (ii) in the

uppermost region of the subducting plate where the plate starts to subduct (Fig. 2.8c). This

region corresponds to the outer hinge zone of the subducting plate. In the lower region of

the lithosphere and upper region of the asthenosphere, both diffusion and dislocation creep

are significant (Figs. 2.8d and e). Strain rates due to dislocation creep are generally higher

than the ones for diffusion creep. High strain rates due to dislocation creep are in the mantle

lithosphere and in the mantle wedge corner (Fig. 2.8e). Strain rates caused by Peierls creep

are significant only (i) in small areas in the region where the plate subducts and (ii) in a small
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area around the hinge region of the subducting plate (Fig. 2.8f). Around the subduction zone,

each of the five deformation mechanisms is dominant in some region (Fig. 2.8g). Therefore, all

five deformation mechanisms are important for lithosphere deformation around the subduction

zone. For comparison, the corresponding effective viscosity field is also shown (Fig. 2.8h).

Upper regions of the lithosphere with high effective viscosity correspond generally to regions

in which elastic deformation is dominant. Low viscosity regions correspond to regions in

which dislocation and diffusion creep is dominant.

Figure 2.9: Distribution of deformation mechanism evolution for the forced subduction
model, (a-c), and for the free subduction model, (d-f), same time as Figs 2.3a-f. White lines
correspond to the thermally controlled LAB (1’440◦C isotherm).

Considering the entire model domain, the distribution of dominant deformation mechanism is

similar for S0 and S1 (Fig. 2.9) except for dislocation creep. The deformation associated with

dislocation creep corresponds to the region with the highest strain rate in Fig. 2.7. Frictional-

plastic deformation is dominant in three different regions: in a thin zone (ca. 5 km thick) on

the top of the lithosphere corresponding to the model weak crust, in the triangular weak zone

mimicking an accretionary prism between the subducting and overriding plates, and in the

outer hinge zone caused by flexure of the downgoing slab. In this hinge zone, frictional-plastic

deformation associated with the development of normal-fault-type shear zones propagates

downwards to ca. 30 km depth. Elastic deformation is dominant in the upper regions of
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the lithosphere down to a depth of ca. 60 km, measured orthogonally from the top of the

lithosphere. Elastic deformation is dominant in the subducting slab to depths of more than

500 km (Figs 2.9c and f).

Effective viscosity

The effective viscosity has contributions from all the considered viscous and plastic deforma-

tion mechanisms and thus depends on the strain rate, temperature and pressure. Since these

quantities vary in space and time, it is not trivial to predict lithospheric regions, which are

mechanically strong or weak, or to predict the absolute values of the effective viscosity. In our

simulations, the effective viscosity varies by six orders of magnitude (Fig. 2.10). The viscosity

below the lithosphere, in regions unaffected by the subducted slab, exhibits an increase as

function of increasing pressure with depth. This increase from ca. 1019 to 1022 Pa·s at the

base of the model is due to the increase of pressure with depth controlled by the activation

volume, V (Table 2.1). Overall, the effective viscosity distribution is similar for S0 and S1.

Figure 2.10: Effective viscosity evolution for the forced subduction model, (a-c), and for
the free subduction model, (d-f), same time as Figs 2.3a-f. Black lines correspond to the
thermally controlled LAB (1’440◦C isotherm).
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Horizontal deviatoric stress

To identify regions in horizontal compression or extension and to quantify stress magnitudes

we analyse the distribution of the horizontal deviatoric stress, τxx. The bending of the slab

around the subduction zone causes flexural stresses and this bending also generates a topo-

graphic high, the so-called flexural fore-bulge, in the slab region in front of the subduction

zone (e.g. Turcotte and Schubert, 2014). Therefore, we also analyse in the following this

topographic bulge to assess how much topographic variation is associated with the calculated

stress distribution and magnitudes. The link between surface topography and rheological

behaviour of the subducting slab has been also demonstrated by previous studies (e.g. Zhong

and Gurnis, 1994; Crameri et al., 2017). Absolute values of τxx are largest in the upper part

of the lithosphere where the subducting lithosphere is bending and is colder (Fig. 2.11).

During the initial stages of subduction, both S0 and S1 show the characteristic pattern of

bending (e.g. Burov, 2011; his figure 5), or flexure, around the hinge zone of the subducting

plate (Figs. 2.11a and d). The outer hinge region is under extension (positive τxx) and

the inner hinge region is under compression (negative τxx). When subduction evolves and

slabs become longer, the plate straightens back, or unbends, causing a stress pattern in

the opposite sense (Figs. 2.11c and f; e.g. Faccenda et al., 2012): the upper part of the

lithosphere is under compression and the lower part under extension. In S0, the horizontal

regions of the subducting plate are under compression during the initial stages of subduction

(Fig. 2.11a). With progressive subduction, the stress state of the horizontal region changes

from compression to extension and extensive values of τxx become larger with progressive

subduction (Figs. 2.11b and c). This change in stress state is likely due to the increasing slab

pull, which starts pulling the subducting plate once it is larger than the compressive stresses

due to the applied boundary velocities. The orientation and magnitude of the principal

stresses, σ1 and σ3, confirm the result of distribution of τxx (Figs. 2.11g and h). If the

horizontal regions of the lithosphere are in compression, then σ1 is approximately horizontal

(Fig. 2.11g). For extension, σ3 is horizontal. The orientation of the principal stresses shows

that these principal stresses are always either parallel or orthogonal to the local dip of the
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Figure 2.11: Comparison of horizontal deviatoric stress between the forced subduction
model (panels a-c) and the free subduction model (panels d-f) depicted at similar time as
Figs 2.3a-f. Black lines correspond to the thermally controlled LAB (1’440◦C isotherm).
Areas in red, positive values, show regions associated with extension while areas in blue,
negative values, show compression. Panels (g) and (h) show the principal stresses σ1 in blue
and σ3 in cyan associated, respectively, to panels (c) and (f). The background shows phases
and white lines show the isothermal contours for 200, 800 and 1’440◦C.

subducting plate so that the strong regions of the slab act as a stress guide (Figs. 2.11g and

h).

Impact of elasticity

Rocks generally deform visco-elastically, and the time scale over which elastic stresses are

relaxed can be estimated to the first order by the so-called Maxwell relaxation time, which

is the ratio of the effective viscosity to the shear modulus, η/G. Using 1023 Pa·s as represen-

tative, average effective viscosity for the slab and 3·1012 Pa for G provides a relaxation time

of ca. 100 kyr. One could, therefore, argue that elastic stresses are largely relaxed during

subduction processes with durations of several millions of years and that, hence, elasticity
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might not be important for slab deformation during subduction (e.g. Schmeling et al., 2008).

To study the impact of elasticity in our models, we performed two forced subduction simu-

lations: one with a shear modulus, G in Equation (2.6), which is two orders of magnitude

larger than in the reference simulation, i.e. 3·1012 Pa, and one with a shear modulus, which is

three orders of magnitude larger than in the reference simulation, i.e. 3·1013 Pa (Fig. 2.12).

In the simulations with unrealistically high shear modulus of 3·1012 and 3·1013 Pa the elastic

behaviour is significantly less dominant because the Maxwell relaxation time, during which

elastic stresses relax, is significantly shorter (e.g. Jaquet et al., 2016).

We compare the topography of the subducting plate from the three numerical simulations

with the analytically calculated flexural geometry fitting the Mariana trench (Turcotte and

Schubert, 2014) and obtain reasonable agreement (Fig. 2.12a). However, the height of the

flexural bulge, ca. 800 m, is higher in the reference simulation than in the simulations with

G = 3·1012 Pa and G = 3·1013 Pa, ca. 400 m. The lateral topographic variation around the

bulge region is considerably smaller in the simulations with unrealistically high values of G,

indicating that elasticity has a strong impact on the flexural behaviour in the bulge region.

The depth of the trench is similar for the three simulations.

The overall distribution of the horizontal deviatoric stress, τxx, in the subducting plate is

similar for the three simulations (Fig. 2.12b to d). However, the absolute values of τxx are

smallest for the reference simulation and the reduction of the impact of elasticity increases

stress values (Figs. 2.12b-d). In the simulation with G = 3·1013 Pa, the overriding plate

exhibits significant larger compressive stresses than in the simulation with a standard elastic

shear modulus. The regions dominated by elastic deformation are replaced mostly by the

frictional-plastic deformation mechanism when the impact of elasticity is reduced (Figs. 2.12e-

g), except in the deeper regions of the subducting lithosphere where elastic deformation is

replaced by Peierls creep (Figs. 2.12e-g). The results show that the implementation of

elasticity significantly affects both the magnitude of stresses and the distribution of non-

elastic deformation mechanisms.
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Figure 2.12: Comparison between three forced subduction models with different elasticity
parameters. Results of simulation S0 correspond to the black topography profile in panel (a),
the horizontal deviatoric stress in panel (b) and the distribution of deformation mechanisms
in panel (e). Results of simulation S3, with an unrealistically high shear modulus of G
=3·1012, correspond to the pink topography profile in panel (a), the horizontal deviatoric
stress in panel (c) and the distribution of deformation mechanisms in panel (f). Results
of simulation S4, with an unrealistically high shear modulus of G =3·1013, correspond to
the red topography profile in panel (a), the horizontal deviatoric stress in panel (d) and
the distribution of deformation mechanisms in panel (g). Time step for panels (b) and (e)
are the same as in Fig. 2.3c. Time step for panels (c and f) and (d and g) are chosen to
have approximately the same depth of the slab as in panels (b and e) for reference. The
dashed line in panel (a) shows the best fit of elastic flexure from the analytical formula from
Turcotte and Schubert (2014) (Fig. 3.35 and equation 3.159, xb = 55 km and wb = 0.5
km). In panel (a) the horizontal position of the zero was displaced to match the position of
the trench (but not for the other panels). In panels (b-d) areas in red, positive values, show
regions associated with extension while areas in blue, negative values, show compression.
In panels (b-g) white or black lines correspond to the thermally controlled LAB (1’440◦C
isotherm).

Impact of friction angle

The absolute magnitudes of stress, especially maximal values, in the mantle lithosphere are

still contentious. One reason for this is that different laboratory flow laws for mantle rocks

predict stresses that can be up to one order of magnitude different for the same temperature,

strain rate and pressure (e.g. Mei et al., 2010; Jain et al., 2017). Furthermore, different authors

apply stress cut-offs in the mantle, for example, to match tectonic plate size distribution in
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mantle convection simulations (e.g. Mallard et al., 2016) or apply reduced friction angles (≤

15◦), which further reduce with progressive plastic strain (down to 2◦), in order to indirectly

consider the weakening effects of fluids or other strain softening mechanisms (e.g. Erdős et al.,

2014). Moreover, since the effective friction angle depends on fluid pressure, the appropriate

friction angle for the mantle lithosphere is debated and, hence, different friction angles are

often used for the mantle lithosphere in numerical models of subduction (e.g. Li et al., 2010).

To test the impact of absolute stress magnitudes, we performed two more simulations with a

reduced friction angle for the lithosphere (Fig. 2.13). The friction angle is reduced to limit

maximal stress values but not to mimic any particular natural process. The standard value

for the friction angle is 30◦ and we decrease this angle to 5◦ (Figs. 2.13c and f) and 1◦ (Figs.

2.13d and g) in the two additional simulations. The reduction of friction angle changes the

topographic profiles around the flexural bulge of the subducting plate (Fig. 2.13a). A friction

angle to 5◦ generates a shorter flexural wavelength whereas a friction angle of 1◦ does not

generate a realistic flexural topography at all. These results are in broad agreement with

results of Crameri et al. (2017) who, amongst others, also show a larger bulge and flexural

wavelength with larger friction angle (their figure S10).

The reduction of friction angles reduces, as expected, the maximal absolute values of τxx (Figs.

2.13b-d) and changes the distribution of dominant deformation mechanism (Figs. 2.13e-g).

In the simulation with a friction angle of 1◦ a continued subduction cannot be established

because the slab is thinned in the trench region and detaches, or breaks-off (Fig. 2.13g). The

reduction of stress magnitudes makes the slab mechanically so weak that the slab pull force

cannot be transmitted anymore to the horizontal regions of the lithosphere, the slab pull

cannot drive horizontal plate motion anymore so that the slab detaches. For a friction angle

of 5◦ maximal absolute deviatoric stress magnitudes are between 50 and 100 MPa. Also, for

a friction angle of 5◦ the region with dominant frictional-plastic deformation is significantly

larger than for a friction angle of 30◦ (Fig. 2.13e and f). Particularly, the region of slab

unbending (between 50 and 100 km depth and 200 km < x < 250 km in Fig. 2.13f) shows

significant firctional-plastic deformation, which is not the case for a friction angle of 30◦

(between 50 and 100 km depth and 200 km < x < 250 km in Fig. 2.13e). Maximal absolute
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Figure 2.13: Comparison between three forced subduction models where we change the
friction angle of the lithosphere. Results of simulation S0 correspond to the black topog-
raphy profile in panel (a), the horizontal deviatoric stress in panel (b) and the distribution
of deformation mechanisms in panel (e). Results of simulation S5 correspond to the pink
topography profile in panel (a), the horizontal deviatoric stress in panel (c) and the dis-
tribution of deformation mechanisms in panel (f). Results of simulation S6 correspond to
the red topography profile in panel (a), the horizontal deviatoric stress in panel (d) and the
distribution of deformation mechanisms in panel (g). Time step for panels (b) and (e) are
the same as in Fig. 2.3c. Time step for panels (c and f) and (d and g) are chose to have
the same depth of the slab than in panels (b and e) as reference. Same references as in
Fig. 2.12 for the dashed line in panel (a). The horizontal position of the zero in panel (a)
is displaced to correspond to the position of the trench (but not for the other panels). In
panels (b-d) areas in red, positive values, show regions associated with extension while areas
in blue, negative values, show compression. In panels (b-g) white or black lines correspond
to the thermally controlled LAB (1’440◦C isotherm).

deviatoric stress magnitudes of a few hundred MPa seem to be required in order to generate

a flexural wavelength corresponding to the Mariana trench, as is the case in the model with

standard elastic shear modulus.

Impact of boundary conditions

We have also performed a forced subduction simulation (S7, Table 2.2) and a free subduction

simulation (S8) using different boundary conditions than in reference models (S0, S1). In S7

we apply a horizontal velocity only at the right model side, but with a value of 10 cm·yr−1
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so that the absolute convergence velocity is identical to the one of S0. After ca. 2.8 Ma the

stress field and the slab geometry are similar for S0 and S7 (Fig. 2.14a and c). However,

after ca. 4 Ma the slab geometry and, hence, the associated stress field are different (Fig.

2.14b and d). In S8 we apply a weak zone at both lateral model sides so that the slab and

overriding plate can detach from both lateral model sides. After ca. 6.9 Ma and ca. 8 Ma

both simulations S1 and S8 exhibit a similar slab geometry and stress field. These additional

simulations indicate that the applied boundary conditions have a significant impact on the

forced subduction simulations but not on the free subduction simulations.

Figure 2.14: (Next page.) Colour plot of horizontal deviatoric stress for forced and free
subduction with different boundary conditions. Panels (a) and (b) show results of forced
simulation S0 corresponding to the model where horizontal boundary velocities are applied
on both sides of the model. Panels (c) and (d) show results of the same forced simulation,
except that a horizontal boundary velocity is only applied on the right side of the model
(simulation S7, Table 2.2). This velocity is twice as large as the one of model S0 to maintain
the same absolute convergence velocity. Panels (e) and (f) show results of free simulation
S1 corresponding to the model where the lateral detachment of the slab by a weak zone
is implemented at the right side of the model. Panels (g) and (h) show results of a free
simulation where this detachment is applied at both sides of the model (S8). Time step for
panels (a), (b), (e) and (f) same as Figs 2.3b, c, e and f. Time step for panels (c), (d), (g)
and (h) are chose to have the same corresponding depth of the slab (310 km and 425 km) for
comparison. The areas in red, positive values, show regions associated with extension while
areas in blue, negative values, show compression. Black lines correspond to the thermally
controlled LAB (1’440◦C isotherm).
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Figure 2.14: (Caption previous page.)
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2.5 Discussion

The deformation behaviour, the thermal structure and the mineral composition of the litho-

sphere are only approximately known and, hence, published numerical subduction models

commonly differ in terms of the applied flow laws, temperature and density fields. Our mod-

els were not designed to closely match a specific subduction system and we used standard

rheological models, and simple density and temperature fields. However, we assume that

our mathematical model, the model configuration, the applied boundary conditions, the tem-

perature field, the densities and the applied rheological model, including the different creep

flow laws, generate a subduction process, which should be comparable, to the first order,

to a natural ocean-ocean subduction system. To test whether the modelled effective defor-

mation behaviour, such as flexure of the slab, and the modelled slab pull, controlled by the

model density field, are indeed in broad agreement with natural observations, we compare

our model results with a major subduction system, namely with real data from the Mariana

subduction zone. We chose the Mariana trench because it is a prominent subduction zone

and has been frequently used for the comparison with mathematical subduction models (e.g.

Funiciello et al., 2003; Turcotte and Schubert, 2014). We first compare topography of the

ocean floor to assess the flexural behaviour of the lithosphere. Secondly, we compare modelled

gravity anomalies with anomalies derived from data measured in the field in order to assess

the density field (Figs. 2.15 and 2.16).

For the topography comparison, we use the seafloor topography data from the Mariana trench

(Funiciello et al., 2003; Turcotte and Schubert, 2014). For the visual comparison between

natural and calculated topography profiles, we have used the position of the trench (x = 0)

as a reference (Fig. 2.15). The first-order topography of both forced and free subduction

models fits the natural topography and the analytical solution of Turcotte and Schubert

(2014). Therefore, the applied flow laws and rheological behaviour of our model lithosphere,

controlling the height of the flexural bulge and the flexural wavelength, broadly agree with

the flexural behaviour of a natural oceanic lithosphere.
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Figure 2.15: Comparison of the topography of the Mariana trench with modelled topog-
raphy for the forced (S0) and free (S1) subduction models. The dashed line shows the best
fit of elastic flexure from Turcotte and Schubert (2014) (Fig. 3.35 and equation 3.159, xb
= 55 km and wb = 0.5 km). For comparison all topography profiles are co-located at the
trench.

For the gravimetric comparison, we use the global WGM2012 model for free-air gravity

anomaly, which has a resolution of 2’x2’ (Bonvalot et al., 2012), and compare it with the

synthetic free-air gravity anomalies calculated for our model density field (Fig. 2.16). We

extract ten gravity anomaly profiles perpendicular to the trench from the WGM2012 (Fig.

2.16a). From the numerical models, we calculate two free-air anomaly profiles, one for the

forced and one for the free subduction model (Fig. 2.16b). For comparison, we have co-located

all gravity anomaly profiles at the trench (Fig. 2.16b). Our modelled free-air gravity anoma-

lies agree with the long-wavelength variation of the observed anomaly. Modelled anomalies

exhibit a similar width and amplitude in their spatial variation compared with the natural

free-air gravity anomalies. The shorter wavelength variations and peaks in the natural gravity

anomalies are due to the natural seafloor topography, reflecting the formation and deforma-

tion of the volcanic arc to the West of the Mariana trench and the seamounts to the East on

the Pacific plate (Fig. 2.16a). These peaks vary across the selected 10 observed profiles and

our model has not aimed at reproducing such short wavelength variations.



2.5. DISCUSSION 63

Figure 2.16: Free-air gravity anomaly comparison. Panel (a) shows the location of 10
different profiles across the Mariana Trench, with the WGM2012 free-air anomaly map in
the background. Panel (b) shows in grey the observed profiles across the Mariana Trench, in
red the synthetic profile from the forced subduction model for the time step corresponding
to Fig. 3c, and in blue the synthetic profile from the free subduction model for the time
step corresponding to Fig. 3f. A zoom on the trench was chosen for the horizontal position
and all profiles were centred on the trench.

The comparison of model and natural topography allows evaluating the applicability of the

modelled flexural behaviour of the lithosphere to nature. This modelled flexural behaviour

and the associated topography is controlled by the considered deformation mechanisms, the

flow laws and material parameters (e.g. Zhong and Gurnis, 1994; Crameri et al., 2017). Con-

sequently, the topography comparison allows evaluating whether the employed flow laws and

material parameters are applicable to natural cases. However, since natural topography can

vary significantly between different subduction zones, different subduction zones likely exhibit

different rheological and density characteristics (e.g. Crameri et al., 2019). The free surface

implementation is therefore, well suited for the comparison of model and natural topography.

A modelled free surface topography is also essential for the calculation of along-profile varia-

tions of ∆GPE (Figs. 2.5 and 2.6). The topography controls gravity anomalies, which further

depend on the density field. We calculate the density with an equation of state (EOS), which

depends on T and P (see Equation 2.4). We do not consider mineral phase transformation,

which could affect the localization of deformation in this compressive setting (e.g. Hetényi

et al., 2011). The comparison of gravity anomaly profiles from our model with natural free-air

gravity anomaly profiles obtained across the Mariana trench shows that both of our model

density fields are appropriate; at least for the considered natural subduction zone (Fig. 2.16).
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Our simulations show differences in the forced and free subduction models. However, with

respect to topography (e.g. bulge) or gravity anomalies, these differences are not significant

(Figs. 2.15 and 2.16). The maximal amplitude of the modelled gravity anomaly profile for the

free subduction model is larger than the one for the forced subduction model. However, con-

sidering the lateral variability of natural gravity anomaly profiles across the Mariana trench,

both models fit the natural data to a good level. Alternative to gravity anomalies, ∆GPE

profiles show larger differences between forced and free subduction models, because for a more

vertical slab the ∆GPE anomaly is narrower (Figs. 2.5 and 2.6).

The calculated stress field (Fig. 2.11) shows that the subducting plate’s outer bend of the

hinge zone is under extension and the inner bend is under compression. This deformation

distribution is expected for the subducting plate, but our model allows quantifying the con-

tribution of individual deformation mechanism. The flexural behaviour varies along the sub-

ducting plate and in the downgoing plate the outer region of the plate is under compression

and the inner one under extension (Fig. 2.11). This variation of flexural behaviour along the

subducting slab is in agreement with analytical results of Ribe (2010) who shows that the

sign of the rate of curvature changes along the slab. Ribe (2010) considered a simpler, linear

viscous behaviour of the slab. The comparison with our results, considering five deformation

mechanisms and temperature dependent flow laws, indicates that a linear viscous model can

capture the first order flexural behaviour of a subducting slab. Regions with high compressive

deviatoric stresses of several hundreds of MPa in the downgoing slab next to the subduction

interface (Figs 2.11c and f) can be important for the interpretation of exhumed (ultra-)high

pressure rocks. Subducted crustal rock units in the outer regions of subducting slabs could

experience high stress and, hence, tectonic overpressure (e.g. Schmalholz and Podladchikov,

2013; Moulas et al., 2019) before they are detached from the subducting plate and return to

the surface. If the stress and, hence, the internal resistance of the slab is reduced, then a con-

tinuous subduction is not possible anymore because the slab detaches, and the slab pull force

cannot be transferred anymore to the horizontal region of the lithospheric plate (Figs. 2.13d

and g). This behaviour is consistent with the “shallow breakoff” of Duretz et al. (2011a),

which systematically occurred for weak slabs (young plates). This result agrees also with
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predictions of the analytical model of Ribe (2010) who shows that the subduction velocity

approaches the Stokes velocity of a detached object when the internal resistance of the slab

becomes smaller than the external resistance of the material surrounding the slab.

Stress magnitude and distribution in subducting plates are one of the controlling parameters

of intra-slab processes such as earthquakes, metamorphism or fluid transfer. Our results show

that in a subducting lithosphere all five considered deformation mechanisms are active and

contribute to shape the total stress field (Fig. 2.8). Particularly, our results show that elastic

deformation is the dominant deformation behaviour in large regions of the subducted slab

(Fig. 2.8g). Therefore, models aiming to calculate the intra-plate stress field and intra-plate

processes should consider the impact of elastic deformation on the stress field.

Our model results can contribute to a better understanding of the development of faults

during plate flexure, and its importance for the hydration of the subducting plate. Several

mechanisms have been proposed to bring water from the surface into the mantle, such as

bending-related faulting (e.g. Ranero et al., 2003; Faccenda et al., 2008, 2009), thermal crack-

ing (Korenaga, 2017) or seismic pumping (Sibson et al., 1975). The length and distribution

of faults, which could develop by plate flexure, is therefore important to assess the water

budget of the subducting plate. Furthermore, Peacock (2001) suggested that dehydration of

antigorite (serpentine) by dehydration reactions could be an explanation for intermediate-

depth earthquakes. To constrain the depth of faulting, and therefore the maximum depth

where water could be added to the subducting plate is fundamental to test whether part of

the earthquakes observed between 15 to 25 km depth could be explained by metamorphic

dehydration reaction or not (Peacock, 2001). Our model predicts the formation of faults in

the outer hinge zone of the subducting plate (Figs. 2.8g and 2.9). These faults develop in a

zone of ca. 100 km width around the bulge. These frictional-plastic faults reach a depth of

ca. 40 km. However, the spatial extent of faulting is highly dependent on the elasticity and

plasticity parameters in the model. Figure 2.12 shows that the extent of plastic deformation

changes drastically if the elastic deformation behaviour is modified.
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Flexure of the subducting plate has been also proposed as an important mechanism for the

formation of petit-spot volcanoes (Hirano et al., 2006). Petit-spot volcanoes represent small

volumes of alkaline magmas that have been emitted on the top of the downgoing Pacific

plate in front of Japan (Hirano et al., 2006). These magmas are emitted 300 to 600 km

away from the trench, which could correspond to the region where the plate starts to bend

(Hirano et al., 2006). Petit-spot volcanoes are, therefore, interpreted as the products of

deformation-driven melt segregation of melt initially present at the base of the lithosphere.

Since their first observation in front of Japan, petit-spot volcanoes have been identified in

several subduction zone, such as Tonga (Hirano et al., 2008), Chile (Hirano et al., 2013),

and Sunda trenches (Taneja et al., 2015), or as an accreted petit-spot in Costa Rica (Buchs

et al., 2013). These observations suggest that petit-spot volcanism is a global process around

subduction zones. In this context, the deformation behaviour and its changes along the

lithosphere-asthenosphere-boundary are critical to understand how low degrees of volatile rich

melts can be extracted from the base of the lithosphere. Earlier models suggest that large

flexural curvatures imposed on the pre-flexed lithosphere might instigate brittle fracturing

even at the base of the lithosphere (Hirano et al., 2006; Yamamoto et al., 2014). Our Figure

2.8g shows, however, that deformation around the base of the lithosphere (from 50 km depth

to the LAB) is likely controlled by diffusion and dislocation creep. Propagation of brittle

faults down to the base of the lithosphere is, therefore, unlikely. Consequently, percolation of

melts within the basal viscous region of the lithosphere, before its extraction by faults when

the melts reach the elastic domain, seems a more realistic model for petit-spot formation. A

possible mechanism of melt transport in the viscous region could be ascent in the form of

porosity waves (e.g. Connolly and Podladchikov, 2007). The viscous percolation model is in

agreement with recent multiple saturation laboratory experiments which show that petit-spot

melts equilibrate last with the mantle phases (olivine, orthopyroxene, and clinopyroxene) at

pressures between 1.8 and 2.1 GPa and at temperatures around 1’280–1’290◦C, which are

P-T conditions corresponding to the lithosphere rather than the top of the asthenosphere

(Machida et al., 2017). Another argument in favour for the ascent and equilibration of low

degree melts at the base of the lithosphere is the presence in petit-spot lavas with xenoliths
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showing evidence of metasomatic enrichment (Pilet et al., 2016). One important question

concerning petit-spot formation is which process or parameter initiates melt percolation in

the basal part of the lithosphere. The porosity at the base of the lithosphere is frequently

considered as too small to allow for silicate melt percolation. Our numerical model allows

quantifying the extension produced by plate flexure. Figure 2.11 suggests that the base of

the lithosphere where the plate starts to bend is slightly in extension, but the effect is very

limited at depths greater than 50 km where absolute magnitudes of τxx are significantly less

than 10 MPa. Nevertheless, the current model considers a homogeneous dry-olivine lithology

and future models considering additionally wet or higher-porosity domains at the base of the

lithosphere, i.e., in the low seismic velocity zone, will be important to constrain the effect of

plate flexure on the stress state at the base of the lithosphere.

2.6 Conclusions

We performed 2D thermo-mechanical numerical simulations of subduction, considering both

forced and free subduction regimes as well as a composite rheological model including elas-

ticity, frictional-plasticity, diffusion, dislocation and Peierls creep. In the forced subduction

regime, we initiate subduction by applying horizontal boundary velocities. The initiation by a

forced subduction must generate an embryonic slab to continue a free subduction simulation,

for which boundary velocities are set to zero and subduction is driven by buoyancy forces of

the slab. For our configuration, the embryonic slab should produce a slab pull force (per unit

length) of at least 1.8 TN·m−1 so that free subduction can occur.

We show that the five employed deformation mechanisms are all important for the evolu-

tion of the subducting lithospheric plate for both forced and free subduction. Particularly,

elastic deformation is important because it affects the flexural behaviour, the magnitude and

distribution of deviatoric stresses and the distribution of dominant deformation mechanisms.

Simulations with an unrealistic, reduced impact of elasticity show significantly larger stress

magnitudes and larger regions with high stresses in the subducting and overriding plate than

corresponding simulations with appropriate elasticity. For our model configuration, the sim-
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ulations with elasticity also fit best the natural flexural bulge and wavelength of the Mariana

subduction zone. Therefore, including elasticity in numerical subduction models seems impor-

tant for an appropriate calculation of stresses, of the distribution of deformation mechanisms

and of flexure in a subduction system.

We also show that a subduction system generates along-profile variations of GPE corre-

sponding to horizontal driving forces in the lithosphere-asthenosphere system. These GPE

variations result from either topography variations associated to plate flexure or from deeper

density variations caused by subduction of the lithosphere into the asthenosphere. For both

forced and free subduction models the GPE variations cause compressive forces in the trench

region and extensive forces in front and behind the trench region. These latter likely have

strong impact on driving petrological processes such as melt migration across the lithosphere,

at significant distance from the trench.

Although our models were not specifically designed for reproducing a particular subduction

zone, the simulation results closely match natural seafloor topography and free-air gravity

anomalies across the Mariana trench. This fit indicates that our model density field and

the applied rheological model generate buoyancy and flexural stresses in agreement with this

particular natural subduction zone. Calculated maximal absolute values of deviatoric stresses

in the bending and subducting lithosphere are approximately 500 MPa. If absolute magni-

tudes of maximal deviatoric stresses are significantly less than 100 MPa, caused for example

by a reduced friction angle, continuation of subduction does not occur because the denser

subducting slab detaches from the lithosphere. Hence, deviatoric stress magnitudes of several

hundreds of MPa are required for a continuous subduction. The uppermost region of the

oblique, subducting slab shows high compressive stress, due to unbending, directly next to

the subduction interface. Such high compressive stress may affect metamorphic reactions in

rock units before they are detached from the subducting slab and exhumed to the surface.
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Abstract

The extraction of low-degree melt from its sources and its transport across the ductile part

of the mantle is a key process in the Earth sciences since it is essential for the formation

of oceanic crust at mid-ocean ridges, of small to large volcanoes in intraplate settings or for

arc magmatism. Metasomatic enrichment of the lithospheric mantle demonstrates that such

low-degree melts chemically interact with the lithosphere. However, the mechanism of melt

migration in the ductile mantle and the involved coupling of physical and chemical processes

remain unclear. Here, we present a thermo-hydro-mechanical-chemical (THMC) transport

model for melt migration, coupled to thermodynamic results obtained from Gibbs energy

minimisation, to investigate the impact of chemical differentiation on melt migration. We

study melt migration by porosity waves within a deformable viscous mantle and use a simple

ternary thermodynamic system of forsterite-fayalite-silica for the solid and melt phases. We

solve the one-dimensional (1D) THMC transport model numerically with a pseudo-transient

finite difference method and Gibbs energy minimisations with linear programming routines

using MATLAB. Model variables, such as solid and melt densities or mass concentrations of

MgO and SiO2 in solid and melt, are all fully variable and mobile, and are functions of pressure

(P ), temperature (T ) and total silica mass fraction of the system (CSiO2
T ). These variables are

pre-computed with Gibbs energy minimisation and implemented in the THMC porosity wave

transport code via parameterized equations, determining the P -T -CSiO2
T dependence of the

model variables. We consider pressure (P ) and temperature (T ) conditions relevant around

the lithosphere-asthenosphere boundary and employ adiabatic and conductive geotherms.

The results show that the total silica concentration and the geotherm have a strong impact on

melt migration by reactive porosity waves. We perform a systematic series of 1D simulations

to quantify the impact of the initial distribution of porosity and total silica mass fraction on

the melt velocity. We further discuss preliminary results of two 2D reactive porosity wave

simulations showing blob-like and channel-like porosity waves.
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3.1 Introduction

The extraction of melt from its sources and melt transport across the mantle to the sur-

face is a key process in Earth sciences (e.g. McKenzie, 1984; Spiegelman et al., 2001; Keller

and Suckale, 2019). The different geodynamic settings with magmatism observed around the

world, such as mid-ocean ridges (MORs), volcanic arcs and intraplate volcanism, indicate that

asthenospheric melts are extracted under significantly distinct pressure, temperature and rhe-

ological conditions. The main difference between melt extraction at intraplate settings and at

MORs is the presence of the lithospheric mantle for the intraplate settings. The geochemical

signature of MOR basalt (MORB) presumably depends on magma source composition, melt-

extraction and differentiation processes intervening between the magma source and the crust

(e.g. Langmuir et al., 1992). MORBs are produced and migrate in the asthenosphere and

temperature (T ) and pressure (P ) variations are, hence, controlled by the mantle adiabat. In

contrast, asthenospheric melts produced in intraplate settings need to cross the continental

or oceanic lithosphere before their extraction to the surface. The lithosphere is character-

ized by a strong temperature gradient and the associated vertical rheological variations from

viscous to elasto-plastic domains (e.g. Burov, 2011). Melt migration in the ductile domain

is presumably controlled by porous flow in a viscous solid (McKenzie, 1984), while hydrous

fracture propagating into the brittle domain allow melt transport to the surface (e.g. Shaw,

1980; Keller et al., 2013). For intraplate volcanoes, only few studies have focused on the mech-

anism of extraction and transport of melt across a thick and cold lithosphere, considering a

visco-elasto-plastic deformation behavior (e.g. Keller et al., 2013). Hence, many aspects of

the thermo-hydro-mechanical (THM) process of melt migration across the lithosphere remain

still little constrained.

In addition to THM processes, melt migration can be affected by chemical (C) reactions, lead-

ing to a reactive melt flow (e.g. Jackson et al., 2018). For example, low-viscosity magma, like

carbonatite or volatile-rich low degree silicate melts, can rise in the upper mantle. However,

such low-degree melts cannot transport significant heat (McKenzie, 1985) and if such melts

rise in the lithospheric mantle with a considerable geothermal gradient, then these melts likely
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interact with the surrounding solid mantle, cool, and crystallize. This melt-solid interaction is

frequently referred to as metasomatism and was documented by various xenoliths sampled by

kimberlites or intraplate basalts worldwide (e.g. Best, 1974; Lloyd and Bailey, 1975; Francis,

1976; Irving, 1980). Metasomatic processes are important to understand the chemical evolu-

tion of the continental lithosphere (e.g. Griffin et al., 2009) and the petrogenesis of alkaline

lavas (e.g. Lloyd and Bailey, 1975; Wass and Roge, 1980; Pilet et al., 2008). However, the

origin of the metasomatic agent(s), the process by which low degree melts percolate across

the lithosphere, and whether metasomatic processes represent a global mechanism at the

asthenosphere-lithosphere boundary (LAB) are still a matter of debate. Therefore, we aim

here to investigate coupled THMC processes during melt migration around the LAB. From a

geometrical point of view, there are two general styles of flow during melt migration in a vis-

cous domain: (1) a spatially distributed flow, characterised by a pervasive percolation of melt

between the crystals of the solid rock (e.g. olivine or pyroxene crystals in a peridotite) and (2)

a spatially focused flow where melt migration is localized in channels, which is documented

in the mantle by the presence of metasomatic veins (Wilshire, 1987; Harte et al., 1993). Ac-

cording to the lithosphere thermal gradient, rising melt cools progressively and crystallizes

mineral phases which are segregated within the lithospheric mantle, producing metasomatic

cumulates sampled by intraplate lavas or observed in mantle outcrops (e.g. Nielson and Noller,

1987; Wilshire, 1987; Nielson and Wilshire, 1993; Harte et al., 1993). Both distributed and

focused flows involve a change in the composition of the melt due to its interaction with the

solid. For distributed flow, the change of composition is achieved by the infiltrating melt that

reacts with the peridotite through an exchange of elements (so-called cryptic metasomatism;

Wilshire, 1987). For focused flow, the change in melt composition occurs through differenti-

ation as phases crystallise (so called percolative fractional crystallization; Harte et al., 1993).

Most models for the metasomatic enrichment were developed based on observations made

in the brittle part of the lithosphere. How metasomatic agents move into the ductile part

of the mantle, how such melt interacts with the solid and how channelizing is generated are

questions still debated.
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The rise of large coherent magma bodies in a viscous solid can be described by diapiric flow

(e.g. Cruden, 1988; Weinberg and Podladchikov, 1994; Miller and Paterson, 1999). However,

the physical process of melt extraction and migration in partially molten viscous rock is com-

monly described by two-phase flow models whereby the melt, representing the fluid phase,

flows through the pore space of the viscous rock, representing the solid phase (e.g. McKenzie,

1984). There are several extraction processes for melt migration in a porous, ductile rock:

(1) porous flow, described by Darcy’s law, controlled by the rate of melt expulsion whereby

the characteristics of solid deformation are of minor importance (e.g. Walker et al., 1978;

Ahern and Turcotte, 1979), (2) melt transport by porosity waves for which volumetric de-

formation of the viscous solid is essential (e.g. McKenzie, 1984; Scott and Stevenson, 1984;

Spiegelman, 1993; Connolly and Podladchikov, 1998, 2007; Keller et al., 2013; Yarushina and

Podladchikov, 2015; Omlin et al., 2017; Jordan et al., 2018), (3) melt migration by reac-

tion infiltration instabilities controlled by depth-dependent solubilities (e.g. Aharonov et al.,

1995, 1997; Kelemen et al., 1997; Spiegelman et al., 2001; Weatherley and Katz, 2012; Jones

and Katz, 2018) and (4) extraction by shear localization and melt segregation generating

melt bands (e.g. Stevenson, 1989; Katz et al., 2006; Holtzman and Kohlstedt, 2007). We

focus here on melt migration by porosity waves. Connolly and Podladchikov (1998) show

that employing a visco-elastic volumetric deformation of the solid enables porosity waves to

travel through rock in the limit of zero initial connected porosity. Low-porosity (i.e. few

percent) scenarios are most relevant for melt migration across the viscous lithosphere. The

application of decompaction weakening (e.g. Connolly and Podladchikov, 1998, 2007) and the

consideration of viscous shear deformation of the solid (Räss et al., 2019) enables a significant

channelization of porosity waves for two- and three-dimensional (2D and 3D) flow. Further-

more, Omlin et al. (2017) show that the coupling of the kinetics of chemical reactions with

fluid flow may enable porosity waves also to potentially arise in low-temperature regimes, so

that the porosity waves are not necessarily limited to the high-temperature viscous regions

(Chakraborty, 2017). Moreover, Jordan et al. (2018) show that mass, and hence melt, can be

transported in 2D and 3D porosity waves; a fact that has been doubted based on 1D porosity
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wave studies. Therefore, porosity waves are a potential mechanism to transport significant

melt in a channelized style across the LAB and the lithospheric mantle.

Here, we present a new numerical THMC model to investigate reactive melt migration by

porosity waves in a viscous solid coupled to heat transfer and to chemical differentiation of

major elements in the melt and solid. Chemical differentiation of major elements is important

for melt migration because it changes the density of the melt and solid. Such density variations

do not occur for trace element transport by porosity waves (e.g. Jordan et al., 2018) applied to

study, for example, the chromatographic separation occurring during percolation (Korzhinskii,

1965; Hofmann, 1972), because trace elements do not alter the density of melt and solid. The

importance of chemical differentiation for the rise of magma in the crust has been highlighted

recently by Jackson et al. (2018). We couple our THMC model with thermodynamic results

calculated by Gibbs energy minimisation. We perform this minimisation with a self-developed

MATLAB code using a linear programming algorithm. The P and T conditions are chosen

to reflect conditions at the LAB. We consider a simple ternary system composition of MgO,

FeO and SiO2 based on the olivine phase diagram system, forsterite (Mg2SiO4) and fayalite

(Fe2SiO4). We consider conditions for which the system is always between solidus and liquidus

so that both melt and solid phase are present simultaneously. We extend this binary system

by adding more SiO2 using experimental data of peridotite in equilibrium with melt at 3 GPa

(Davis et al., 2011). All model variables determined by thermodynamic calculations (e.g.

solid and melt densities, mass fractions of MgO and SiO2 of the melt and the solid) are a

function of P , T and chemical SiO2 composition of the system (CSiO2
T ). These variables and

their dependence of P , T and SiO2 are precomputed and used in the THMC reactive transport

model, so that they can evolve freely with evolving P , T and SiO2. The model, hence, allows

quantifying the impact of variations in the chemical composition on melt migration.

The aims of this study are (i) to present a new numerical THMC-thermodynamic model for

coupled melt migration and chemical differentiation by reactive porosity waves, (ii) to explain

specific features of coupling chemical differentiation with porosity waves and (iii) to discuss

potential applications of our model to melt migration around the LAB. We present the model
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derivation and some systematic results for 1D and show two representative results for 2D

showing blob- and channel-type reactive porosity waves.

3.2 Mathematical model

We develop a 1D mathematical model for THMC reactive transport by porosity waves. The

model is based on the concepts of continuum mechanics, two-phase flow and equilibrium

thermodynamics and follows the same approach in deriving a closed system of equations

as described in Yarushina and Podladchikov (2015); Malvoisin et al. (2015) or Schmalholz

et al. (2020). The complete THMC model consists of two parts: a THMC model for reactive

transport of melt by porosity waves, consisting of a system of partial differential equations, and

a thermodynamic model, based on Gibbs energy minimisation, which provides the required

solid and melt densities, solid and melt mass fractions of MgO and SiO2, and solid and melt

thermal energies, and their respective dependencies on P , T and CSiO2
T .

3.2.1 Thermodynamic model

We apply a thermodynamic model to determine the stable phases for a range of P , T and

composition (X). We start with a simple binary system of olivine (Fig. 3.1a) between

forsterite, the olivine magnesium-rich end-member (Mg2SiO4), and fayalite, the olivine iron-

rich end-member (Fe2SiO4).

We minimize the Gibbs free energy, G, to determine the equilibrium of the binary system.

The Gibbs free energies used for the minimisation are from the thermodynamic database of

Holland and Powell (1998). To calculate this minimisation, we use the linear programming

“linprog” algorithm from MATLAB. We consider a pressure range of 0.1 GPa to 4.9 GPa and

a temperature range of 1’200◦C to 1’700◦C. The X composition varies from 0 to 1, with 0

corresponding to 100% of fayalite and 0% of forsterite and 1 corresponding to 0% fayalite and

100% of forsterite. There are four mineral phases for this solid-melt system; for the solid part

there are forsterite (fo) and fayalite (fa) as well as for the melt (liquid) part there are forsterite
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Figure 3.1: Panel (a) shows the binary system of olivine for a pressure of 3 GPa. Blue
area shows where solid is stable, red area shows where melt is stable and orange area
shows where both solid and melt are stable. Dashed square indicates the region used to
calculate thermodynamic variables employed in the THMC model. Panels (b) and (c) show
respectively, the melt density and the melt mass fraction of magnesium (in the dashed
region), which are independent on X in the region of interest.

(foL) and fayalite (faL) (see Holland and Powell, 1998 for nomenclature). Figure 3.1a shows

the result of the minimisation and emphasizes where the phases are stable for a pressure of

3 GPa. After the minimisation of G, in each point of the P -T -X domain, we extract several

quantities for the melt (with subscript m) and the solid (with subscript s; all listed in Table

3.1): Gibbs energy, Gm and Gs in [J·mol−1], volume, Vm and Vs in [m3
·mol−1], entropy,

Sm and Ss in [ J·mol−1
· K−1] and specific heat capacity, cpm and cps in [J·mol−1

·K−1]. We

calculate the extensive quantities from the Gibbs energies, volume Vm,s =
dGm,s

dP
and entropy

Sm,s = −dGm,s

dT
. The specific heat capacity cpm,s = T

dSm,s

dT
. To have all parameters in mass

units of kilogram, and not in mole, we divide all quantities by their respective melt or solid

molar mass, mm and ms in [kg·mol−1]. With the volume per unit mass, we can then calculate

melt and solid density, ρm,s =
1

Vm,s
in [kg·m−3]. In addition, several molar fractions (in mole
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units) can be obtained from Gibbs minimisation, like melt concentrations of forsterite and

fayalite, C foL
m,[mol] and C faL

m,[mol], and solid concentrations of forsterite and fayalite, C fo
s,[mol] and

C fa
s,[mol]. We transform them into mass fractions in order to use them in the mass conservation

equations of the THMC model. The details of this transformation are presented in Appendix

C, equations C1 to C3.

In the solid-melt THMC model, we focus on the thermodynamic region where melt and

solid coexist (orange area in Fig. 3.1a). In the considered P -T -X domain, this region has

a pressure range of 2.4001 GPa to 3.5001 GPa, a temperature range of 1’535◦C (1’808.15

K) to 1’645◦C (1’918.15 K) and a composition range of 0.26 to 0.36. Figures 3.1b and

3.1c show that the variation in melt density (ρm) and in melt mass fraction of magnesium

(CMgO
m ), respectively, are independent of composition in this range. Accordingly, all other

thermodynamic parameters used in the THMC model are also independent of composition,

such as solid density (ρs), solid mass fraction of magnesium (CMgO
s ) and melt and solid mass

fractions of silica (CSiO2
m ,CSiO2

s ). Therefore, we can reduce our binary P -T -X domain to a

P -T domain for all considered parameters. The independency of densities and mass fractions

on composition X is a result of the Gibbs phase rule (e.g. Müller, 2007) because there is no

degree of freedom for a system with two components (fo and fa) and two phases (solid and

melt) for a given temperature and pressure. Figure 3.2 shows the variation of thermodynamic

parameters used in the THMC code as function of temperature and pressure. All parameters

show an essentially linear variation with P and T (Figure 3.2).

The essentially linear variation allows making a linear approximation for all six parameters by

calculating two values, α and β, whereby α quantifies the variation of a variable with respect

to a variation of temperature, for a constant pressure of reference P0, and β quantifies the

variation of the variable with respect to a variation of pressure, for a constant temperature

of reference T0. The α and β for the six variables are calculated, for example, for the melt

density by (see Fig. 3.2a for details):

αρm =

(
ρm(2, P0)− ρm(1, P0)

∆T

)
/ρm,0 (3.1)
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Figure 3.2: Variation of thermodynamic variables used in the THMC transport code.
Variables are calculated by Gibbs free energy minimization. Enlargement of the region of
coexistence between melt and solid (orange area in Fig. 3.1a). All parameters depend on
temperature and pressure: panel (a) for melt density, panel (d) for solid density, panel (b)
for mass fraction of magnesium in melt, panel (e) for mass fraction of magnesium in solid,
panel (c) for mass fraction of silica in melt and panel (f) for mass fraction of silica in solid.
Black points in panel (a) are used to calculate α and β in equations 3.1 and 3.2.

βρm =

(
ρm(T0, 2)− ρm(T0, 1)

∆P

)
/ρm,0 (3.2)

where ∆T and ∆P are the temperature and pressure differences of domain P -T , ρm(2, P0)−

ρm(1, P0) is density variation as function of temperature, ρm(T0, 2) − ρm(T0, 1) is density

variation as function of pressure and ρm,0 is the density at the reference point T0 and P0. The

same procedure is applied for the other five parameters: the resulting α, β and corresponding

reference points are given in Table 3.2. Figure 3.3 shows the results of this approximation for

each variable.

A particular result for olivine in the considered pressure and temperature range is that solid

density is smaller than melt density (Figs. 3.2 and 3.3). This is a known phenomenon in

the forsterite-fayalite system for high temperature (e.g. Herzberg et al., 1982). For melt to

rise, it should have a smaller density than the solid. To obtain smaller melt densities, we add

another composition dimension to our P -T domain, which is the total silica mass fraction
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Figure 3.3: Linear approximation of data obtained by thermodynamics with α and β. All
variations are in function of temperature and pressure: panel (a) for melt density, panel
(d) for solid density, panel (b) for mass fraction of magnesium in melt, panel (e) for mass
fraction of magnesium in solid, panel (c) for mass fraction of silica in melt and panel (f) for
mass fraction of silica in solid. Black point in the centre of each panel is the reference point
at T0, P0 and CSiO2

T,0 . CSiO2

T,0 corresponds to the total mass fraction of silica in the olivine.

CSiO2
T . Adding more silica to the olivine system allows to change the melt and solid densities

of the system to a more realistic value for a peridotitic system. For simplicity, we did not

included pyroxenes in our thermodynamic calculation.

The total silica mass fraction (CSiO2
T ) is calculated at the reference point T0 and P0 as follows:

CSiO2
T,0 =

CSiO2
m,0 + CSiO2

s,0

CMgO
m,0 + CMgO

s,0 + CFeO
m,0 + CFeO

s,0 + CSiO2
m,0 + CSiO2

s,0

(3.3)

By increasing the total silica mass fraction, the density of melt will become smaller than the

density of solid, allowing the melt to percolate towards the surface. We use an experiment by
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Davis et al. (2011) which provides the composition of a peridotite in equilibrium with the first

magma produced by partial melting at a pressure of 3 GPa and a temperature of 1’450 ◦C.

These experimental compositions are reported as “KLB-1ox” for the solid, and “0% melt” for

melt in Table 1 of Davis et al. (2011). The combination of these data and the values obtained

by our thermodynamic olivine model allows calculating a γ parameter that quantifies the

variation of the six variables, ρm, ρs, C
MgO
m , CMgO

s , CSiO2
m , CSiO2

s , as function of the total

silica mass fraction in the system. To calculate γ for mass fractions of magnesium or silica

for melt and solid, we transform MgO, FeO and SiO2 oxides weight percent of “KLB-1ox”

and “0% melt” into oxides mass fractions (here shown for MgO, same procedure for FeO and

SiO2):

CMgO
m,exp =

CMgO
0%melt,[wt%]

CMgO
0%melt,[wt%] + CFeO

0%melt,[wt%] + CSiO2

0%melt,[wt%]

(3.4a)

CMgO
s,exp =

CMgO
KLB−1ox,[wt%]

CMgO
KLB−1ox,[wt%] + CFeO

KLB−1ox,[wt%] + CSiO2

KLB−1ox,[wt%]

(3.4b)

The total silica mass fraction of experiment, CSiO2
T,exp, is calculated in the same way as shown

in equation 3.3. Then we calculate the γ (here shown for CMgO
m and CMgO

s , same procedure

for CSiO2
m and CSiO2

s shown in Appendix C, equation 3.C4) by:

γ
CMgO

m
=

(
CMgO

m,exp − CMgO
m,0

CSiO2
T,exp − C

SiO2
T,0

)
/CMgO

m,0 (3.5a)

γ
CMgO

s
=

(
CMgO

s,exp − CMgO
s,0

CSiO2
T,exp − C

SiO2
T,0

)
/CMgO

s,0 (3.5b)

To calculate γ for melt and solid densities we proceed in the same way:
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γρm =

(
ρm,exp − ρm,0

CSiO2
T,exp − C

SiO2
T,0

)
/ρm,0 (3.6a)

γρs =

(
ρs,exp − ρs,0

CSiO2
T,exp − C

SiO2
T,0

)
/ρs,0 (3.6b)

The values for the melt and solid densities, ρm,exp and ρs,exp, are not provided in Davis et al.

(2011). We calculate these densities using the values included in our thermodynamic data

base and the mineral mode reported in Table 1 of Davis et al. (2011) (see Appendix C for the

detail of these calculations).

Figure 3.4 shows the linear approximation using γ for the different variables between the

forsterite-fayalite binary olivine system, CSiO2
T,0 =0.33, and the experiment of Davis et al. (2011),

CSiO2
T,experiment=0.56. Figure 3.4a shows the relative change of solid and melt densities and the

value of CSiO2
T =0.41, indicated by the vertical black dashed line, for which melt and solid

densities are equal.

To calculate the melt and solid thermal energies, Um and Us, required for the temperature

calculation, we only consider, for simplicity, their variation with respect to temperature and

density. We use values for the respective melt and solid specific heat at the reference point

T0 and P0, cpm,0 and cps,0 (values are given in Table 3.2), and calculate the thermal energies

by:

Um = ρm · cpm,0 · T (3.7a)

Us = ρs · cps,0 · T (3.7b)
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We apply this simplification of the thermal solid and melt energies because in our model the

temperature deviation from the initial thermal gradient is small because we remain in the

region of coexistence of melt and solid.

Figure 3.4: Linearized dependence of thermodynamic variables on total silica mass frac-
tion, CSiO2

T . Panel (a) densities, melt in red and solid in blue, panel (b) mass fractions of
magnesium, melt in red and solid in blue and panel (c) mass fractions of silica, melt in red
and solid in blue. Black points are reference values of each variable at T0, P0 and CSiO2

T,0 in

Figure 3.3. CSiO2

T,experiment corresponds to the total mass fraction of silica in the experiment of
Davis et al. (2011). The black dashed line indicates at which total silica mass fraction the
melt density becomes smaller than the solid density. The grey dashed line shows the value
selected in the THMC model as the initial total silica mass fraction.



3.2. MATHEMATICAL MODEL 93

In summary, the thermodynamic model calculates eight variables: solid and melt densities,

solid and melt mass fractions of MgO and SiO2, and solid and melt specific heat. The densities

and mass fractions are all a function of pressure, temperature and total SiO2 concentration and

these dependencies will be quantified below by a total of 18 parameters, namely 6 different

values each for α, β and γ (Table 3.2). These 18 parameters will be used in the THMC

transport model.

Table 3.1: Parameters used in the thermodynamic and THMC model

Symbol Meaning Units

ρm, ρs, ρT melt, solid and total densities kg·m−3

CMgO
m , CMgO

s , CSiO2
m , CSiO2

s mass fractions of magnesium or
silica for melt and solid

[ ]

Um, Us melt, solid internal energy J·mol−1

cpm , cps melt, solid specific heat capacity J·kg−1
·K−1

λm, λs, λT melt, solid and total thermal con-
ductivity

W·m−1
·K−1

Gm, Gs melt, solid Gibbs energies J·mol−1

Vm, Vs melt, solid volumes m3
·mol−1

Sm, Ss melt, solid entropy J·mol−1
·K−1

mm, ms melt, solid molar mass kg·mol−1

k permeability m2

ϕ porosity [ ]
vm, vs melt, solid velocity m·s−1

σxx total stress Pa
τ deviatoric stress Pa
g gravitational acceleration m·s−2

PT, Pm, Pe total pressure, melt pressure and
effective pressure

Pa

ηs, ηv, ηm shear viscosity, compaction viscos-
ity and melt viscosity

Pa·s

t time s
T tempeture K

3.2.2 Thermo-Hydro-Mechanical-Chemical model

The applied THMC model is based on a system of conservation equations. The general

derivation of these conservation equations is given in the appendix and below only the applied

equations are given. The conservation of total mass is
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∂

∂t
(ρmϕ+ ρs(1− ϕ)) = − ∂

∂x
(ρmϕvm + ρs(1− ϕ)vs) (3.8)

where t is the time, ϕ is the porosity, x is the spatial coordinate (here the direction parallel to

gravity) and vm and vs are the melt and solid velocity, respectively. The equation conservation

of total mass of MgO is

∂

∂t
(CMgO

m ρmϕ+ CMgO
s ρs(1− ϕ)) = − ∂

∂x
(CMgO

m ρmϕvm + CMgO
s ρs(1− ϕ)vs) (3.9)

and of conservation of total mass of SiO2 is

∂

∂t
(CSiO2

m ρmϕ+ CSiO2
s ρs(1− ϕ)) = − ∂

∂x
(CSiO2

m ρmϕvm + CSiO2
s ρs(1− ϕ)vs) (3.10)

For the conservation of the total masses of MgO and SiO2, we consider only the advective

part of the conservation equation because we assume that diffusion processes are much slower

than advection processes (corresponding Péclet number � 1). The conservation of thermal

energy is

∂

∂t
(Umϕ+ Us(1− ϕ)) = − ∂

∂x
(Umϕvm + Us(1− ϕ)vs − λT

∂T

∂x
) (3.11)

where λT = (λmϕ+λs(1−ϕ)) and λm and λs are the thermal conductivity of melt and solid,

respectively. The conservation of linear momentum of the solid is given by

∂σxx

∂x
= ρTg (3.12)

where σxx is the total stress, ρT = ρmϕ+ρs(1−ϕ) is the total density and g is the gravitational

acceleration. The total stress is given by

σxx = −PT + τ (3.13)
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where PT is the total pressure (i.e. the mean stress) and τ is the deviatoric stress. The

conservation of linear momentum of fluid, also known as Darcy’s law, is given by

ϕ(vm − vs) = −kϕ
3

ηm

(
∂Pm

∂x
+ ρmg

)
(3.14)

where k is the permeability coefficient in a Kozeny-Carman type model, ηm is the melt

viscosity and Pm is the melt pressure. We use the melt pressure as thermodynamic pressure

for the thermodynamic calculations. The system is closed by two constitutive equations. The

first equation is used to calculate the total pressure,

PT = Pm −
∂vs

∂x
(1− ϕ)ηv (3.15)

where ηv is the solid volumetric viscosity (i.e. compaction viscosity). We consider in the

equation for PT only a viscous volumetric deformation since an additional reversible elastic

volumetric deformation is generated by the considered thermodynamic reactions, specifically

the variation of density with melt pressure. Temporal variations of Pm are related via a

compressibility, β, to temporal variations of the densities (Table 3.2 and eq. 3.2). These

density variations are considered in the mass conservation equations and, hence, affect the

volumetric deformation. Therefore, the temporal variation of Pm is indirectly related via

the compressibility and density to the divergence of solid velocities, which effectively corre-

sponds to a reversible elastic relation between melt pressure and divergence of solid velocity

(e.g. β
∂Pm

∂t
= −∂vs

∂x
). Elastic volumetric deformation is, hence, considered indirectly in our

THMC model by the consideration of reversible equilibrium reactions. The second constitu-

tive equation is used to calculate (τ) by

τ = 2ηs
∂vs

∂x
(3.16)

where ηs is the shear viscosity of the solid. For more details on the development of all

equations, see Appendix A.
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3.2.3 Coupled THMC and thermodynamic model and numerical method

The entire system of equations describing the THMC and thermodynamic models has a total

of 14 unknowns; 8 unknowns are determined by the thermodynamic model, namely ρm, ρs,

CMgO
m , CMgO

s , CSiO2
m , CSiO2

s , Um and Us, and 6 unknowns are determined by the THMC model,

namely Pm, ϕ, CSiO2
T , T , vm, vs. In the thermodynamic model the unknowns are determined

by T , Pm and CSiO2
T using pre-computed results from Gibbs energy minimizations (i.e. phase

diagrams of the 8 thermodynamic variables) whereas in the THMC model the unknowns are

calculated by numerically solving a system of coupled partial differential equations.

We use a standard staggered grid finite difference (FD) method (e.g. Gerya, 2019) to solve

the partial differential equations of the THMC model. The numerical algorithm consists of a

standard time loop with an internal pseudo-transient (PT) iterative loop to determine Pm, ϕ,

CSiO2
T , T and vs. This PT method (e.g. Duretz et al., 2019; Räss et al., 2019; Schmalholz et al.,

2020) solves non-linear system of equations in an iterative way without the need of inverting a

numerical coefficient matrix. To use the PT method, we transform the conservation equations

in pseudo-transient equations by adding a pseudo-transient time derivative, with PT time step

∆tPT, for each unknown variable, Pm, ϕ, CSiO2
T , T and vs. The PT equations are

∂Pm

∂∆tP
PT

= − ∂

∂t
(ρmϕ+ ρs(1− ϕ))− ∂

∂x

(
−ρm

kϕ3

ηm
(
∂Pm

∂x
+ ρmg) + ρTvs

)
(3.17a)

∂ϕ

∂∆tϕ
PT

= − ∂

∂t
(CMgO

m ρmϕ+ CMgO
s ρs(1− ϕ))− ∂

∂x
(CMgO

m ρmϕvm + CMgO
s ρs(1− ϕ)vs)

(3.17b)

∂CSiO2
T

∂∆t
C

SiO2
T

PT
= − ∂

∂t
(CSiO2

m ρmϕ+ CSiO2
s ρs(1− ϕ))− ∂

∂x
(CSiO2

m ρmϕvm + CSiO2
s ρs(1− ϕ)vs)

(3.17c)
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∂T

∂∆tT
PT

= − ∂

∂t
(Umϕ+ Us(1− ϕ))− ∂

∂x
(Umϕvm + Us(1− ϕ)vs − λT

∂T

∂x
) (3.17d)

∂vs

∂∆tvs
PT

=
∂

∂x
(−PT + τ)− ρTg (3.17e)

When the PT time derivatives on the left-hand sides of the above equation are zero, the

corresponding equations of the right-hand side are solved. In practice, the iteration will

continue in the PT iteration loop as long as PT time derivatives are not smaller than a specified

numerical tolerance error. In the FD method, we use numerical time steps representing the

physical time step ∆t to approximate the time derivatives, which control the physical time

evolution (i.e. the “real” time derivatives). We employ five PT time steps to solve for Pm,

∆tP
PT, for ϕ, ∆tϕ

PT, for CSiO2
T , ∆t

C
SiO2
T

PT, for T , ∆tT
PT and for vs, ∆tvs

PT. The choice of

these numerical PT time steps is crucial for a stable convergence of the PT iterative solution

but does not affect the result after the convergence. The values of the PT time steps are given

in Appendix B, Table 3.3.The melt velocity can be directly calculated from Darcy’s law (eq.

3.14), which does not require the solution of an additional differential equation.

3.2.4 Model configuration and characteristic values

The algorithm is programmed in such way that all parameters are dimensionless, with the

goal to have the best possible numerical stability and convergence of the algorithm. For that

purpose, we define independent and dependent model parameters. We choose four indepen-

dent parameters that are used to determine all other parameters, namely (1) melt density

times gravitational acceleration, ρmg=1 [ Pa·m−1], (2) permeability divided by melt viscosity,

k
ηm

=1 [m2
·Pa−1

·s−1], (3) solid volumetric viscosity, ηv=1 [Pa·s] and (4) temperature, TA=1

[K]. Next, we specify the following characteristic scales of the model: the characteristic

length, Lc =
√

k
ηm
· ηv=1 [m], the characteristic time, tc = ηv

ρmg·Lc
=1 [s], the characteristic

stress, Pc = ρmg ·Lc=1 [Pa], the characteristic power, Ec = ρmg·Lc
4

tc
=1 [W], the characteristic

thermal conductivity, λc = Ec

Lc·TA =1 [W·K−1
·m−1], and the characteristic density times spe-

cific heat, ρCpc = ρmg·Lc

TA =1 [Pa·K−1]. The characteristic length Lc of the model, also known
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as compaction length in the context of porosity waves (e.g. McKenzie, 1985; Connolly and Pod-

ladchikov, 2007), corresponds to the characteristic distance over which deformation occurs.

Next, we define several dimensionally dependent scales to configure the model. These scales

must be chosen in such way that the considered process can be numerically resolved and that

the applied parameters are applicable to the considered process. Therefore, we apply a model

height Lx = 100 ·Lc and a width of perturbations in the initial distribution of porosity and/or

total concentration of SiO2, w = 10 · Lc so that the characteristic compaction for the two-

phase flow can occur within the model domain and is affect by the size of initial perturbations.

Furthermore, the solid density times gravitational acceleration ρsg =
ρs,0
ρm,0
·ρmg = 0.9423 ·ρmg,

which is a relation calculated for the reference point in the olivine system (see Fig. 3.3a and d).

The shear viscosity is considered equal to the compaction viscosity ηs = ηv = 1. The thermal

conductivity of melt and solid λm = λs = 483 ·λc, which applies to a natural conductivity of 3

[W·m−1
·K−1] if we assume a natural Lc=1 km, ηv=1.25·1020 [Pa·s] and TA=1860 [K] and ref-

erence melt density (Table 3.2). Similarly, the product of density times specific heat for melt

and solid can be determined with reference values in Table 3.2 as ρCpm = 205 · ρCpc = 205

and ρCps =
ρs,0
ρm,0
· Cps,0Cpm,0

· ρCpm = 0.9014 · ρCpm = 184.7906 · ρCpcm.

To further configure the model, we define four initial profiles, namely for temperature, poros-

ity, total silica mass fraction and total pressure (Fig. 3.5). First, we apply a constant porosity

profile with a value of 0.02 and a constant total silica mass fraction profile with a value of 0.45

(in Fig. 3.4 this silica mass fraction corresponds to the grey dashed lines in the region where

melt density is lower than solid density). We then add a perturbation to the porosity and/or

the total silica mass fraction profiles in the form of a Gaussian with its maximum at a depth

of x=-20 (Fig. 3.5g and h). For the simulations presented below, we apply five perturbation

amplitudes for porosity, ∆ϕ (0.005, 0.01, 0.02, 0.03 and 0.04) and five for total silica mass

fraction ∆CSiO2
T (0, 0.25, 0.5, 0.75 and 1; see Fig.3.6 for the systematic scheme of simula-

tions). We define the temperature profile in the model with a temperature difference ∆Tmodel

of 2 between the bottom and the top of our model (Fig. 3.5d). For the initial pressure pro-

file, we calculate the lithostatic pressure across the model with the model total densities and

obtain a pressure difference ∆Pmodel of approximately 90 for all simulations. We performed
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two series of systematic simulations with two different thermal gradients, one representing

an adiabatic and one a conductive gradient. In order to adapt our temperature and pressure

profiles in the model to realistic natural profiles, we must rescale the α and β parameters with

a temperature ratio (∆Tnature/∆Tmodel) and a pressure ratio (∆Pnature/∆Pmodel). ∆Tnature is

different depending on whether it represents an adiabatic or conductive gradient. We apply

a natural pressure variation, ∆Pnature, across our model equal to 1 [GPa], which corresponds

to the pressure range chosen for the thermodynamic data (Figs 3.2 and 3.3). Thus, we can

determine a certain model height (h = P/ρTg, with ρT = ρm,0ϕ + ρs,0(1 − ϕ) and ϕ=0.02)

that we can use to calculate a natural temperature difference, ∆Tnature,1, corresponding to

a realistic adiabatic gradient. We found h ∼28 [km] and ∆Tnature,1 ∼15 [K] for an adia-

batic gradient between 0.5-0.55 [◦C·km−1]. To define the second, larger natural temperature

difference ∆Tnature,2 representing a conductive gradient at the base of the lithosphere, we

multiplied ∆Tnature,1 by ten, thus ∆Tnature,2=150 [K].

3.3 Results

We first present results from the thermodynamic model which consist essentially of the de-

termined values of α, β and γ for the thermodynamic variables (Table 3.2). Subsequently, we

show results from the THMC model.

3.3.1 Linearization of thermodynamic results

The parameters α, β and γ are used to linearize the dependency of the thermodynamic

variables on temperature, pressure and total silica content. For example, for the melt density

the linearized relation is

ρm = ρm,0 + αρm∆T + βρm∆P + γρm∆CSiO2
T

(3.18)

The calculated values of all α, β and γ are presented in Table 3.2. If values of α, β and γ

are positive, then the corresponding parameter will increase with the respective increase of



100 CHAPTER 3.

temperature, pressure or total silica mass fraction (e.g. in Fig. 3.3, ρm increase with increasing

pressure, since βρm is positive). Consequently, if values α, β and γ are negative, then the

associated parameter will decrease with the respective increasing temperature, pressure or

total silica mass fraction (e.g. in Fig. 3.3, ρm decrease with increasing temperature, αρm

is negative). The determined values of α, β and γ provide a transparent overview on the

relative importance and interdependence of the parameters. For example, the α for solid

density αρs and for solid mass fraction of silica α
C

SiO2
s

are 2 to 5 times larger than values of α

for melt density αρm and for melt mass fraction of silica α
C

SiO2
m

. This relationship is opposite

for magnesium mass fraction where α for the melt, α
CMgO

m
, is 1.5 times larger than the solid

one, α
CMgO

s
. We observe the same trend for β, where βρs and β

C
SiO2
s

are 1.5 to 4 times larger

than βρm and β
C

SiO2
m

and β
CMgO

m
is slightly larger than β

CMgO
s

. For the γ the situation is

different, because all γ values for melt (γρm , γ
CMgO

m
and γ

C
SiO2
m

) are 2.5 to 4.5 times larger

than γ values for solid (γρs , γCMgO
s

and γ
C

SiO2
s

). This difference in dependence on P , T and

CSiO2
T between variables related to melt and solid is between a factor of 1.5 and 4.5 and it is,

hence, important to consider this difference in the THMC models.

We use the linearized relations employing parameters α, β and γ, instead of the results

obtained directly from the Gibbs free energy minimization (Fig. 3.2), mainly because of

computational efficiency, since direct usage of Gibbs energy minimisation results would re-

quire numerical interpolations in order to calculate the thermodynamic variables used in the

THMC model. Such data interpolations are computationally time consuming, especially if

the algorithm is extended to 2D (see below) or 3D.

The initial density profile of the model impacts the melt migration. For a constant chemical

composition, the initial density profile is controlled by the initial variation of P and T , but

with opposite trend: from the top to the bottom of the model, the melt and solid densities

increase with increasing pressure but decrease with increasing temperature. We determine for

the applied values of ∆T and ∆P the critical value of ∆T , for which the density is constant

with depth. We use the equation
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ρ = ρ0 + α∆T + β∆P (3.19)

and reformulate the equation to

∆ρ

α
= ∆T +

β

α
∆P (3.20)

We assume no density variation (isochoric system) with a variation of T and P , i.e. ∆ρ
α = 0

and solve the remaining equation for ∆T which yields

∆T = −β
α

∆P (3.21)

If the applied ∆T is larger than the above expression, then the density is decreasing with depth

in the model (the initial density variation is controlled by the temperature variation) and if

∆T is smaller, then the density increases with depth, controlled by the pressure variation.

The above analysis can also be applied to the mass fractions. Choosing ∆P of 1 [GPa] and

using α and β values from Table 3.2, we obtain for the melt density a critical ∆T=98.2 [K],

for the solid density a critical ∆T=72.5 [K], for magnesium melt mass fraction a critical

∆T=45.3 [K], for magnesium solid mass fraction a critical ∆T=63.2 [K], for silica melt mass

fraction a critical ∆T=45.6 [K] and for silica solid mass fraction a critical ∆T=62.6 [K]. We

note that all values of critical ∆T are between ∆Tnature,1 and ∆Tnature,2, respectively, that is

the temperature differences applied for the adiabatic and the conductive gradient. Therefore,

the applied initial adiabatic and conductive geotherms cause a fundamentally different initial

variation of densities and mass fractions with depth.

3.3.2 THMC model results: comparison of initial profiles, maximum melt

velocity and evolution over time

We performed 50 simulations with one time step only to determine the initial profiles of all

the involved model variables, because the initial profiles of, for example, the solid and melt
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velocities represent already an interesting result that needs to be calculated iteratively due to

the nonlinear coupling of the model variables. For four of these simulations we also calculate

the evolution with time to investigate the upward melt migration by reactive porosity waves.

Comparison of initial profiles

We first compare initial profiles from four different simulations, namely simulations termed

S05 with an initial porosity perturbation only and simulations S15 with an initial porosity

and total silica mass fraction perturbations, both for the two temperature gradients, namely

a conductive gradient (Figs 3.5 and 3.12) and an adiabatic gradient (Figs Figs 3.13 and

3.14). The four simulations show similar profiles for melt and total pressure (Fig. 3.5a),

effective pressure, Pe = Pm − PT (Fig. 3.5c), temperature (Fig. 3.5d), porosity (Fig. 3.5g)

and solid velocity (Fig. 3.5i). The effective pressure shows which part of the model is in

compression (Pe is negative) and which part is in dilation (Pe is positive). The main difference

between the four simulations is the maximum magnitudes of the peaks of corresponding

profiles. Maximum magnitudes are larger in the two S15 simulations (Figs 3.5 and 3.14),

with an initial perturbation in porosity and in total silica mass fraction, than in the two S05

simulations (Figs 3.12 and 3.13), with an initial perturbation only in porosity. Differences

between the four simulations are visible in the calculated profiles of densities (Fig. 3.5b), of

magnesium and silica mass fractions (Figs. 3.5e and h) and of melt velocity (Fig. 3.5f). There

is a significant difference between simulations with a conductive gradient (Figs 3.5 and 3.12)

and simulations with an adiabatic gradient (Figs 3.13 and 3.14). Across the model, density

profiles for the conductive gradient (panel b in Figs. 3.5 and 3.12) decrease with increasing

depth, whereas for the adiabatic gradient (panel b in Figs. 3.13 and 3.14), densities increase

with increasing depth. This trend is reversed for melt and solid mass fraction of magnesium

and silica (panels e and h in Figs 3.5, 3.12-3.14). For the conductive gradient, melt and solid

mass fraction of magnesium and silica increase with increasing depth and with the adiabatic

gradient, melt and solid mass fraction of magnesium and silica decrease with increasing depth.

The calculated total magnesium mass fraction (black line in panel e in Fig. 3.5 and 3.12-3.14)

follows the trend of melt and solid mass fractions of magnesium. The calculated total silica
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Figure 3.5: Initial profiles of simulation S15 for a conductive gradient. All variables are
dimensionless. Panel (a) shows melt pressure (red diamond) and total pressure (black line).
Panel (b) shows melt density (red line) and solid density (blue line). Panel (c) shows effective
pressure, positive values indicate decompaction while negative values indicate compaction.
Panel (d) shows temperature. Panel (e) shows magnesium mass fraction in melt (red line)
and in solid (blue line) and total magnesium mass fraction (black line). Panel (f) shows
melt velocity. Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red
line) and in the solid (blue line) and total silica mass fraction (black line). Panel (i) shows
solid velocity.
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mass fraction (black line in panel h in Fig. 3.5 and 3.12-3.14) remains constant except in

the region of the perturbation where the maximum value changes according to the applied

initial perturbations. The melt velocity profiles (panel f in Fig. 3.5 and 3.12-3.14) exhibit the

maximum melt velocity at the position where the maximum initial perturbation in porosity

and/or total silica mass fraction is applied. The maximum melt velocity is greater when

both porosity and total silica mass fraction profiles exhibit initial perturbations (simulation

S15, Figs 3.5 and 3.14). A difference also exist in the overall slope of the melt velocity

profiles between the two different temperature gradients in all four simulations. The melt

velocity decreases with depth for the conductive gradient (Figs 3.5 and 3.12) and increases

with depth for the adiabatic gradient (Figs 3.13 and 3.14). The initial melt velocity profile

shows positive values indicating upward motion of the melt (Figs 3.5, 3.12-3.14 panel e). In

the region where the initial perturbation in porosity and silica mass fraction is applied the

melt velocity is largest. In this region, the solid velocity is negative indicating compaction in

the region where the melt is moving upward, or where melt is extracted (Figs 3.5, 3.12-3.14

panel i). Also, the absolute magnitudes of the melt velocities around the maximal initial

perturbation are approximately one order of magnitude larger than absolute magnitudes of

the solid velocities.

Comparison of maximum melt velocity

Figure 3.6 compares maximum melt velocities of the respective initial profiles for 50 simu-

lations. We made 25 simulations with an adiabatic gradient (Fig. 3.6a) and 25 simulations

with a conductive gradient (Fig. 3.6b). For each thermal gradient, we applied 5 perturbation

amplitudes for the initial porosity, ∆ϕ, and 5 amplitudes for the initial total silica mass frac-

tion, ∆CSiO2
T . The four simulations selected for investigating the time evolution, i.e. S05 and

S15, are represented by the points circled in red (Fig. 3.6). The greater the amplitudes of the

perturbations, the greater the maximum melt velocity. The maximum melt velocity occurs

when both perturbation amplitudes are maximal, which applies for both thermal gradients.

The maximal melt velocities are slightly larger for an adiabatic gradient (Fig. 3.6). The

curved velocity contours in figure 3.6 indicate a nonlinear dependence between the maximal
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Figure 3.6: Panels (a) and (b) show maximal initial melt velocities as function of initial
porosity, ∆ϕ, and total silica mass fraction, ∆CSiO2

T , perturbation amplitudes. (a) for
adiabatic gradient and (b) for conductive gradient. Black lines show the velocity contours
and red circles indicate the initial perturbations for four simulations for which the time
evolution has been calculated; respectively simulations S05 (top left in panels a and b) and
S15 (top in the middle in panels a and b) for both temperature gradients. Panels (c) and
(d) show the power low relationship between melt velocity and a combination of porosity
and total silica mass fraction perturbation amplitude, (c) for adiabatic gradient and (d) for
conductive gradient. In each panel, blue points represent the 25 systematic simulations and
the blue line the linear regression line.

melt velocity and ∆ϕ and ∆CSiO2
T . However, the 25 maximal melt velocities for each thermal

gradient can be collapsed from the two dimensional space (∆ϕ - ∆CSiO2
T ) onto a one dimen-

sional space (Fig. 3.6c and d). The equations of this data collapse are obtained by a linear

best fit of the 25 data points and are given as label of the horizontal axis. The two best-fit

equations show that the difference in maximal melt velocity for the two thermal gradients is

only due to a different sensitivity to ∆CSiO2
T , with exponents 1.1 and 1.2, because the expo-
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nents of ∆ϕ are identical for the two thermal gradients (Fig. 3.6c and d). Overall, for the

chosen parameters, a perturbation in total silica mass fraction has a similar impact on the

maximal melt velocity as a perturbation in the initial porosity.

Time evolution and reactive porosity wave propagation

Figure 3.7 shows the time evolution of the S15 simulation with a conductive gradient. The

additional figures 3.15 to 3.17 show the three other simulations, namely S05 with a conductive

gradient, and S05 and S15 with an adiabatic gradient. The evolution of porosity (Fig. 3.7a)

and of effective pressure (Fig. 3.7b) corresponds to the typical evolution of 1D porosity

waves (e.g. Connolly and Podladchikov, 2013; Jordan et al., 2018). During porosity wave

propagation, the maximum porosity always corresponds to an effective pressure of zero (Fig.

3.7a and b). The compaction at the base of the high porosity region (where Pe is minimum)

allows the melt to rise upward into the high porosity region under decompaction (where Pe

is maximum). Comparing all porosity profiles (panel a in Fig. 3.7 and 3.15 to 3.17), for

the two S05 simulations (Figs 3.15 and 3.16), the maximum porosity decreases slightly with

progressive time and then remains constant, whereas for the two S15 simulations (Figs 3.7

and 3.17), the maximum porosity increases and then decreases slightly. The two simulations

with an adiabatic gradient (Figs 3.16 for S05 and 3.17 for S15) show a stabilisation of the

maximum melt velocity over time, while the two simulations with a conductive gradient (Figs

3.15 for S05 and 3.7 for S15) show a slight increase in melt velocity over time. For the four

simulations (Figs 3.7 and 3.15 to 3.17), the variations of melt density and total silica mass

fraction are small over time compare to the total magnesium mass fraction which show a

slightly greater variation, especially for simulations with an adiabatic gradient (Figs 3.16 and

3.17).

Figure 3.8 shows the time evolution of the melt density (panel a), the total magnesium

mass fraction (panel b) and the total silica mass fraction (panel c) at depth x=10 [ ] for

the four simulations. The variation in melt density (Fig. 3.8a) for the two S05 simulations

(conductive in light blue and adiabatic in grey) and the two S15 simulations (conductive in
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Figure 3.7: Time evolution of six variables in simulation S15 Conductive gradient; all
variables are dimensionless. Panel (a) shows porosity, panel (b) shows effective pressure,
panel (c) shows melt velocity, panel (d) shows melt density, panel (e) shows total magnesium
mass fraction and panel (f) shows total silica mass fraction. Four time steps are chosen at
different dimensional times: t = 0 with dashed line (corresponding to the initial profiles in
figure 3.5 for each variables), t = 1.05 with black line, t = 2.10 with light blue and t = 3.15
with dark blue (see legend).
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Figure 3.8: Time evolution, at a fixed depth of x = 10, of three variables for the four
simulations indicated by red circles in figure 3.6: simulation S05 for adiabatic gradient in
grey, simulation S15 for adiabatic gradient in black, simulation S05 for conductive gradient
in light blue and simulation S15 for conductive gradient in dark blue. All variables are
dimensionless. Panel (a) shows melt density. Panel (b) shows total magnesium mass fraction
and panel (c) shows total silica mass fraction.
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dark blue and adiabatic in black) is very similar. The main difference is the magnitude of

the initial value at time t=0 for the two different thermal gradients. The initial value for

the conductive gradient is larger than the initial value for the adiabatic gradient (ρm of S05

and S15 conductive > ρm of S05 and S15 adiabatic). Similar variations are observed for total

magnesium mass fraction (panel b) for the two S05 simulations (conductive in light blue and

adiabatic in grey) and the two S15 simulations (conductive in dark blue and adiabatic in

black). For melt density, the magnitude of the initial value at time t=0 between the two

thermal gradients are different. The initial value for the adiabatic gradient is larger than the

initial value for the conductive gradient (CMgO
T of S05 and S15 adiabatic > CMgO

T of S05 and

S15 conductive). For the variation of the total silica mass fraction (panel c), the initial value

is identical for all four simulations since this value is specified as initial condition. The local

variation of the total silica masse fraction over time is larger than the initial value (at t =

0) for the simulations with an adiabatic gradient (black and grey lines) and is smaller for

the simulations with a conductive gradient (dark and light blue lines). The maximum peaks

of the two S15 simulations (black and dark blue lines) arrive before the maximum peaks of

the two S05 simulations (grey and light blue lines). This is consistent with the fact that

S15 simulations have a greater initial perturbation, hence the melt velocity is larger and the

maximum peaks arrive first.

3.4 Discussion

3.4.1 Mobility and mass transport

In the modelled chemical system, the mass fractions of MgO and SiO2 in the melt and solid are

variable and are functions of pressure, temperature and total silica content. Our model can

be considered as fully mobile since there are no restrictions on the mobility of MgO and SiO2

so that MgO and SiO2 can be freely exchanged between solid and melt. This full mobility is

an elaboration compared to existing studies on reactive transport with fluid-rock interactions,

who assume that some chemical components are immobile and fixed to the solid phase (e.g.

Plümper et al., 2016; Beinlich et al., 2020). Furthermore, in our model the total mass of
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MgO and SiO2 can locally change permanently due to mass transport by melt migration

since the total mass of SiO2 can change locally permanently. In contrast, other studies on

melt migration with chemical differentiation consider the silica mass fraction as a function

of temperature only (e.g. Jackson et al., 2018). Therefore, for a given temperature the silica

mass fraction cannot change by transport. In our model, the mobility and mass transport

are enabled by a freely evolving porosity, which is calculated from the conservation equation

for the total mass of MgO. For example, inside the considered partial melting region of the

olivine phase diagram (Fig. 3.1), the densities (Fig. 3.1b) and mass fractions of MgO of

solid and melt (Fig.3.1c) are fixed for a given temperature and pressure, independent on the

composition X (Gibbs phase rule). The total mass of MgO is calculated by the mass fractions,

densities and porosity. If the total mass of MgO is locally modified due to an advective melt

flux, and densities and mass fractions of MgO are fixed, then the porosity of the system must

change to enable and balance the mass transport.

3.4.2 Magnesium in melt

For the applied simple chemistry, our thermodynamic model predicts an increase of the mag-

nesium mass fraction in the melt, CMgO
m , with increasing pressure (Figs. 3.5 and 3.12). Partial

melting experiments of peridotite have shown also that the MgO mass fraction in the melt

increases with pressure (Fig. 3.9). The black line in figure 3.9 represents the numerically

modelled profile of CMgO
m for a conductive thermal gradient (simulation S15). Therefore, de-

spite the applied simplified chemistry for the mantle composition, the modelled gradient of

CMgO
m shows a similar trend than the experimental data. Our model shows smaller absolute

values of CMgO
m than the experiments, which is due to the applied simplified chemistry.

3.4.3 2D reactive porosity wave model, channelization and melt-rock in-

teraction

A characteristic feature of porosity wave propagation in 2D and 3D is the possibility to

change the shape of the propagating wave, which can be either blob-like (Fig. 3.10 a-h)
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Figure 3.9: Magnesium melt mass fractions of five partial melting experiments of peridotite
vs. pressure. Filled blue circles are data from Hirose and Kushiro (1993). Filled grey circles
are data from Kushiro (1996). Filled orange triangles are data from Walter (1998). Filled
white circles are data from Wasylenki et al. (2003). The filled red diamond is 0% melt from
Davis et al. (2011). The horizontal evolution of MgO at each pressure correspond to the
increase in partial melting rate. The black line shows the overall gradient of MgO mass
fraction in the melt resulting from our study without the perturbation (corresponding to
the CMgO

m profile in Figure 3.5e).

or channel-like (Fig. 3.10 i-p) (e.g. Connolly and Podladchikov, 2007; Räss et al., 2019).

The shape of the propagating wave is controlled by the ratio of shear to bulk viscosity ratio

(ηs/ηv) and the ratio of decompaction to compaction bulk viscosity (ηd/ηv) (e.g. Räss et al.,

2019). A value of ηd/ηv < 1 is termed decompaction weakening. If both viscosity ratios are

equal to one, the propagation is a blob-like for a circular initial perturbation in porosity. If

decompaction weakening is significant, then the propagating porosity wave forms a channel

(e.g. Connolly and Podladchikov, 2007; Räss et al., 2019). 2D and 3D models of porosity

waves are important to study the mass transport of melt because the effective mass transport

predicted by 1D models is less compared to predictions of 2D models (Jordan et al., 2018).
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Figure 3.10: (Caption next page.)
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Figure 3.10: (Previous page.) Time evolution of two 2D melt migration models by reactive
porosity waves. Panels (a-d) show the porosity and panels (e-h) the total silica mass fraction
for the blob-like simulation at four time steps (0.005, 1, 2 and 3). (ηs/ηv)= 1 and (ηd/ηv)=
1 for the blob-like simulation. Panels (i-l) show the porosity and panels (m-p) the total
silica mass fraction for the channel-like simulation at four time steps (0.005, 5, 15 and 20).
(ηs/ηv)= 25 and (ηd/ηv)= ηv/100= 0.1 for the channel-like simulation. Orange arrows show
melt velocity, yellow arrows show solid velocity and dashed circles the position of initial
perturbations. All variables are dimensionless.

The presented 1D THMC transport model is straightforward expandable to 2D and 3D. The

main difference compared to the 1D model is that the deformation of the viscous solid must

be calculated with a 2D model for viscous flow including both shear and normal deviatoric

stresses. For all other conservation equations simply the 2D advective and diffusive fluxes

must be added. We present here first results of two 2D models to show the localization of

flow from a blob-like (Fig. 3.10 a-d) to a channel-like geometry (Fig. 3.10 i-l), and associated

evolutions of the total silica content (Fig. 3.10 e-h and m-p). The 2D models employ mostly

the same parameters as the 1D model, but, for example, the initial perturbation of the porosity

has the form of a 2D Gaussian. For the model with blob-like geometry, we apply ηs/ηv = 1

and ηd/ηv = 1 and for the model with channel-like geometry ηs/ηv =25 and ηd/ηv =0.1.

Panels (d), (h), (l) and (p) in Fig. 3.10 show the chemical exchange between melt and solid in

both simulations by the different evolution of the porosity and the total silica mass fraction.

This exchange enables an enrichment of total silica in the solid and a differentiation of the

melt in the pores.

The migration of melt by either blob-like or by channelized flow is an important process

to consider for understanding metasomatism in a ductile region. Following the schematic

illustration of Harte et al. (1993) (Fig. 3.11), the focusing of melt arriving in a rock to be

eventually metasomatised (indicated by black arrows) has an impact on the type of metaso-

matism; from a pervasive metasomatism (Fig. 3.11a), through the formation of veins (Fig.

3.11b) to channels (Fig. 3.11c). Another important aspect is the melt-rock equilibration

at every time step in the model. In the 2D simulation presented in figure 3.10, blob-like

migration shows the importance of reaction as the chemical anomaly doesn’t rise with the

porosity but is accommodated by the solid via melt-rock reaction. This is illustrated by the
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Figure 3.11: Schematic illustration showing the various degrees of channelizing of the melt
flow in function of the distribution of melt flux. Redrawn form Harte et al. (1993)

comparison between the location of the porosity perturbation in figure 3.10d and the zone

with higher total SiO2 mass fraction, which is still close to the initial perturbation indicated

by the dashed circle. In contrast, in the channel-like migration the porosity is focusing and

allows the chemical perturbation to rise (Fig. 3.10l and p). The combination of melt-rock

reaction with the type of melt migration seems therefore fundamental to understand the type

of metasomatism recorded in the lithospheric mantle.

An example of melt-rock reaction has been recently considered by Tomlinson and Kamber

(2021) to explain the formation and evolution of the subcontinental cratonic lithospheric

mantle. Xenoliths sampled by kimberlites have revealed that the cratonic lithosphere is

heterogeneous and contains olivine with high magnesium content (Fo92-94), which requires

extensive melting (Boyd and Mertzman, 1987; Herzberg, 1993). One interesting feature of this

peridotitite xenolith suite is the lower MgO/SiO2 ratio for a given magnesium number (Mg#)

of Archean subcontinental cratonic lithosphere regarding younger subcontinental lithospheric

mantle. While various hypotheses have been proposed to explain this feature (e.g. Boyd

and Mertzman, 1987; Herzberg, 1993), Tomlinson and Kamber (2021) suggest that silica en-

richment in cratonic lithosphere could be associated to the migration of komatiite magma

produced in episodic hot asthenospheric upwellings, which interact with previously depleted

peridotite. Their melt-peridotite interaction is supported by THERMOCALC calculations,

but no physical aspect on melt migration is considered. Although our thermodynamic cal-
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culation does not yet allow to predict natural melt-peridote chemical interactions due to our

simplified chemical system, which does not take into account pyroxene crystallization or dis-

solution, the mechanical aspects of our model provide some new insights of melt-percolation

within the lithospheric mantle, supporting potential channelization of melt passing through

a cratonic lithosphere.

3.4.4 Estimates of melt velocity

We can use the characteristic values of Lc and tc to calculate a dimensional melt velocity from

the numerically calculated dimensionless melt velocity, by applying representative values for

melt viscosity, volumetric viscosity and porosity. Using a porosity ϕ of 2%, the effective

permeability is in the order of k = 10−7 ·ϕ3 = 8 ·10−13 [m2] (e.g. Connolly and Podladchikov,

2007). We assume values for melt viscosity ηm between 0.1 and 10 [Pa·s] (e.g. McKenzie, 1989).

We further assume that the volumetric viscosity ηv is identical to the shear viscosity around

the LAB and use 1019 [Pa·s], in agreement with numerical lithosphere subduction simulations

of Bessat et al. (2020). The applied melt density is the reference density (ρm,0 = 3.8631 · 103

[kg·m−3]). Taking a typical dimensionless velocity of 12 from the two simulations S15 (red

dots in the top middle in Fig. 3.6a and b), we obtain a dimensional melt velocity between 1

to 115 [m·yr−1]. Modifying the porosity ϕ to 1 and 0.5%, and the associated permeability,

and using a melt viscosity ηm of 0.1 [Pa·s], which seems more realistic for low degree melts

rising in the lithosphere, we obtain velocities between 14.3 [m·yr−1] and 1.8 [m·yr−1] for a

porosity of 1 and 0.5%, respectively. Using a larger melt viscosity ηm of 10 [Pa·s], as used by

Connolly et al. (2009) to estimate melt velocity at mid ocean ridges, we obtain 14 [cm·yr−1]

and 1.8 [cm·yr−1], respectively. These estimated melt velocities agree to first order with melt

transport velocities deduced from centrifuge experiments by Connolly et al. (2009), which are

2 to 150 [m·yr−1] and considered applicable for melt rising at mid-ocean-ridges.
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3.5 Conclusions

We present a new numerical model for two-phase melt migration in a deformable viscous solid

coupled to chemical differentiation. The model is based on the coupling of a thermo-hydro-

mechanical-chemical (THMC) transport model with thermodynamic results that have been

precomputed by Gibbs energy minimization. For the considered system of forsterite-fayalite-

silica, the solid and melt densities and the mass fractions of MgO and SiO2 in both solid and

melt are fully mobile, and all densities and mass fractions vary with temperature, pressure and

total silica content. Therefore, the model is suitable to investigate chemical differentiation,

metasomatism and melt-rock interaction during melt migration. The developed 1D and 2D

THMC transport model can generate porosity waves. The initial variation of porosity and

total silica content has a strong impact on the melt velocity. Also, the employed thermal

gradient in the model, either adiabatic or conductive, has an impact on the melt velocity,

with higher velocities for an adiabatic gradient. For conditions applicable to the lithosphere-

asthenosphere boundary, the densities for an adiabatic gradient generally increase with depth

and increasing pressure, while for a conductive gradient the densities decrease with increasing

depth. The thermal gradient, therefore, has a considerable impact on the vertical variation

of solid and melt densities and mass fractions and, hence, on the chemical differentiation

during melt migration. Application of a range of typical lithosphere values for porosity,

permeability, melt and compaction viscosities provides reasonable melt velocities between

10 [cm·yr−1] and 100 [m·yr−1]. The 2D version of the model can generate blob-like and

channel-like porosity waves. First 2D results show that the total silica mass transport is

more efficient by channel-like porosity waves than by blob-like porosity waves, which has

important implications for understanding metasomatism during melt migration across the

ductile lithosphere. The thermodynamic results show that the sensitivity of solid and melt

densities to variations in P , T and CSiO2
T ), expressed by the coefficients α, β and γ, can be

considerably different. The same applies for the solid and melt mass fractions of MgO and

SiO2. Particularly, the sensitivity to chemical variations in CSiO2
T is considerably different

for the corresponding densities and considered mass fractions of the solid and melt phases.
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Hence, it is important to treat the dependencies of densities and mass fractions of solid and

melt phase on variations in P , T and CSiO2
T independently in a THMC melt migration model

and determine these dependencies with thermodynamic calculations.
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Schmalholz, S. M., Moulas, E., Plümper, O., Myasnikov, A. V., Podladchikov, Y. Y., 2020. 2D

Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming Heteroge-

neous Rock: The Periclase-Brucite Model Reaction. Geochemistry, Geophysics, Geosystems

21 (11).

Scott, D. R., Stevenson, D. J., 1984. Magma solitons. Geophysical Research Letters 11 (11),

1161–1164.

Shaw, H. R., 1980. Chapter 6. The Fracture Mechanisms of Magma Transport From The

Mantle to The Surface. In: Physics of Magmatic Processes. Princeton University Press, pp.

201–264.

Spiegelman, M., 1993. Physics of Melt Extraction: Theory, Implications and Applications.

Philosophical Transactions of the Royal Society of London Series A 342, 23–41.

Spiegelman, M., Kelemen, P. B., Aharonov, E., 2001. Causes and consequences of flow orga-

nization during melt transport: The reaction infiltration instability in compactible media.

Journal of Geophysical Research: Solid Earth 106 (B2), 2061–2077.

Stevenson, D. J., 1989. Spontaneous small-scale melt segregation in partial melts undergoing

deformation. Geophysical Research Letters 16 (9), 1067–1070.

Tomlinson, E. L., Kamber, B. S., 2021. Depth-dependent peridotite-melt interaction and the

origin of variable silica in the cratonic mantle. Nature Communications 12 (1), 1082.

Walker, D., Stolper, E. M., Hays, J. F., 1978. A numerical treatment of melt/solid segregation:

Size of the eucrite parent body and stability of the terrestrial low-velocity zone. Journal of

Geophysical Research: Solid Earth 83 (B12), 6005–6013.

Walter, M. J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted

Lithosphere 39 (1), 32.

Wass, S. Y., Roge, N. W., 1980. Mantle metasomatism—precursor to continental alkaline

volcanism. Geochimica et Cosmochimica Acta 44 (11), 1811–1823.



BIBLIOGRAPHY 125

Wasylenki, L. E., Baker, M. B., Kent, A. J. R., Stolper, E. M., 2003. Near-solidus Melting of

the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite. Journal

of Petrology 44 (7), 1163–1191.

Weatherley, S. M., Katz, R. F., 2012. Melting and channelized magmatic flow in chemically

heterogeneous, upwelling mantle. Geochemistry, Geophysics, Geosystems 13 (5).

Weinberg, R. F., Podladchikov, Y., 1994. Diapiric ascent of magmas through power law crust

and mantle. Journal of Geophysical Research: Solid Earth 99 (B5), 9543–9559.

Wilshire, H., 1987. A model of mantle metasomatism. Mantle Metasomatism and Alkaline

Magmatism. Geological Society of America, Special Papers 215, 47–60.

Yarushina, V. M., Podladchikov, Y. Y., 2015. (De)compaction of porous viscoelastoplastic

media: Model formulation. Journal of Geophysical Research: Solid Earth 120 (6), 4146–

4170.



126 CHAPTER 3.

Appendix A. THMC model equations, additional explanation

A general conservation equation without a source term in 1D for any variable, here named B

(per unit volume), has the form:

∂B

∂t
= − ∂

∂x
qA −

∂

∂x
qD (3.A1)

where t is the time, qA is the advective flux and qD is the diffusive flux. The advective flux

corresponds to the transport of B with its velocity vb:

qA = Bvb (3.A2)

A porous medium, with porosity ϕ, is composed of a solid skeleton (solid phase) with density

ρs and a melt phase in the pores with density ρm. The total mass of the medium, having

total density ρT, is the sum of the mass of melt in pores and the mass of the solid:

B = ρmϕ+ ρs(1− ϕ) = ρT (3.A3)

The advective flux for the total mass is:

qA = ρmϕvm + ρs(1− ϕ)vs (3.A4)

where vm and vs are the melt and solid velocities, respectively. There is no diffusive flux in

the conservation of the total mass, hence:

qD = 0 (3.A5)

Therefore, the conservation equation for total mass is:

∂

∂t
(ρmϕ+ ρs(1− ϕ)) = − ∂

∂x
(ρmϕvm + ρs(1− ϕ)vs) (3.A6)
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The force balance for the melt follows Darcy’s law:

ϕ(vm − vs) = −kϕ
3

ηm

(
∂Pm

∂x
+ ρmg

)
(3.A7)

where k is the permeability, ηm is the melt viscosity, Pm is the melt pressure and g is the grav-

itational acceleration. To introduce the Darcy’s force balance in the total mass conservation

equation, it is useful to modify equation (3.A6) by subtracting and adding vs to vm:

∂

∂t
(ρmϕ+ ρs(1− ϕ)) = − ∂

∂x
(ρmϕ(vm − vs + vs) + ρs(1− ϕ)vs) (3.A8)

Equation (3.A8) can be rewritten as:

∂

∂t
(ρmϕ+ ρs(1− ϕ)) = − ∂

∂x

(
−ρm

kϕ3

ηm

(
∂Pm

∂x
+ ρmg

)
+ ρmϕvs + ρs(1− ϕ)vs

)
(3.A9)

Equation (3.A9) can be simplified by collecting terms in front of vs:

∂

∂t
(ρmϕ+ ρs(1− ϕ)) = − ∂

∂x

(
−ρm

kϕ3

ηm

(
∂Pm

∂x
+ ρmg

)
+ ρTvs

)
(3.A10)

The total mass of magnesium (MgO) considers the concentration of MgO in the melt and in

the solid:

B = CMgO
m ρmϕ+ CMgO

s ρs(1− ϕ) = MMgO
T

(3.A11)

where CMgO
m and CMgO

s are, respectively, the mass fractions (CMgO
m = mass of MgO in the

melt / total mass of melt; CMgO
s = mass of MgO in the solid / total mass of solid) of MgO

in the melt and in the solid. The advective flux for the total mass of MgO is:

qA = CMgO
m ρmϕvm + CMgO

s ρs(1− ϕ)vs (3.A12)
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Assuming an ideal solution, the diffusive flux is described by Fick’s law that describes the

molecular diffusion of MgO in the melt and in the solid:

qD = −DMgO
m ρmϕ

∂CMgO
m

∂x
−DMgO

s ρs(1− ϕ)
∂CMgO

s

∂x
(3.A13)

where DMgO
m and DMgO

s are the effective diffusivities of MgO in the melt and in the solid (e.g.

Nauman and He, 2001). Therefore, the conservation equation for total mass of MgO is:

∂

∂t
(CMgO

m ρmϕ+ CMgO
s ρs(1− ϕ)) = − ∂

∂x
(CMgO

m ρmϕvm + CMgO
s ρs(1− ϕ)vs

−DMgO
m ρmϕ

∂CMgO
m

∂x
−DMgO

s ρs(1− ϕ)
∂CMgO

s

∂x
)

(3.A14)

The total mass per unit of volume SiO2 considers the concentration of SiO2 in the melt and

in the solid:

B = CSiO2
m ρmϕ+ CSiO2

s ρs(1− ϕ) = MSiO2
T

(3.A15)

where CSiO2
m and CSiO2

s are, respectively, the mass fractions (CSiO2
m = mass of SiO2 in the

melt / total mass of melt; CSiO2
s = mass of SiO2 in the solid / total mass of solid) of SiO2 in

the melt and in the solid. The advective flux for the total mass of SiO2 is:

qA = CSiO2
m ρmϕvm + CSiO2

s ρs(1− ϕ)vs (3.A16)

For an ideal solution, the diffusive flux is described by Fick’s law that describes the molecular

diffusion of SiO2 in the melt and in the solid:

qD = −DSiO2
m ρmϕ

∂CSiO2
m

∂x
−DSiO2

s ρs(1− ϕ)
∂CSiO2

s

∂x
(3.A17)
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where DSiO2
m and DSiO2

s are the effective diffusivities of SiO2 in the melt and in the solid (e.g.

Nauman and He, 2001). Therefore, conservation equation for total mass of SiO2 is:

∂

∂t
(CSiO2

m ρmϕ+ CSiO2
s ρs(1− ϕ)) = − ∂

∂x
(CSiO2

m ρmϕvm + CSiO2
s ρs(1− ϕ)vs

−DSiO2
m ρmϕ

∂CSiO2
m

∂x
−DSiO2

s ρs(1− ϕ)
∂CSiO2

s

∂x
)

(3.A18)

The total thermal energy of the medium is:

Um(P, T ) =

∫ T

Tref

(
cpm(P, T ′)ρm(P, T ′)

)
dT ′ (3.A19a)

Us(P, T ) =

∫ T

Tref

(
cps(P, T

′)ρs(P, T
′)
)

dT ′ (3.A19b)

B = Umϕ+ Us(1− ϕ) = UT (3.A19c)

where cpm and cps are specific heat capacity of the melt and the solid and T is the temperature.

The advective flux for thermal energy is:

qA = Umϕvm + Us(1− ϕ)vs (3.A20)

Assuming that the temperature in the solid and fluid is identical, the diffusive flux is described

by Fourier’law:

qD = −λT
∂T

∂x
(3.A21)

where λT = (λmϕ+λs(1−ϕ)) and λm and λs are the thermal conductivity of melt and solid,

respectively. The conservation equation for the energy takes the form of:

∂

∂t
(Umϕ+ Us(1− ϕ)) = − ∂

∂x
(Umϕvm + Us(1− ϕ)vs − λT

∂T

∂x
) (3.A22)
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The other mechanical equations that close the system of equations are presented in section

3.2.2, equations 3.12, 3.13, 3.15 and 3.16.

Appendix B. Additional figures and tables

Table 3.3: Numerical pseudo-transient time step used in the THMC simulations

Pseudo-transient time step

for the melt pressure ∆tP
PT = 1

2
dx2

max(k/ηm·(ϕ/ϕ0)3)

for the porosity ∆tϕ
PT = −dt

for the total silica content ∆t
C

SiO2
T

PT = dt

for the temperature ∆tT
PT = 1

4.1
dx2

max(λm/ρTcpm )

for the solid velocity ∆tvs
PT = 1

6
dx2

ηs
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Figure 3.12: Initial profiles of simulation S05 Conductive gradient, all variables are dimen-
sionless. Panel (a) shows melt pressure (red diamond) and total pressure (black line). Panel
(b) shows melt density (red line) and solid density (blue line). Panel (c) shows effective
pressure, positive values indicate decompaction while negative values indicate compaction.
Panel (d) shows temperature. Panel (e) shows magnesium mass fraction in melt (red line)
and in solid (blue line) and total magnesium mass fraction (black line). Panel (f) shows
melt velocity. Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red
line) and in the solid (blue line) and total silica mass fraction (black line). Panel (i) shows
solid velocity.
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Figure 3.13: Initial profiles of simulation S05 Adiabatic gradient, all variables are dimen-
sionless. Panel (a) shows melt pressure (red diamond) and total pressure (black line). Panel
(b) shows melt density (red line) and solid density (blue line). Panel (c) shows effective
pressure, positive values indicate decompaction while negative values indicate compaction.
Panel (d) shows temperature. Panel (e) shows magnesium mass fraction in melt (red line)
and in solid (blue line) and total magnesium mass fraction (black line). Panel (f) shows
melt velocity. Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red
line) and in the solid (blue line) and total silica mass fraction (black line). Panel (i) shows
solid velocity.
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Figure 3.14: Initial profiles of simulation S15 Adiabatic gradient, all variables are dimen-
sionless. Panel (a) shows melt pressure (red diamond) and total pressure (black line). Panel
(b) shows melt density (red line) and solid density (blue line). Panel (c) shows effective
pressure, positive values indicate decompaction while negative values indicate compaction.
Panel (d) shows temperature. Panel (e) shows magnesium mass fraction in melt (red line)
and in solid (blue line) and total magnesium mass fraction (black line). Panel (f) shows
melt velocity. Panel (g) shows porosity. Panel (h) shows silica mass fraction in melt (red
line) and in the solid (blue line) and total silica mass fraction (black line). Panel (i) shows
solid velocity.
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Figure 3.15: Evolution in time of six variables in simulation S05 Conductive gradient,
all variables are dimensionless. Panel (a) shows porosity, panel (b) shows effective pressure,
panel (c) shows melt velocity, panel (d) shows melt density, panel (e) shows total magnesium
mass fraction and panel (f) shows total silica mass fraction. Four time steps are chosen at
different dimensional times: t = 0 with dashed line (corresponding to the initial profiles in
figure 3.12 for each variables), t = 1.05 with black line, t = 2.10 with light blue and t = 3.15
with dark blue (see legend).
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Figure 3.16: Evolution in time of six variables in simulation S05 Adiabatic gradient, all
variables are dimensionless Panel (a) shows porosity, panel (b) shows effective pressure, panel
(c) shows melt velocity, panel (d) shows melt density, panel (e) shows total magnesium mass
fraction and panel (f) shows total silica mass fraction. Four time steps are chosen at different
dimensional times: t = 0 with dashed line (corresponding to the initial profiles in figure 3.13
for each variables), t = 1.05 with black line, t = 2.10 with light blue and t = 3.15 with dark
blue (see legend).
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Figure 3.17: Evolution in time of six variables in simulation S15 Adiabatic gradient,
all variables are dimensionless. Panel (a) shows porosity, panel (b) shows effective pressure,
panel (c) shows melt velocity, panel (d) shows melt density, panel (e) shows total magnesium
mass fraction and panel (f) shows total silica mass fraction. Four time steps are chosen at
different dimensional times: t = 0 with dashed line (corresponding to the initial profiles in
figure 3.14 for each variables), t = 1.05 with black line, t = 2.10 with light blue and t = 3.15
with dark blue (see legend).



Appendix C. Thermodynamic part, additional explanation

Transformation from molar fractions into mass fractions

To use molar concentrations in the mass conservation equations of the THMC transport

model, we first transform these concentrations into olivine phase mass fractions:

C foL
m =

C foL
m,[mol] ·m

foL
m

(C foL
m,[mol] ·mfoL

m ) + (C faL
m,[mol] ·mfaL

m )
(3.C1a)

C faL
m =

C faL
m,[mol] ·m

faL
m

(C foL
m,[mol] ·mfoL

m ) + (C faL
m,[mol] ·mfaL

m )
(3.C1b)

C fo
s =

C fo
s,[mol] ·m

fo
s

(C fo
s,[mol] ·mfo

s ) + (C fa
s,[mol] ·mfa

s )
(3.C1c)

C fa
s =

C fa
s,[mol] ·m

fa
s

(C fo
s,[mol] ·mfo

s ) + (C fa
s,[mol] ·mfa

s )
(3.C1d)

where mfoL
m , mfaL

m , mfo
s and mfa

s are, respectively, the molar mass of forsterite and fayalite

liquid for the melt part and forsterite and fayalite for the solid part. We transform these

olivine phase mass fractions into oxide mass fractions of MgO, FeO and SiO2:

CMgO
m,i = C foL

m ·MMgO
r · nbMgO (3.C2a)

CFeO
m,i = (1− C foL

m ) ·MFeO
r · nbFeO (3.C2b)

CSiO2
m,i = (C foL

m + 1− C foL
m ) ·MSiO2

r · nbSiO2 (3.C2c)

where MMgO
r , MFeO

r and MSiO2
r are molecular weight (i.e. relative molecular mass) of oxides

(MMgO
r = 0.0403 [kg·mol−1], MFeO

r = 0.0708 [kg·mol−1] and MSiO2
r = 0.0601 [kg·mol−1]),

nbMgO, nbFeO and nbSiO2 correspond to the number of times each oxide is in the olivine
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formula (nbMgO = nbFeO = 2 and nbSiO2= 1), subscript i indicates that the oxide mass

fractions CMgO
m,i , CFeO

m,i and CSiO2
m,i are not normalised. For the normalization, each oxide mass

fraction is divided by the sum of these three oxide mass fractions:

CMgO
m =

CMgO
m,i

CMgO
m,i + CFeO

m,i + CSiO2
m,i

(3.C3a)

CFeO
m =

CFeO
m,i

CMgO
m,i + CFeO

m,i + CSiO2
m,i

(3.C3b)

CSiO2
m =

CSiO2
m,i

CMgO
m,i + CFeO

m,i + CSiO2
m,i

(3.C3c)

CMgO
m , CFeO

m and CSiO2
m are the oxide mass fractions that we use in the THMC model. We

proceed with the same approach to calculate the values for the solid part, CMgO
s , CFeO

s and

CSiO2
s .

Calculation of γ

We calculate the γ for CSiO2
m and CSiO2

s as follow :

γ
C

SiO2
m

=

(
CSiO2

m,exp − C
SiO2
m,0

CSiO2
T,exp − C

SiO2
T,0

)
/CSiO2

m,0 (3.C4a)

γ
C

SiO2
s

=

(
CSiO2

s,exp − C
SiO2
s,0

CSiO2
T,exp − C

SiO2
T,0

)
/CSiO2

s,0 (3.C4b)

For the density calculation, we use the thermodynamic data of Holland and Powell (1998)

and the different minerals and liquids Mg-Fe end-members are recalculated from experimen-

tal data of Davis et al. (2011). In these calculations, we use the following end-members:

for the solid part, forsterite (fo) (Mg2SiO4) and fayalite (fa) (Fe2SiO4) for olivine; enstatite

(en) (Mg2Si2O6) and ferrosilite (fs) (Fe2Si2O6) for orthopyroxene; diopside (di) (CaMgSi2O6)
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and hedenbergite (hed) (CaFeSi2O6) for clinopyroxene; pyrope (py) (Mg3Al2Si3O12) and al-

mandine (alm) (Fe3Al2Si3O12) for garnet. We consider also quartz (q) (SiO2). For the melt

part, we consider forsterite liquid (foL), fayalite liquid (faL) and quartz liquid (qL). The

abbreviations in brackets correspond to the nomenclature of Holland and Powell (1998).
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The aim of this thesis is to better understand the formation of petit-spot volcanoes that

are located on oceanic lithosphere adjacent to subduction zones. The mechanism by which

melt migrates through oceanic lithosphere to form petit-spot is debated. This thesis focuses

on two aspects of melt migration through oceanic lithosphere: (1) understanding mechanical

constraints on plate flexure and deformation (and thus melt migration-) mechanisms of oceanic

lithosphere as it bends to enter the subduction zone; and (2) melt extraction. The first study

(chapter 2) aims to quantify stresses and deformation mechanisms to understand what is

happening mechanically in the flexed oceanic plate near a subducting plate. This study

shows that elasto-plastic deformation (yellow and light blue regions in Figure 4.1) is the

dominant mechanism in the upper part of the lithosphere and subducting slab (from ca. 5 to

60 km depth from the top of the slab), while viscous deformation mechanisms (red, orange

and dark blue regions in Figure 4.1) dominate in the lower part of the lithosphere and in

the asthenosphere. This indicates that the transition from viscous to brittle deformation is

independent of the thermal definition of the lithosphere-asthenosphere-boundary indicated

by the white line in Figure 4.1.

Figure 4.1: Distribution of deformation mechanisms for the forced subduction S0 simula-
tion at t = 6.0182 Ma, zoom into Fig. 2.10 of chapter 2, panel (g). Elastic domain is in
yellow, plastic domain is in light blue, and viscous domain is the combination of dislocation
creep in red, Peierls creep in dark blue and diffusion creep in orange. The white line corre-
spond to the thermally controlled lithosphere-asthenosphere-boundary (1440◦C isotherm).
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The magnitude and distribution of deviatoric stress, τxx, which illustrate regions under com-

pression (τxx negative, areas in blue in Figure 4.2) or under extension (τxx positive, areas in

red in Figure 4.2), shows that absolute values are maximum in the upper part of the litho-

sphere at the location where subducting lithosphere is bending. We note that flexure of the

plate has little effect on the base of the lithosphere, where deviatoric stresses are small (near

0 MPa). A comparison between deviatoric stresses in the bending plate with deformation

mechanisms suggests that large stresses are absent in lower, viscous half of the lithosphere.

Figure 4.2: Panel (f) shows horizontal deviatoric stress for the free subduction S1 simula-
tion at t = 9.6763 Ma (zoom into Fig. 2.11 of chapter 2). Areas in red show regions under
extension and areas in blue show regions under compression. Black line correspond to the
thermally controlled LAB (1440◦C isotherm). Panel (h) shows principal stresses σ1 in blue
and σ3 in cyan associated to panel (f). The background shows phases and white lines show
the isothermal contours for 200, 800 and 1440◦C.

According to Hirano et al. (2006) (Figure 4.3), upward flexural bending of the plate causes

extension of the base of the lithosphere seawards of the flexural bulge. Hirano et al. (2006)
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Figure 4.3: Schematic figure from Hirano et al. (2006, Fig. 3c of their paper), illustrating
the conceptual model for the formation of petit-spot volcanism. Asthenospheric magmas
escape to the surface due to extension at the base of the lithosphere made by the flexure of
the subduction plate.

suggest that this extension is expected to cause brittle fracturing of the entire lithosphere,

leading the extraction of low-degree melts from the base of the lithosphere to the surface.

Our results have implications for the interpretations of Hirano et al. (2006) for the formation

of petit-spot volcanoes. Firstly, our models do not predict a brittle domain at the base of

the lithosphere; instead, the lower part of oceanic lithosphere deforms viscously, and does not

enable the formation of brittle fractures to promote melt extraction. Secondly, the models do

not predict extension at the base of lithosphere as a result of plate flexure; the models show

that horizontal deviatoric stresses are low.

Our quantification of horizontal deviatoric stresses (in Figure 4.2f) have, nevertheless, direct

implications for the location of petit-spot volcanoes at the surface. (1) A zone of extension

in the oceanic plate between about 250 to 450 km from the trench at a depth of 40 to 50

km could promote the extraction of melts from mid-lithospheric depths, because the upper

part of oceanic lithosphere down to this depth is dominated by elasto-plastic deformation,

potentially allowing fractures to develop (Figure 4.2). (2) The extension region in the upper
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part of the bulge (100 to 150 km from the trench, Fig. 4.2) could promote brittle fracturing,

explaining the volcanoes found on the bulge region by Sato et al. (2017). This model for melt

extraction would require for melts to be stored at mid-lithospheric depth (Figure 4.4). This

model calls, therefore, into question the initial location of the melt which is observed at the

surface. Sato et al. (2017) suggest that melts that produce petit-spot volcanoes at the top of

the bulge originate from the base of the lithosphere. Our simulations show that the base of the

lithosphere is under compression (blue area below the bulge in fig.4.2), potentially excluding

melt migration from the base of the lithosphere. Alternatively, magma producing petit-spot

volcanoes at the bulge originates from melt storage at mid-lithospheric depth as illustrated

by the magma pocket schematically drawn for other petit-spots in Sato et al. (2017) (Figure

4.4). The question of how to explain the presence of melts at mid-lithospheric depth remains;

are these melts produced at this location or do these melt pockets correspond to deeper melts

that accumulated there?

Figure 4.4: Schematic figure from Sato et al. (2017, Fig. 7 of their paper), illustrating the
formation of petit-spot volcanoes on the bulge of the subduction zone. The black arrows
indicate the main deformation mechanisms infer by Sato and co-authors. For these basalt
(6K#880/1385), the mechanism of extraction from the base of the lithosphere remains enig-
matic.

An alternative to the existing model for petit-spot formation is a two-step model where melt

first percolates through the lower lithosphere, stalls in the mid-lithosphere, and is extracted

from mid-lithospheric depth. This alternative was first proposed by Buchs et al. (2013) in

order to explain the high K/Na ratio observed in petit-spot lava from Japan and from alkaline
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sills from Costa-Rica interpreted as an accreted petit-spot volcano on the western margin of

Central America. This alternative model is supported by multiple saturation experiments on

petit-spot primitive lava, supporting an equilibration of petit-spot magma with peridotite at

lithospheric P-T condition (1.8-2.1 GPa and temperature of 1’280-1’290◦C). Our numerical

simulations support this hypothesis of a two-step model by showing that viscous deformation

is dominant in the lower lithosphere. Low-degree melts originated from the sub-lithospheric

low-velocity zone are therefore likely to rise by percolation across the ductile part of the

lithosphere, before to be extracted to the surface by tectonic stress. Melt percolation across

the ductile part of the oceanic plate has implications for the chemical composition of rising

melt and peridotite composing the lithospheric mantle. Melts percolating across the lower

lithosphere are expected to interact chemically with peridotite, while the conductive geotherm

of the lithosphere implies cooling and potentially crystallisation of the initial rising magma.

Buchs et al. (2013) have already pointed out the role of this metasomatic process to explain

the chemistry of petit-spot emitted lavas. In their model, they proposed “(1) peridotite melts

are continuously extracted from the low-velocity zone at the base of the oceanic lithosphere (in

the stability field of garnet) and percolate through the lower lithosphere producing metasomatic

phlogopite pyroxenite veins at depth; (2) that tectonic stress triggering lithosphere cracking

allows melts from the low-velocity zone to interact with the phlogopite-pyroxenite veins, re-

melting and mix them, before reaching the surface to produce potassic lavas.”

Various types of metasomatism are documented in mantle xenoliths and mantle outcrops. The

different types of metasomatic enrichment associated to melt percolation across the mantle

are illustrated in Figure 4.5, which is modified from original figures from Wilshire (1987) and

Harte et al. (1993). Modal metasomatism is evidenced by the presence of newly formed phases

such as pyroxenes, amphibole and phlogopite in peridotite and by the formation of hydrous

and anhydrous metasomatic veins (Conquéré, 1971; Dawson and Smith, 1982; Nielson and

Noller, 1987; Bodinier et al., 1990; Harte et al., 1993). In contrast, cryptic metasomatism is

characterized by chemical enrichment of peridotite without the occurrence of new or addi-

tional major constituents. Various models have been proposed that relate cryptic and modal

metasomatism including veins to a continuum process (Nielson and Noller, 1987; Wilshire,
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Figure 4.5: a) Schematic drawing of the different processes associated to the metasomatic
enrichment of the lithosphere based on figures from Wilshire (1987) and Harte et al. (1993).
Low-degree melts from the asthenosphere start to rise in the ductile domain of the lithosphere
by porous flow or porosity waves. A channelizing mechanism (b to d) is expected close to
ductile-brittle transition allowing melts to rise by focus flow in the top part of the lithosphere.
This later process is documented by the various metasomatic cumulates and associated
cryptic enrichment in surrounding peridotite sampled by intraplate alkaline magmas.

1987; Nielson and Wilshire, 1993; Harte et al., 1993). For example, Harte et al. (1993) suggest

that the percolation and differentiation of basaltic liquid across the lithosphere generates a

continuum from anhydrous (pyroxene + garnet ± olivine) to hydrous (pyroxene + amphibole
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± phlogopite) veins plus cryptic metasomatic enrichment in the adjacent peridotite. The

formation of metasomatic cumulates is associated to focus flow allowing veins of a few tens of

centimeters to form, while cryptical metasomatism seems associated to pervasive flow (Foley,

1992b), also referred to as porous flow (Fig. 4.5). The link between vein formation and the

chromatographic chemical enrichment in the surrounding mantle has been illustrated, e.g. in

outcrops of mantle rocks in the Lherz peridotite massif (McPherson et al., 1996; Woodland

et al., 1996; Bodinier, 2004) or using constraints on the timing of metasomatism observed

in metasomatized peridotite and metasomatic cumulate xenoliths from the Kaapvaal craton

lithosphere (Konzett et al., 2000). Metasomatic imprint is also observed in oceanic settings

(Pilet et al., 2016). Metasomatism could occur during the cooling of the oceanic lithosphere

in the periphery of ridges, or by tectonic processes including plume activity (Roden et al.,

1984; Wulff-Pedersen et al., 1996; Grégoire et al., 2000; Neumann et al., 2002; Delpech et al.,

2004; Shaw et al., 2006).

Figure 4.6: Redrawn of Fig.3 from Pilet et al. (2016). Illustration of the metasomatism in
an oceanic lithospheric mantle due to plate flexure. See text for explanation of the different
stage of the model.

The study of Pilet et al. (2016) on mantle xenolith samples from Japanese petit-spot lavas

shows evidence for metasomatic enrichment of the Pacific oceanic lithosphere associated to the
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generation of petit-spot volcanoes. Figure 4.6 illustrates the different stages of melt migration

deduced from their mineral analyses. The authors assume the presence of low-degree melts

at the base of the lithosphere (I), associated to plate flexure; this melt starts to percolate

across the lithospheric mantle producing cryptic metasomatism observed in mantle xenoliths

(II) and the formation of metasomatic veins (III) illustrated by ”green-core” cpx observed in

some petit-spot lavas. If most of the initial melts from the base of the lithosphere remain

trapped in the lithosphere, some melts could reach the surface producing petit-spot volcanoes

(IV). This figure also illustrates that metasomatized lithosphere could be recycled into the

convecting mantle potentially producing some of the chemical mantle heterogeneities sample

in oceanic islands (Pilet et al., 2005, 2008, 2011).

The location of the different deformation mechanisms within the oceanic plate, combined with

quantification of stresses associated to plate flexure (chapter 2), supports the two-step model

proposed in previous studies (e.g. Buchs et al., 2013; Pilet et al., 2016; Machida et al., 2017)

with initial melt migration across the lower lithosphere and the potential extraction of the

melts from mid-lithosphere depth. Nevertheless, insights from our numerical modeling, and

chemical constraints on petit-spot lava and enclosing xenoliths, raise new questions about the

mechanical aspect of melt migration within the ductile domain. Our study on porosity waves

provides new information on this aspect.

Our second study (chapter 3) focuses on magma transport by porosity waves in a viscous

domain, to constrain the mechanical aspects of melt transport coupled with chemistry. Al-

though melt migration has been studied extensively in mid-ocean ridges, few studies could be

applied to magma rising within the lithospheric mantle. The main difference between the two

settings is the thermal gradient, which is convective in the asthenosphere, and conductive in

the lithosphere. When melts rises in the asthenosphere, the thermal difference for melt rising

from 100 km to the surface is around 30-50◦C (mantle adiabat 1◦C/0.1GPa, Langmuir et al.

1992). This difference could be several hundreds of degrees for melt rising in the lithosphere,

and this could modify the physical and chemical behaviour of the rising melts. Our numer-

ical models include a first-order description of the chemical changes involved with magma

transport by porosity waves. At this stage, the chemical system in our models is simplified
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(forsterite-fayalite-silica) and is not directly applicable to melt rising across a peridotite ma-

trix, as the system requires pyroxene component in addition to forsterite and silicate. Our

1D simulations show that melts can move by porosity waves supporting results from Jordan

et al. (2018), and that the total silica concentration and the geotherm have strong impacts on

melt migration. These simulations allow us also to calculate velocity of the melt. For melts

characterized by a viscosity varying from 0.1 to 10 Pa·s, i.e. from alkaline to tholeiitic melt

composition (McKenzie, 1989), we obtain melt velocity between 1 to 115 m·yr−1, which is in

the same velocity range as magma rising below mid-ocean ridges estimated by Connolly et al.

(2009) based on high pressure, high temperature experiments in centrifuge (2-150 m·yr−1).

Nevertheless, the rise of magma within the ductile part of the lithosphere is dependent on

mantle porosity, which is held constant in our model at 2%. Such porosity is difficult to

estimate, but it was considered to be low (<1%) in the lithospheric mantle suggesting that

our estimate of melt velocity may be overestimated. A recent thermal study of Repac et al.

(2020) shows the importance of velocity of the rising melt to be able to cross the lithosphere

without crystallizing. Using a simple approach taking into account only the thermal diffu-

sivity between melt and peridotite matrix, Repac et al. (2020) show that the velocity of a

magma rising need to be higher than 10 km·yr−1 to avoid cooling and crystallizing at depth.

Even if the higher velocity calculated in our simulation (115 m·yr−1) is selected, such melt is

therefore likely to cool and crystallize during its ascent through the lithosphere.

Our porosity wave simulations for the rise of magma within the lithosphere may be fundamen-

tal to understand the formation of the alkaline magmas observed worldwide as metasomatic

processes seem critical to explain the chemistry of these lavas. Lloyd and Bailey (1975) were

the first to suggest that different types of alkaline rocks observed in continental settings are

generated by the melting of metasomatized lithosphere at various depths. Considering that

pressure controls the type of hydrous metasomatized phase present in the lithosphere (e.g.

Konzett and Ulmer, 1999), they linked the formation of K-rich lavas to the melting of deep

lithosphere enclosing mica while the Na-magmas are produced at shallower depth (<80-90

km) in presence of amphibole. Their hypothesis is supported by different studies, which

suggest that K-rich magmas are produced by the melting of phlogopite-pyroxenites (Foley,
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1992a; Prelević et al., 2010) while several models implying the melting of lithosphere en-

closing amphibole have been proposed to explain the formation of sodic alkaline magma in

continental settings (Wass and Roge, 1980; Pilet et al., 2002, 2004; Ma et al., 2011; Mayer

et al., 2013; Rooney et al., 2014). However, the hypothesis of melting of metasomatized litho-

sphere is not very popular for the generation of oceanic island basalts (OIB) (e.g. Hofmann,

1997) where an asthenospheric source is considered as a more realistic hypothesis. Various

models have been proposed such as melting of silica defficient pyroxenite, (e.g. Hirschmann

et al., 2003), melting of peridotite in presence of CO2, (Dasgupta et al., 2007), or eclogite

melt (peridotite reaction in presence of CO2 (Mallik and Dasgupta, 2014)). Our numerical

simulations for melt rising within the lithosphere suggest, however, that even for melts char-

acterized by low viscosity (∼1-0.1 Pa·s), the velocity of such melts is not sufficient to cross the

lithosphere without cooling and crystallizing. This supports the two-step model proposed by

Pilet et al. (2008, 2011) suggesting that alkaline magmas are not produced directly from the

asthenosphere, but from the re-melting of metasomatic veins formed by the differentiation of

low-degree asthenospheric melts percolating through the lithosphere.

Our different simulations open new perspectives for understanding the mechanism of petit-

spot formation and magma migration in the ductile domain. We propose the following points

to improve our model:

1. The chemistry used for the porosity wave models is very simple but it highlights the

importance of taking into account the interaction and the change of composition between

melt and solid in the melt migration process, particularly on density. It is important to

include a more complex chemistry in future models, by adding pyroxene phases in the

calculation of thermodynamics to simulate a more realistic peridotite.

2. We propose to add reactions for the crystallisation of the different mineral phases, such

as amphibole or phlogopite, that crystallise during metasomatism and their thermal

contribution in the heat budget on the rising melt.

3. The numerical method chosen for the porosity wave model allows us to extend the 1D

model to two dimensions, as seen in the discussion of chapter 3, but eventually also



152 CHAPTER 4.

to three dimensions. The 3D models would allow to estimate and quantify the volume

of melt that would percolate in a porous medium representative of the base of the

lithosphere.

4. An important parameter for melt transport that could be tested is the viscosity of the

melt. Our current model includes a fixed viscosity. In future models, we can vary

viscosity according to the temperature, and study the effect on the velocity of the rising

melt.

5. In our melt transport model, no deformation of the solid is applied at this time. A

future step could be the addition of horizontal extension or compression to study the

impact of this deformation on the melt velocity.

Finally, the two models, the subduction model and the melt percolation model, can be coupled,

to simulate the formation of petit-spot volcanoes and intraplate volcanism.
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Code gravimetry 
 
% ============================== GRAVIMETRY =============================== % 
% ReadMDoodz_GraviAL_FreeAir_para 
% Method for gravimetry calculation with Free Air correction 
% Annelore 26.02.2019 
 
function Main 
clear all, close all, clc 
 
%% Subduction simulation file number of interest 
time_step   = 1420; 
 
%% Chargement des données/Upload of data 
file_suffix = ''; 
time        = 0; 
filename    = ['Output',num2str(time_step,'%05d'),file_suffix,'.gzip.h5']; 
PhToposave  = ['PhTopo_Gravi_FreeAir_',num2str(time_step,'%05d'),file_suffix,'.mat']; 
 
% Domaine 
params      = hdf5read(filename,'/Model/Params'); 
xg_coord    = hdf5read(filename,'/Model/xg_coord'); 
xg_coord    = cast(xg_coord, 'double'); 
zg_coord    = hdf5read(filename,'/Model/zg_coord'); 
zg_coord    = cast(zg_coord, 'double'); 
xc_coord    = hdf5read(filename,'/Model/xc_coord'); 
xc_coord    = cast(xc_coord, 'double'); 
zc_coord    = hdf5read(filename,'/Model/zc_coord'); 
zc_coord    = cast(zc_coord, 'double'); 
xvz_coord   = hdf5read(filename,'/Model/xvz_coord'); 
xvz_coord   = cast(xvz_coord, 'double'); 
zvx_coord   = hdf5read(filename,'/Model/zvx_coord'); 
zvx_coord   = cast(zvx_coord, 'double'); 
VizGrid.x   = hdf5read(filename,'/VizGrid/xviz'); 
VizGrid.x   = cast(VizGrid.x, 'double'); 
VizGrid.z   = hdf5read(filename,'/VizGrid/zviz'); 
VizGrid.z   = cast(VizGrid.z, 'double'); 
 
nx          = params(4); 
nz          = params(5); 
ncx         = nx-1; 
ncz         = nz-1; 
time0       = time; 
time        = params(1); 
t_vec       = time; 
 
if params(1) < 60 
    TimeLabel = [' t = ' num2str(time) ' s ']; 
elseif time >= 60 && time < 3600 
    TimeLabel = [' t = ' num2str(time/60) ' min ']; 
elseif time >= 3600 && time < 24*3600 
    TimeLabel = [' t = ' num2str(time/3600) ' h ']; 
elseif time >= 24*3600 && time < 365.25*24*3600 
    TimeLabel = [' t = ' num2str(params(1)/24/3600) ' j ']; 
elseif time >= 365.25*24*3600 && time < 1e3*365.25*24*3600 
    TimeLabel = [' t = ' num2str(params(1)/365/24/3600) ' a ']; 
elseif time >= 1e3*365.25*24*3600 && time < 1e6*365.25*24*3600 
    TimeLabel = [' t = ' num2str(time/1e3/365.25/24/3600) ' ka ']; 
elseif time >= 1e6*365.25*24*3600 
    TimeLabel = [' t = ' num2str(time/1e6/365.25/24/3600) ' Ma ']; 
end 
 



% Spacing 
L   = xg_coord(end) - xg_coord(1); 
H   = zg_coord(end) - zg_coord(1); 
vol = H*L; 
dx  = xg_coord(2) - xg_coord(1); 
dz  = zg_coord(2) - zg_coord(1); 
 
if L < 1e-6 
    xg_plot         = xg_coord/1e-0; 
    zg_plot         = zg_coord/1e-0; 
    xc_plot         = xc_coord/1e-0; 
    zc_plot         = zc_coord/1e-0; 
    xvz_plot        = xvz_coord/1e-0; 
    zvx_plot        = zvx_coord/1e-0; 
    VizGrid.x_plot  = VizGrid.x/1e-0; 
    VizGrid.z_plot  = VizGrid.z/1e-0; 
    xLabel          = ['x [nm]']; 
    zLabel          = ['z [nm]']; 
elseif L < 1e3 
    xg_plot         = xg_coord/1e0; 
    zg_plot         = zg_coord/1e0; 
    xc_plot         = xc_coord/1e0; 
    zc_plot         = zc_coord/1e0; 
    xvz_plot        = xvz_coord/1e0; 
    zvx_plot        = zvx_coord/1e0; 
    VizGrid.x_plot  = VizGrid.x/1e0; 
    VizGrid.z_plot  = VizGrid.z/1e0; 
    xLabel          = ['x [m]']; 
    zLabel          = ['z [m]']; 
else 
    xg_plot         = xg_coord/1e3; 
    zg_plot         = zg_coord/1e3; 
    xc_plot         = xc_coord/1e3; 
    zc_plot         = zc_coord/1e3; 
    xvz_plot        = xvz_coord/1e3; 
    zvx_plot        = zvx_coord/1e3; 
    VizGrid.x_plot  = VizGrid.x/1e3; 
    VizGrid.z_plot  = VizGrid.z/1e3; 
    xLabel          = ['x [km]']; 
    zLabel          = ['z [km]']; 
end 
 
% Adaptive min max axis 
dt          = time - time0; 
 
[Zg2,Xg2]   = ndgrid(zg_coord,xg_coord); 
[Zc2,Xc2]   = ndgrid(zc_coord,xc_coord); 
 
% --- Chargement des donnees --- 
rho_s       = hdf5read(filename,'/Vertices/rho_s'); 
rho_s       = cast(rho_s, 'double'); 
rho_node    = reshape(rho_s,params(4)-0,params(5)-0)'; 
 
rho_n       = hdf5read(filename,'/Centers/rho_n'); 
rho_n       = cast(rho_n, 'double'); 
rho_center  = reshape(rho_n,params(4)-1,params(5)-1)'; 
 
xtopo       = hdf5read(filename,'/Topo/x'); 
xtopo       = cast(xtopo, 'double'); 
 
ztopo       = hdf5read(filename,'/Topo/z'); 
ztopo       = cast(ztopo, 'double'); 
 



height      = hdf5read(filename,'/Topo/height'); 
height2     = height-mean(height); 
 
% height2 = topo with correction of the topo mean value 
 
%% Parameter for sea level and water density 
sealevel    = 5000;                         % sea level in m for the free air correction 
topomer     = sealevel*ones(size(height2)); % vector of the sea level 
rho_water   = 1000;                         % density of the water kg/m3 
 
%% Identification des éléments: 
isavephtopo = 1;        % Save "identification des éléments" 
% isavephtopo: 
% possible to save time, put 1 the first time you run the code than put 0. 
 
if isavephtopo == 1 
    phtopo = zeros(size(rho_center)); 
     
    % Définition du polygone 
    xv = [xg_coord(1) xg_coord' xg_coord(end) xg_coord(1)]; 
    zv = [zg_coord(1) height2'  zg_coord(1)   zg_coord(1)]; 
     
    % Scannage du domaine: intérieur du polygone = 1, extérieur = 0 
    for i = 1:ncz 
        for j = 1:ncx 
            xq  = Xc2(i,j); 
            zq  = Zc2(i,j); 
            in  = inpolygon(xq,zq,xv,zv); 
            phtopo(i,j) = in; 
        end 
    end 
     
    % Cas des cellules juste sous la topographie: = 2 
    for k = 1:ncx 
        iphtopo             = max(find(phtopo(:,k)>0)); 
        phtopo(iphtopo,k)   = 2; 
    end 
     
    % Cas des cellules extérieur du polygone mais sous le niveau de la mer = 3 
    for k = 1:ncx 
        iphtopo             = max(find(phtopo(:,k)>0)); 
        i_sealevel          = max(find(zc_coord <= (sealevel-dx/2))); 
        phtopo(iphtopo+1:i_sealevel,k)         = 3; 
    end 
         
    save(PhToposave,'phtopo') 
else 
    load(PhToposave) 
end 
  
%% Calcul pour la gravimètrie 
 
% 1a - copie des coordonnées et création du maillage de gravité  
ffield_left     = -10000000; 
ffield_right    =  10000000; 
xg_gravi        = xg_coord; 
xg_gravi(1)     = xg_coord(1)  +ffield_left; 
xg_gravi(end)   = xg_coord(end)+ffield_right; 
zg_gravi        = -zg_coord; 
height_gravi    = -height2; 
topomer_gravi   = -topomer; 
 
 



% 1b - position des points de mesure sur la topographie 
pzoomX_left     = -100000;                                  % position zoom x left 
pzoomX_right    =  900000;                                  % position zoom x right 
nxm             = 101;                                      % nb de station de mesure sur 
 la topo 
dxm             = (pzoomX_right-pzoomX_left)/(nxm-1);       % distance entre les stations 
 de mesure 
datapts.x       = pzoomX_left:dxm:pzoomX_right;             % coordonnées x des stations 
 
for i = 1:nxm 
    i_xm            = max(find(xg_gravi'<=datapts.x(i)));   % indice de position x des 
 stations 
    datapts.z(i)    = topomer_gravi(i_xm);                  % coordonnées z des stations 
end 
 
% 2 - shift des coordonnées, de la topographie et des points de mesure 
decal_x             = 0;    % m 
decal_z             = 0; 
xg_gravi_decal      = xg_gravi + decal_x; 
zg_gravi_decal      = zg_gravi - decal_z; 
height_gravi_decal  = height_gravi  - decal_z; 
topomer_gravi_decal = topomer_gravi - decal_z; 
datapts_decal.x     = datapts.x + decal_x; 
datapts_decal.z     = datapts.z - decal_z; 
  
% 3 - calcul de l'anomalie de gravité 
anom_local          = zeros(1,nxm); 
G                   = 6.67259e-11;  % constante gravitationelle universelle in m^3/kg/s^2 
 
% Configuration du cluster pour le calcul en parallèle 
myCluster               = parcluster; 
num_pool                = min(ncz,38);  % /!\ Put 2 on the computer /!\ 
myCluster.NumWorkers    = num_pool ; 
saveProfile(myCluster); 
myPool                  = parpool(myCluster,num_pool,'IdleTimeout', 5200); 
 
tic; 
parfor jj = 1:ncz 
    for ii = 1:ncx 
        geometry = []; 
        if phtopo(jj,ii) == 1       % CAS GENERAL 
            % sens horaire 
            %              X1        X4        X3        X2        X1 
            geometry.x = [ xg_gravi_decal(ii)  xg_gravi_decal(ii)  xg_gravi_decal(ii+1) 
                           xg_gravi_decal(ii+1)  xg_gravi_decal(ii)]; 
            %              Z1        Z4        Z3        Z2        Z1 
            geometry.z = [ zg_gravi_decal(jj)  zg_gravi_decal(jj+1)  zg_gravi_decal(jj+1) 
                           zg_gravi_decal(jj)  zg_gravi_decal(jj)]; 
             
            densanom   = rho_center(jj,ii); 
            anom_incr  = calcgrav(geometry,densanom,datapts_decal); 
            anom_local = anom_local + anom_incr.z; 
 
        elseif phtopo(jj,ii) == 2   % CAS SOUS LA TOPO 
            % sens horaire 
            %              X1        X4        X3        X2        X1 
            geometry.x = [ xg_gravi_decal(ii)  xg_gravi_decal(ii)  xg_gravi_decal(ii+1) 
                           xg_gravi_decal(ii+1)  xg_gravi_decal(ii)]; 
            %              Z1        Z4        Z3        Z2        Z1 
            geometry.z = [ zg_gravi_decal(jj)  height_gravi_decal(ii) 
                           height_gravi_decal(ii+1)  zg_gravi_decal(jj) 
                           zg_gravi_decal(jj)]; 
             



            densanom   = rho_center(jj,ii); 
            anom_incr  = calcgrav(geometry,densanom,datapts_decal); 
            anom_local = anom_local + anom_incr.z; 
             
        end 
    end 
end 
  
% CAS DANS L'EAU 
% sens horaire 
%              topo left 1            sealevel left-right    topo right-left 
geometry.x = [ xg_gravi_decal(1)      xg_gravi_decal         -xg_gravi_decal     ]; 
%              topo left 1            sealevel left-right    topo right-left 
geometry.z = [ height_gravi_decal(1)  topomer_gravi_decal    -height_gravi_decal ]; 
 
densanom   = rho_water; 
anom_incr  = calcgrav(geometry,densanom,datapts_decal); 
anom_local = anom_local + anom_incr.z; 
 
%% Save DATA 
timecal     = toc; 
Anomasave   = 
['Anoma_Gravi_FreeAir_para_',num2str(time_step,'%05d'),'_',num2str(nxm,'%03d'),file_suffi
x,'.mat']; 
save(Anomasave) 
delete(myPool); 
end 
 
%% -- Fonctions ----------------------------------------------------------- 
function VizGrid = PhaseMap( filename, VizGrid ) 
VizGrid.ph = hdf5read(filename,'/VizGrid/compo'); VizGrid.ph = cast(VizGrid.ph, 
'double'); 
VizGrid.ph = (reshape(VizGrid.ph,length(VizGrid.x),length(VizGrid.z))'); 
VizGrid.ph(VizGrid.ph==-69) = -1; 
end 
  
function PatchCells( ncx, ncy, field, x, y ) 
imagesc( 0.5*(x(1:end-1) + x(2:end)), 0.5*(y(1:end-1) + y(2:end)), field ) 
  
x_tab = zeros(ncx*ncy, 4); 
y_tab = zeros(ncx*ncy, 4); 
f     = zeros(ncx*ncy,1); 
ci = 0; 
  
% Plot cells 
for ic = 1:ncx 
    for jc = 1:ncy 
        ci = ci + 1; 
         
        x_arr = [x(ic) x(ic) x(ic+1) x(ic+1)]; 
        y_arr = [y(jc) y(jc+1) y(jc) y(jc+1)]; 
         
        x_tab(ci,:) = x_arr; 
        y_tab(ci,:) = y_arr; 
         
        f(ci) = field(jc,ic); 
         
    end 
end 
id = [ 1 2 4 3]; 
  
% patch(x_tab(:,id)', y_tab(:,id)', repmat(f,1,4)', 'EdgeColor', 'none' ); 
patch(x_tab(:,id)', y_tab(:,id)', repmat(f,1,4)' ); 



end 
  
function [ Arr, xc, zc] = CropCellArray( Arr, xc, zc, crop ) 
[val,icmin] = min(abs(xc-crop.xmin)); 
[val,icmax] = min(abs(xc-crop.xmax)); 
[val,jcmin] = min(abs(zc-crop.zmin)); 
[val,jcmax] = min(abs(zc-crop.zmax)); 
xc          = xc(icmin:icmax); 
zc          = zc(jcmin:jcmax); 
Arr         = Arr(jcmin:jcmax,icmin:icmax); 
end 
  
function AddCompoContours( filename, VizGrid, crop, lim  ) 
  
VizGrid = PhaseMap( filename, VizGrid ); 
  
if crop == 1 
    [ VizGrid.ph, VizGrid.x_plot, VizGrid.z_plot ] = CropCellArray( VizGrid.ph, 
VizGrid.x_plot, VizGrid.z_plot, lim ); 
end 
for i = 0:2:40 
    if ( sum (sum (VizGrid.ph == i-1)) ~= 0) 
        Vizbuf = VizGrid.ph; 
        Vizbuf(VizGrid.ph == i) = 1; 
        Vizbuf(VizGrid.ph ~= i) = 69; 
        [c, hb] = contour(VizGrid.x_plot, VizGrid.z_plot, Vizbuf, [ 0 1]); 
        set(hb, 'Color', 'w', 'LineWidth', 1.0); 
    end 
end 
end 
 
% ============================== FCT calcgrav =============================== % 
function anomaly=calcgrav(geometry,densanom,datapts) 
% The scientific part of the program: gravity anomaly calculation using the algorithm 
described in Won & Bevis (1987). 
% 
% =input:  geometry (m), density-anomaly (kg/m^3) and data points (m) 
% =output: gravity anomaly (mGal) 
% 
% Version as of 20.12.2018 
% (C) Gyorgy HETENYI 
  
%############################################################## 
 
% loop on datapts 
for i=1:length(datapts.x) 
 
    % change co-ordinate system to a local one 
    x=geometry.x-datapts.x(i); 
    z=geometry.z-datapts.z(i); 
   
    % to prevent numerical errors, when datapoint is at the same altitude (put 1 mm) 
    z(z==0)=1e-3;  
   
    % distance coefficients and angles (formulae from Won & Bevis) 
    Z=[]; 
    X=[]; 
    theta=atan2(z,x); 
    r=sqrt(x.^2+z.^2); 
 
    % loop on the vertices of the polygon 
    for j=1:length(x)-1 
 



        % make local theta that in case of modification, next loop will still be correct 
        clear theta1 theta2 
        theta1=theta(j); 
        theta2=theta(j+1); 
       
        % CASE 1 
        if z(j)*z(j+1)<0 
            % CASE 1A 
            if ( x(j)*z(j+1) ) < ( x(j+1)*z(j) )  && z(j+1)>=0 
                theta1=theta1+2*pi; 
            end 
            % CASE 1B 
            if ( x(j)*z(j+1) ) > ( x(j+1)*z(j) ) && z(j)>=0 
                theta2=theta2+2*pi; 
            end 
            % CASE 1C 
            if ( x(j)*z(j+1) ) == ( x(j+1)*z(j) ) 
                Z=[Z 0]; 
                X=[X 0]; 
            end 
        end 
 
        % CASE 2 
        if  ( x(j)==0 && z(j)==0 ) || ( x(j+1)==0 && z(j+1)==0 ) && ( length(X)==(j-1) ) 
            X=[X 0]; 
            Z=[Z 0]; 
        end 
 
        % CASE 3 
        if ( x(j)==x(j+1) ) && ( length(X)==(j-1) ) 
            Z=[Z  x(j) * log( r(j+1)/r(j) )]; 
            X=[X -x(j) * ( theta1-theta2 )]; 
        end 
                 
        % GENERAL CASE 
        if length(X)==(j-1) 
            A=( x(j+1)-x(j) )*( x(j)*z(j+1) - x(j+1)*z(j) )/( (x(j+1)-x(j)).^2+ (z(j+1) 
               -z(j)).^2); 
            B=( z(j+1)-z(j) )/( x(j+1)-x(j) ); 
            Z=[Z A*(    (theta1-theta2) + B*log( r(j+1)/r(j) ) )]; 
            X=[X A*(  B*(theta2-theta1) +   log( r(j+1)/r(j) ) )]; 
            clear theta1 theta2 
        end 
   end 
    
  % gravity anomaly calculation and conversion to milliGals 
   G=6.67259e-11;   % in m3/kg/s^2 
   anomaly.x(i)=2*G*densanom*sum(X)*1e5; 
   anomaly.z(i)=2*G*densanom*sum(Z)*1e5; 
    
end 
%############################################################## 
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Code thermodynamic 
 
% ============================== GIBBS MINIMISATION =============================== % 
%- Olivine System - low resolution ---------------------------------------- 
%- Annelore Bessat - last version 15.10.2020 - UpDate 21.01.21 ------------ 
clear all, close all, clc 
%= Minimisation with linprog ============================================== 
opts             = optimoptions('linprog','Display','off');      % option for linprog fct 
%- PHYSICS ---------------------------------------------------------------- 
R                = 8.3144;                                       % [J/K/mol] 
Tmin             = 1200 + 273.15; 
%- NUMERICS --------------------------------------------------------------- 
C_sys            = 0:0.01:1; 
%- DATA BASE -------------------------------------------------------------- 
load HP98_ds55_lowres; whos 
% Temperature 
T_all            = T_HP98_K; 
iT               = find( T_all >= Tmin); 
dT               = T_all(2)-T_all(1); 
T_all            = T_all(iT); 
T_all_c          = (T_all(1:end-1)+T_all(2:end))/2; 
% Pressure 
P_all            = P_HP98_Pa; 
iP               = 1:length(P_all); 
dP               = P_all(2)-P_all(1); 
P_all_c          = (P_all(1:end-1)+P_all(2:end))/2; 
% Phase 
iphase           = [find(strcmp(phs_names,'fo' ))... 
                   ,find(strcmp(phs_names,'fa' ))... 
                   ,find(strcmp(phs_names,'foL'))... 
                   ,find(strcmp(phs_names,'faL'))]; 
% J = kg*m^2/s^2 = kg*m^3/m*s^2 = Pa*m^3 | Pa = kg/m*s^2 
Molar_mass       = phase_mol_comp(iphase,:)*(ele_wt/1e3)';        %[kg/mol] 
Gibbs            = Gibbs_HP98_Pa(iT,:,iphase);                    %[J/mol] 
% Volume: Pa*m^3/mol*Pa = m^3/mol 
Vol_c            = diff( Gibbs,1,2)/dP; 
Vol              = zeros(size(Gibbs)); 
Vol(:,2:end-1,:) = (Vol_c(:,1:end-1,:) + Vol_c(:,2:end,:) )/2; 
Vol(:,  1,:)     = Vol(:,    2,:); 
Vol(:,end,:)     = Vol(:,end-1,:); 
% Entropy: J/mol*K 
S_c              = -diff(Gibbs,1,1)/dT; 
S                = zeros(size(Gibbs)); 
S(2:end-1,:,:)   = (S_c(1:end-1,:,:) + S_c(2:end,:,:) )/2; 
S(  1,:,:)       = S(    2,:,:); 
S(end,:,:)       = S(end-1,:,:); 
Cp_c             = T_all(2:end-1)'.*diff(S_c,1,1)/dT; 
Cp               = zeros(size(Gibbs)); 
Cp(2:end-1,:,:)  = Cp_c; 
Cp(  1,:,:)      = Cp(2,:,:); 
Cp(end,:,:)      = Cp(end-1,:,:); 
rho              = 1./Vol; 
H                = Gibbs + T_all'.*S; 
U                = Gibbs + T_all'.*S - P_all.*Vol; 
TS               = T_all'.*S; 
PV               = P_all.*Vol; 
for i= 1:4 
H(:,:,i)         = H(:,:,i) - H(1,1,i); 
U(:,:,i)         = U(:,:,i) - U(1,1,i); 
TS(:,:,i)        = TS(:,:,i) - TS(1,1,i); 
PV(:,:,i)        = PV(:,:,i) - PV(1,1,i); 
end 



%- PREPROCESSING ---------------------------------------------------------- 
C(:,1)           = C_sys; 
C(:,2)           = 1 - C(:,1); 
Gibbs_id0        =  R*sum(C.*log(C + (C==0)),2); 
C_all            = [C_sys  C_sys]; 
M_all            = zeros(size(C_all)); 
Vol_all          = M_all; 
S_all            = M_all; 
Gibbs_all        = M_all; 
Cp_all           = M_all; 
i_sol            = 1:length(C_sys);                      % index solid part 
i_mlt            = i_sol(end)+[1:length(C_sys)];         % index melt part 
M_all(i_sol)     = C*squeeze(Molar_mass([1 2]));         % [kg/mol] 
M_all(i_mlt)     = C*squeeze(Molar_mass([3 4])); 
for iC = 1:length(C_sys) 
    prog = iC/length(C_sys) 
    for iT = 1:length(T_all) 
        for iP = 1:length(P_all) 
            Vol_all(i_sol)        = C*squeeze(  Vol(iT,iP,[1 2])); 
            Vol_all(i_mlt)        = C*squeeze(  Vol(iT,iP,[3 4])); 
            Cp_all(i_sol)         = C*squeeze(   Cp(iT,iP,[1 2])); 
            Cp_all(i_mlt)         = C*squeeze(   Cp(iT,iP,[3 4])); 
            S_all(i_sol)          = C*squeeze(    S(iT,iP,[1 2])) + Gibbs_id0; 
            S_all(i_mlt)          = C*squeeze(    S(iT,iP,[3 4])) + Gibbs_id0; 
            Gibbs_all(i_sol)      = C*squeeze(Gibbs(iT,iP,[1 2])) + T_all(iT)*Gibbs_id0; 
            Gibbs_all(i_mlt)      = C*squeeze(Gibbs(iT,iP,[3 4])) + T_all(iT)*Gibbs_id0; 
            Aeq                   = [C_all; ones(1,length(C_all))]; 
            beq                   = [C_sys(iC); 1]; 
            LB                    = zeros(1,length(C_all)); 
            UB                    =  ones(1,length(C_all)); 
            [alph,FVAL,EXITFLAG]  = linprog(Gibbs_all,[],[],Aeq,beq,LB,UB,[],opts); 
            alph_stb(:,iT,iC)     = alph; 
            alph_sol(iT,iP,iC)    = sum(alph(i_sol)); 
            alph_mlt(iT,iP,iC)    = sum(alph(i_mlt)); 
             
            M_sol(iT,iP,iC)       = sum(   M_all(i_sol).*alph(i_sol)')/sum(alph(i_sol)); 
            M_mlt(iT,iP,iC)       = sum(   M_all(i_mlt).*alph(i_mlt)')/sum(alph(i_mlt)); 
            Vol_sol(iT,iP,iC)     = sum( Vol_all(i_sol).*alph(i_sol)')/... 
                                    sum(alph(i_sol))/M_sol(iT,iP,iC); 
            Vol_mlt(iT,iP,iC)     = sum( Vol_all(i_mlt).*alph(i_mlt)')/... 
                                    sum(alph(i_mlt))/ M_mlt(iT,iP,iC); 
            Cp_sol(iT,iP,iC)      =(sum( Cp_all(i_sol).*alph(i_sol)')/... 
                                    sum(alph(i_sol)))/M_sol(iT,iP,iC); 
            Cp_mlt(iT,iP,iC)      =(sum( Cp_all(i_mlt).*alph(i_mlt)')/... 
                                    sum(alph(i_mlt)))/M_mlt(iT,iP,iC); 
            S_sol(iT,iP,iC)       = sum(   S_all(i_sol).*alph(i_sol)')/... 
                                    sum(alph(i_sol))/M_sol(iT,iP,iC); 
            S_mlt(iT,iP,iC)       = sum(   S_all(i_mlt).*alph(i_mlt)')/... 
                                    sum(alph(i_mlt))/M_mlt(iT,iP,iC); 
            G_sol(iT,iP,iC)       = sum(Gibbs_all(i_sol).*alph(i_sol)')/... 
                                    sum(alph(i_sol))/M_sol(iT,iP,iC); 
            G_mlt(iT,iP,iC)       = sum(Gibbs_all(i_mlt).*alph(i_mlt)')/... 
                                    sum(alph(i_mlt))/M_mlt(iT,iP,iC); 
            U_sol(iT,iP,iC)       = G_sol(iT,iP,iC) + T_all(iT)*S_sol(iT,iP,iC)... 
                                    - P_all(iP)*Vol_sol(iT,iP,iC); 
            U_mlt(iT,iP,iC)       = G_mlt(iT,iP,iC) + T_all(iT)*S_mlt(iT,iP,iC)... 
                                    - P_all(iP)*Vol_mlt(iT,iP,iC); 
            rho_sol(iT,iP,iC)     = 1/Vol_sol(iT,iP,iC); 
            rho_mlt(iT,iP,iC)     = 1/Vol_mlt(iT,iP,iC); 
            CFo_sol_mol(iT,iP,iC) = sum(alph(i_sol).*C_all(i_sol)')/sum(alph(i_sol)); 
            CFo_mlt_mol(iT,iP,iC) = sum(alph(i_mlt).*C_all(i_mlt)')/sum(alph(i_mlt)); 
            CFa_sol_mol(iT,iP,iC) = 1 - CFo_sol_mol(iT,iP,iC); 
            CFa_mlt_mol(iT,iP,iC) = 1 - CFo_mlt_mol(iT,iP,iC); 



            % MASS fraction [kg/kg] 
            CFo_sol(iT,iP,iC)     =  (CFo_sol_mol(iT,iP,iC)*Molar_mass(1))/... 
            (CFo_sol_mol(iT,iP,iC)*Molar_mass(1))+(CFa_sol_mol(iT,iP,iC)*Molar_mass(2))); 
            CFo_mlt(iT,iP,iC)     =  (CFo_mlt_mol(iT,iP,iC)*Molar_mass(3))/... 
           ((CFo_mlt_mol(iT,iP,iC)*Molar_mass(3))+(CFa_mlt_mol(iT,iP,iC)*Molar_mass(4))); 
            CFa_sol(iT,iP,iC)     =  (CFa_sol_mol(iT,iP,iC)*Molar_mass(2))/... 
           ((CFo_sol_mol(iT,iP,iC)*Molar_mass(1))+(CFa_sol_mol(iT,iP,iC)*Molar_mass(2))); 
            CFa_mlt(iT,iP,iC)     =  (CFa_mlt_mol(iT,iP,iC)*Molar_mass(4))/... 
           ((CFo_mlt_mol(iT,iP,iC)*Molar_mass(3))+(CFa_mlt_mol(iT,iP,iC)*Molar_mass(4))); 
        end 
    end 
end 
  
% Transformation from Fo-Fa to oxyde (MgO-FeO-SiO2) 
%--- Calculation of concentration in oxydes ------------------------------- 
%                MgO   FeO   SiO2 
Molecular_wt = [ 40.30 70.85 60.08]/1e3;    % poids moléculaire 
nb_ele       = [  2     2     1   ];        % nombre de fois l'élément dans une olivine 
for i = 1:length(C_all)/2 
    for j = 1:length(T_all) 
        for k = 1:length(P_all) 
            % MELT - subscript i = no normalized, n = normalized 
            CMgO_mlt_i(j,k,i)  = nb_ele(1)*Molecular_wt(1)*CFo_mlt(j,k,i); 
                                             % concentration MgO in melt no-normalized 
            CFeO_mlt_i(j,k,i)  = nb_ele(2)*Molecular_wt(2)*(1-CFo_mlt(j,k,i)); 
                                             % concentration FeO in melt no-normalized 
            CSiO2_mlt_i(j,k,i) = nb_ele(3)*Molecular_wt(3)*(CFo_mlt(j,k,i)+1 
                                 -CFo_mlt(j,k,i)); 
                                             % concentration SiO2 in melt no-normalized 
            SOM_mlt_i(j,k,i)   = CMgO_mlt_i(j,k,i)+CFeO_mlt_i(j,k,i)+CSiO2_mlt_i(j,k,i); 
                                             % sum for normalisation 
            CMgO_mlt_n(j,k,i)  = CMgO_mlt_i(j,k,i)/SOM_mlt_i(j,k,i); 
                                             % concentration MgO in melt normalized 
            CFeO_mlt_n(j,k,i)  = CFeO_mlt_i(j,k,i)/SOM_mlt_i(j,k,i); 
                                             % concentration FeO in melt normalized 
            CSiO2_mlt_n(j,k,i) = CSiO2_mlt_i(j,k,i)/SOM_mlt_i(j,k,i); 
                                             % concentration SiO2 in melt normalized 
            % SOLID - subscript i = no normalized, n = normalized 
            CMgO_sol_i(j,k,i)  = nb_ele(1)*Molecular_wt(1)*CFo_sol(j,k,i); 
                                             % concentration MgO in solid no-normalized 
            CFeO_sol_i(j,k,i)  = nb_ele(2)*Molecular_wt(2)*(1-CFo_sol(j,k,i)); 
                                             % concentration FeO in solid no-normalized 
            CSiO2_sol_i(j,k,i) = nb_ele(3)*Molecular_wt(3)*(CFo_sol(j,k,i)+1 
                                 -CFo_sol(j,k,i)); 
                                             % concentration SiO2 in solid no-normalized 
            SOM_sol_i(j,k,i)   = CMgO_sol_i(j,k,i)+CFeO_sol_i(j,k,i)+CSiO2_sol_i(j,k,i); 
                                             % sum for normalisation 
            CMgO_sol_n(j,k,i)  = CMgO_sol_i(j,k,i)/SOM_sol_i(j,k,i); 
                                             % concentration MgO in solid normalized 
            CFeO_sol_n(j,k,i)  = CFeO_sol_i(j,k,i)/SOM_sol_i(j,k,i); 
                                             % concentration FeO in solid normalized 
            CSiO2_sol_n(j,k,i) = CSiO2_sol_i(j,k,i)/SOM_sol_i(j,k,i); 
                                             % concentration SiO2 in solid normalized 
        end 
    end 
end 
 
save GibbsMin_Ol_Cigar 
 
% ============================== ZOOM IN THE CIGAR =============================== % 
% CODE FOR ZOOM IN DATA OLIVINE CIGAR - low resolution 
% Annelore Bessat, last version 05.06.2020 
clear all, close all, clc 



%= DATA LOAD AND PREPARATION ============================================== 
load GibbsMin_Ol_Cigar.mat; whos 
  
% Visualisation of cigar to choose Zoom 
[T3,P3,C3] = ndgrid(T_all,P_all,C_all(i_sol)); 
  
ind_rect  = [ 68   90   27   37]; % index of zoom in the data 
rect_y    = T_all(ind_rect(1))-273.15; 
rect_x    = C_all(ind_rect(3)); 
rect_ly   = (T_all(ind_rect(2))-273.15)-(T_all(ind_rect(1))-273.15); 
rect_lx   = C_all(ind_rect(4))-C_all(ind_rect(3)); 
  
for iP = [1 25 36] 
    figure(iP) 
    pcolor(squeeze(C3(:,iP,:)),squeeze(T3(:,iP,:)-273.15),squeeze(rho_mlt(:,iP,:))) 
    shading interp 
    title(num2str(P_all(iP)/1e9)) 
    colorbar 
    caxis([3500 4200]) 
    drawnow 
    hold on 
    rectangle('Position',[rect_x rect_y rect_lx rect_ly],... 
              'LineWidth',2,'LineStyle',':','EdgeColor','k') 
end 
 
%= CHOOSE DATA ZOOM ======================================================= 
% for a pressure between 2.4-3.5 GPa 
iT           = 68:90;            % index zoom for temperature 
iP           = 25:36;            % index zoom for pressure 
iC           = 27:37;            % index zoom for concentration of system 
  
Uz_sol       =       U_sol(iT,iP,iC); 
Uz_mlt       =       U_mlt(iT,iP,iC); 
rhoz_sol     =     rho_sol(iT,iP,iC); 
rhoz_mlt     =     rho_mlt(iT,iP,iC); 
Cpz_sol      =      Cp_sol(iT,iP,iC); 
Cpz_mlt      =      Cp_mlt(iT,iP,iC); 
CFoz_sol     =     CFo_sol(iT,iP,iC); 
CFoz_sol_mol = CFo_sol_mol(iT,iP,iC); 
CFaz_sol     =     CFa_sol(iT,iP,iC); 
CFaz_sol_mol = CFa_sol_mol(iT,iP,iC); 
CFoz_mlt     =     CFo_mlt(iT,iP,iC); 
CFoz_mlt_mol = CFo_mlt_mol(iT,iP,iC); 
CFaz_mlt     =     CFa_mlt(iT,iP,iC); 
CFaz_mlt_mol = CFa_mlt_mol(iT,iP,iC); 
CMgOz_sol    =  CMgO_sol_n(iT,iP,iC); 
CMgOz_mlt    =  CMgO_mlt_n(iT,iP,iC); 
CFeOz_sol    =  CFeO_sol_n(iT,iP,iC); 
CFeOz_mlt    =  CFeO_mlt_n(iT,iP,iC); 
CSiO2z_sol   = CSiO2_sol_n(iT,iP,iC); 
CSiO2z_mlt   = CSiO2_mlt_n(iT,iP,iC); 
T3z          =          T3(iT,iP,iC); 
P3z          =          P3(iT,iP,iC); 
C3z          =          C3(iT,iP,iC); 
T_plotz      = T_all(iT)-273.15; 
P_plotz      = P_all(iP); 
 
%= 3D(TemperaturePressureConcentration) to 2D(TemperaturePressure) ======== 
iT           = 1:length(iT); 
iP           = 1:length(iP); 
iC           = 11; 
Uz_sol       = squeeze(      Uz_sol(iT,iP,iC)); 
Uz_mlt       = squeeze(      Uz_mlt(iT,iP,iC)); 



rhoz_sol     = squeeze(    rhoz_sol(iT,iP,iC)); 
rhoz_mlt     = squeeze(    rhoz_mlt(iT,iP,iC)); 
Cpz_sol      = squeeze(     Cpz_sol(iT,iP,iC)); 
Cpz_mlt      = squeeze(     Cpz_mlt(iT,iP,iC)); 
CFoz_sol     = squeeze(    CFoz_sol(iT,iP,iC)); 
CFoz_sol_mol = squeeze(CFoz_sol_mol(iT,iP,iC)); 
CFaz_sol     = squeeze(    CFaz_sol(iT,iP,iC)); 
CFaz_sol_mol = squeeze(CFaz_sol_mol(iT,iP,iC)); 
CFoz_mlt     = squeeze(    CFoz_mlt(iT,iP,iC)); 
CFoz_mlt_mol = squeeze(CFoz_mlt_mol(iT,iP,iC)); 
CFaz_mlt     = squeeze(    CFaz_mlt(iT,iP,iC)); 
CFaz_mlt_mol = squeeze(CFaz_mlt_mol(iT,iP,iC)); 
CMgOz_sol    = squeeze(   CMgOz_sol(iT,iP,iC)); 
CMgOz_mlt    = squeeze(   CMgOz_mlt(iT,iP,iC)); 
CFeOz_sol    = squeeze(   CFeOz_sol(iT,iP,iC)); 
CFeOz_mlt    = squeeze(   CFeOz_mlt(iT,iP,iC)); 
CSiO2z_sol   = squeeze(  CSiO2z_sol(iT,iP,iC)); 
CSiO2z_mlt   = squeeze(  CSiO2z_mlt(iT,iP,iC)); 
T2dz         = squeeze(         T3z(iT,iP,iC)); 
P2dz         = squeeze(         P3z(iT,iP,iC)); 
C2dz         = squeeze(         C3z(iT,iP,iC)); 
C_ref        = C3z(1,1,iC); 
  
%= DATA SAVE ============================================================== 
save  ZoomData_Ol_Cigar T2dz P2dz C2dz T_plotz P_plotz C_ref       ... 
       Uz_sol rhoz_sol CFoz_sol CFoz_sol_mol CFaz_sol CFaz_sol_mol ... 
       Uz_mlt rhoz_mlt CFoz_mlt CFoz_mlt_mol CFaz_mlt CFaz_mlt_mol ... 
       CMgOz_sol CFeOz_sol CSiO2z_sol Cpz_sol                      ... 
       CMgOz_mlt CFeOz_mlt CSiO2z_mlt Cpz_mlt 
 
% ============================== CODE FOR APPROXIMATION =============================== % 
% CODE FOR APPROXIMATION OF ALPHA, BETA AND GAMMA 
% 22.05.2020, Annelore Bessat, Last Update 27.01.2021 
clear all, close all 
load  ZoomData_Ol_Cigar; whos 
  
% = PARAMETRES APPROXIMATION ============================================= 
%- Point de référence ----------------------------------------------------- 
iTref           = round(length(T_plotz)/2); 
iPref           = min(find(P_plotz >= 3e9)); 
Tref_apx        = T2dz(iTref,1); % Tref: 1590°C (middle of zoom domain) 
Pref_apx        = P2dz(1,iPref); % Pref: 3 GPa 
rho0_mlt        = rhoz_mlt(iTref,iPref); 
rho0_sol        = rhoz_sol(iTref,iPref); 
Cp0_mlt         = Cpz_mlt(iTref,iPref); 
Cp0_sol         = Cpz_sol(iTref,iPref); 
U0_mlt          = Uz_mlt(iTref,iPref); 
U0_sol          = Uz_sol(iTref,iPref); 
CMgO0_mlt       = CMgOz_mlt(iTref,iPref); 
CMgO0_sol       = CMgOz_sol(iTref,iPref); 
CFeO0_mlt       = CFeOz_mlt(iTref,iPref); 
CFeO0_sol       = CFeOz_sol(iTref,iPref); 
CSiO20_mlt      = CSiO2z_mlt(iTref,iPref); 
CSiO20_sol      = CSiO2z_sol(iTref,iPref); 
 

%- Calcul de l'alpha et du beta ------------------------------------------- 
alpha_rho_mlt   = ((  rhoz_mlt(end,iPref)-  rhoz_mlt(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/  rho0_mlt; 
alpha_rho_sol   = ((  rhoz_sol(end,iPref)-  rhoz_sol(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/  rho0_sol; 
alpha_Cp_mlt    = ((   Cpz_mlt(end,iPref)-   Cpz_mlt(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/   Cp0_mlt; 



alpha_Cp_sol    = ((   Cpz_sol(end,iPref)-   Cpz_sol(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/   Cp0_sol; 
alpha_U_mlt     = Cp0_mlt; 
alpha_U_sol     = Cp0_sol; 
alpha_CMgO_mlt  = (( CMgOz_mlt(end,iPref)- CMgOz_mlt(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/ CMgO0_mlt; 
alpha_CMgO_sol  = (( CMgOz_sol(end,iPref)- CMgOz_sol(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/ CMgO0_sol; 
alpha_CFeO_mlt  = (( CFeOz_mlt(end,iPref)- CFeOz_mlt(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/ CFeO0_mlt; 
alpha_CFeO_sol  = (( CFeOz_sol(end,iPref)- CFeOz_sol(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/ CFeO0_sol; 
alpha_CSiO2_mlt = ((CSiO2z_mlt(end,iPref)-CSiO2z_mlt(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/CSiO20_mlt; 
alpha_CSiO2_sol = ((CSiO2z_sol(end,iPref)-CSiO2z_sol(1,iPref))/(T2dz(end,iPref)- ... 
                  T2dz(1,iPref)))/CSiO20_sol; 
 
beta_rho_mlt    = ((  rhoz_mlt(iTref,end)-  rhoz_mlt(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/  rho0_mlt; 
beta_rho_sol    = ((  rhoz_sol(iTref,end)-  rhoz_sol(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/  rho0_sol; 
beta_Cp_mlt     = ((   Cpz_mlt(iTref,end)-   Cpz_mlt(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/   Cp0_mlt; 
beta_Cp_sol     = ((   Cpz_sol(iTref,end)-   Cpz_sol(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/   Cp0_sol; 
beta_U_mlt      = 0; 
beta_U_sol      = 0; 
beta_CMgO_mlt   = (( CMgOz_mlt(iTref,end)- CMgOz_mlt(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/ CMgO0_mlt; 
beta_CMgO_sol   = (( CMgOz_sol(iTref,end)- CMgOz_sol(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/ CMgO0_sol; 
beta_CFeO_mlt   = (( CFeOz_mlt(iTref,end)- CFeOz_mlt(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/ CFeO0_mlt; 
beta_CFeO_sol   = (( CFeOz_sol(iTref,end)- CFeOz_sol(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/ CFeO0_sol; 
beta_CSiO2_mlt  = ((CSiO2z_mlt(iTref,end)-CSiO2z_mlt(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/CSiO20_mlt; 
beta_CSiO2_sol  = ((CSiO2z_sol(iTref,end)-CSiO2z_sol(iTref,1))/(P2dz(iTref,end)- ... 
                  P2dz(iTref,1)))/CSiO20_sol; 
  
%- Calcul des paramètres par approximation -------------------------------- 
rho_mlt_apx    =   rho0_mlt.*(1+(  alpha_rho_mlt.*(T2dz-Tref_apx))+ ... 
                                (   beta_rho_mlt.*(P2dz-Pref_apx))); 
rho_sol_apx    =   rho0_sol.*(1+(  alpha_rho_sol.*(T2dz-Tref_apx))+ ... 
                                (   beta_rho_sol.*(P2dz-Pref_apx))); 
CMgO_mlt_apx   =  CMgO0_mlt.*(1+( alpha_CMgO_mlt.*(T2dz-Tref_apx))+ ... 
                                (  beta_CMgO_mlt.*(P2dz-Pref_apx))); 
CMgO_sol_apx   =  CMgO0_sol.*(1+( alpha_CMgO_sol.*(T2dz-Tref_apx))+ ... 
                                (  beta_CMgO_sol.*(P2dz-Pref_apx))); 
CFeO_mlt_apx   =  CFeO0_mlt.*(1+( alpha_CFeO_mlt.*(T2dz-Tref_apx))+ ... 
                                (  beta_CFeO_mlt.*(P2dz-Pref_apx))); 
CFeO_sol_apx   =  CFeO0_sol.*(1+( alpha_CFeO_sol.*(T2dz-Tref_apx))+ ... 
                                (  beta_CFeO_sol.*(P2dz-Pref_apx))); 
CSiO_mlt_apx   = CSiO20_mlt.*(1+(alpha_CSiO2_mlt.*(T2dz-Tref_apx))+ ... 
                                ( beta_CSiO2_mlt.*(P2dz-Pref_apx))); 
CSiO_sol_apx   = CSiO20_sol.*(1+(alpha_CSiO2_sol.*(T2dz-Tref_apx))+ ... 
                                ( beta_CSiO2_sol.*(P2dz-Pref_apx))); 
U_mlt_apx      =     U0_mlt.*(1+(    alpha_U_mlt.*(T2dz-Tref_apx))+ ... 
                                (     beta_U_mlt.*(P2dz-Pref_apx))); 
U_sol_apx      =     U0_sol.*(1+(    alpha_U_sol.*(T2dz-Tref_apx))+ ... 
                                (     beta_U_sol.*(P2dz-Pref_apx))); 
Cp_mlt_apx     =    Cp0_mlt.*(1+(   alpha_Cp_mlt.*(T2dz-Tref_apx))+ ... 
                                (    beta_Cp_mlt.*(P2dz-Pref_apx))); 



Cp_sol_apx     =    Cp0_sol.*(1+(   alpha_Cp_sol.*(T2dz-Tref_apx))+ ... 
                                (    beta_Cp_sol.*(P2dz-Pref_apx))); 
  
%% - Data pour calcul du gamma -------------------------------------------- 
% Data experimental melt "0% melt" (Table 1; Davis 2011) 
MgO_m_data_exp   = 15.78; 
FeO_m_data_exp   =  9.72; 
SiO_m_data_exp   = 44.77; 
SOM_mlt_data_exp = MgO_m_data_exp + FeO_m_data_exp + SiO_m_data_exp; 
MgO_m_exp        = MgO_m_data_exp/SOM_mlt_data_exp; 
FeO_m_exp        = FeO_m_data_exp/SOM_mlt_data_exp; 
SiO_m_exp        = SiO_m_data_exp/SOM_mlt_data_exp; 
SOM_mlt_exp      = MgO_m_exp + FeO_m_exp + SiO_m_exp; 
% Data experimental solid "KLB-1ox" (Table 1; Davis 2011) 
MgO_s_data_exp   = 38.76; 
FeO_s_data_exp   =  8.09; 
SiO_s_data_exp   = 44.92; 
SOM_sol_data_exp = MgO_s_data_exp + FeO_s_data_exp +SiO_s_data_exp; 
MgO_s_exp        = MgO_s_data_exp/SOM_sol_data_exp; 
FeO_s_exp        = FeO_s_data_exp/SOM_sol_data_exp; 
SiO_s_exp        = SiO_s_data_exp/SOM_sol_data_exp; 
SOM_sol_exp      = MgO_s_exp + FeO_s_exp + SiO_s_exp; 
% total experimental 
SOM_TOT_exp      = SOM_mlt_exp + SOM_sol_exp; 
MgO_TOT_exp      = (MgO_m_exp + MgO_s_exp)/SOM_TOT_exp; 
Feo_TOT_exp      = (FeO_m_exp + FeO_s_exp)/SOM_TOT_exp; 
SiO_TOT_exp      = (SiO_m_exp + SiO_s_exp)/SOM_TOT_exp; 
  
% data melt linprog 
MgO_m_data_lp    = CMgO0_mlt; 
FeO_m_data_lp    = CFeO0_mlt; 
SiO_m_data_lp    = CSiO20_mlt; 
SOM_mlt_data_lp  = MgO_m_data_lp + FeO_m_data_lp + SiO_m_data_lp; 
MgO_m_lp         = MgO_m_data_lp/SOM_mlt_data_lp; 
FeO_m_lp         = FeO_m_data_lp/SOM_mlt_data_lp; 
SiO_m_lp         = SiO_m_data_lp/SOM_mlt_data_lp; 
SOM_mlt_lp       = MgO_m_lp + FeO_m_lp + SiO_m_lp; 
% data solid linprog 
MgO_s_data_lp    = CMgO0_sol; 
FeO_s_data_lp    = CFeO0_sol; 
SiO_s_data_lp    = CSiO20_sol; 
SOM_sol_data_lp  = MgO_s_data_lp + FeO_s_data_lp + SiO_s_data_lp; 
MgO_s_lp         = MgO_s_data_lp/SOM_sol_data_lp; 
FeO_s_lp         = FeO_s_data_lp/SOM_sol_data_lp; 
SiO_s_lp         = SiO_s_data_lp/SOM_sol_data_lp; 
SOM_sol_lp       = MgO_s_lp + FeO_s_lp + SiO_s_lp; 
% total linprog 
SOM_TOT_lp       = SOM_mlt_lp + SOM_sol_lp; 
MgO_TOT_lp       = (MgO_m_lp + MgO_s_lp)/SOM_TOT_lp; 
FeO_TOT_lp       = (FeO_m_lp + FeO_s_lp)/SOM_TOT_lp; 
SiO_TOT_lp       = (SiO_m_lp + SiO_s_lp)/SOM_TOT_lp; 
  
%- Calcul des gammas U CMgO CFeO CSiO2 ------------------------------------ 
gamma_CMgO_mlt  = ((MgO_m_exp-MgO_m_lp)/(SiO_TOT_exp-SiO_TOT_lp))/ CMgO0_mlt; 
gamma_CMgO_sol  = ((MgO_s_exp-MgO_s_lp)/(SiO_TOT_exp-SiO_TOT_lp))/ CMgO0_sol; 
gamma_CFeO_mlt  = ((FeO_m_exp-FeO_m_lp)/(SiO_TOT_exp-SiO_TOT_lp))/ CFeO0_mlt; 
gamma_CFeO_sol  = ((FeO_s_exp-FeO_s_lp)/(SiO_TOT_exp-SiO_TOT_lp))/ CFeO0_sol; 
gamma_CSiO2_mlt = ((SiO_m_exp-SiO_m_lp)/(SiO_TOT_exp-SiO_TOT_lp))/CSiO20_mlt; 
gamma_CSiO2_sol = ((SiO_s_exp-SiO_s_lp)/(SiO_TOT_exp-SiO_TOT_lp))/CSiO20_sol; 
gamma_U_mlt     = 0; 
gamma_U_sol     = 0; 
gamma_Cp_mlt    = 0; 
gamma_Cp_sol    = 0; 



%- Calcul des gammas rho -------------------------------------------------- 
% Oxyde transformation (MgO-FeO-SiO2) in mol to find molar fraction - data from Davis et 
al. 2011 
%--- Data of Davis et al. (Tables 1 and 2) in WT% ------------------------- 
nameph_D2011 = {'Ol_s_D2011','Opx_s_D2011','Cpx_s_D2011','Grt_s_D2011','Liq_m_D2011'}; 
MgO_D2011    = [       48.26,        31.16,        21.43,        20.50,        15.78]; 
FeO_D2011    = [       10.00,         5.89,         4.82,         6.63,         9.72]; 
SiO2_D2011   = [       40.65,        54.28,        52.97,        42.15,        44.77]; 
SOM_D2011    = MgO_D2011 + FeO_D2011 + SiO2_D2011; 
mode_D2011   = [       60.80,         7.70,        22.60,         8.90]/1e2; 
%--- Data normalisation in  WT% ------------------------------------------- 
MgO_D2011_n  = MgO_D2011./SOM_D2011; 
FeO_D2011_n  = FeO_D2011./SOM_D2011; 
SiO2_D2011_n = SiO2_D2011./SOM_D2011; 
SOM_D2011_n  = MgO_D2011_n + FeO_D2011_n + SiO2_D2011_n; 
%--- Transformation in MOLE ----------------------------------------------- 
%                         MgO   FeO   SiO2 
Molecular_wt        = [ 40.30 70.85 60.08]/1e3;    % poids moléculaire 
SOM_TOT_D2011_n_mol = (MgO_D2011_n./Molecular_wt(1))+(FeO_D2011_n./Molecular_wt(2))+ ... 
                      (SiO2_D2011_n./Molecular_wt(3)); 
MgO_D2011_n_mol     = (MgO_D2011_n./Molecular_wt(1))./SOM_TOT_D2011_n_mol; 
FeO_D2011_n_mol     = (FeO_D2011_n./Molecular_wt(2))./SOM_TOT_D2011_n_mol; 
SiO2_D2011_n_mol    = (SiO2_D2011_n./Molecular_wt(3))./SOM_TOT_D2011_n_mol; 
SOM_test = MgO_D2011_n_mol+FeO_D2011_n_mol+SiO2_D2011_n_mol; 
% Liquid 
%                   MgO   FeO   SiO2 
%           FoL  =   2     0     1 
%           FaL  =   0     2     1 
%           QtzL =   0     0     1 
nb_mol_Liq       = [2 0 1; 0 2 1; 0 0 1]; 
inv_nmol_Liq     = inv(nb_mol_Liq)'; 
FoL_n_mol        = inv_nmol_Liq(1,1)*MgO_D2011_n_mol(5)+inv_nmol_Liq(1,2)* ... 
                   FeO_D2011_n_mol(5)+inv_nmol_Liq(1,3)*SiO2_D2011_n_mol(5); 
FaL_n_mol        = inv_nmol_Liq(2,1)*MgO_D2011_n_mol(5)+inv_nmol_Liq(2,2)* ... 
                   FeO_D2011_n_mol(5)+inv_nmol_Liq(2,3)*SiO2_D2011_n_mol(5); 
QtzL_n_mol       = inv_nmol_Liq(3,1)*MgO_D2011_n_mol(5)+inv_nmol_Liq(3,2)* ... 
                   FeO_D2011_n_mol(5)+inv_nmol_Liq(3,3)*SiO2_D2011_n_mol(5); 
SOM_Liq          = FoL_n_mol + FaL_n_mol + QtzL_n_mol; 
FoL_n_mol_nor    = FoL_n_mol/SOM_Liq; 
FaL_n_mol_nor    = FaL_n_mol/SOM_Liq; 
QtzL_n_mol_nor   = QtzL_n_mol/SOM_Liq; 
% Olivine 
%                   MgO   FeO   SiO2 
%           Fo   =   2     0     1 
%           Fa   =   0     2     1 
%           Qtz  =   0     0     1 
nb_mol_Ol        = [2 0 1; 0 2 1; 0 0 1]; 
inv_nmol_Ol      = inv(nb_mol_Ol)'; 
Fo_n_mol         = inv_nmol_Ol(1,1)*MgO_D2011_n_mol(1)+inv_nmol_Ol(1,2)* ... 
                   FeO_D2011_n_mol(1)+inv_nmol_Ol(1,3)*SiO2_D2011_n_mol(1); 
Fa_n_mol         = inv_nmol_Ol(2,1)*MgO_D2011_n_mol(1)+inv_nmol_Ol(2,2)* ... 
                   FeO_D2011_n_mol(1)+inv_nmol_Ol(2,3)*SiO2_D2011_n_mol(1); 
QtzOl_n_mol      = inv_nmol_Ol(3,1)*MgO_D2011_n_mol(1)+inv_nmol_Ol(3,2)* ... 
                   FeO_D2011_n_mol(1)+inv_nmol_Ol(3,3)*SiO2_D2011_n_mol(1); 
SOM_Ol           = Fo_n_mol + Fa_n_mol + QtzOl_n_mol; 
Fo_n_mol_nor     = Fo_n_mol/SOM_Ol; 
Fa_n_mol_nor     = Fa_n_mol/SOM_Ol; 
QtzOl_n_mol_nor  = QtzOl_n_mol/SOM_Ol; 
% Opx 
%                   MgO   FeO   SiO2 
%           En   =   2     0     2 
%           Fs   =   0     2     2 
%           Qtz  =   0     0     1 



nb_mol_Opx       = [2 0 2; 0 2 2; 0 0 1]; 
inv_nmol_Opx     = inv(nb_mol_Opx)'; 
En_n_mol         = inv_nmol_Opx(1,1)*MgO_D2011_n_mol(2)+inv_nmol_Opx(1,2)* ... 
                   FeO_D2011_n_mol(2)+inv_nmol_Opx(1,3)*SiO2_D2011_n_mol(2); 
Fs_n_mol         = inv_nmol_Opx(2,1)*MgO_D2011_n_mol(2)+inv_nmol_Opx(2,2)* ... 
                   FeO_D2011_n_mol(2)+inv_nmol_Opx(2,3)*SiO2_D2011_n_mol(2); 
QtzOpx_n_mol     = inv_nmol_Opx(3,1)*MgO_D2011_n_mol(2)+inv_nmol_Opx(3,2)* ... 
                   FeO_D2011_n_mol(2)+inv_nmol_Opx(3,3)*SiO2_D2011_n_mol(2); 
SOM_Opx          = En_n_mol + Fs_n_mol + QtzOpx_n_mol; 
En_n_mol_nor     = En_n_mol/SOM_Opx; 
Fs_n_mol_nor     = Fs_n_mol/SOM_Opx; 
QtzOpx_n_mol_nor = QtzOpx_n_mol/SOM_Opx; 
% Cpx 
%                   MgO   FeO   SiO2  CaO 
%           Di   =   1     0     2     1 
%           Hed  =   0     1     2     1 
%           Qtz  =   0     0     1     0 
nb_mol_Cpx       = [1 0 2; 0 1 2; 0 0 1]; 
inv_nmol_Cpx     = inv(nb_mol_Cpx)'; 
Di_n_mol         = inv_nmol_Cpx(1,1)*MgO_D2011_n_mol(3)+inv_nmol_Cpx(1,2)* ... 
                   FeO_D2011_n_mol(3)+inv_nmol_Cpx(1,3)*SiO2_D2011_n_mol(3); 
Hed_n_mol        = inv_nmol_Cpx(2,1)*MgO_D2011_n_mol(3)+inv_nmol_Cpx(2,2)* ... 
                   FeO_D2011_n_mol(3)+inv_nmol_Cpx(2,3)*SiO2_D2011_n_mol(3); 
QtzCpx_n_mol     = inv_nmol_Cpx(3,1)*MgO_D2011_n_mol(3)+inv_nmol_Cpx(3,2)* ... 
                   FeO_D2011_n_mol(3)+inv_nmol_Cpx(3,3)*SiO2_D2011_n_mol(3); 
SOM_Cpx          = Di_n_mol + Hed_n_mol + QtzCpx_n_mol; 
Di_n_mol_nor     = Di_n_mol/SOM_Cpx; 
Hed_n_mol_nor    = Hed_n_mol/SOM_Cpx; 
QtzCpx_n_mol_nor = QtzCpx_n_mol/SOM_Cpx; 
% Grt 
%                   MgO   FeO   SiO2  Al2O3 
%           Py   =   3     0     3     1 
%           Alm  =   0     3     3     1 
%           Qtz  =   0     0     1     0 
nb_mol_Grt       = [3 0 3; 0 3 3; 0 0 1]; 
inv_nmol_Grt     = inv(nb_mol_Grt)'; 
Py_n_mol         = inv_nmol_Grt(1,1)*MgO_D2011_n_mol(4)+inv_nmol_Grt(1,2)* ... 
                   FeO_D2011_n_mol(4)+inv_nmol_Grt(1,3)*SiO2_D2011_n_mol(4); 
Alm_n_mol        = inv_nmol_Grt(2,1)*MgO_D2011_n_mol(4)+inv_nmol_Grt(2,2)* ... 
                   FeO_D2011_n_mol(4)+inv_nmol_Grt(2,3)*SiO2_D2011_n_mol(4); 
QtzGrt_n_mol     = inv_nmol_Grt(3,1)*MgO_D2011_n_mol(4)+inv_nmol_Grt(3,2)* ... 
                   FeO_D2011_n_mol(4)+inv_nmol_Grt(3,3)*SiO2_D2011_n_mol(4); 
SOM_Grt          = Py_n_mol + Alm_n_mol + QtzGrt_n_mol; 
Py_n_mol_nor     = Py_n_mol/SOM_Grt; 
Alm_n_mol_nor    = Alm_n_mol/SOM_Grt; 
QtzGrt_n_mol_nor = QtzGrt_n_mol/SOM_Grt; 
  
%--- Calculation of mineral pole density ----------------------------------  
% load HP98_ds55_lowres, whos 
load('HP98_ds55_lowres.mat','T_HP98_K','P_HP98_Pa','Gibbs_HP98_Pa','phs_names','phase_mol
_comp','ele_wt') 
T_all            = T_HP98_K; 
P_all            = P_HP98_Pa; 
dP               = P_all(2)-P_all(1); 
% Temperature and pressure of reference from experimentation 
iT_apx           = find(T_all == Tref_apx); 
iP_apx           = find(P_all == Pref_apx); 
% Phase 
iphase           = [find(strcmp(phs_names,'fo'  ))... %  ol - Mg2SiO4       1 
                   ,find(strcmp(phs_names,'fa'  ))... %     - Fe2SiO4       2 
                   ,find(strcmp(phs_names,'en'  ))... % opx - Mg2Si2O6      3 
                   ,find(strcmp(phs_names,'fs'  ))... %     - Fe2Si2O6      4 
                   ,find(strcmp(phs_names,'di'  ))... % cpx - CaMgSi2O6     5 



                   ,find(strcmp(phs_names,'hed' ))... %     - CaFeSi2O6     6 
                   ,find(strcmp(phs_names,'py'  ))... % grt - Mg3Al2Si3O12  7 
                   ,find(strcmp(phs_names,'alm' ))... %     - Fe3Al2Si3O12  8 
                   ,find(strcmp(phs_names,'foL' ))... % ol liq  - Mg2SiO4   9 
                   ,find(strcmp(phs_names,'faL' ))... %         - Fe2SiO4  10 
                   ,find(strcmp(phs_names,'q'   ))... % qtz     - SiO2     11 
                   ,find(strcmp(phs_names,'qL'))];    % qtz liq - SiO2     12 
% Calculation with data base 
Molar_mass       = phase_mol_comp(iphase,:)*(ele_wt/1e3)'; 
Gibbs_apx        = Gibbs_HP98_Pa(iT_apx,:,iphase); 
% Volume 
Vol_c_exp            = diff(Gibbs_exp,1,2)/dP;  % Pa*m^3/mol/Pa = m^3/mol 
Vol_c_apx            = diff(Gibbs_apx,1,2)/dP; 
Vol_exp              = zeros(size(Gibbs_exp)); 
Vol_apx              = zeros(size(Gibbs_apx)); 
Vol_exp(:,2:end-1,:) = (Vol_c_exp(:,1:end-1,:) + Vol_c_exp(:,2:end,:) )/2; 
Vol_exp(:,  1,:)     = Vol_exp(:,    2,:); 
Vol_exp(:,end,:)     = Vol_exp(:,end-1,:); 
Vol_apx(:,2:end-1,:) = (Vol_c_apx(:,1:end-1,:) + Vol_c_apx(:,2:end,:) )/2; 
Vol_apx(:,  1,:)     = Vol_apx(:,    2,:); 
Vol_apx(:,end,:)     = Vol_apx(:,end-1,:); 
 
%= PREPROCESSING ========================================================== 
Vol_ol_exp         = Vol_exp(1,iP_exp,1)* Fo_n_mol_nor + Vol_exp(1,iP_exp,2) *... 
                     Fa_n_mol_nor + Vol_exp(1,iP_exp,11)* QtzOl_n_mol_nor; % MOLAR VOLUME 
Vol_opx_exp        = Vol_exp(1,iP_exp,3)* En_n_mol_nor + Vol_exp(1,iP_exp,4) *... 
                     Fs_n_mol_nor + Vol_exp(1,iP_exp,11)*QtzOpx_n_mol_nor; 
Vol_cpx_exp        = Vol_exp(1,iP_exp,5)* Di_n_mol_nor + Vol_exp(1,iP_exp,6) *... 
                     Hed_n_mol_nor + Vol_exp(1,iP_exp,11)*QtzCpx_n_mol_nor; 
Vol_grt_exp        = Vol_exp(1,iP_exp,7)* Py_n_mol_nor + Vol_exp(1,iP_exp,8) *... 
                     Alm_n_mol_nor + Vol_exp(1,iP_exp,11)*QtzGrt_n_mol_nor; 
Vol_liq_exp        = Vol_exp(1,iP_exp,9)*FoL_n_mol_nor + Vol_exp(1,iP_exp,10)*... 
                     FaL_n_mol_nor + Vol_exp(1,iP_exp,12)*  QtzL_n_mol_nor; 
Vol_ol_apx         = Vol_apx(1,iP_apx,1)* Fo_n_mol_nor + Vol_apx(1,iP_apx,2) *... 
                     Fa_n_mol_nor + Vol_apx(1,iP_apx,11)* QtzOl_n_mol_nor; 
Vol_opx_apx        = Vol_apx(1,iP_apx,3)* En_n_mol_nor + Vol_apx(1,iP_apx,4) *... 
                     Fs_n_mol_nor + Vol_apx(1,iP_apx,11)*QtzOpx_n_mol_nor; 
Vol_cpx_apx        = Vol_apx(1,iP_apx,5)* Di_n_mol_nor + Vol_apx(1,iP_apx,6) *... 
                     Hed_n_mol_nor + Vol_apx(1,iP_apx,11)*QtzCpx_n_mol_nor; 
Vol_grt_apx        = Vol_apx(1,iP_apx,7)* Py_n_mol_nor + Vol_apx(1,iP_apx,8) *... 
                     Alm_n_mol_nor + Vol_apx(1,iP_apx,11)*QtzGrt_n_mol_nor; 
Vol_liq_apx        = Vol_apx(1,iP_apx,9)*FoL_n_mol_nor + Vol_apx(1,iP_apx,10)*... 
                     FaL_n_mol_nor + Vol_apx(1,iP_apx,12)*  QtzL_n_mol_nor; 
  
M_ol               = Molar_mass(1)* Fo_n_mol_nor + Molar_mass(2) * Fa_n_mol_nor +... 
                     Molar_mass(11)* QtzOl_n_mol_nor; % MOLAR MASS 
M_opx              = Molar_mass(3)* En_n_mol_nor + Molar_mass(4) * Fs_n_mol_nor +... 
                     Molar_mass(11)*QtzOpx_n_mol_nor; 
M_cpx              = Molar_mass(5)* Di_n_mol_nor + Molar_mass(6) *Hed_n_mol_nor +... 
                     Molar_mass(11)*QtzCpx_n_mol_nor; 
M_grt              = Molar_mass(7)* Py_n_mol_nor + Molar_mass(8) *Alm_n_mol_nor +... 
                     Molar_mass(11)*QtzGrt_n_mol_nor; 
M_liq              = Molar_mass(9)*FoL_n_mol_nor + Molar_mass(10)*FaL_n_mol_nor +... 
                     Molar_mass(12)*  QtzL_n_mol_nor; 
mod_vol_fo_exp     = Fo_n_mol_nor*Vol_exp(1,iP_exp, 1)/(Fo_n_mol_nor*... 
                     Vol_exp(1,iP_exp,1)+ Fa_n_mol_nor*Vol_exp(1,iP_exp,2)+ ... 
                     QtzOl_n_mol_nor*Vol_exp(1,iP_exp,11));% MODE IN VOL% 
mod_vol_fa_exp     = Fa_n_mol_nor*Vol_exp(1,iP_exp, 2)/(Fo_n_mol_nor*... 
                     Vol_exp(1,iP_exp,1)+ Fa_n_mol_nor*Vol_exp(1,iP_exp,2)+ ... 
                     QtzOl_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_qtzol_exp  = QtzOl_n_mol_nor*Vol_exp(1,iP_exp,11)/(Fo_n_mol_nor*... 
                     Vol_exp(1,iP_exp,1)+ Fa_n_mol_nor*Vol_exp(1,iP_exp,2)+ ... 
                     QtzOl_n_mol_nor*Vol_exp(1,iP_exp,11)); 



mod_vol_en_exp     = En_n_mol_nor*Vol_exp(1,iP_exp, 3)/(En_n_mol_nor*... 
                     Vol_exp(1,iP_exp,3)+ Fs_n_mol_nor*Vol_exp(1,iP_exp,4)+ ... 
                     QtzOpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_fs_exp     = Fs_n_mol_nor*Vol_exp(1,iP_exp, 4)/(En_n_mol_nor*... 
                     Vol_exp(1,iP_exp,3)+ Fs_n_mol_nor*Vol_exp(1,iP_exp,4)+ ... 
                     QtzOpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_qtzopx_exp = QtzOpx_n_mol_nor*Vol_exp(1,iP_exp,11)/(En_n_mol_nor*... 
                     Vol_exp(1,iP_exp,3)+Fs_n_mol_nor*Vol_exp(1,iP_exp,4)+ ... 
                     QtzOpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_di_exp     = Di_n_mol_nor*Vol_exp(1,iP_exp, 5)/(Di_n_mol_nor*... 
                     Vol_exp(1,iP_exp,5)+Hed_n_mol_nor*Vol_exp(1,iP_exp,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_hed_exp    = Hed_n_mol_nor*Vol_exp(1,iP_exp, 6)/(Di_n_mol_nor*... 
                     Vol_exp(1,iP_exp,5)+Hed_n_mol_nor*Vol_exp(1,iP_exp,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_qtzcpx_exp = QtzCpx_n_mol_nor*Vol_exp(1,iP_exp,11)/(Di_n_mol_nor*... 
                     Vol_exp(1,iP_exp,5)+Hed_n_mol_nor*Vol_exp(1,iP_exp,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_py_exp     = Py_n_mol_nor*Vol_exp(1,iP_exp, 7)/(Py_n_mol_nor*... 
                     Vol_exp(1,iP_exp,7)+Alm_n_mol_nor*Vol_exp(1,iP_exp,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_alm_exp    = Alm_n_mol_nor*Vol_exp(1,iP_exp, 8)/(Py_n_mol_nor*... 
                     Vol_exp(1,iP_exp,7)+Alm_n_mol_nor*Vol_exp(1,iP_exp,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_qtzgrt_exp = QtzGrt_n_mol_nor*Vol_exp(1,iP_exp,11)/(Py_n_mol_nor*... 
                     Vol_exp(1,iP_exp,7)+Alm_n_mol_nor*Vol_exp(1,iP_exp,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_exp(1,iP_exp,11)); 
mod_vol_fo_apx     = Fo_n_mol_nor*Vol_apx(1,iP_apx, 1)/(Fo_n_mol_nor*... 
                     Vol_apx(1,iP_apx,1)+ Fa_n_mol_nor*Vol_apx(1,iP_apx,2)+ ... 
                     QtzOl_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_fa_apx     = Fa_n_mol_nor*Vol_apx(1,iP_apx, 2)/(Fo_n_mol_nor*... 
                     Vol_apx(1,iP_apx,1)+ Fa_n_mol_nor*Vol_apx(1,iP_apx,2)+ ... 
                     QtzOl_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_qtzol_apx  = QtzOl_n_mol_nor*Vol_apx(1,iP_apx,11)/(Fo_n_mol_nor*... 
                     Vol_apx(1,iP_apx,1)+ Fa_n_mol_nor*Vol_apx(1,iP_apx,2)+ ... 
                     QtzOl_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_en_apx     = En_n_mol_nor*Vol_apx(1,iP_apx, 3)/(En_n_mol_nor* 
                     Vol_apx(1,iP_apx,3)+ Fs_n_mol_nor*Vol_apx(1,iP_apx,4)+ 
                     QtzOpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_fs_apx     = Fs_n_mol_nor*Vol_apx(1,iP_apx, 4)/(En_n_mol_nor*... 
                     Vol_apx(1,iP_apx,3)+ Fs_n_mol_nor*Vol_apx(1,iP_apx,4)+ 
                     QtzOpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_qtzopx_apx = QtzOpx_n_mol_nor*Vol_apx(1,iP_apx,11)/(En_n_mol_nor*... 
                     Vol_apx(1,iP_apx,3)+ Fs_n_mol_nor*Vol_apx(1,iP_apx,4)+ ... 
                     QtzOpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_di_apx     = Di_n_mol_nor*Vol_apx(1,iP_apx, 5)/(Di_n_mol_nor*... 
                     Vol_apx(1,iP_apx,5)+Hed_n_mol_nor*Vol_apx(1,iP_apx,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_hed_apx    = Hed_n_mol_nor*Vol_apx(1,iP_apx, 6)/(Di_n_mol_nor*... 
                     Vol_apx(1,iP_apx,5)+Hed_n_mol_nor*Vol_apx(1,iP_apx,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_qtzcpx_apx = QtzCpx_n_mol_nor*Vol_apx(1,iP_apx,11)/(Di_n_mol_nor*... 
                     Vol_apx(1,iP_apx,5)+Hed_n_mol_nor*Vol_apx(1,iP_apx,6)+ ... 
                     QtzCpx_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_py_apx     = Py_n_mol_nor*Vol_apx(1,iP_apx, 7)/(Py_n_mol_nor*... 
                     Vol_apx(1,iP_apx,7)+Alm_n_mol_nor*Vol_apx(1,iP_apx,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_alm_apx    = Alm_n_mol_nor*Vol_apx(1,iP_apx, 8)/(Py_n_mol_nor*... 
                     Vol_apx(1,iP_apx,7)+Alm_n_mol_nor*Vol_apx(1,iP_apx,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_apx(1,iP_apx,11)); 
mod_vol_qtzgrt_apx = QtzGrt_n_mol_nor*Vol_apx(1,iP_apx,11)/(Py_n_mol_nor*... 
                     Vol_apx(1,iP_apx,7)+Alm_n_mol_nor*Vol_apx(1,iP_apx,8)+ ... 
                     QtzGrt_n_mol_nor*Vol_apx(1,iP_apx,11)); 



M_sol              = M_ol*mode_D2011(1)+M_opx*mode_D2011(2)+ ... 
                     M_cpx*mode_D2011(3)+M_grt*mode_D2011(4); 
  
rho_ol_exp         =  M_ol/ Vol_ol_exp; 
rho_opx_exp        = M_opx/Vol_opx_exp; 
rho_cpx_exp        = M_cpx/Vol_cpx_exp; 
rho_grt_exp        = M_grt/Vol_grt_exp; 
Vol_sol_exp        = Vol_ol_exp*mode_D2011(1)+Vol_opx_exp*mode_D2011(2)+ ... 
                     Vol_cpx_exp*mode_D2011(3)+Vol_grt_exp*mode_D2011(4); 
rho_sol_exp        = M_sol/Vol_sol_exp; 
rho_mlt_exp        = M_liq/Vol_liq_exp; 
  
rho_ol_apx         =  M_ol/ Vol_ol_apx; 
rho_opx_apx        = M_opx/Vol_opx_apx; 
rho_cpx_apx        = M_cpx/Vol_cpx_apx; 
rho_grt_apx        = M_grt/Vol_grt_apx; 
Vol_sol_apx        = Vol_ol_apx*mode_D2011(1)+Vol_opx_apx*mode_D2011(2)+ ... 
                     Vol_cpx_apx*mode_D2011(3)+Vol_grt_apx*mode_D2011(4); 
rho_sol_apx        = M_sol/Vol_sol_apx; 
rho_mlt_apx        = M_liq/Vol_liq_apx; 
  
rho_mlt_lp         = rho0_mlt; 
rho_sol_lp         = rho0_sol; 
  
gamma_rho_mlt_lp   = ((rho_mlt_exp-rho_mlt_lp)/(SiO_TOT_exp-SiO_TOT_lp))/rho0_mlt;  
                                              % avec température de l'expérience 
gamma_rho_mlt_apx  = ((rho_mlt_apx-rho_mlt_lp)/(SiO_TOT_exp-SiO_TOT_lp))/rho0_mlt;  
                                              % avec température de l'approximation 
gamma_rho_sol_lp   = ((rho_sol_exp-rho_sol_lp)/(SiO_TOT_exp-SiO_TOT_lp))/rho0_sol; 
gamma_rho_sol_apx  = ((rho_sol_apx-rho_sol_lp)/(SiO_TOT_exp-SiO_TOT_lp))/rho0_sol; 
  
% Changement de nom des variables 
T_ref = Tref_apx; 
T_exp = Tref_exp; 
P_ref = Pref_apx; 
P_exp = Pref_exp; 
gamma_rho_mlt = gamma_rho_mlt_apx; 
gamma_rho_sol = gamma_rho_sol_apx; 
T_zoom = T_plotz+273.15; 
T2 = T2dz; 
P_zoom = P_plotz; 
P2 = P2dz; 
C2 = C2dz; 
C_ref = SiO_TOT_lp; 
 
save ApproxData_AlphaBetaGamma   T_zoom   P_zoom   T2   P2   C2   C_ref               ... 
 T_ref         P_ref       T_exp          P_exp          SiO_TOT_exp     SiO_TOT_lp   ... 
 rho0_mlt      U0_mlt      CMgO0_mlt      CFeO0_mlt      CSiO20_mlt      Cp0_mlt      ... 
 rho0_sol      U0_sol      CMgO0_sol      CFeO0_sol      CSiO20_sol      Cp0_sol      ... 
 alpha_rho_mlt alpha_U_mlt alpha_CMgO_mlt alpha_CFeO_mlt alpha_CSiO2_mlt alpha_Cp_mlt ... 
 alpha_rho_sol alpha_U_sol alpha_CMgO_sol alpha_CFeO_sol alpha_CSiO2_sol alpha_Cp_sol ... 
 beta_rho_mlt  beta_U_mlt  beta_CMgO_mlt  beta_CFeO_mlt  beta_CSiO2_mlt  beta_Cp_mlt  ... 
 beta_rho_sol  beta_U_sol  beta_CMgO_sol  beta_CFeO_sol  beta_CSiO2_sol  beta_Cp_sol  ... 
 gamma_rho_mlt gamma_U_mlt gamma_CMgO_mlt gamma_CFeO_mlt gamma_CSiO2_mlt gamma_Cp_mlt ... 
 gamma_rho_sol gamma_U_sol gamma_CMgO_sol gamma_CFeO_sol gamma_CSiO2_sol gamma_Cp_sol 
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Code THMC-transport part 
 
% ============================== TRANSPORT CODE =============================== % 
% THMC transport code by porosity waves coupled with thermodynamics 
% Simulation S15, Bessat A. 07.06.2021 
clear variables; close all, clc 
%% LOOK-UP parameters 
load ApproxData_AlphaBetaGamma_2021_01_20.mat 
% Re-scale alpha and beta 
T_rescale       = 150/2;      % Temperature difference across dimensional model in K or C 
                                divided by model difference (15/2 for adiabatic gradient) 
P_rescale       = 1e9/90;     % Pressure difference across dimensional model in Pa 
                                divided by model difference 
% Gamma does not have to be rescaled 
alpha_rho_mlt   = 1*alpha_rho_mlt  * T_rescale; 
beta_rho_mlt    = 1*beta_rho_mlt   * P_rescale; 
alpha_rho_sol   = 1*alpha_rho_sol  * T_rescale; 
beta_rho_sol    = 1*beta_rho_sol   * P_rescale; 
alpha_CSiO2_mlt = 1*alpha_CSiO2_mlt* T_rescale; 
beta_CSiO2_mlt  = 1*beta_CSiO2_mlt * P_rescale; 
alpha_CSiO2_sol = 1*alpha_CSiO2_sol* T_rescale; 
beta_CSiO2_sol  = 1*beta_CSiO2_sol * P_rescale; 
alpha_CMgO_mlt  = 1*alpha_CMgO_mlt * T_rescale; 
beta_CMgO_mlt   = 1*beta_CMgO_mlt  * P_rescale; 
alpha_CMgO_sol  = 1*alpha_CMgO_sol * T_rescale; 
beta_CMgO_sol   = 1*beta_CMgO_sol  * P_rescale; 
%% PHYSICS 
% Dimensionally independent scales 
rhofg0          = 1;    % Pa/m     ; fluid density x g 
k_etaf          = 1;    % m^2/(Pas); permeability  / fluid viscosity 
etac0           = 1;    % Pa*s     ; solid volumetric viscosity 
TA              = 1;    % K 
% not important parameters 
T0              = 1; 
% Nondimensional parameters 
CMgm0           = CMgO0_mlt; 
CMgs0           = CMgO0_sol; 
CSim0           = CSiO20_mlt; 
CSis0           = CSiO20_sol; 
CSit_ref        = C_ref; 
CSit0           = 0.45; 
CSitA           = 0.05;     % possible value for systematic [ 0 0.025 0.05 0.075 0.1] 
phi0            = 0.02; 
phiA            = 0.04;     % possible value for systematic [ 0.005 0.01 0.02 0.03 0.04] 
nperm           = 3; 
% Useful scales 
Lc              = sqrt(k_etaf*etac0);   % Characteristic length-scale 
% Additional useful scales 
tc              = etac0/rhofg0/Lc;      % Characteristic time 
Pc              = rhofg0*Lc;            % Characteristic stress 
Ec              = rhofg0*Lc^4/tc;       % Characteristic power [J/s = N m / s = Pa m^3/s] 
lamc            = Ec/Lc/T0;             % Characteristic thermal conductivity 
rhoCpc          = rhofg0*Lc/T0;         % Characteristic density x specific heat 
                                          [kg/m^3*J/kg/K = J/m^3/K = Pa/K] 
% Nondimensional parameters 
ND_1            = 10;                   % w/Lc; Peturbation width / char-length-scale 
ND_2            = 100;                  % Lx/Lc; Model heigth / char-length-scale 
ND_3            = (rho0_sol/rho0_mlt);  % rhosg0/rhofg0; 
                                          Ref. solid density/ref. fluid density 
ND_4            = 1;                    % etas/eta0; 
                                          Shear viscosity / Volumetric viscosity 
ND_5            = 1;                    % lams/lamc_number; Thermal conductivity / 
                                          characteristic thermal conductivity 



ND_6            = 1;                    % rhoCpm/rhoCpc_number; density * specific heat / 
                                          characteristic value 
% dimensionally dependent scales 
w               = ND_1 * Lc; 
Lx              = ND_2 * Lc; 
rhosg0          = ND_3 * rhofg0; 
etas            = ND_4 * etac0; 
lams            = 483 * lamc; 
lamf            = 1*lams; 
rhoCpm0         = 205 * rhoCpc; 
rhoCps0         = ND_3*(Cp0_sol/Cp0_mlt)*rhoCpm0; 
%% numerics 
dt              = 7e-3*tc;              % [m/m^2*Pa*s/Pa*m = s] 
nx              = 128; 
nt              = 500; 
niter           = 1000*nx^2; 
eiter           = 1e-7; 
nout            = 1000*1e0; 
nout_it         = 25; 
% preprocessing 
dx              =  Lx/(nx-1); 
x               = -Lx/2:dx:Lx/2; 
%% initial 
hatf            = exp(-((x+0.2*Lx)/w).^2); 
Delta_T         = 2*TA;  % K            ; temperature difference across model 
Tgeoth          = linspace(T0+Delta_T,T0,length(x)); 
T               = Tgeoth + 0*TA*hatf;       T_i    = T; 
phi             = phi0   + phiA*hatf;       phi_i  = phi; 
CSit            = CSit0  + CSitA*hatf;      CSit_i = CSit; 
rhofg           = rhofg0*ones(1,nx); 
rhosg           = rhosg0*ones(1,nx); 
rhotg           = rhofg.*phi + rhosg.*(1-phi); 
Pt              = -cumtrapz(rhotg)*dx; 
Pf              = Pt; 
Pf0             = Pf; 
P_ref           = mean(Pf); 
T_ref           = mean(T); 
Vs              = zeros(1,nx+1); 
qD              = zeros(1,nx+1); 
qC              = zeros(1,nx+1); 
qT              = zeros(1,nx+1); 
%% action 
for it = 1:nt 
    for iter = 1:niter 
        % Concentration 
        CSim        =   CSim0 .*(1 + alpha_CSiO2_mlt.*(T-T_ref) + beta_CSiO2_mlt.* ... 
                        (Pf-P_ref) + gamma_CSiO2_mlt.*(CSit-CSit_ref)); 
        CSis        =   CSis0 .*(1 + alpha_CSiO2_sol.*(T-T_ref) + beta_CSiO2_sol.* ... 
                        (Pf-P_ref) + gamma_CSiO2_sol.*(CSit-CSit_ref)); 
        CMgm        =   CMgm0 .*(1 + alpha_CMgO_mlt.*(T-T_ref)  + beta_CMgO_mlt.* ... 
                        (Pf-P_ref)  + gamma_CMgO_mlt .*(CSit-CSit_ref)); 
        CMgs        =   CMgs0 .*(1 + alpha_CMgO_sol.*(T-T_ref)  + beta_CMgO_sol.* ... 
                        (Pf-P_ref)  + gamma_CMgO_sol .*(CSit-CSit_ref)); 
        % Densities 
        rhofg       =   rhofg0.*(1 + alpha_rho_mlt.*(T-T_ref)   + beta_rho_mlt.* ... 
                        (Pf-P_ref)   + gamma_rho_mlt.*(CSit-CSit_ref)); 
        rhosg       =   rhosg0.*(1 + alpha_rho_sol.*(T-T_ref)   + beta_rho_sol.* ... 
                        (Pf-P_ref)   + gamma_rho_sol.*(CSit-CSit_ref));         
        % Total densities 
        rhotg       = rhofg.*phi       + rhosg.*(1-phi); 
        rhoMgg      = rhofg.*phi.*CMgm + rhosg.*(1-phi).*CMgs; 
        rhoSig      = rhofg.*phi.*CSim + rhosg.*(1-phi).*CSis; 
        % Energy 



        % Update rho*cp 
        rhoCpm      = rhoCpm0 .* rhofg/rhofg0; 
        rhoCps      = rhoCps0 .* rhosg/rhosg0; 
        rhoCpt      = rhoCpm.*phi + rhoCps.*(1-phi); 
        Um          = rhoCpm.*T; 
        Us          = rhoCps.*T; 
        Ut          = Um.*phi + Us.*(1-phi); 
        if iter < 3; 
            rhotg_old  = rhotg; 
            rhoMgg_old = rhoMgg; 
            rhoSig_old = rhoSig; 
            CMgm_old   = CMgm; 
            CMgs_old   = CMgs; 
            CSim_old   = CSim; 
            CSis_old   = CSis; 
            CSit_old   = CSit; 
            Ut_old     = Ut; 
        end 
        if it < 6   
            if iter<3 
                Pt      = -cumtrapz(rhotg)*dx; 
                Pf      = Pt; 
                Pf0     = Pf; 
                CSim_i  = CSim; 
                CSis_i  = CSis; 
                CMgm_i  = CMgm; 
                CMgs_i  = CMgs; 
                rhofg_i = rhofg; 
                rhosg_i = rhosg; 
            end 
        end 
        % MASS CONSERVATION EQUATIONS 
        % Darcy 
        perm        = k_etaf*(avx(phi)/phi0).^nperm; 
        qD(2:end-1) = -perm.*(diff(Pf)/dx + avx(rhofg)); 
        qD([1 end]) = qD([2 end-1]); 
        % time derivatives 
        drhotg_dt   = (rhotg  - rhotg_old)/dt; 
        drhocMgg_dt = (rhoMgg - rhoMgg_old)/dt; 
        drhocSig_dt = (rhoSig - rhoSig_old)/dt; 
        % mass fluxes 
        q_rhotg     = expx(avx(rhofg)).*qD + expx(avx(rhotg)).*Vs; 
        q_rhocMgg   = expx(avx(rhofg.*CMgm)).*qD + expx(avx(rhoMgg)).*Vs; 
        q_rhocSig   = expx(avx(rhofg.*CSim)).*qD + expx(avx(rhoSig)).*Vs; 
        % residuals 
        res_Pf      = -drhotg_dt   - diff(q_rhotg)/dx; 
        res_Phi     = -drhocMgg_dt - diff(q_rhocMgg)/dx; 
        res_CSit    = -drhocSig_dt - diff(q_rhocSig)/dx; 
        % update fluid pressure 
        dt_Pf       = dx^2/max(perm)/4 /2; 
        dPf         = dt_Pf*res_Pf; 
        Pf          = Pf + dPf; 
        Pf([1,end]) = Pt([1,end]); 
        % update porosity 
        dPhi        = -dt/1*res_Phi; 
        phi         = phi + dPhi; 
        % update concentration Si 
        dCSi        = dt/1*res_CSit; 
        CSit        = CSit + dCSi; 
        % Melt velocity; Used e.g. for advection-only of concentrations 
        Vm          = qD./expx(avx(phi)) + Vs; 
        % CONSERVATION OF LINEAR MOMENTUM, force balance for solid deformation 
        etac        = etac0; 



        Pt          = Pf - diff(Vs)/dx.*(1-phi).*etac; 
        tau         = 2*etas*diff(Vs)/dx; 
        dt_visc     = dx^2/etas/6/1; 
        dVx         = dt_visc*( diff(-Pt + tau)/dx - avx(rhotg) ); 
        Vs(2:end-1) = Vs(2:end-1) + dVx; 
        % CONSERVATION OF ENERGY, heat transfer 
        dUtdt       = (Ut-Ut_old)/dt; 
        lam         = lamf*phi + lams*(1-phi); 
        qT(2:end-1) = -avx(lam).*diff(T)/dx+ avx(Um).*qD(2:end-1)+ avx(Ut).*Vs(2:end-1); 
        qT([1 end]) = qT([2 end-1]); 
        res_Ut      = -dUtdt - diff(qT)/dx; 
        dt_Ut       = dx^2/max(lam./rhoCpt)/4.1; 
        Ut2T        = 1./rhoCpt/10; 
        dT          = dt_Ut*Ut2T.*res_Ut; 
        T           = T + dT; 
        % check exit creteria 
        errs        = [ max(abs(dPf(2:end-1))) /max(abs(Pf(2:end-1))) ... 
                       ,max(abs(dPhi))/max(abs(phi))... 
                       ,max(abs(dVx)) /max(abs(Vs)) ... 
                       ,max(abs(dT))  /max(abs(T))  ... 
                       ,max(abs(dCSi))/max(abs(CSit))]; 
        if mod(iter,nout) == 1e10 
            figure(1) 
            semilogy(iter,max(abs(dPf(2:end-1)))  /max(abs(Pf(2:end-1)  )),'d');hold on 
            semilogy(iter,max(abs(dPhi)) /max(abs(phi )),'s'); 
            semilogy(iter,max(abs(dVx )) /max(abs(Vs  )),'+'); 
            semilogy(iter,max(abs(dT  )) /max(abs(T   )),'o'); 
            semilogy(iter,max(abs(dCSi)) /max(abs(CSit)),'v');drawnow 
            set(gcf,'position',[965.4000 352.6000 560 420])         
        end 
        if max(errs) < eiter && iter > 50 
            break; 
        end 
    end 
    %%% Plot and save 
    if mod(it,nout_it) == 0 | it == 5 
        display(['Time step: ',num2str(it),' of ',num2str(nt)]) 
        figure(2) 
        hold off; 
        sgtitle(['Time step = ',int2str(it),', Iterations per time step = ', ... 
                 int2str(iter)]); 
        subplot(331),plot(phi_i,x,'k--',phi,x,'k-'); title('\phi'); grid on 
        subplot(332),plot(Pf-Pt,x,'k-'); title('P_f-P_t'); grid on 
        subplot(333),plot(Pf0,x,'k--',Pf,x,'r-',Pt,x,'k-'); title('P_f & P_t'); grid on 
        subplot(334),hold off; plot(rhofg_i,x,'r--',rhofg,x,'r-', ... 
                         rhosg_i,x,'k--',rhosg,x,'k-'); title('\rho_m & \rho_s'); grid on 
        subplot(335),plot(T_i,x,'r--',T,x,'r-'); title('T'); grid on 
        subplot(336),plot(Vm(2:end),x,'r-'); title('V_{melt}'); grid on 
        subplot(337),plot(CMgm_i,x,'r--',CMgm,x,'r-',CMgs_i,x,'k--',CMgs,x,'k-'); 
                         title('CMg_m & CMg_s'); grid on 
        subplot(338),plot(CSim_i,x,'r--',CSim,x,'r-',CSis_i,x,'k--', ... 
                          CSis,x,'k-',CSit_i,x,'b--',CSit,x,'b-'); 
                         title('CSi_m, CSi_s & CSi_{tot}'); grid on 
        subplot(339),plot(Vs(2:end),x,'b-'); title('V_{solid}'); grid on 
        set(gcf,'position',[43.8000 89 915.6000 682.8000]) 
        drawnow 
        save(['THMC_S15_cond_',num2str(it,['%',num2str(3),'.',num2str(3),'d']),'.mat']) 
    end 
end 
function C=avx(C) 
C = 0.5*(C(1:end-1)+C(2:end)); end 
function C=expx(C) 
C = [C(1) C C(end)]; end 
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