PERMANENT GENETIC RESOURCES

Characterization of tri- and tetranucleotide microsatellite loci for the slatey-grey snake (Stegonotus cucullatus, Colubridae)

SYLVAIN DUBEY,* GREGORY P. BROWN,* THOMAS MADSEN† and RICHARD SHINE*
*School of Biological Sciences, Heydon-Laurence Building, A08, Science Road, University of Sydney, Sydney, NSW 2006, Australia, †School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract

We characterized nine polymorphic microsatellite (six trinucleotides and three tetranucleotides) loci for the slatey-grey snake (Stegonotus cucullatus) from Australia, in order to study the mating system of this species. Based on a total of 100 samples, the number of alleles per locus ranged from three to 10, and the observed and expected heterozygosities ranged from 0.62 to 0.86 and from 0.53 to 0.83, respectively.

Keywords: Colubridae, microsatellite, paternity, sexual dimorphism, snake

Received 20 July 2007; revision accepted 8 August 2007

Most species of snakes show sexual dimorphism in mean adult body size, with females growing larger than conspecific males (Shine 1994). Larger body size in females may be favoured because bigger females typically produce more offspring per clutch (Rivas & Burghardt 2005). But why, in a minority of snake species, do males attain larger body sizes than females? The likely explanation is that larger body size enhances male success in physical combat over females, and hence increases male mating opportunities (Shine 1994). Larger males also may be better at mate-finding or at overcoming female resistance during courtship attempts (Madsen & Shine 1993; Shine et al. 2005). Female reproductive success also may be enhanced by body size in ways other than simple increases in fecundity; for example, larger females tend to attract more courtship and hence have a higher frequency of multiple mating (Prosser et al. 2002), which may increase offspring viability (Madsen et al. 1992). To clarify the reasons why males sometimes attain much larger sizes than females, we need field studies on reproductive success.

The slatey-grey snake (Stegonotus cucullatus Duméril, Bibron & Duméril 1854), a terrestrial colubrid distributed in tropical Australia and New Guinea (Cogger 2000), provides an extreme example of male-biased sexual size dimorphism among snakes (Shine 1994). In animals studied by Shine (1994), adult males were 13% larger than females. Hence, the evolutionary ecology of the slatey-grey snake warrants detailed study. Here, we describe nine polymorphic microsatellite loci for paternity analyses in this species.

Total cellular DNA was isolated from scales. Tissue of each individual was placed in 200 μL of 5% Chelex containing 0.2 mg/mL of proteinase K, incubated overnight at 56 °C, and boiled at 100 °C. Enriched genomic libraries from S. cucullatus were constructed by Genetic Identification Services (GIS, http://www.genetic-id-services.com). Methods for DNA library construction, enrichment and screening were as described by Jones et al. (2002). Genomic DNA was partially restricted with a cocktail of seven blunt-end cutting enzymes (RsaI, HaeIII, BsrB1, PvuII, ScaI, StuI, EcoRV; New England Biolabs). Fragments in the size range of 300–750 bp were ligated to adaptors and enriched for microsatellites via a biotin-capture method using streptavidin-magnetic beads (CPG, Inc.). Libraries were prepared in parallel using Biotin-AAC12, Biotin-CAG10, Biotin-CATC8 and Biotin-TAGA8 as capture molecules in a protocol provided by the manufacturer. Captured molecules were amplified with the forward strand of the adapter sequence (5'-ACGACGTGTAGAAACGACGCCAGCTT-3'), and restricted with HindIII to remove the adapters. The resulting fragments were ligated into the HindIII site of pUC19. Recombinant molecules were electroporated into Escherichia coli (strain DH5α; ElectroMax, Invitrogen). Recombinant clones were selected at random by standard blue/white colony selection on Luria-Bertani–ampicillin plates, and sequenced using an M13-based sequence 5’- to the insert (5'-AGGAAACGACGCATTGACCAG-3'). Sequences were obtained on an ABI
PRISM 377 genetic analyser (Applied Biosystems, Inc.), using ABI PRISM Taq dye terminator cycle sequencing methodology. Twenty-five clones were sequenced from each library. Microsatellite yields were AAC, 18; ATG, 18; CATC, eight; and TAGA, 22, and oligonucleotide primers were designed for 53 loci using the software DESIGNERPDR (Applied Biosystems). Microsatellite allele sizes were determined with GENEMAPPER software version 3.7 (Applied Biosystems).

Variability of these microsatellite loci was tested on in Northern Territory, Australia (Fogg Dam, 73 samples: 12°34′39″S, 131°20′16″E). The number of alleles, observed and expected heterozygosities, linkage disequilibrium and tests for Hardy–Weinberg equilibrium per locus were calculated with the program FSTAT (Goudet 1995; Table 1). Significance values were corrected for multiple tests using the sequential Bonferroni correction (Rice 1989). Detection of null alleles was tested according to Chakraborty & Jin (1992).

The nine loci were polymorphic within the two populations, with a total number of alleles ranging from three to 10 (mean 7.7); observed heterozygosity ranged from 0.62 to 0.86 and expected heterozygosity ranged from 0.53 to 0.83. No linkage disequilibrium and null alleles were detected, and all loci were in Hardy–Weinberg equilibrium. Consequently, the loci described here should be useful for assessing genetic structure and parentage analysis in this snake species, and hence may shed light on the unusual pattern of sexual size dimorphism within this taxon.

Acknowledgements

We thank P. Christe, L. Fumagalli, L. Keller, A. Lane, C. Ohayon, N. Perrin, and S. Ursenbacher. Funding has been provided by the Swiss National Science Foundation (SNSF) and the Australian Research Council (ARC).

References