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RAPPORT DE SYNTHESE 

Cette thèse a pour but de démontrer que les protéines sanguines sont sensibles à leur micro

environnement redox et que les outils protéomiques permettent pour une part de caractériser 

les effets de ce micro-environnement au niveau moléculaire. Elle est divisée en trois parties, 

les deux premières sous forme d'articles de revue publiés et la troisième sous forme d'un 

travail de recherche mené au Centre de Transfusion Sanguine de Lausanne en collaboration 

avec la PAF (Protein Analysis Facility) de l'UNIL. 

L'article « Plasma/serum proteomics : preanalytical issues» publié dans Expert Review of 

Proteomics en 2007 explique comment la protéine porte l'empreinte de la phase pré

analytique. La technique d'électrophorèse hi-dimensionnelle «différentielle» permet de 

simplifier cette phase en soumettant tous les échantillons analysés aux mêmes manipulations, 

ramenant ainsi les variables pré-analytiques aux plus élémentaires d'entre elles. 

Dans l'article « Oxidation of proteins : basic principles and perspectives for blood 

proteomics » publié dans Proteomics Clinical Applications en 2008, il est question de 

l'oxydation comme réaction chimique à l'origine de lésions protéiques. Celles-ci peuvent 

donner lieu à des artefacts d'analyse protéomique et rendre l'identification de peptides 

confondante. Elles peuvent par ailleurs être chimiquement instables et s'associer à d'autres 

composés contenus dans l'échantillon. 

Le travail de recherche décrit l'étude protéomique des modifications oxydatives au niveau du 

fibrinogène oxydé in vitro. Les résultats de cette étude indiquent que les conditions de 

conservation de plasma destiné à la transfusion peuvent potentiellement altérer la structure et 

la fonction des protéines contenues dans ce produit sanguin et que ce phénomène est pour une 

part oxydatif. 
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Plasma/serum proteomics: 
pre-analytical issues 
Stefano Barelli, David Crettaz, Lynne Thadikkaran, Olivier Rubin 
and Jean-Daniel Tissatt 

High-throughput proteomics technologies tend to provide highly sensitive information 
about living tissues and biological fluids. Analytes are characterized by intrinsic and 
extrinsic properties, the latter depending on each phase of their preparation, sometimes 
adding artifacts with crucial repercussions in result reliability and interpretation. This review 
aims to address some issues that can be encountered when handling plasma and serum 
in experimental and clinical proteomic settings. 

Expert Rev. Pivteomics 4 (3), 363-370 (2007) 

The enthusiasm for biomarkers research is illus
trative of the successes and potential stemming 
from amies sciences. While genomics refers to 
DNA whose sequences are considered to be sta
ble databases, proteomics tends to focus on its 
biological expression. A combination of bath 
provides a holistic approach that is necessary 
for understanding the intimate mechanisms 
underlying either physiological or pathological 
states [1-5). 

Blood constitutes an infinite source of ana
lytes that may be potential biomarkers. It is 
readily accessible and reflects secondary sys
temic changes that have been evaluated by vari
ous techniques over the years. The separation of 
polypeptides by electrophoresis enabled Arne 
Tiselius to describe protein fractions corre
sponding to albumin and u-, p- and y-globulins 
in serum. The first diagram of human serum 
protein electrophoresis was published in 1939. 
The number of fractions slowly expanded into 
electrophoretic subfractions, identified as u 1, 

uz. P1. Pz. y1 and Yz· These fractions, character
ized by their mobility, are still used to denote 
serum proteins, such as u 1-macroglobulin, 
uz-antiplasmin or Pz-microglobulin. Sophisti
cated new electrophoretic techniques for iden
tifying many proteins simultaneously and 
relating them to diseases have been developed 
thus far and have found applications for 
almost all body fluids. Despite the develop
ments and progress achieved in protein separa
tion sciences, only a restricted number of 

methods are routinely used in clinical labora
tories. At present, serum protein electrophoresis 
is mainly used to study major serum protein 
alterations, such as those observed in patients 
with inflammatory, liver or kidney diseases, as 
well as in patients presenting with lympho
proliferative disorders and alterations of 
immunoglobulin production [6). 

With the achievements of proteomic tech
nologies, the search of biomarkers rapidly and 
widely developed over the last few years. The 
biological evolution implies important conse
quences for bath the individual and the society 
[7,8). The following important questions are 
arising [9): 

• What is the reliability of such biomarkers? 

• How can proteomic profiles express patho
logical processes? 

• Are they related and specific to a particular 
disease? 

• What is the impact of bias on results? 

The controversy about ovarian cancer screen
ing provides an illustrative example of skepticism 
toward promise [10-12]. Elements of response can 
be found in the methodological parts defining 
the steps from the sample collection to the 
analysis, namely, pre-analytics. 

Last year, the US FDA, in association with 
other institutions, announced the Oncology 
Biomarker Qualification Initiative, with the 
aim to improve the validation process of par
ticular biomarkers [13). Clearly, there is a 
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need for better standards in clinical proteomics [14]. Many 
aspects related to pre-analytical issues must be considered 
when studying proteins in serum and plasma [15,16]. In this 
review, we will focus on some of these issues, and try to illus
trate the mechanism by which they may interfere with the 
analytical process. 

Either in an experimental or clinical setting, the question 
dictates the choice of the test. The samples to be analyzed have 
to be manipulated and treated in such a way that will enhance 
the sensitivity and specificity of the test, keeping in mind that 
the sample carries the memory of its handling. Samples are 
influenced by many factors, such as blood sampling, type of 
tube used for the collection, centrifugation and transportation. 
Üther variables, such as intersubject differences or collection 
protocol adherence, also potentially alter the integrity of the 
samples. Many of these variables have been well documented in 
established references texts [17,18]. 

Plasma/serum preparation 

Plasma is obtained by centrifugation of blood. Centrifugation 
could represent a source of mechanical stress for blood cells, 
resulting not only in cell activation, but also in the Joss of the 
plasma membrane integrity. Miyazaki and colleagues studied 
platelet behavior under high shear-stress conditions [19]. Flow 
cytometry analyses of the binding of annexin V antibodies to 
platelets revealed that high shear stress could increase platelet 
procoagulant activity. This was due to the translocation of 
phosphatidylserine from the inner leaflet to the outer surface 
of membrane, leading to the shedding of microparticles. Pro
duction of these microparticles was even more rapid by high 
shear stress than by the combination of two strong platelet 
agonists, thrombin and collagen. These results suggest that 
various centrifugation protocols may affect the composition 
of plasma owing to cell damage. 

The use of an anticoagulant is a prerequisite for plasma col
lection, and is added to the blood collection devices prior to 
blood withdrawal. After binding ca2+, EDTA and citrate 
inhibit the coagulation cascade. Heparin binds to and modi
fies the activity of the serine protease inhibitor antithrombin 
(antithrombin III), which inhibits the activated forms of 
Factor X (Xa) and of Factor II (thrombin). Plasma samples 
should be rapidly processed after centrifugation. Proteomics 
studies of plasma and serum revealed several differences, nota
bly in the range of the low-molecular-weight proteome. Multi
dimensional analyses revealed that EDTA and citrate plasma 
peptide displays were similar, but were different in the pres
ence of heparin [20]. Using other proteomics approaches, 
Hsieh and colleagues demonstrated that the use of EDTA 
resulted in a divergent plasma protein profile when compared 
with samples anticoagulated with citrate or heparin [21]. In 
addition, sets of peptides appeared to originate from platelets, 
adding to the complexity of the pre-analytics. This observa
tion possibly reflects adhesion and aggregation of platelets in 
the presence of EDTA [22]. In addition to these variables, Bau
mann and colleagues studied the influence of repeated 
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freeze/thaw cycles on signal intensities in pooled serum and 
reported a significant impact on the low-molecular-weight 
peptidome [23]. 

Clot formation represents a kind of protease storm perturb
ing proteome profile, evidenced by the presence of additional 
mass peaks. Furthermore, new interactions between thrombin 
generation and complement activation pathways have been 
identified, adding to the intricacy of the protease cascades 
involved in either coagulation, fibrinolysis or complement acti
vation [24]. According to various studies, approximately 40% of 
peptides in serum were serum specific [14,20], and most likely 
resulted from serine proteases involved during coagulation. In 
addition, it was demonstrated that the composition of serum 
and plasma related to blood cells changes over time [25,26]. The
ses changes were attributed to plasma membrane pump failure 
with intracellular glucose depletion, osmotic changes with 
water movements into the blood cells, as well as to leakage of 
intracellular peptides. 

Significant changes were observed in the proteome of sam
ples undergoing varied clotting times or time lags before cen
trifugation [21]. This leads to the release of peptides and 
degraded proteins from blood cells [27]. To avoid such proc
esses, a rapid separation and an immediate freezing of the sam
ple is mandatory, but is frequently associated with logistic 
problems. An alternative is the addition of protease inhibitors, 
but their use remains controversial [28]. Surrogate markers dem
onstrating pre-analytic troubles remain to be identified. Prelim
inary evidence for the existence of such a marker was provided 
by Findeisen and colleagues, who observed a time-dependant 
decrease of a 1467-Da peak during storage of serum samples 
[29]. The peptide was identified as the N-terminal-truncated 
fibrinopeptide A. 

Selected examples in which pre-analytical steps are crucial 

Blood cells release different kinds of cytokines, depending on 
the type of anticoagulant. Cytokines are usually undetected 
because of their short half-life and their very low concentrations 
[30]. An in vitro mode! of cytokine production and protein secre
tion was proposed by Engstad and colleagues to test the effect of 
commonly used anticoagulants on monocytes, polymorpho
nuclear cells and platelets in human whole blood [31]. Ions such 
as Ca2+ were shown to be essential for signal-transduction proc
esses. Their depletion explained why EDTA and citrate inhib
ited activation of monocytes and polymorphonuclear cells, and 
suppressed platelet degranulation in whole blood. When 
cytokine levels were measured in whole blood by immuno
assays, they were found to be more stable if the samples were 
anticoagulated with EDTA, rapidly separated and stored at 4 °C 
[32]. At room temperature, the secretion of cytokines by mono
nuclear leukocytes appeared to be significantly decreased with 
citrate phosphate dextrose anticoagulation [33]. 

The assessment of Down's syndrome during pregnancy usu
ally includes the measurements of a-fetoprotein, unconjugated 
estriol, total human chorionic gonadotrophin and inhibin-A in 
serum. However, results can be interpreted with confidence 
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only if the serum samples were separated within 1 h of draw, 
kept refrigerated until shipment and tested within 1 week [34]. 

The stability of carbohydrate-deficient transferrin (used to 
detect alcohol abuse) was evaluated according to various stor
age conditions [35]. In samples stored at room temperature, 
asialo-transferrin and disialo-transferrin decreased by approxi
mately 50%. The correct diagnosis of hemophilia A and von 
Willebrand's disease also depends on several prenanalytic vari
ables. A so-called 'cold activation' phenomenon, due to the 
cold storage of whole blood samples before centrifugation, 
appeared to lead to a significant Joss of coagulation 
Factor VIII and von Willebrand factor (36]. Based on the fact 
that chilling platelets rearranges the surface configuration of 
glycoprotein lb, which is a platelet adhesion receptor, Bohm 
and colleagues hypothesized that temperature-dependent 
interactions between glycoprotein lb and von Willebrand fac
tor was a possible mechanism for the cold-induced loss in von 
Willbrand factor and Factor VIII (37,38]. The use of fresh-fro
zen plasma in transfusion medicine also raises pre-analytical 
questions, leading to questioning the methods by which such 
products are prepared [39,40]. In this situation, several para
meters, such as the length of blood collection, the type of anti
coagulant, the centrifugation conditions and the temperature of 
the process or the removal of residual leukocytes by filtration, 
are ail of major importance. 

Pre-analytical issues in mass spectrometry studies 

The Jack of knowledge of the mechanisms by which a result is 
generated impedes their verification by an independent tech
nology [41]. The accuracy of data obtained using mass spectrom
etry (MS) tools is highly dependent on pre-analytical proce
dures. The design of the studies is important in order to 
optimize the noise-ta-signal ratio and to get reliable results. 
Sorne aspects related to MS studies have already been evaluated 
in detail. For instance, commercially available test tubes may 
contain silicones, surfactants, polymeric gels or cocktails of pro
tease inhibitors. Thus, it is important to identify these mole
cules in order to eliminate confounding peaks in peptide mass 
fingerprint analysis. The MS study of saline solutions incubated 
in different tubes revealed the appearance of complex series of 
peaks in the 1000-3000 mass-ta-charge ratio (m/z) range, 
except when collected in glass tubes without additive [42]. The 
use of polymeric polypropylene tubes was not associated with 
the generation of interfering signals (23]. When tracking varia
bles intervening in sample handling, Villanueva and colleagues 
recommended the use of automated platforms [43.44]. Pre-ana
lytical conditions, from the type of collection tube to the spec
trometer, must be precisely defined. A major advantage of auto
mation clearly stands in its reproducibility and in the ease of 
controlling the main pre-analytical and analytical steps (45]. 

High-abundance proteins 

Plasma is known to be a 'haystack' of proteins distributed on a 
dynamic concentration range of at least 9 orders of magnitude 
[46,47]. High-abundance components include proteins, such as 
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albumin, immunoglobulins, fibrinogen, transferrin, a 2-macro
globulin, a 1-antitrypsin, haptoglobin and C3 complement. 
They represent 90% of whole proteins in plasma. Their 
removal dramatically improves proteome profiling by reducing 
the complexity of the sample and allows an easier detection of 
subtle differences between samples. Many approaches have 
been proposed over the years and have been reviewed [48]. 

Electrophoretic pre-fractionation techniques permit investiga
tors to concentrate hidden proteins and enables their detection 
[49]. However, the most commonly used approach is the use of 
multiple affinity columns (50-58]. These techniques have proved 
to be useful in many different proteomic studies of plasma. 
However, one of the most important limitations is the risk of 
eliminating low-abundance proteins. To reduce this risk, 
Michel and colleagues proposed different strategies by using 
multiple affinity columns and electrophoretic fractionation, 
individually or in combination, prior to MS analysis. In a very 
interesting study, Gundry and colleagues investigated what they 
called the 'albuminome' and demonstrated that this protein is 
able to bind many different peptides [59]. Thus, ail separation 
techniques with the aim to remove albumin (size-exclusion 
chromatography, antihuman serum albumin antibody affinity 
chromatography and ion-exchange) or other abundant proteins 
should be evaluated in depth before being used for biomarker 
discovery [60]. 

Centrifuga! ultrafiltration in the presence of solvent buffers 
appeared to be a convenient avenue for removing high-molecu
lar-weight species, without losing the low-molecular-weight 
species [61]. To deplete high-molecular-weight serum proteins, 
Tanaka and colleagues evaluated a fully automated device based 
on multistage filtration [62]. After 1 h of operation, they 
obtained a sharp protein separation, enabling the detection of 
many low-abundance peptides. When filtration was performed 
at low temperature in the presence of protease inhibitors, the 
mass distribution pattern did not change, suggesting that pro
teolytic fragmentation was not a main problem. Thulasiraman 
and colleagues presented an elegant depletion methodology 
consisting of the saturation-overloading principle [63]. This 
principle is based on a combinatorial solid-phase library of 
peptide ligands synthesized on resin beads, allowing the con
centration of low-abundance proteins while decreasing the 
concentration of high-abundance proteins. The approach bas 
been applied for many different biological samples, including 
blood [64]. 

Degradomics 

Human serum contains thousands of peptides that derive 
from endogenous proteolysis, collectively termed 'degradoma' 
[65]. Interestingly, when Villanueva and colleagues applied pro
teomic tools in an automated fashion to analyze blood sam
ples from patients presenting with three different types of 
solid tumors (bladder, prostate or breast cancer), a few key 
peptides were recognized (the signature of the disease) [66]. 

These peptides appeared to be breakdown products of abundant 
proteins. The authors concluded that exoproteases activity, 
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superimposed to the ex vivo coagulation and complement deg
radation pathways , contributed to the generation of cancer 
type-specific serum peptides 1671. A study conducted by Mar
shall and colleagues also presented evidence for the existence 
of a mass spectral fingerprint in blood of patients presenting 
with myocardial infarction l68J. However, further studies are 
needed to explore the normal biological trash present in ail 
biological fluids , to be able to differentiate protein degradation 
from disease-related signatures. 

Protein separation: 20 electrophoresis 

Various platforms with multidimensional technologies are cur
rently used in proteomic research 1641. and several approaches 
have been reviewed by Flisher and colleagues in a recent paper 
concerning urinary proteome analysis l69J . Ali steps may induce 
artificial modifications of the proteins within the sample. 2D 
electrophoresis has been largely used over the last 25 years and 
still seems to have a place in proteome analysis. However, the 
technique is associated with several changes of proteins during 
either sample processing or electrophoresis 170.71 ]. Spurious 
spots due to de-amidation of asparagine and glutamine residues 

may be detected . Carbamylation (related to the use of urea as a 
denaturant) and desulfuration (arising after prolonged electro
phoresis) are also associated with modification of the 2D gel 
electrophoresis pattern. Reduction and alkylation of proteins 
may prevent the generation of such spurious spots. When 2D 
gel electrophoresis is used to evaluate the proteins content in 
various samples, gel-to-gel pattern variation is assumed to rep
resent the biological difference between samples. ln this sense , 
the application of 2D difference gel electrophoresis appears to 
be interesting for biomarker research, because different samples 
are analyzed within a single set of experiments 172.73]. To illus
trate this approach, we applied this technique to study the 
influence of two variables (type of anticoagulant and number 
of freeze/thaw cycles) on electrophoretic patterns of plasma 
and serum prepared as illustrated in FIGURE 1. Electrophoretic 
methods used in this study have been described elsewhere 
l74,75J. Our data revealed that neither the choice of anticoagu
lant , nor the repeated free ze/thaw cycles, interfered with elec
trophoretic properties of abundant proteins. However, as 
expected , fibrinogen and prothrombin were only observed in 
plasma samples (FIGURE 2). 

No ontlwagolont (S) B B -c (Jj~ Pooling ~ 

(Jj~ 
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~V ,,ç (Jj~ 
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Figure 1. Flow chart describing handling procedures for plasma versus serum 20 electrophoresis analysis. After blood collection in BD Vacutainer® and 
Sarstedt Monovette® tubes, sarnples were each centrifuged at 2710 g at 15°C for 4 min. The resu lting serurn/plasrna were pooled for each condi tion and were 
prepared for 20 difference gel electrophoresis l74 .75J. The snowflake represents the freeze/t11aw cyc les. The green and pink bars represent t11e Cy3 and Cy5 
staining. respective ly. 
Cy: Cyanine; FIT: Freeze/thaw. 
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Cy3: Heparin-plasma 

Cy5: Serum 

Cy3: EDT A-plasma 

Cy5: Heparin-plasma 

Cy3: Heparin-plasma 

Cy5: Citrate-plasma 

Cy3: Serum 

Cy5: EDTA-plasma 

Cy3: Citrate-plasma 

Cy5: Serum 

Cy3: EDT A-plasma 

Cy5: Citrate-plasma 

Figure 2. 20 difference gel electrophoresis patterns corresponding to serum and each type of plasma, following conditions defined in the flow chart. 

First dimension: immobil ized 4- 7 pH gradient; second dimension: 9- 16% polyacryl amide gel elec trophores is. White boxes indicate thrombin and fibrinogen with 

access ion numbers corresponding to SwissProt database. 

Cy: Cyanine: Mr: Molecular weight; pl: lsoe lectric point. 

Expert commentary 

Ümics sciences are rapidly developing and the search for vali
dated biomarkers will be a challenge for the near future . The 
proteome analysis of human body fluids is in progress . The 
identification as well as the characterization of validated and 
clinically relevant biomarkers are still hampered by the presence 
of protease leading to protein degradation, as well as to high
abundance proteins that may adsorb several peptides of inter
est. A series of studies will be necessary to better define ail pre
analytical steps that are critical for proteomic studies . With 
well-framed clinical questions , carefully selected clinicat and 
contrai populations, appropriate numbers of samples in each 
group considered , perfectly controlled sample preparation and 
handling alongside accurate proteomic technologies , clinicat 
proteomics will certainly emerge as a promising and valuable 
approach for scientific discoveries of at the beginning of the 
Zlst Century. 

www.future-drugs.com 

Five-year view 

With the extension of research and worldwide exportation of 
knowledge , patient care tends to be more complex, but more 
standardized (e.g., evidence-based medicine) . The application 
of omic sciences will change many paradigms and clinicians are 
faced with a number of unsolved questions . Ail tissues and 
body fluids will be explored and are sources of biomarkers. 
Benefits resulting from proteomic studies, and more particu
larly from plasma/serum proteomics, will clearly depend on the 
quality management of ail steps involved in the (pre-)analytical 
process. The automation of sample preparation, coupled with 
quantitative MS analyses, is becoming more and more available 
in many research laboratories through the world. The transla
tion of the results of proteomics into clinicat practice and 
patient care is still a dream , but who knows? In this context , 
the next 5 years will be a challenge for ail scientists involved in 
clinicat proteomics . 
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Key issues 

• Performing proteome profile analysis necessitates optimization of two interdependent steps: pre-analytical and analytical phases. 

• Handling procedures imply perse modifications of the sample, inducing artifactual results. 

• Sample preparation must be conducted in a simple and well-defined sequence, thereby enabling detection and identification of 
uncontrolled variables. 

• Reduction of the sample complexity, either by fractioning or by removal of high-abundance proteins, will certainly enable a more 
precise and accurate exploration of the plasma/serum proteome. 

• Degradomics is rapidly developing and will help to separate biomarker discovery from the biological trash that is currently unexplored. 
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Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or 
protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxida
tion occurs as part of normal regulatory processes, as a defence mechanism against oxidative 
stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is 
continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently 
adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxi
dation, review the proteomic methodologies applied to analyse redox modifications, and high
light some physiological and in vitro responses to oxidative stress of various blood components. 
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1 Introduction 

Oxidative modifications to proteins have been for the most 
part considered as deleterious, irreversible, and ultimately 
leading to protein inactivation, degradation, and clearance [1, 

2]. From decades of molecular studies of protein oxidation, 
the picture has dramatically evolved, and protein oxidations 
are now considered as two-faced modifications: on the one 
hand, oxidation mechanisms take part in many normal reg
ulatory processes (beside energy conversion), such as en
zyme activity modtùation [3], signalling [4, 5], or gene reg-
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ulation [6-9]. On the other hand, oxidative modifications also 
appear when oxidative stress overcomes antioxidant defenc
es, and are then damaging [10, 11]. The response of living 
systems to oxidative stress is of primary importance in 
understanding cellular defence and aging [12-15]. Disorders 
of normal oxidative metabolism, or damages due to oxidative 
stress, have also been proven to be key players in a broad 
spectrum of diseases, frorn neurodegenerative disorders, 
such as Alzheimer disease [16-22], to various kinds of cancer 
[23-26], diabetes [27-29], and atherosclerosis [30-33]. 

From a molecular point of view, protein oxidation results 
in a wide variety of chemical modifications, ranging from 
protein backbone cleavage or protein crosslinking, to amino 
acid side chain subtle modifications. Moreover, oxidative 
damage can introduce new reactive chernical groups into 
proteins, such as aldehyde and ketones, leave nonconven
tional peptidic ends at both the N- and C-terrnini. Such an 
array of modifications is diffic1ùt to tackle with a single ana
lytical approach, and large-scale studies of protein oxidations 
have usually focused on the detection of a single modifica
tion, such as cysteine or tyrosine oxidation, or a subclass of 
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oxidation by-products, such as protein carbonyls. Whereas 
these approaches are compulsory steps on the way to under
stand oxidation processes and their effect on a large scale, 
there is no way to date to get a ftùl picture of a proteome 
oxidative status. 

Nevertheless some blood components are inherently 
subjected to oxidative stress. For example, RBCs are typically 
exposed to continuons fluxes of ROS due to their fonction; 
platelets are exposed to ROS at sites of inflammation, where 
coagulation happens. Additionally, protein oxidation mech
anisms are of particular interest in transfusion medicine, 
and have been hypothesised to be responsible for the "blood 
storage lesion" [34-38]. Whether blood product oxidation is 
due to exposure of blood to oxidizing agents during punc
ture, handling, and blood product preparation (e.g., pathogen 
inactivation procedures), or appears only during storage as a 
result of aging or stress is still unclear. In this review, we give 
a biochemical overview of protein oxidation processes, dis
cuss the main methodological and instrumental approaches 
for the study of protein oxidation on a large scale, and pres
ent selected examples with relevance to blood analysis. 

2 Biochemical overview 

The gist of this section is not to give a comprehensive and 
detailed overview of protein oxidation mechanisms; this has 
been clone elsewhere [39-44]. It is rather to provide an over
view of protein oxidation products in terms of diversity and 
chemical specificity in orcler to highlight the possible ana
lytical workflows and current challenges in redox proteom
ics. Oxidative modifications of proteins are due to attacks by 
ROS such as hyclrogen peroxicle (H20 2), anion superoxide 
(02 -), or hyclroxyl radical (OH"), and reactive nitrogen spe
cies (RNS) such as nitric oxide (NO), nitrate (N03 -), nitrite 
(N02 -), and peroxinitrites (ONOO-), as shown in Fig. 1 [45]. 
These species can appear as by-products of oxygen metabo
lism, or be present in the environment, and their appearance 
is the result of a complex interplay between the environment, 
and the celltùar enzymatic machinery. The attack of proteins 
by these highly reactive species can lead to amino acicl side 
chain modifications, cleavage of protein backbone, genera
tion of carbonyl clerivatives and formation of crosslinked 
protein complexes. Sorne reactions are limited.and specific to 
certain resiclues, whereas others give rise to wiclespreacl and 
nonspecific modifications. Moreover, reactive oxygen and 
nitrogen species are also responsible for damages to DNA 
bases and sugar moieties, and de gradation of lipids through 
peroxiclation, the by-products of which can in turn moclify 
proteins. 

2.1 Protein backbone oxidation and cleavage 

Protein backbone can be attackecl by hydroxyl radicals on the 
ix-carbon of amino acicls, resulting in the formation of a car
bon-centred radical. Under anaerobic conditions, two such 
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Figure 1. ROS and RNS. SOD stands for superoxide dismutase. 

carbon-centred radicals can combine to form an intra- or 
interprotein crosslinkage (see below). In the presence of 
oxygen, a hydroxyl group can be added to this carbon-centrecl 
radical. The hydroxylatecl ix-carbon can then undergo peptide 
backbone cleavage at the N-C bond through the ix-amiclation 
pathway, which leaves an amide at the C-terminal sicle of the 
N-terminal part of the protein, and a ix-keto-acyl resiclue at 
the N-terminal sicle of the C-terminal part of the protein [40, 
42, 46-48]. 

The same carbon-centrecl radical can undergo further 
attack by Oi. that induces cleavage of the peptide backbone, 
at the C-C bond through the diamide pathway, as shown in 
Fig. 2A. The diamide pathway initially induces one cleavage, 
leaving a diamide derivative on the C-terminal sicle of the N
terminal part of the protein, and an isocyanate clerivative on 
the N-terminal of the C-terminal part of the protein, that 
spontaneously form the derivatives shown in Fig. 2A [40, 46, 
47]. 

Adclitionally, oxidation of glutamyl and prolyl residues 
can also result in single backbone cleavage. As shown in 
Fig. 2B, the cleavage at glutamyl residue leaves an amide at 
the C-terminal sicle of the N-terminal part of the protein, and 
a pyruvyl residue at the N-terminal sicle of the C-terminal 
part of the protein, whereas the prolyl oxidation leaves two 
protein fragments with conventional termini and releases ix
amino butyric acicl [47]. 

Lastly, beta-scission can occur through radical attack on 
the p (C3) position, as shown in Fig. 2C [40, 42, 49]: the 
release of the sicle chain as a carbonyl compound leaves a 
radical on the ix-carbon, which is then prone to backbone 
cleavage through mechanisms similar to that of the diamide 
or ix-amidation pathways. 

2.2 Protein carbonyls 

Protein carbonyls appear through side-chain oxiclation of 
praline, arginine, and lysine, as shown in Fig. 3 [13, 42, 50]. 
They can also result from backbone cleavage through tlie ix
amiclation pathway or [3-scission. Alternatively, they can be 
introducecl into proteins through Michael addition of unsa
turatecl aldehydes procluced by peroxidation of lipicls (the 
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Figure 2. (A) Protein backbone cleavage by the diamide pathway (top) and 
the o:-amidation pathway (bottom). Top structure is the native protein, where 
Prot1 is the N-terminal side of the protein, and Prot2 the C-terminal side. 
(B) Protein backbone cleavage by oxidation of glutamyl and prolyl residues. 
(C) B-Scission of side-chain residue (alanine, valine, leucine, or aspartate), 
leaving a radical on the o:-carbon, prone to backbone cleavage. 

main product being the addition of 4-hydoxy-2-nonenal on 
cysteine, histidine, and lysine, as shown in ref. [51-54] and in 
Fig. 4). 

As carbonylation restùts in the introduction of reactive 
aldehyde or ketone groups in the protein, they are easily 
quantifiable (see below) and are indeed considered in prac
tice as reliable markers of oxidative stress [SS, 56]. 

2.3 Protein thiols and thioethers 

Cysteinyl thiols can undergo a large array of oxidative mod
ifications, depending on their accessibility in the protein 
structure, and the species they can contact to. Moreover, as 
cysteines play a pivota! role in protein structure through the 
formation of disulphide bonds, their oxidation status is of 
primary importance for protein fonction. In the recent years, 
cysteine oxidation has been more and more recognised as a 
basal regulation mechanism [57]. Free sulphydryl groups can 
undergo direct, reversible oxidation to sulphenic acid, and 
most often further irreversible oxidation to sulphinic and 
stùphonic acid, as shown in Fig. S. Free cysteines can also be 
nitrosylated [58]. 

In addition, free stùphydryl groups can also form di
stùphide bridges with low molecwar weight sulphyd1yl 
compounds present in the protein environment, such as free 
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cysteine, and glutathione [59-62]. S-glutathionylation is in 
most cases a permanent modification, except if a second 
cysteine is present in the close vicinity, and is available for 
disulphide bridge formation. 

Together with cysteine, methionine belongs to the most 
easily oxidisable amino acid. Its oxidation products are 
shown in Fig. 6 [63]. The cyclic oxidation-reduction of 
methionine through NADPH-dependant thioredoxin reduc
tase is an important antioxidant mechanism [64-67]. Age
dependent increase in methionine sulphoxide content of 
proteins was reported for different tissues, notably ery
throcytes [67]. 

2.4 Nitrotyrosine 

Peroxynitrite (ONOO-) restùts from the reaction of super
oxide (02 -) with NO (see ref. [45, 68-77] for review). It is a 
strong oxidant with a short biological half..life. Once formed 
intravascularly, it can directly undergo oxidation with several 
biological targets or generate radicals restùting later in oxi
dation and nitration reactions. Tyrosine nitration occurs via a 
two-step mechanism: (i) a tyrosyl radical is formed, (ii) the 
tyrosyl radical reacts with the free radical NO to form 
3-nitrotyrosine (Fig. 7) [78]. The latter has been revealed as a 
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Figure 3. Carbonylation of amino acids 
side chains. Mass differences are given 
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Figure 4. Introduction of carbonyls into proteins through Michael addition of 4-hydroxy-2-nonenal on cysteine (top), histidine (middle), 
and lysine (bottom) side chains. 

biomarker of nitrosative stress and may serve as predictor of 
coronary arte1y disease [73, 79]. 

2.5 Protein crosslinking 

As mentioned above, protein backbone can be attacked by 
hydroxyl radicals on the a-carbon of amino acids, resulting in 
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the formation of a carbon-centred radical. In the absence of 
oxygen, two such carbon-centred radicals can combine to 
from a covalent intra- or interprotein crosslink. Additionally, 
intra- or interprotein crosslinks can appear through cysteine 
oxidation via the formation of distùphide bridges. Lastly, 
other crosslinks induced by oxidation of specific residues 
have been reported, such as dityrosine formation [80], or 
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cysteine. Mass differences are given 
compared to the unmodified amino acid. 

Methionine Methionine 
sulfoxide 

Unimod 35 
Mono=15.994915 
Av=15 9994 

Figure 6. Methionine oxidation products. 

Methionine 
sulfone 

Unimod425 
Mono=3t989829 
Av=31.9988 

stùphur-nitrogen crosslinking (for example, Cys-Lys and 
Cys-Arg) [81). 

3 Methodologies for redox prot~omics 

The field of redox proteomics inherits a whole armada of 
methodologies for the analysis of protein oxidation products 
from classical biochemistry studies. Nevertheless, proteom
ics aim at analysing the whole proteinaceous content of a 
given sample, and identifying ail modifications present 
down to the single amino acid level. At the same time, oxi
dative modifications are nonstoechiometric, and present a 
large diversity (protein fragments with both conventional 
and nonconventional termini, hydroxylated protein back
bone, carbonyls, oxidised cysteines and methionines, nitro
tyrosines, crosslinked proteins, just to name the main mod-
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ifications). There is to date no proteomic workflow able to 
catch up with such a diversity. Most redox proteomic studies 
thus forns on a partirnlar type of oxidative modification, a 
few of which are described below. 

3.1 Carbonyl detection and quantification 

Carbonyls have been long regarded as global markers of 
protein oxidation. Carbonyl tagging is relatively easy to per
form due to the present of reactive aldehyde or ketone 
groups. These groups react quantitatively with hydrazine to 
form hydrazone. Carbonyls can thus be quantified spectro
photometrically by 2,4-dinitrophenylhydrazine (DNPH, the 
structure of which is shown in Fig. 8). The results are usually 
expressed in moles of carbonyls per gram of proteins [82, 83). 
Such spectrophotometric assay is not exempt from biases, 
such as the presence of excess DNPH [84), or nonprotein 
carbonyls. Alternatively, ELISA assays have been developed 
for the quantitation of DNPH-derivatised carbonyls [85-87). 
The same chemistry can be used in combination with gel 
electrophoresis, followed by an immunodetection [88, 89). 
Alternatively, Yoo and Regnier [90) have developed a biotiny
lation strategy for the specific labelling of carbonylated pro
teins after 2-DE. 

3.2 Carbonyl enrichment 

Another possible strategy is to use DNPH derivatisation in 
combination with anti-DNPH antibodies to immunoprecipi
tate and enrich carbonylated proteins, which has been 
demonstrated by England and Cotter in the study of ER pro-
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RillN NHR1 

O~OH 

1,4-<linitrnphcuyl hydrn;dde (lJNl'l I) 

l:liotin hydrazidc 

Figure 8. Probes reactive toward the aldehyde and ketone 
groups of carbonyls. On the 0-ECAT reagent, the four nitrogen 
atoms can coordinate a metal centre (not shown here). 

tein susceptibility to oxidation by 2-DE and MALDI-TOF MS 
[91], and by Kristensen et al. [92] in rice leaf rnitochondria 
oxidation study with 2-D LC-MS/MS. 

An alternative is to use affinity baits for the specific iso
lation of carbonylated proteins. For example, one can use 
biotin hydrazine for the derivatisation of ketones and alde
hydes, and avidin columns for specific isolation of deriva
tised peptides and proteins [93-98]. Interestingly, Mirzaei 
and Regnier [97] compared three different strategies based 
on biotin hydrazine tagging of carbonyls, affinity selection, 
proteolysis, RP-HPLC, and MS, and found that performing 
the affinity selection and chromatography at the protein level 
before proteolysis and mass spectrometric protein identifi
cation, was more informative because worldng with intact 
protein allowed the detection of crosslinked or tnmcated 
proteins. Using a sirnilar approach, Roe et al. [99] directly 
derivatised glass beads with a hydrazine group, allowing spin 
down isolation of carbonylated proteins. 

Regnier's group also introduced a different tagging 
reagent for carbonyls: Girard's P reagent, which bears a 
hydrazine group, together with a permanent positive charge. 
Using this tagging reagent in combination with strong cati
on exchange chrornatography, authors were able to enrich 
carbonylated peptides [100], and quantify them through iso
topically labelled Girard's P reagents [101 ]. 
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Figure 7. Formation of 3-nitrotyrosine. 

Lastly, Lee et al. recently introduced the so-called "Oxida
tion de pendent element coded affinity tags" (0-ECAT), which 
are probes bearing one aminooxy group able to forrn a cova
lent bond with aldehydes or ketones, and one metal-chelator 
moiety. Antibodies against the metal-chelator rnoiety allow 
the affinity selection of derivatised peptides and proteins, 
and the probe can be loaded with various rnetals prior to any 
labelling of carbonyls in order to provide relative quantifica
tion information in MS [102]. 

3.3 Probing thiols oxidation 

Methods for the study of protein thiols oxidation states have 
been the subject of recent reviews [44, 103]. Briefly, most 
techniques lie in the differential labelling of free sulphydryls 
and oxidised ones, for example, through maleimide, iodoa
cetamide, iodoacetate, and thiosulphate chemistries. For 
example, Baty et al. [104, 105] first blocked free cysteines with 
an alkylating reagent, then reduced the sample to make s1ù
phydryls previously involved in disulphide bridges and glu
thationylation available, and labelled them with a fluorescent 
probe before 2-DE. Authors were thus able to study the effect 
of oxidants (such as diamide or H20 2) on thiols oxidation 
state, and therefore identify proteins susceptible to oxidation. 
Similarly, Laragione [106, 107] used the same method with a 
probe containing an affinity bait (biotin), and further detect
ed initially thiol-oxidised proteins with a streptavidin-perox
idase conjugate after Western blotting. 

The same methodology can be applied for the specific 
enrichrnent of oxidised-thiol containing proteins: free 
thiols are first blocked, oxidised thiols are reduced chemi
cally and further reacted with a probe containing an affinity 
bait, such as biotin [108-112]. When isotope-coded-affinity
tags (ICAT) reagents are used in this way, relative quantifi
cation between two differentially oxidised samples can be 
obtained [113, 114]. These techniques are useful to identify 
oxidation-sensitive thiols, but fail to identify the type of 
oxidation. 

More specific is the probing of cysteines susceptible to 
Sglutathiolation: Brennan et al. rnimicked a particular oxi
dative stress by adding biotin-GSSG-biotin to rat tissues; 
upon excess GSSG, disulphide exchange occurs and gln
thationylated proteins can be isolated by avidin columns. 
Doing so, anthors were able to study the proteome ofthiols 
susceptible to S-gluthationylation in heart tissues [115, 
116). 

Jaffrey et al. [117] also targeted a specific cysteine mod
ification (S-nitrosylation, see Fig. 5) by first blocldng 
cysteines, reacting nitrosothiols with ascorbate to leave free 
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cysteines, and finally reacting these cysteines with biotin
containing reagents for specific enrichment of initially 
S-nitrosylated proteins. 

3.4 Nitrotyrosine 

Most studies of tyrosine nitration [118] rely on immunologi
cal detection thanks to commercially available anti
nitrotyrosine mAb, whether in the ELISA format [119], in 
which case it is diffinùt to distinguish between free circulat
ing 3-nitrotyrosine and protein-bound nitrotyrosine, or in 
Western blot format after 1-D or 2-DE [120-122]. Immuno
precipitation with antinitrotyrosine antibodies allowed Nikov 
et al. [123] to map nitration sites of HSA by MS. 

Interestingly, Zhang et al. [124] have recently introduced 
a methodology for selective isolation of nitrotyrosine-con
taining peptides: first, primary amines are acetylated, and 
free sulphydryls are blocked, nitrotyrosines are then reduced 
to aminotyrosine, which are then acetylthioacetylated, and 
the resulting group is deprotected to leave a free sulphydryl 
group, which in h1rn allows specific enrichment of peptides 
initially containing 3-nitrotyrosine. Doing so, authors were 
able to dramatically enrich peptides containing 3-nitrotyr
osine compared to a direct mass spectrometric analysis. 

3.5 Mass spectrometric and bioinformatics 
challenges 

MS is now well established as a central identification tech
nology in proteomics. Nevertheless, the identification and 
location of PTMs remains a challenge in routine analysis 
[125]. In the specific context of oxidative modifications, two 
major difficulties arise due to heterogeneity of possible 
modifications; first, whereas MS/MS is perfectly suited to the 
detection and identification of chemical modifications on 
amino acid side chains, the number of possible modifica
tions (such as the different oxidation states of cysteine or 
methionine, the presence of nitrotyrosine, to name only the 
most standard ones) as well as the possibility of non specific 
peptide cleavages dramatically increase the search space 
when tiying to match tandem mass spectra to peptide 
sequences in the queried data base. This in turn increases the 
probability of false identification [126]. 

Even more complex are the cases of backbone cleavages 
and interprotein crosslinking: because in bottom-up strate
gies, sequence coverages of identified proteins are intrinsi
cally low, it is very diffictùt to unambiguously identify a pro
tein fragment or the site of crosslinking (see below for an 
example about erythrocyte membrane proteins). 

Additionally, many oxidised products are chemically 
unstable, and form adducts with other compounds; for 
example, one product of the hydroxylation of tyrosine is 3,4-
dihydroxyphenylalanine. The latter can be converted to 
orthoquinone through metal catalysis, and then further 
undergo Michael addition with a free cysteine [127]. Such 
nonconventional and unexpected modifications are virhially 
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impossible to track down with the large-scale tools of MS and 
bioinformatics. 

Another possible complication due to instrumental arte
facts is the loss of side-chain modifications during tandem 
MS. It has been observed that labile modifications are readily 
lost during gas-phase fragmentation by CID [128]. One 
promising solution to this problem is the development of 
"softer" fragmentation techniques such as electron transfer 
dissociation (ETD) and electron capture dissociation (ECD). 
For example, Guan et al. [129] showed that CID of oxidised 
methionine containing peptides resulted in the Joss of 
CH 3SOH whereas ECD allowed fragmentation of the peptide 
backbone while preserving the side-chain oxidation, thus 
allowing direct location of the oxidised methionine. 

Recently, Zhao et al. [130] proposed a complete method
ology for single protein oxidation mapping based on high 
resolution, high accuracy MS: they mimicked oxidation of 
P21Ras by in vitro incubation with peroxynitrite or GSSH, 
and analysed both tryptic digests (bottom-up protein MS) 
and whole proteins (top-down protein MS) by CID and ECD. 
They were not only able to map the oxidative modifications to 
the protein, but also compare the reactivity of the different 
sites susceptible to undergo oxidative modifications. But 
such studies are possible a t the single protein level, and data 
interpretation is yet hardly amenable to automation for large
scale studies. 

4 Perspectives for blood proteomics 

4.1 Red blood cells 

The RBC proteome has been the subject of extensive efforts, 
and more and more data accumtùate through time [131-
141], providing a high quality dictionary of red blood cell 
proteins. Red blood cells are inherently under continuous 
oxidative stress, as they pass the lungs once a minute; they 
contain high levels of 0 2 and haemoglobin which auto
oxidises to produce 0 2 - and H20 2• The heme group of hae
moglobin can serve as a Fenton reagent to initiate free radical 
reactions [142]. Additionally, the RBC is often considered as a 
sink for oxidative species [143-145]: approximately 40% of 
intravascularly formed peroxynitrite diffuses into RBCs: the 
peroxinitrite anion crosses the membrane via band 3, 
a bicarbonate-chloride exchanger, whereas diffusion of 
peroxynitrous acid is passive [146, 147]. 

The forefront of antioxidant defences has been identified 
to be superoxide dismutase (SOD), glutathione peroxidase 
(Gpx), peroxiredoxins (Prdx), and catalase, four enzymes that 
are highly abundant in red blood cells, as shown in Fig. 9. 
Superoxide dismutase catalyses the reduction of superoxide 
to oxygen and hydrogen peroxide through its [Cu-Zn] centre. 
Glutathione peroxidase catalyses the reduction of hydrogen 
peroxide to water by the conversion ofGSH to GSSG, which 
can be recycled back to glutathione by the NADPH-depend
ent glutathione reductase. Catalase directly reduces hydro-
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4.0 4.5 5.0 5.5 6.0 6.5 7,0 7.5 S.0 

pH 
Figure 9. 2-DE of human red blood cells. Annotated in purple are proteins responsible for antioxidant defence (Prdx, peroxiredoxin; gpx, 
glutathione peroxidase; SOD, superoxide dismutase). The gel image was obtained from Swiss-2-D PAGE (197]. 

gen peroxide to water and oxygen in a two-step mechanism 
thanks to its heme group. Peroxiredoxins catalyse the reduc
tion ofH20 2 to water by oxidation of one cysteine (the peroxy
datic one) to stùphenic acid; another cysteine (for the 2-cys 
peroxiredoxin subclass) reacts with the sulphenic acid to form 
a disulphide bridge. Its regeneration occurs through a thio
redoxin /NADPH-dependent thioredoxin reductase system. 
The overoxidation of the peroxydatic cysteine rnay abolish the 
catalytic activity of peroxiredoxins [148]. 

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

The respective role of these enzymes in antioxidant 
defence is still a matter of debate. Knockout mouse rnodels 
proved that the lack of peroxiredoxin I resulted in severe 
haemolytic anaemia, and appearance of lymphomas, sarco
mas, and carcinomas [149]. The lack of peroxiredoxin II was 
also shown to result in haemolytic anaemia [150]. On the 
other hand, patients having hereditary catalase deficiencies 
were also shown to be victims of oxidative stress and pre
sented a high prevalence of diabetes [151]. Gaetani et al. [152] 
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also demonstrated that catalase is essential for the removal of 
H20 2 from RBCs, having an activity six times higher than 
glutathione peroxidase. Peskin et al. [153] have recently 
shown that peroxiredoxin 2 and catalase react with H 20 2 at 
comparable rates. It was hypothesised that catalase and per
oxiredoxin play complementary roles in HP2 detoxification/ 
signalling due to the different recycling mechanisms used 
[154]; in RBCs, peroxiredoxin 2 was shown to accumulate as 
a <limer under H20 2 challenge, which was only slowly con
verted back to the active monomer by the thioredoxin system. 
This behaviour makes peroxiredoxin 2 ideally suited to H20 2 

sensing at low concentration [155]. When H20 2 concentra
tion increases, catalase and glutathione peroxidase are nec
essary to dispose of excess H20 2 [156]. What is unknown is 
the role of peroxiredoxin 2 <limer and overoxidised forms in 
H20 2 signalling. 

lnside RBCs, oxidative stress induces haemoglobin 
crosslinking to the cytoskeleton [38, 157], which brings the 
heme centre in close vicinity to the phospholipid membrane 
where it can act as a local Fenton reagent [142]. Oxidative 
stress is also associated with protein degradation [158], band 
3 clustering [159], phosphatidylserine externalisation [160], 
activation of caspases [160-162], and down-regulation of gly
cophorins [163], some of these being recognised as bio
markers of senescence or "apoptosis". In particular phos
phatidylserine externalisation signais macrophages to recog
nise and degrade the RBCs. 

Recently, D'Amici et al. [140] analysed by 2-DE the 
membrane proteome of RBC during storage, i.e., during 
hypothesised oxidative stress. They were able to demon
strate dramatic alteration and cleavage of band 4.2, 4.1, 
band 3 and spectrin through the appearance of numerous 
spots through time, in addition to slighter modifications 
(hypothesised to be oxidative side-chain modifications) to 
numerous cytoskeleton, cytoskeleton-anchorecl and mem
brane proteins. 

4.2 Platelets 

Platelets are responsible for primary haemostasis through 
adhesion to collagen, release of mecliators and aggregation 
with adjacent platelets. Platelets are exposecl to ROS gen
eratecl by the enclothelial cells of the vesse! walls; in addi
tion, there is eviclence that platelets can themselves pro
cluce ROS. Lastly, uncler inflammatory conditions, platelets 
are exposed the phagocyte-clepenclent, acute production of 
ROS [164]. 

Throughout haemostasis, the reclox environment plays a 
critical role, notably with respect to platelet integrins. Platelet 
integrin cd!bp3, a transmembrane fibrinogen receptor, is 
uncler tight regulation by sulphyclril oxiclation: the cdlb sub
unit contains 18 cysteines while the P3 subunit contains 56 
cysteines. Part of them (locatecl in the extracelhùar cysteine
rich clomain of the p subunit) is present as free stùphyclrils 
and remains available for reclox regtùation by extracellular 
factors. Adclitionally, the reduction of clisulphicle bridges 
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appears to be involvecl in the conversion of cdlbP3 to a fi. 
brinogen-bincling conformation, a phenomenon commonly 
referrecl to as "integrin activation''. This modulation of 
cûlbP3 integrin affinity for collagen is the result of an 
"inside-out" signal following platelet exposure to agonists or 
to adhesive subenclothelial proteins. Fibrinogen binding, 
among other processes, is mecliatecl by a protein clistùphicle 
isomerase (PDI) as well as ERP5, a thiol isomerase protein 
that is recruitecl to the cell surface during platelet activation. 
Similar mechanisms seems to account for other integrins, 
such as a 2P1 for example. 

4.3 Other blood cells 

Ghezzi et al. [165] iclentifiecl two cysteines (52Cys and 62Cys) 
on cyclophilin A (CypA) as targets of glutathionylation in T 
lymphocytes and characterisecl the basis for the reactivity 
leacling to this modification. Glutathionylation of these 
cysteines might interfere with the formation of the CypA/ 
cyclosporin A complex or the bincling of CypA with the HIV-1 
capsicl protein. It was shown that alterations in the anti
oxiclant clefence enzymes contributed to the outcome in clif. 
fuse large B-cell lymphoma, the patients with clecreasecl 
manganese-SOD and thiorecloxin inhibitor VDUPl having 
tlle worst prognosis [166]. One explanation for this phenom
enon is the modulation of glucocorticoicl nuclear receptor 
fonction, which is reclox sensitive [167]. 

Regarcling bloocl stem cells, it has been shown tllat 
increasing levels of ROS act through clefinecl mitogen-acti
vatecl protein kinase pathways to limit the life span of cells in 
vivo [168]. 

4.4 lgs 

The oxidation of antibodies increases the hyclrophilic nature 
of the paratopes and increases their tenclency to bine! to 
cationic surfaces even without strong surface-ta-surface fit. 
ting [169]. Stuclies on mAb cluring storage revealecl clear 
sites of oxiclation [170-172]. Recent findings suggest the 
existence of "reclox-activated" autoantiboclies that are not 
cletectable by conventional immunoassays [173, 174]. A 
possible mechanism responsible for unmasking them may 
requires nitrosylation of tyrosine resiclues in the hypervara
ible or complementary cletermining region of Ig [175]. This 
concept has potential consequences in the unclerstancling of 
the antiphospholipicl antiboclies syndrome, the opsonisation 
of aging erythrocytes and of their immune elimination 
[176]. 

4.5 Fibrinogen 

Fibrinogen is a high abunclant plasma protein and the 
major plasma coagulation factor. It consists of two sets of 
three disulphicle-briclgecl chains (Aa, Bp, and y) of 610, 
461, and 411 amino acicl resiclues, respectively. Structure, 
heterogeneity, fonction and assays were al! reviewed else-

www.clinical.proteomics-journal.com 



Proteomics Clin. Appl. 2008, 2, 142-157 

where [177-180]. Western blot immunoassay showed that 
fibrinogen, among other plasma proteins, is highly sus
ceptible to attack by oxidants [181]. Oxidant-induced car
bonyl formation in fibrinogen derives largely from amino 
acid oxidation and not from oxidation of carbohydrate 
groups [182]. 

Previous experiments showed that histidine and trypto
phan residues in the amino-terminal disulphide knot were 
affected by methylene blue light treatment (MBLT), which is 
a photosensitiser used for virus inactivation [183]. Photo
oxidation of an histidine in the B~-chain (16His) located only 
one amino acid residue away from the thrombin-susceptible 
bond was shown to impair fibrin polymerisation [184). Addi
tion of L-histidine, a target of singlet molecular oxygen gen
erated during MBLT, was able to protect fibrinogen from the 
polymerisation defect in a dose-dependent manner [185]. 
Measurements of both the release of fibrinopeptide (by 
HPLC) and the generation of fibrin monomers (by electro
phoresis) confirmed that oxidation-induced inhibition of 
clotting activity derived from an effect on fibrin monomer 
polymerisation, not from inhibition of thrombin activity 
[186). S-nitrosothiols can induce changes in fibrinogen 
structure by interacting at specific domains rich in aromatic 
amino acids [187). 

Oxidatively modified fibrinogen was also found to mod
tùate blood rheological parameters [188). Clinical implica
tions of such results need obviously to be investigated fur
ther. Oxidised forms of fibrinogen circulating in blood could 
be interesting in several aspects, for example, for monitoring 
oxidative stress, controlling coagulation processes and stud
ying protein senescence mechanisms. 

4.6 Photoinactivation of blood products 

Photoinactivation of blood products involves the addition 
of an exogenous agent or physicochemical manipulations: 
its benefits (the inactivation of pathogens) need to be 
balanced against deleterious effects on cells and plasma 
proteins [189]. UV irradiation has been proposed for 
pathogen inactivation of purified plasma proteins and clot
ting agents used in transfusion medicine. However it has 
been known for long that UV light exposure can damage 
proteins through generation of ROS, which can in turn 
damage proteins [190, 191]. Using 2-D DIGE.and MALDI
TOF-MS, Chan et al. [192] identified alterations in protein 
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thiol reactivity, indicative of an oxidative damage. Authors 
showed modification of various proteins involved in the 
coagulation cascade, such as kininogen, thrombin, albu
min, actin, complement factor 4, serum amyloid P, or 
retinol binding protein. 

MBLTstands as another option for pathogen inactivation 
of fresh frozen plasma and was also evaluated in the same 
terms [185, 193-195]. Figure 10 shows modifications of the 
2-D pattern of fibrinogen y chain, transthyretin, and apoli
poprotein A-I upon prolonged light exposure in the presence 
of varions concentrations of methylene blue. 

5 Conclusion 

In this review, we have tried to highlight the complexities of 
oxidative modifications to proteins, be it part of regulatory 
processes, responses to oxidative stress or permanent dama
ges induced by exogenous compounds. As far as blood com
ponents are concerned, the selected examples described 
below show that there are complex processes to detect oxida
tive stress, and eliminate reactive oxygen and nitrogen spe
cies. In parallel, reactive oxygen and nitrogen species play 
physiological raies, such as the modulation of platelet acti
vation for example. 

Any blood proteomic approach should thus reveal the 
presence of oxidised proteins, due to physiological modifica
tions (as is the case in RBC metabolism and platelet activa
tion), and depending on how the sample was punctured, 
processed, and stored. The fact that most blood proteomic 
studies do not report such modifications just reflect the dif
ficulty of analysing oxidative modifications to proteins on a 
large scale, mainly due to their diversity. Targeted strategies 
to detect and quantify oxidative modifications in blood com
ponents exposed varions conditions (be it instrumental such 
as puncture and storage parameters), physiological or bio
medical (samples from healthy individuals or with specific 
diseases) would be highly desirable and perfectly timely to 
increase our knowledge of blood physiology, give a sound 
basis for the search of biomarkers in plasma or other blood 
components, and practical recommendations for the hand
ling, preparation and storage ofblood products. 

The aitthors have declared no conflict of interest. 
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Figure 10. 2-D pattern of fibrin
ogen y chain, transthyretin, and 
apolipoprotein A-1 upon pro
longed light exposure in the 
presence of various concentra
tions of methylene blue. Repro
duced from [194] with permis
sion. 
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OXYDATION DU FIBRINOGENE HUMAIN PURIFIE PAR H20 2 : UNE ANALYSE 

PROTEOMIQUE PAR ELECTROPHORESE ET SPECTROMETRIE DE MASSE 

OXIDATION OF HUMAN PURIFIED FIBRINOGEN BY H20 2 : A PROTEOMIC 

ANAL YSIS BY ELECTROPHORESIS AND MASS SPECTROMETRY 



RESUME 

Les conditions de conservation du sang destiné à la transfusion créent un environnement par 

lequel l'oxydation aboutit à des altérations au niveau des protéines cellulaires et des facteurs 

de la coagulation. Le but du présent travail est de modéliser ces altérations en caractérisant au 

niveau moléculaire l'effet in vitro d'un traitement oxydant (eau oxygénée - H202) sur un 

facteur de la coagulation, le fibrinogène humain. La méthodologie se résume en quatre 

phases : 1) le traitement oxydatif de la protéine purifiée; 2) la séparation des sous-unités 

protéiques par électrophorèse hi-dimensionnelle ou par chromatographie liquide; 3) la 

digestion des protéines par la trypsine et l'analyse des peptides par spectrométrie de masse; 4) 

l'identification des peptides et la détection de modifications évocatrices d'oxydation. Les 

résultats indiquent au niveau de l'électrophorèse un changement du point iso-électrique, celui 

correspondant à la protéine oxydée étant plus acide que celui correspondant à la protéine 

native non-traitée. Aucun changement de masse n'est observé sur le gel d'électrophorèse. Au 

niveau du spectre de masse, nous pouvons distinguer plusieurs types de modifications selon 

que celles-ci sont ou non proportionnelles au traitement oxydatif. Les résidus oxydés sont 

principalement des méthionines avec une distribution relativement homogène au niveau de 

leur position moléculaire. Une part des modifications observées par spectrométrie de masse 

peut être attribuée à la phase pré-analytique. La conclusion de ce travail est que la 

spectrométrie de masse permet de localiser précisément les sites des résidus oxydés 

(mapping) et constitue en ce sens une approche complémentaire à l'électrophorèse bi

dimensionnelle. L'étude de l'impact de ces modifications sur la fonction du fibrinogène 

comme son interaction avec la thrombine et avec les glycoprotéines plaquettaires ou sa 

polymérisation en fibrine, offre une perspective intéressante à ce travail. 

[2] 



INTRODUCTION 

Oxidative modifications on proteins are due to attack of reactive oxygen species (ROS). They 

can be considered in diverse frames. They can either be part of physiological processes such 

as enzyme activity modulation, signaling and gene regulation ; or they can reflect oxidative 

stress encountered in inflammation, cancer, degenerative disease and age-related changes 1
;
2

. 

In particular instances, and especially for blood proteins, oxidative modifications are due to 

preanalytical influences3
. Oxidants such as peroxynitrite induces red blood cells damage, 

increasing the appearance of senescence markers such as thiol-oxidized skeletal proteins 

(spectrin) and rearrangement of membrane protein (band 3 and glycophorin A)4
. 

Processing of blood products in transfusion medicine is hypothetically responsible for « blood 

storage lesions » via protein oxidation mechanisms5
-
9

. Addition of methylene blue (MB) in 

plasma is able to inactivate viruses upon exposure to light10
-
12

. Disadvantages of using MB

treated plasma are related to decreased levels of coagulations factors 13
-

18
. In order to gain 

insight in the quality of plasma obtained after MB light treatment (MBL T) and MB removal 

by filtration, Crettaz et al applied proteomics tools to characterize potential « injuries » on 

proteins 19
• A small-scaled analysis of 2D-GE gels (restricted isoelectric point (pl) range from 

4.5 to 6.5 and low Mr from 7 to 58 kDa) revealed 4 out of 387 matched spots that were 

modified by MBLT. These spots correspond to the gamma-chain of fibrinogen, apo

lipoprotein A-1 and transthyretin. According author opinion, the modification observed on 

2D-GE (pl acidic shift) likely reflect imbalance of oxido-reduction of particular amino-acid 

residues rather than neo-antigen formation. 

Our work aims to confirm this hypothesis with a similar experimental setting. W e treated 

human purified fibrinogen with hydrogen peroxide (H20 2), and performed both 2D-GE and 

HPLC-MS/MS analysis. 

[3] 



Fibirinogen is the major plasma coagulation factor (1.5-4.5 g/l) and consists of two sets of 3 

disulphide-bridged chains (Aa, B~ and y) of 610, 461 and 411 amino-acid residues, 

respectively. Details about structure, heterogeneity, function and assays are all reviewed 

elsewhere20-25 . Fibrinogen plays a key role in haemostasis : following cleavage by thrombin, it 

undergoes polymerization to form an insoluble fibrin clot stabilizing the platelet plug. After 

release of fibrinopeptides, "knobs" are exposed at the centre of the molecule (E-domain) and 

fit into "holes" on neighbouring molecules (D-domain). This "knob-hole" interaction has been 

largely studied and modeled26-33 . The globular carboxyl-terminal region of the y-chain 

participates in many physiological interactions with other molecules. The ability of y.chain to 

bind calcium and to internet with adjacent fibrin monomers or with the GPIIb/IIIa platelet 

receptor are the main determinants of fibrinogen functionality34. Sorne residues (histidine and 

tryptophan) of the amino-terminal disulphide knot are shown to be oxidized by MBLT35 ; L

histidine, a target of singlet molecular oxygen, quenches this reaction36. 

MATERIEL & METHODS 

Oxidative treatment with H20 2 

Human purified fibrinogen (plasminogen free) is reconstituted with distilled water to reach a 

10% dilution (w/v) following instruction of supplier (Endotell, Allschwil, Switzerland). It is 

then transferred in 100 µl aliquots to be frozen (-80°C). Thawed aliquots are mixed with 

oxidants at different H202-con~entrations, obtained from H202 30% w/v stock solution 

(Sigma-Aldrich, Buch Switzerland) diluted in distilled water. For 2D-GE analysis, a final 

H20 2 concentration of 5% or 10% is employed in contrast to that employed for LC-MS/MS 

analysis (0.1 % and 1 %). Oxidized samples are frozen at-80°C before use. 

[4] 



2D-GE protein separation 

Sample for 2D-GE is prepared following a protocol adapted from the method described by 

Hochstrasser et az37
. The addition of a SDS-DTE solution ensures a maximal dissolution of 

proteins in solution. After a short heating time (5 min at 95°C), protein extracts corresponding 

to 250 µg are rehydrated with a solution containing DTE, CHAPS, urea and ampholytes 3-10 

(Pharmalyte, GE Healthcare, Glattbrugg, Switzerland) in order to obtain a final volume of 350 

µl. Strips used for IEF (Immobiline Dry-Strip, pH range 4-7 or 3-10, 18 cm, GE Healthcare, 

Glattbrugg, Switzerland) is rehydrated in gel with the same solution. IEF is performed under 

paraffin oil, applying an increasing voltage for a total of lOOkVh. Before performing the 

second dimension, strips are equilibrated with a solution containing urea, Tris-HCl, glycerol, 

SDS, DTE and iodoacetamide. Bromophenol blue is used as tracking dye. Strips are placed on 

the top of 9-16% gradient polyacrylamide gels that are copolymerized with piperazine 

diacrylamide as a cross-linker. Second-dimensional migration is performed with a current of 

40 mA/gel. Gels are stained with silver according to the standard protocol. 

LC-MS 

Samples for LC-MS (20 µl) are thawed and lyophilized completely. They are re-suspended in 

10 µl urea 8 M. The addition of 1 µl DTT 1 OOmM ensures a good dissolution. Samples are 

heated at 50°C for 45 min and then cooled down at RT. After addition of 3 µl iodoacetamide 

1 OO mM, they are put in the darl<: for 45 min. 1 µl DTT 1 OO mM and 70 µl ammonium 

bicarbonate 25 mM freshly made are added to the sample and pH adjusted to 7,5-8. In

solution proteolytic cleavage is made with 5 µg trypsin ovemight and the reaction is quenched 

by the addition of lµl TFA. 

Mass spectra analysis 

MSight software displays mass peaks obtained from MS. Differential-display patterns 

represent the mass (x axis), the time of elution (y axis) and peak intensity (intensity of spot). 

[5] 



An example of such pattern is shown in figure 1. Patterns are compared manually, with a 

particular attention on peptides whose mass shows a deviation of a multiple of 8 Da 

(assuming that peptides are 2+ charged). Charge state deconvolution and deisotoping are not 

performed. All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK). 

Mascot was set up to search the concatenated SwissProt and TrEMBL databases (selected for 

Homo sapiens) assuming the digestion enzyme trypsin, a fragment ion mass tolerance of 0.60 

Da and a parent ion tolerance of 50 ppm. Oxidation of cysteine, methionine, histidine and 

tryptophane is specified in Mascot as a variable modification. Subsequent MS/MS analysis 

specifically targets oxidized residues. 

RESULTS 

2D-GE pattern 

The patterns of protein separation are shown in figure 2. The range of pH and orientation of 

gels are specified. In samples treated with H20 2, spots appear at a more "acidic" pl than that 

of control samples. Spots at the "basic" extremity of each chain lose their intensity. This 

acidic "shift" is not associated with an observable change in the mass of the protein. 

MS-detection of oxidized residues 

Peptides identification reveals sequence coverage of 32% for the alpha-chain, 55% for the 

beta-chain and 48% for the gamma-chain of human fibrinogen. Oxidation is detected on 26 

residues, predominantly on methionines. Overall, comparing control (CTRL) samples with 

H20 2-treated samples, four categories can be distinguished among oxidation sites (See Table 

1): in category I and II, the signais of oxidized peptides increase compared to control. In 

category III, the signais of oxidized peptides remain constant irrespective of the concentration 

of H20 2. In category IV, signais of oxidized residues are observed, but do not allow to 

conclude on their increase upon H20 2 treatment. 

[6] 



DISCUSSION 

2D-GE gels show a change of pl toward acidity after oxidative treatment. This means a 

change of pKa constant. Theoretical titration curves show a similar change of pKa when 

cysteines of the gamma chain (pKa=8.4) are oxidized to sulfenic acids (pKa=4.5) and 

methionines are oxidized to methionine sulfoxides (pKa=4.6) (see figure 3), indicating that 

acidic shift is possibly due to residue oxidation by H20 2. Whereas the calculation is 

performed with grand averages of pKa values that do not reflect local microenvironment of 

particular amino acid side chains, the global behaviour is consistent with the patterns 

observed on 2D-GE (see Figure 2), where total trains of spots are shifted toward the acidic 

side upon oxidative treatment, and spots within the same train get sharper and closer from the 

basic side to the acidic si de of the train. 

MS analysis of peptides brings further results: 15 residues are found more oxidized (di-, tri

oxidation) in samples treated with H20 2 than those of control sample ( category I). The fact 

that methionine is the predominant residue to be oxidized is not surprising38
. Beta-chain of 

fibrinogen shows the maximum number of oxidation "events". This cannot be correlated with 

its length (shorter than alpha-chain and longer than gamma-chain). A possible explanation is a 

different access to oxidant for each chain in native form. Oxidations are distributed quite 

uniformly along the chains. There is no observed oxidation near the amino-terminal 

disulphide knot (E-domain). 

Methionine in position 536 on alpha-chain for example (category I) is never found in its 

reduced form, indicating that oxidation probably would have occurred in vivo or during 

purification process. In this precise situation, we consider MS as highly indicative of pre

analytical "fingerprint". For category II, the fact that residues appear in a reduced form in 

control sample raises the question of bias due to our methodology: the DTT used before 

alkylation could reduced some cysteines that are reversibly oxidized by H20 2 . An alternative 

[7] 



protocol would be to alkylate reduced cysteines (hence, cysteines that do not react with H20 2) 

before reducing them with DTT. Another alkylating agent (such as N-ethylmaleimide, for 

example) then is used to "lock" reduced cysteines that undergo reversible H20 2-oxidation 

specifically. Another bias regards the method of MS-spectra analysis. We focus on oxidative 

side-chain modifications and look for mass changes corresponding to a multiple of 8 Da (see 

methods); modifications such as backbone cleavage or cross-linkage are missed by such 

analysis. 

CONCLUSION 

The combination of 2D-GE and MS analysis proved to be useful for the assessment of 

oxidative damage to fibrinogen. On one part 2D-GE allows the global detection of oxidative 

damage by shifts in electrophoretic patterns of the different chains of fibrinogen. On the other 

part, MS analysis allows precise mapping and categorization of oxidation sites. However, no 

specific oxidative locus is identified in our study. Oxidation sites seem to be randomly 

distributed along the various fibrinogen chains, and no clear assignment of oxidative lesions 

to functional sites of the fibrinogen chains can be made. 

PERSPECTIVES 

Design of knobe-hole interaction by in silico tools could be performed on control and 

oxidized sample in order to correlate structure modifications with function. Protein such as 

fibrinogen is ideal for functional studies. Barly reports indicate that oxidative modification of 

fibrinogen inhibits thrombin-catalyzed clot formation, due to impaired fibrin monomer 

polymerization rather than altered thrombin-catalyzed fibrinopeptide release39
;
40

. Platelets 

adhesion and spreading assays could also be performed with oxidized fibrinogen in order to 

study its interaction with aIIb~3 integrin41
;
42

. 

[8] 



Figure 1. 

Differential-display patterns of LC-MS peptides 
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Figure 2. 

2D-GE pattern of purified fibrinogen upon in vitro oxidation. On strips 4-7, only chains 

beta (more basic) and gamma are displayed. 
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Figure 3. 

Evolution of the titration curves (top) and theoretical spot positions (bottom) of 

fibrinogen gamma chain upon the oxidation of 0 to 9 cysteines to sulfenic acids and 

additional oxidation of 9 methionines to methionine sulfoxides. 
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Table 1. 

Categories among oxidation sites 

I II III IV 

alpha- Mll0 1 M495 

chain M226 H564 

M259 
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chain M254 M477 C231 

M335 M272 

M344 W279 

H400 

M403 

M456 

M468 

gamm Ml04 C35 C161 

a- M120 W279 

chain M290 

C=cysteine; H=histidine; M=methionine; W=tryptophan 

1Number according Swissprot (including peptide signal and fibrinopeptide) 

I. Oxidized residues present in CTRL and appearing more oxidized after oxidative treatment 

(sensitive to oxidation) 

Met 110 

70000000 !--------

60000000 !---------

50000000 +--------

40000000 +--------

20000000 t--.-

10000000 

CTR 0.1% H202 l~ H202 

[ 12] 

a non oddlttd l • 

• Mono okldittd l 1 



II. Non-oxidized residues present in CTRL and appearing oxidized after oxidative treatment 
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IV. Level of oxidation appearing in CTRL and/or after oxidative treatment (non-conclusive, 

because not enough signals are detected in MS) 
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Figure 2. 

2D-GE pattern of purified fibrinogen upon in vitro oxidation. On strips 4-7, only chains 

beta (more basic) and gamma are displayed. 
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Figure 3. 

Evolution of the titration curves (top) and theoretical spot positions (bottom) of 

fibrinogen gamma chain upon the oxidation of 0 to 9 cysteines to sulfenic acids and 

additional oxidation of 9 methionines to methionine sulfoxides. 
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IV. Level of oxidation appearing in CTRL and/or after oxidative treatment (non-conclusive, 

because not enough signais are detected in MS) 
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