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a b s t r a c t

The suspicion of an origin of Parkinson’s disease (PD) at the periphery of the body and the

involvement of environmental risk factors in the pathogenesis of PD have directed the attention

of the scientific community towards the microbiota. The microbiota represents all the micro-

organisms residing both in and on a host. It plays an essential role in the physiological

functioning of the host. In this article, we review the dysbiosis repeatedly demonstrated in

PD and how it influences PD symptoms. Dysbiosis is associated with both motor and non-motor

PD symptoms. In animal models, dysbiosis only promotes symptoms in individuals genetically

susceptible to Parkinson’s disease, suggesting that dysbiosis is a risk factor but not a cause of

Parkinson’s disease. We also review how dysbiosis contributes to the pathophysiology of PD.

Dysbiosis induces numerous and complex metabolic changes, resulting in increased intestinal

permeability, local and systemic inflammation, production of bacterial amyloid proteins that

promote a-synuclein aggregation, as well as a decrease in short-chain fatty acid-producing

bacteria that have anti-inflammatory and neuroprotective potential. In addition, we review how

dysbiosis decreases the efficacy of dopaminergic treatments. We then discuss the interest of

dysbiosis analysis as a biomarker of Parkinson’s disease. Finally, we give an overview of how

interventions modulating the gut microbiota such as dietary interventions, pro-biotics, intesti-

nal decontamination and fecal microbiota transplantation could influence the course of PD.
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1. Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disease after Alzheimer’s disease. It affects

about 1% of people over 60 years of age with a male/female

ratio of 3:2 [1]. Its pathogenesis has not yet been elucidated.

Monogenic forms of PD are rare [2]. In the vast majority of

cases, the cause of PD is unknown and is probably multi-

factorial involving a complex interaction between genetic

predisposition (6–36% of cases with genetic variants, risk

factors for the disease), environmental factors (pesticides, air

pollution [3], oil and heavy metals as risk factors; tobacco,

coffee and sport as protective factors [4]), epigenetic variations

[5] and the interaction of these phenomena with age-related

processes [6,7].

The hypothesis that PD originates in the gut has stimulated

interest in environmental risk factors that may have a role in

the pathogenesis of PD and has focused the attention of the

scientific community on the microbiota. The microbiota is the

set of microorganisms residing both in and on the human

body. In recent years, a revolution has occurred as a result of

the understanding that the microbiota plays an essential role

in the course of human physiological functions. Numerous

studies have shown that PD is associated with a disruption of

the normal balance between microbiota and the host (i.e.

dysbiosis) both orally and in the intestine [8–19].

In this paper, we first summarize how the scientific

community has suspected a role for the microbiota in PD

and we review how dysbiosis influences PD symptoms,

contributes to PD pathophysiology, and dopaminergic treat-

ment absorption. We also discuss the potential role of the

microbiota as a biomarker of PD and how interventions

modulating the gut microbiota could influence the course of

PD.

2. The peripheral origin of non-genetic forms
of PD

The common appearance of non-motor symptoms such as

hyposmia (46% of newly diagnosed untreated patients),

constipation (38.5%), postprandial fullness (23%) and loss of

taste (14%), often several years before the onset of central

nervous system (CNS) motor symptoms (akinesia, rigidity,

tremor), suggests a peripheral onset of the disease process

[21]. Furthermore, autopsy studies have found a-synuclein

aggregates (i.e. a pathological hallmark of PD) in the periphery

of the body, not only in the CNS (olfactory bulb) but also in the

autonomic peripheral nervous system (PNS) in a rostro-

caudal gradient with a higher density of synucleinopathy in

the salivary glands and esophagus and less in the colon and

rectum [22,23]. These pathological deposits can be found

early, before the diagnosis of PD, in biopsies of the

gastrointestinal tract [24]. Braak and colleagues developed

this line of research and theorized the different stages of PD,

which would begin at the periphery of the body, in the nose

and the intestine (‘‘dual-hit hypothesis’’), and would then be

transmitted to the brain in a second stage [25]. A recent study

using multimodal scintigraphic imaging identified that PD
begins either in the periphery of the body (‘‘body-first’’ PD

subtype) and in particular in the digestive tract and

myocardial muscle in about two thirds of patients, or

centrally (‘‘brain-first’’ PD subtype) in about a third of patients

with early involvement of the amygdala or olfactory bulb.

Depending on the initial site of involvement, PD then spreads

to the other side of the body by trans-synaptic transmission to

neighboring neurons [26]. Alpha-synuclein has a ‘‘prion-like’’

propagation property, i.e. the aggregates trigger the misfold-

ing (polymerization) of neighboring a-synuclein proteins,

transforming them from previously healthy proteins into

pathogenic ones [20].

3. Inflammation in Parkinson’s disease

The pathophysiology of PD involves different mechanisms

such as the accumulation and aggregation of abnormal a-

synuclein, impairment of a-synuclein degradation, mito-

chondrial dysfunction favoring oxidative stress and neuroin-

flammation. A vicious circle established as the different

phenomena described above aggravate each other and lead to

neurodegeneration [7]. Neuroinflammation contributes to

the onset and propagation of PD. In autopsies, microglial cells

in the substantia nigra of PD patients are more activated than

those in healthy brains [27,28]. Higher levels of inflammatory

cytokines have been measured in the blood, cerebrospinal

fluid, colon and saliva of PD patients compared to healthy

controls [19,29,30]. Chronic inflammatory diseases of the

gastrointestinal tract such as Crohn’s disease and ulcerative

colitis are recognized risk factors for PD [31]. In contrast, the

chronic use of nonsteroidal anti-inflammatory drugs protects

against PD [32]. Recent findings have shown that inflamma-

tion can influence a-synuclein levels and structure and

conversely, a-synuclein can influence the immune response

[33,34].

Finally, a higher level of intestinal inflammation [29,35] and

an increased intestinal permeability have been demonstrated

in PD [36]. These phenomena could promote the precipitation

of abnormal a-synuclein, which then spread to the CNS via the

vagus nerve [36].

4. The gut and oral microbiota

4.1. The gut microbiota

The gut microbiota is the set of microorganisms residing in the

human digestive tract. It is mainly composed of bacteria

(�3 � 1013) but also includes viruses, fungi, protozoans and

archaea [37]. It varies from one individual to another.

Following a long co-evolution, it has reached a symbiotic

relationship with the human being leading to physiological

homeostasis [38]. Several human diseases are associated with

reduced gut microbial diversity [39]. The gut microbiota is

involved in many functions, including the development of the

immune system and the maturation of the lymphoid tissue

associated with the digestive tract. It strengthens the

intestinal barrier by stimulating the immune response via

the production of bactericides to inhibit colonization of foreign
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and potentially pathogenic microorganisms. It also partici-

pates in the global functioning of the digestive tract, via the

regulation of intestinal motility, cell differentiation, intestinal

vascularization and the development of the enteric nervous

system. In addition, the microbiota plays an essential role in

digestion, notably by degrading dietary fibers otherwise not

digested by the human body without the help of the

microbiota, which results in the production of short-chain

fatty acids (SCFAs) including butyrate. SCFAs play a key role

for the host, for example, by providing energy to the

colonocytes and thus ensuring the integrity of the intestinal

wall [40].

4.2. The brain-gut-microbiota axis

The CNS and the gut microbiota influence each other through

a two-way communication using neural, immune and

endocrine signals. For example, the brain regulates the

composition and functions of the microbiota by modulating

intestinal transit, secretions and permeability. In turn, the gut

microbiota influence the development and functions of the

CNS via modulation of the immune response, an impact on

metabolism (e.g. modulation of the level of some hormones,

neuropeptides and neurotransmitters), and an effect on

neuronal signaling [41].
Table 1 – Contribution of gut dysbiosis to the symptoms and 

Normal gut microbiota Gut dysbiosis in PD

Functions Impact on PD symptoms Impac

1. Development and

modulation of the

immune system

2. Development of the

enteric nervous system

3. Promotion of intestinal

wall integrity and

strengthening of the

mucous barrier

4. Inhibition of colonization

by exogenous pathogens

and prevention of local

infections

5. Global functioning of the

digestive tract.

Examples: intestinal

motility, cell

differentiation, intestinal

vascularization

6. Essential role in digestion

Example: degrading of

dietary fibers and

production of short-chain

fatty acids (SCFA)

1. Increased motor

symptoms severity

2. Increased constipation

Mechanisms involved: -

increased proteolytic

fermentation and some

deleterious metabolites (p-

cresol,

phenylacetylglutamine); -

decrease in SCFA-

producing bacteria and

carbohydrate-fermenting

bacteria leading to

disturbances in electrolytes

and water absorption

3. Increased risk of

polyneuropathy

Mechanisms involved:

bacterial contribution to

folic acid deficit and

hyperhomocysteinemia

1. Incr

mucin

Conseq

the int

increa

facilita

toxins

inflam

synucl

2. Decr

and ca

Conseq

integri

inflam

expres

leadin

deleter

matur

regula

3. Incr

inflam

bacter

Conseq

system

aggreg

4. Prod

curli p

Conseq

a-synu

inflam

PD: Parkinson’s disease.
4.3. The oral microbiota

The oral microbiota is composed of approximately 770

bacterial species and also includes archaea, microeukaryotes

and viruses [42]. It is the second most complex microbiota

after the gut microbiota and one of the microbiota with the

lowest intrapersonal variability. There are different bacterial

communities that depend on distinct microenvironments

such as mucosal epithelial surfaces (gingival sulcus, tongue,

cheek, palate and lips), non-adherent hard surfaces of teeth,

and saliva. The proportion of the different species depends on

multiple factors of our modern life (tobacco, type of diet,

dental hygiene, antibiotic intake, etc.). The relationship

between the oral microbiota and the host is dynamic and

evolves throughout life, depending on age and hormonal

changes (e.g. puberty, pregnancy). The symbiosis between the

oral microbiota and its host provides many benefits. The

commensal microbiota inhibits colonization by exogenous

pathogens and prevent local infections, while contributing to

the normal development of human tissues and the immune

system. The oral microbiota can metabolize certain chemical

compounds such as nitrates, which are important for vascular

health. Oral diseases such as dental caries and periodontitis

are associated with shifts in microbial community composi-

tion. As the entry point for almost all ingested material, and
pathophysiology of PD.

t on PD pathophysiology Impact on dopaminergic
treatment

eased microbial capacity to degrade

 and host glycans

uences: alteration of the integrity of

estinal mucus layer, leading to

sed intestinal permeability,

tion of the passage of bacterial

 which promotes local and systemic

mation and local and cerebral a-

ein aggregation

ease in SCFA-producing bacteria

rbohydrate-fermenting bacteria

uences: - altered colonic mucosa

ty; - decreased expression of anti-

matory cytokines and increased

sion of pro-inflammatory cytokines

g to increased inflammation; -

ious impact on brain microglia

ation and neurotrophic factors

tion

ease in bacteria with pro-

matory potential and decrease in

ia with anti-inflammatory potential

uences: increased local and

ic inflammation and a-synuclein

ation

uction of bacterial amyloid-like

roteins

uences: promotion of local and brain

clein aggregation as well as

mation

Conversion of levodopa to

dopamine in the intestinal

lumen by bacterial dopa-

decarboxylase enzyme

Consequences: - decreased

efficacy of dopaminergic

treatments by reducing the

access of levodopa to the

blood and then the brain; -

reduction of gut motility

induced by intestinal

intraluminal dopamine

increasing the risk of

constipation and bacterial

overgrowth syndrome
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due to its high vascularity, the oral cavity has ample

opportunity to influence the activity of other sites in the

body, such as the lungs and the digestive tract. It is therefore

not surprising that, in addition to diseases of the oral cavity,

oral dysbiosis is implicated in a number of systemic diseases

such as infectious pathologies (e.g., infective endocarditis),

rheumatological or intestinal inflammatory disorders, athero-

sclerosis, endocrine diseases (e.g., diabetes), and certain

neoplasias, including oral, pancreatic, and colonic cancers

[43].

5. Dysbiosis in Parkinson’s disease

5.1. Gut dysbiosis and PD

A gut dysbiosis, with decreased or increased relative abun-

dance of bacterial species, has been documented in PD [8–16].

Although differences in microbiota profiles varied across

studies, three recent meta-analyses have shown consistent

differences between PD patients and controls, which included:

(1) an increase in the relative abundance of the genera

Akkermansia, Catabacter, Lactobacillus, and Bifidobacterium,

and the families Akkermansiaceae, Bifidobacteriaceae, Rumi-

nococcaceae, Verrucomicrobiaceae, and Christensenellaceae;

and (2) a decrease in the genera Roseburia, Faecalibacterium,

and the families Lachnospiraceae and Prevotellaceae

[16,44,45].

5.2. Oral dysbiosis

The link between the oral microbiota and PD has been less

well studied. The role of the oral cavity in PD has long been

overlooked. However, hyposialia and dysphagia, usually

troublesome in advanced disease, may occur early in PD

[46,47]. Poor oral health is more common in PD than the

general population [48]. The link between oral microbiota and

PD has recently been demonstrated with a different oral

bacterial ecology between PD and healthy subjects [17–19].

While oral status was identical between early disease patients

and controls, the relative amounts of Firmicutes, Negativi-

cutes, Lactobacillaceae, Lactobacillus, Scardovia, Actinomy-

ces, Veillonella, Streptococcus mutans, and Kingella oralis,

were higher in patients, whereas Lachnospiraceae and

Treponema were less abundant. The level of the proinflam-

matory cytokine interleukin-1b was increased in the gingival

crevicular fluid of PD patients, suggesting a breeding ground

for local inflammation [19].

6. Contribution of dysbiosis in PD

The contribution of dysbiosis in PD is summarized in Table 1

and Fig. 1.

6.1. Methods in microbiome research

To better understand how dysbiosis influences PD, various

approaches can be utilized [49]. Metagenomics investigates

taxonomic composition of tested material to identify bacterial
species. This answers the question: ‘‘What bacteria are in the

sample?’’. Secondly, the functional potential of microbiota

members can be defined using functional metagenomics or

metatranscriptomics. This answers the question: ‘‘What do

the bacteria potentially do?’’. A third method called metabo-

lomics allows to identify bacterial metabolites (e.g. sugars,

amino acids, fatty acids, etc.). It addresses the question: ‘‘What

do the bacteria actually produce?’’.

6.2. Association of dysbiosis with PD symptoms

The degree of PD severity and some of its motor and non-

motor symptoms correlate with specific bacterial taxonomic

differences [8,19]. Gut dysbiosis has been correlated with the

severity of postural instability and gait difficulty [8]. In

addition, salivary dysbiosis correlates with salivary flow rate

[19] while gut dysbiosis varies with the degree of constipation

[8]. Gut dysbiosis is not simply a consequence of constipation

but it can itself modulate gut motility. A complex relationship

exists between microbiota composition and gut function,

probably involving bidirectional interconnection between the

microbiota and colonic transit. In PD patients, the gut

microbiota is characterized by increased proteolytic fermen-

tation and production of deleterious metabolites such as p-

cresol and phenylacetylglutamine. Increased levels of these

proteolytic metabolites and taxonomic shifts in the gut

bacterial community are strongly associated with constipa-

tion [50]. On the other hand, slower transit impacts on nutrient

availability and modifies gut microbiota composition by

favoring bacteria that have slower growth rates or that can

use different energy sources [51]. In clinical practice, these

data are of great interest because they corroborate a recent

recommendation by the Movement Disorder Society that

recognizes as ‘‘effective’’ and ‘‘clinically useful’’ a combina-

tion of probiotics and prebiotic fibers for the treatment of

constipation in PD patients [52,53]. Finally, a link between gut

dysbiosis and both anxiety and depression disorders has been

suspected [54–62]. The role of dysbiosis on depressive and

anxiety symptoms specifically in PD remains to be explored.

Conventional mice overexpressing a-synuclein (i.e., a

genetic animal model of PD) show increased PD symptoms

compared with mice of the same lineage that had not been

exposed to microorganisms (‘‘germ-free’’ living conditions).

Remarkably, the authors showed that colonization of these

mice with microbiota from human PD patients (fecal micro-

biota transplantation) worsens the motor deficit compared to

transplantation of microbiota from healthy human donors. No

significant effect on motor function was triggered by the

transplantation of microbiota from human PD donors to wild-

type mice, suggesting that microbiota contribute to PD

symptoms only in genetically susceptible hosts [63].

6.3. Influence of dysbiosis in the pathophysiology of PD

Through the use of functional metagenomics and serum

metabolomics, an increased microbial capacity to degrade

mucin and host glycans has been found in the gut microbiota

of PD patients [64]. Mucin is important for the integrity of the

intestinal mucus layer and for the maintenance of intestinal

barrier function. A decrease in mucin could contribute to the



Fig. 1 – Schematic representation of the role of the gut microbiota in the pathogenesis of Parkinson’s disease (PD). Gut

dysbiosis alters metabolic capacity, disrupts intestinal permeability and promotes inflammation. These processes

participate in the accumulation and propagation of alpha-synuclein from the enteric nervous system to the central nervous

system via the vagus nerve. Gut dysbiosis also contributes to the motor and non-motor symptoms of the disease and to the

reduced effectiveness of dopamine replacement therapy. SCFA: short chain fatty acids; LPS: lipopolysaccharides.

Figure adapted from Perez-Pardo et al. with permission [99].
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increase in intestinal permeability found in PD patients [65,66].

In particular, increased intestinal permeability facilitates the

passage of bacterial toxins, such as lipopolysaccharides (LPS),

from the intestinal lumen into the bloodstream, which

promotes local and systemic inflammation and a-synuclein

aggregation [36,67].

Integration of microbial data into metabolic modeling

revealed the gut microbial contribution to the folic acid deficit

and hyperhomocysteinemia observed in PD [64]. This is

particularly interesting given the increased risk for PD patients

to develop polyneuropathy [68,69].

Other studies have shown a decrease in SCFA-producing

bacteria and carbohydrate-fermenting bacteria, while pro-

teolytic fermentation and some deleterious metabolites were

increased [10,50,70]. However, SCFAs are crucial for the

maintenance of the gut homeostasis. Not only are they used

as an energy source by the colonic mucosa, thus maintaining

the integrity of the epithelial barrier, but they also play a role in
the absorption of electrolytes and water, allowing normal

transit [71]. The relative decrease in butyrate-producing

bacteria is inversely associated with constipation [50]. In

addition, they have both local and systemic anti-inflammatory

functions. SCFAs, in particular butyrate and acetate, induce

the expression of anti-inflammatory cytokines (e.g. IL-10) and

inhibit the expression of pro-inflammatory cytokines (e.g.

TNF-a, IL-6) [72]. These data are consistent with studies

showing that dysbiosis in PD promotes bacteria with pro-

inflammatory potential and to the detriment of bacteria with

anti-inflammatory potential [9]. Finally, SCFAs are able to pass

into the portal circulation and reach the brain where they have

a neuroprotective role via modulation of microglia maturation

and upregulation of neurotrophic factors [73].

Dysbiosis is also involved in a-synuclein aggregation and

neuroinflammation. In genetic animal models of PD, micro-

biota is necessary not only to develop PD symptoms, but also

for brain aggregations of a-synuclein and activation of
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microglia (i.e. neuroinflammation) suggesting a combined

effect of genetically mediated a-synuclein overexpression and

gut microbiota composition on a-synuclein aggregation in the

brain and neuroinflammation [63]. As mentioned above, LPS

promotes cerebral a-synuclein aggregation [36,67]. Another

way in which the microbiota could influence the pathophy-

siology of PD is through the production of bacterial amyloid-

like curli proteins. These proteins allow the formation of

bacterial biofilms, mediate adhesion to epithelial cells, and

participate in defense against bacteriophages. In a mouse

model of PD, colonization by curli-producing Escherichia coli

promoted PD motor deficit, a-synuclein aggregation in the gut

and brain, as well as inflammation [74].

6.4. Influence of dysbiosis on dopaminergic therapy

The microbiota influences the metabolism of dopamine

replacement therapy. A portion of levodopa, normally

absorbed at the jejunal level, is converted to dopamine in

the intestinal lumen by the dopa-decarboxylase enzyme

produced by gut bacteria, in particular Enterococcus faecalis.

Consequently, the efficacy of dopaminergic treatments is

decreased by reducing the access of levodopa to the blood and

then the brain [75].

Moreover, the dopamine synthesized in the intestinal

lumen reduces gut motility and thus increases the risk of

bacterial overgrowth syndrome. As a consequence, an

increase in the number of levodopa-metabolizing bacteria

decreases the effectiveness of dopamine replacement the-

rapy, creating a vicious circle which enhances bacterial

overgrowth [76]. Variations in levodopa-metabolizing micro-

bial activities may contribute to the heterogeneous responses

to levodopa efficacy observed in some PD patients [75].

6.5. Dysbiosis as a biomarker for PD

Microbiota composition could serve as a biomarker for the

diagnosis of PD with a sensitivity of 65–90% and a specificity of

about 75% [77]. Similarly, the salivary microbiota was able to

correctly assign ‘‘PD’’ or ‘‘healthy control’’ 75% of patients and

70% of healthy subjects, respectively [19].

In idiopathic rapid-eye movement (REM) sleep behavior

disorder, a condition considered a prodromal stage of the a-

synucleinopathies with a high conversion rate of about 73.5%

at 12 years of follow-up [78], a dysbiosis pattern is closer to that

observed in mild forms of PD (Hoehn and Yahr stage 1) [16,79].

Interestingly, the increased and decreased bacteria were

similar as those found to be most frequently impaired in

the 3 above-mentioned meta-analyses [16,44,45].

7. Modifying microbiota as a treatment for PD

Gut microbiota can be modulated by different strategies,

including dietary interventions, microbiota decontamination

by laxatives and antibiotics, fecal microbiota transplantation

and exercise [80,81].

The type of diet influences the composition and balance

of the intestinal microbiota and could have an influence on

PD symptoms and pathophysiology [82]. Certain dietary
patterns such as the Western diet, a diet rich in saturated

fatty acids (SFA) and low in fiber, support dysbiosis and

promote the growth of pro-inflammatory bacteria and

intestinal inflammation. SFAs also promote the aggregation

of a-synuclein and the destruction of dopaminergic neurons

by increasing oxidative stress [83]. On the contrary, a diet

rich in fiber and polyunsaturated fats, such as the Medi-

terranean diet, favors bacterial populations with anti-

inflammatory potential and many protective biological

processes, such as improvement of the intestinal epithelial

barrier, reduction of NLRP3 inflammasome activation, pro-

duction of interleukin IL-1beta cytokines, improvement of

insulin sensitivity, increase in the production of brain-

derived neurotrophic factor [40,84] and inhibition of the

metabolic pathway of arachidonic acid generating prosta-

glandins and leukotrienes [85,86]. Recently, the Mediterra-

nean-dietary approaches to stop hypertension-intervention

for neurodegenerative delay (MIND) diet, a variation of the

Mediterranean diet that favors green vegetables and berries,

has been associated with a later age of onset of PD,

particularly in women [87]. Emerging evidence suggests that

a ketogenic diet may have beneficial effects in PD with

significant improvement in both motor and nonmotor

symptoms, probably via its bioenergetics benefits [88,89]. A

study examining the combined role of ketogenic and

Mediterranean diets is currently underway [90].

While in PD mouse models, the administration of pro-

biotics resulted in improvements in motor function, systemic

inflammation, and brain neuroinflammation [91,92], in PD

patients the benefits of probiotics were limited to the

treatment of constipation [93]. Effects on other aspects of

PD in human subjects warrant further investigations.

Intestinal decontamination therapy could be of some

interest in the treatment of dyskinesia and motor fluctuations

in PD [94]. This therapy is based on the fact that dysbiosis

reduces levodopa absorption leading to delayed ‘‘ON’’ or ‘‘no-

ON’’ states. It consists of an enema followed by oral rifaximin

and polyethylene glycol for 7 and 10 days, respectively.

Further controlled randomized studies are needed to confirm

these results and clarify the mechanism of improvement

observed in this small open-label study.

Fecal microbiota transplantation (FMT) as an approach to

restore gut microbiota in PD patients, significantly improved

both motor (�7 to �13 points on the UPDRS-III scale) and

non-motor (constipation, anxiety, depression, sleep) scores.

The improvement was maintained to 3 months post-inter-

vention. Side effects were mild and limited, consisting

mainly of flatulence, abdominal pain, and diarrhea at the

time of transplantation and sometimes abdominal pain and

flatulence at follow-up [95–97]. These data obtained from a

limited number of uncontrolled studies with small numbers

of patients (6–15) need to be confirmed on larger cohorts, as

well as in randomized, double-blind, placebo-controlled

trials. Animal studies corroborate the above findings and

show that FMT treatment restores the gut microbial

community, attenuates gut inflammation and barrier

destruction, reduces LPS levels in colon, serum and sub-

stantia nigra, and lowers systemic inflammation levels,

neuroinflammation in substantia nigra and dopaminergic

neurodegeneration [98].
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8. Conclusion

Several gut microbiota members are differentially abundant

between PD and healthy state. Dysbiosis in PD is associated

with decreased abundance of SCFA-producing bacteria and

changes in many bacterial pathways, resulting in increased

mucin degradation, enhanced production of bacterial amyloid

protein, folic acid deficiency and hyperhomocysteinemia.

These changes promote intestinal permeability, serum pas-

sage of LPS, local and central a-synuclein aggregation, local

and systemic inflammation, neuroinflammation, and neuro-

degeneration. Dysbiosis also leads to decreased efficacy of

dopamine replacement therapy due to increased levodopa

metabolization and gut dopamine levels, resulting in reduced

levodopa absorption, increased constipation and enhanced

risk of intestinal bacterial overgrowth syndrome. Dysbiosis is

thus involved in both motor and non-motor parkinsonian

symptoms. According to animal studies, dysbiosis would

essentially affect individuals who are genetically vulnerable to

PD. Dysbiosis would thus be a risk factor (and not a cause) of

PD or a factor aggravating the disease. Since the composition

of the microbiota can be modified, interventions aiming at

correcting dysbiosis open a new avenue of therapeutic

research. Moreover, microbial communities could represent

a new biomarker of PD.
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