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SUMMARY  

 

Non-alcoholic fatty liver disease (NAFLD) is characterized by an elevated intra-

hepatocellular lipid (IHCL) concentration (> 5%). The incidence of NAFLD is frequently 

increased in obese patients, and is considered to be the hepatic component of the metabolic 

syndrome. The metabolic syndrome, also characterized by visceral obesity, altered glucose 

homeostasis, insulin resistance, dyslipidemia, and high blood pressure, represents actually a 

major public health burden. 

Both dietary factors and low physical activity are involved in the development of the 

metabolic syndrome. In animals and healthy humans, high-fat or high-fructose diets lead to 

the development of several features of the metabolic syndrome including increased 

intrahepatic lipids and insulin resistance. In contrast the effects of dietary protein are less 

well known, but an increase in protein intake has been suggested to exert beneficial effects 

by promoting weight loss and improving glucose homeostasis in insulin-resistant patients. 

Increased postprandial thermogenesis and enhanced satiety after protein ingestion may be 

both involved. The effects of dietary protein on hepatic lipids have been poorly investigated 

in humans, but preliminary studies in rodents have shown a reduction of hepatic lipids in 

carbohydrate fed rats and in obese rats. 

 

In this context this work aimed at investigating the metabolic effects of dietary protein intake 

on hepatic lipid metabolism and glucose homeostasis in humans. The modulation by dietary 

proteins of exogenous lipid oxidation, net lipid oxidation, hepatic beta-oxidation, 

triglycerides concentrations, whole-body energy expenditure and glucose tolerance was 

assessed in the fasting state and in postprandial states. Measurements of IHCL were 

performed to quantify the amount of triglycerides in the liver.  

In an attempt to cover all these metabolic aspects under different point of views, these 

questions were addressed by three protocols involving various feeding conditions.  

 

Study I addressed the effects of a 4-day hypercaloric high-fat high-protein diet on the 

accumulation of fat in the liver (IHCL) and on insulin sensitivity. Our findings indicated that 

a high protein intake significantly prevents intrahepatic fat deposition induced by a short-

term hypercaloric high-fat diet, adverse effects of which are presumably modulated at the 

liver level. 
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These encouraging results led us to conduct the second study (Study II), as we were also 

interested in a more clinical approach to protein administration and especially if increased 

protein intakes might be of benefit for obese patients. Therefore the effects of one-month 

whey protein supplementation on IHCL, insulin sensitivity, lipid metabolism, glucose 

tolerance and renal function were assessed in obese women. Results showed that whey 

protein supplementation reduces hepatic steatosis and improves the plasma lipid profile in 

obese patients, without adverse effects on glucose tolerance or creatinine clearance. However 

since patients were fed ad-libitum, it remains possible that spontaneous carbohydrate and fat 

intakes were reduced due to the satiating effects of protein. 

 

The third study (Study III) was designed in an attempt to deepen our comprehension about 

the mechanisms involved in the modulation of IHCL. We hypothesized that protein 

improved lipid metabolism and, therefore, we evaluated the effects of a high protein meal on 

postprandial lipid metabolism and glucose homeostasis after 4-day on a control or a high 

protein diet. Our results did not sustain the hypothesis of an increased postprandial net lipid 

oxidation, hepatic beta oxidation and exogenous lipid oxidation. Four days on a high-protein 

diet rather decreased exogenous fat oxidation and enhanced postprandial triglyceride 

concentrations, by impairing probably chylomicron-TG clearance. 

  

Altogether the results of these three studies suggest a beneficial effect of protein intake on 

the reduction in IHCL, and clearly show that supplementation of proteins do not reduce 

IHCL by stimulating lipid metabolism, e.g. whole body fat oxidation, hepatic beta oxidation, 

or exogenous fat oxidation. The question of the effects of high-protein intakes on hepatic 

lipid metabolism is still open and will need further investigation to be elucidated.  

The effects of protein on increased postprandial lipemia and lipoproteins kinetics have been 

little investigated so far and might therefore be an interesting research question, considering 

the tight relationship between an elevation of plasmatic TG concentrations and the increased 

incidence of cardiovascular diseases.  
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RÉSUMÉ  

 

La stéatose hépatique non alcoolique se caractérise par un taux de lipides intra-hépatiques 

élevé, supérieur à 5%. L’incidence de la stéatose hépatique est fortement augmentée chez les 

personnes obèses, ce qui mène à la définir comme étant la composante hépatique du 

syndrome métabolique. Ce syndrome se définit aussi par d’autres critères tels qu’obésité 

viscérale, altération de l’homéostasie du glucose, résistance à l’insuline, dyslipidémie et 

pression artérielle élevée. Le syndrome métabolique est actuellement un problème de santé 

publique majeur. 

Tant une alimentation trop riche et déséquilibrée, qu’une faible activité physique, semblent 

être des causes pouvant expliquer le développement de ce syndrome. Chez l’animal et le 

volontaire sain, des alimentations enrichies en graisses ou en sucres (fructose) favorisent le 

développement de facteurs associés au syndrome métabolique, notamment en augmentant le 

taux de lipides intra-hépatiques et en induisant le développement d’une résistance à 

l’insuline. Par ailleurs, les effets des protéines alimentaires sont nettement moins bien 

connus, mais il semblerait qu’une augmentation de l’apport en protéines soit bénéfique, 

favorisant la perte de poids et l’homéostasie du glucose chez des patients insulino-résistants. 

Une augmentation de la thermogenèse postprandiale ainsi que du sentiment de satiété 

pourraient en être à l’origine. 

Les effets des protéines sur les lipides intra-hépatiques chez l’homme demeurent inconnus à 

ce jour, cependant des études préliminaires chez les rongeurs tendent à démontrer une 

diminution des lipides intra hépatiques chez des rats nourris avec une alimentation riche en 

sucres ou chez des rats obèses. 

 

Dans un tel contexte de recherche, ce travail s’est intéressé à l’étude des effets métaboliques 

des protéines alimentaires sur le métabolisme lipidique du foie et sur l’homéostasie du 

glucose. Ce travail propose d’évaluer l’effet des protéines alimentaires sur différentes voies 

métaboliques impliquant graisses et sucres, en ciblant d’une part les voies de l’oxydation des 

graisses exogènes, de la beta-oxydation hépatique et de l’oxydation nette des lipides, et 

d’autre part la dépense énergétique globale et l’évolution des concentrations sanguines des 

triglycérides, à jeun et en régime postprandial. Des mesures des lipides intra-hépatiques ont 

aussi été effectuées pour permettre la quantification des graisses déposées dans le foie. 
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Dans le but de couvrir l’ensemble de ces aspects métaboliques sous différents angles de 

recherche, trois protocoles, impliquant des conditions alimentaires différentes, ont été 

entrepris pour tenter de répondre à ces questions. 

 

La première étude (Etude I) s’est intéressée aux effets d’une suralimentation de 4 jours 

enrichie en graisses et protéines sur la sensibilité à l’insuline et sur l’accumulation de graisses 

intra-hépatiques. Les résultats ont démontré que l’apport en protéines prévient 

l’accumulation de graisses intra-hépatiques induite par une suralimentation riche en graisses 

de courte durée ainsi que ses effets délétères probablement par le biais de mécanismes 

agissant au niveau du foie.  

 

Ces résultats encourageants nous ont conduits à entreprendre une seconde étude (Etude II) 

qui s’intéressait à l’implication clinique et aux bénéfices que pouvait avoir une 

supplémentation en protéines sur les graisses hépatiques de patients obèses. Ainsi nous 

avons évalué pendant un mois de supplémentation l’effet de protéines de lactosérum sur le 

taux de graisses intrahépatiques, la sensibilité à l’insuline, la tolérance au glucose, le 

métabolisme des graisses et la fonction rénale chez des femmes obèses. Les résultats ont été 

encourageants ; la supplémentation en lactosérum améliore la stéatose hépatique, le profil 

lipidique des patientes obèses sans pour autant altérer la tolérance au glucose ou la clairance 

de la créatinine. L’effet satiétogène des protéines pourrait aussi avoir contribué à renforcer 

ces effets. 

 

La troisième étude s’est intéressée aux mécanismes qui sous-tendent les effets bénéfiques des 

protéines observés dans les 2 études précédentes. Nous avons supposé que les protéines 

devaient favoriser le métabolisme des graisses. Par conséquent, nous avons cherché à évaluer 

les effets d’un repas riche en protéines sur la lipémie postprandiale et l’homéostasie 

glucidique après 4 jours d’alimentation contrôlée soit isocalorique et équilibrée, soit 

hypercalorique enrichie en protéines. Les résultats obtenus n’ont pas vérifié l’hypothèse 

initiale ; ni une augmentation de l’oxydation nette des lipides, ni celle d’une augmentation 

de la béta-oxydation hépatique ou de l’oxydation d’un apport exogène de graisses n’a pu 

être observée. A contrario, il semblerait même plutôt que 4 jours d’alimentation 

hyperprotéinée inhibent le métabolisme des graisses et augmente les concentrations  
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sanguines de triglycérides, probablement par le biais d’une clairance de chylomicrons 

altérée.  

Globalement, les résultats de ces trois études nous permettent d’attester que les protéines 

exercent un effet bénéfique en prévenant le dépôt de graisses intra-hépatiques et montrent 

que cet effet ne peut être attribué à une stimulation du métabolisme des lipides via 

l’augmentation des oxydations des graisses soit totales, hépatiques, ou exogènes. La question 

demeure en suspens à ce jour et nécessite de diriger la recherche vers d’autres voies 

d’exploration. Les effets des protéines sur la lipémie postprandiale et sur le cinétique des 

lipoprotéines n’a que peu été traitée à ce jour. Cette question me paraît néanmoins 

importante, sachant que des concentrations sanguines élevées de triglycérides sont 

étroitement corrélées à une incidence augmentée de facteurs de risque cardiovasculaire. 
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1.1 GENERAL CONTEXT: METABOLIC SYNDROME AND OBESITY 

 

1.1.1 Epidemiology of obesity 

 

Overweight and obesity are defined as excessive fat accumulation that may impair health. 

Body Mass Index (BMI) is a simple index calculated as weight (kg)/height (m2) that is 

commonly used for classifying overweight (BMI > 25 kg/m2) and obesity (BMI > 30 kg/m2) 

among individuals. Obesity is associated with a chronic imbalance between energy intakes 

(consumption of high energy dense food) and energy expenditure (low physical activity). 

Before the 20th century, obesity was rare. In 1997, obesity was formally recognized by the 

World Health Organisation (WHO) as a global epidemic. In 2005, WHO’s latest projection 

indicated that globally 1.6 billion adults (> 15 years old) were overweight and 400 million at 

least were obese. WHO projections are approximately 2.3 billion overweight and 700 million 

obese individuals by 2015 (1). 

Obesity, and more particularly visceral obesity, is often associated with Type 2 Diabetes 

(T2D), sleep apnea and other risk factors for cardiovascular diseases (CVD). Their 

concomitant occurrence has been found to reduce life expectancy, increasing mortality and 

morbidity and all together are now recognized to define the Metabolic Syndrome (2).  

 

1.2 The Metabolic Syndrome  

 

Different organisations such as WHO (3) and the European Group For the Study of Insulin 

Resistance (EGIR) in 1999 (4), the US National Cholesterol Education Program Adult Panel 

III (NCEP) in 2001 (5) and the International Diabetes Federation (IDF) in 2005 (6), proposed 

different criteria to define the “Metabolic Syndrome”, but no consensus was then approved 

(7). There are currently two major definitions for the metabolic syndrome, also named 

Insulin Resistance Syndrome or Metabolic Syndrome X, one provided by IDF, and the other 

by the revised NCEP ATP III. Even if these two definitions contrast in the evaluation of 

accumulation of visceral fat and adiposity, the IDF and NECP ATP III definitions use the 

same threshold values for the other criteria. Table 1 summarizes these criteria among the 

four definitions (8). 



 
CHAPTER 1 : INTRODUCTION 

 - 24 -  

 



 
CHAPTER 1 : INTRODUCTION 

 - 25 -  

 

An important parameter that is missing in these global definitions, dating back five years, is 

the relatively importance of ectopic fat deposition in the liver, also called intrahepatocellular 

lipids (IHCL)(8, 9).  

Nowadays, studies in humans and rodents tend to link the accumulation of fat in the liver to 

features of the metabolic syndrome (10) independently of obesity (11), even though the 

prevalence of fat in the liver increases in parallel with obesity (9, 12). Fat accumulation in the 

liver seems to be a key player in the pathogenesis of insulin resistance and the metabolic 

syndrome (13). Indeed, hepatic lipid metabolism is a highly regulated process, in which 

many pathways involve nuclear receptors and transcription factors (14). It is tightly 

controlled by intracellular lipidic products, levels of non esterified fatty acid (NEFA), but 

also by other metabolites, like carbohydrates or proteins and hormones, such as insulin and 

glucagon. It appears that an overflow of any metabolite can disturb this delicate equilibrium 

and causes hepatic fat accumulation, which can in turn degenerate into liver function 

impairment and subsequent pathologies (14). 

 

Non-alcoholic fatty liver disease (NAFLD) is defined by fatty infiltration of the liver, 

exceeding 5% to 10 % by weight (15), but not due to excessive alcohol abuse. In most cases 

patients have no or few symptoms and are diagnosed by abnormal liver function tests 

(elevated plasma ASAT, ALAT concentrations) (16). Steatosis is associated with insulin 

resistance and components of the metabolic syndrome, such as elevated fasting glycemia 

(increased endogenous glucose production (EGP)) and hyperlipidemia (increased VLDL-

triglycerides secretion and decreased HDL-cholesterol concentrations) (9, 17). In some cases, 

low grade inflammation occurs, which can progress and degenerate into non-alcoholic 

steatohepatitis (NASH), the most extreme form of NAFLD (18), which can then lead to the 

development of cirrhosis. 

 

The gold standard method for diagnosis of NAFLD is the liver biopsy, with a histological 

scoring system uniformly used to assess the severity of the disease (NAFLD activity score or 

the fibrosis score) (19). The major limitation of the liver biopsy is sampling variability (20). 

Moreover it is not a practical screening tool given the cost, time-intensive nature and 

potential adverse effects of the procedure (21). Liver imaging, using tools such as ultrasound, 

computed tomography or magnetic resonance spectroscopy (MRS), is a current area of 

research attempting to quantify the degree of steatohepatitis. However, sensitivity might be  
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low and the degree of fibrosis cannot be determined. Current research is also attempting to 

define diagnostic panels relying on several biomarkers to predict fibrosis score and degree of 

steatohepatitis, such as the ELF-test (22, 23). Recently a proteomic analysis revealed key 

changes in serum protein expression levels between control subjects and patients with 

different stages of NAFLD (24). However future validation of these potential biomarkers is 

still required before such tests can replace liver biopsy.  

 

Several pharmaceutical agents have been proposed for the treatment of NAFLD including 

insulin sensitizers, such as thiazolidinediones (rosiglitazone/pioglitazone) or metformin, 

antioxidants, or antihyperlipidemic agents, such as statins. The effects of these drugs on the 

pathological features of NAFLD are controversial and they may even be associated with 

significant levels of hepatotoxicity (23). 

Among treatments, weight loss appears to be the most successful (23). Indeed many studies 

have focused on improvements in the liver biochemistry profile in response to weight loss, 

and documented that accumulation of fat in the liver was decreased (25). 

Even though surgical options for weight loss are being increasingly used in the USA for the 

treatment of morbid obesity (26), less irreversible and invasive propositions might also be 

efficient, such as lifestyle intervention. 

An abundance of epidemiological and interventional studies demonstrate the beneficial 

effects of changes in lifestyle habits, such as dieting and/or increased physical activity (27), 

on obesity, metabolic syndrome and NAFLD. Combining dieting (decrease in energy 

intakes) and physical activity (increase in energy expenditure) is indeed highly efficient, 

provided that compliance is good. In this context, much attention has been paid to dietary 

proteins, as they have intrinsic properties which might tend to favour and potentiate weight 

loss in comparison to dietary carbohydrates or lipids.  

 

Before going into more details regarding the research on protein diets, it might be useful first 

to go back to some historical considerations regarding our knowledge on protein 

metabolism, and second to do a quick review of their properties without paying too much 

attention to the details and complexity of their metabolism. 
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1.2 PROTEIN OVER HISTORY 

 

This section is mainly inspired by the work of Kenneth Carpenter, who published in four 

parts “ A Short History of Nutritional Science”; which covers the period from 1785 up to 

1985, in the Journal of Nutrition (28-31). Just a few major points are summarized here in an 

attempt to give some insights into the prominent role of protein in Nutritional Sciences. 

 

Before 1885, nearly all of the nutritional studies had been carried out in Western Europe and 

most were concerned with the need for either protein or energy. Early Nutritional Science 

started in France in the eighteenth century with the “Chemical Revolution”, providing the 

necessary tools to address ideas about food and body composition in a quantitative and 

scientific way. 

An important finding was reported to the Academy of Science in 1785 by Claude Berthollet, 

who discovered that decomposition of animal matter produced ammonia. The discovery of 

nitrogen not only in animal matter, but also in some fractions of vegetable products, such as 

gluten in wheat flour, and its absence from sugars, starch and fats, led scientists to question 

about the origin of animal nitrogen rich-tissues. 

The question of whether animals could use atmospheric nitrogen to “animalize” ingested 

food of low nitrogen content was addressed in 1816 by François Magendie, a French surgeon 

who had converted to physiology. The experimental part of his demonstration consisted of 

feeding dogs with one selected nutrient, sugar, which did not contain nitrogen. Since the dog 

died after one month, he repeated the experiment with other foods like olive oil, gum or 

butter, which all led to similar results. These successive experiments allowed him to 

conclude that “none of this food was “pre-eminently nutritive” and that at least “the 

majority of the nitrogen in a dog’s tissue must come from the food he consumed”.  

Fifteen years later, Jean-Baptiste Boussingault, a French chemist, further addressed this 

question. He demonstrated that leguminous plants, contrary to cereal grains, use 

atmospheric nitrogen for their growth. He also performed nutritional trials in cows and 

horses by controlling and recording all their food intakes. He estimated the amount of 

nitrogen intake and losses, and was then able to conclude that the animal’s food provided 

sufficient nitrogen to meet their needs and that there was no need to hypothesize that they 

had to obtain nitrogen from the atmosphere.  
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These experiments led Jean-Baptiste Boussingault to propose that the relative nutritional 

values of plant food could be assessed from their nitrogen contents. Vitamins, minerals and 

trace elements had not been discovered at this time. 

At that time if the origin of nitrogenous compounds in animal tissue was commonly 

recognized, and attributed to the vegetal kingdom, the question of their function, use and 

process was of much more debate. 

Justus Liebig, a German organic chemist, advanced that “protein was the only true nutrient”, 

providing both the machinery of the body and the fuel for its work and that an explosive 

breakdown of the protein molecules led to the production and excretion of urea.  

First Edward Smith, a British physician and physiologist, and then two Swiss scientists, 

Adolf Fick and Johannes Wislicenus, were able to refute this statement by proving that 

protein breakdown and urea production were not proportionate to the amount of work load. 

This led Edward Franklin to assess a structural function to proteins and to draw the analogy 

of a muscle to a steam engine in which the engine did not consume itself when working, but 

remained intact while using an entirely different fuel.  

The term “protein”, from Greek prôtos, meaning “of primary quality, first, essential” was 

suggested in 1839 by Gerrit Mulder, a Dutch worker, who assessed that the so-called “animal 

substance”, recognized to contained ca 16% nitrogen, had a common radical combined with 

different proportions of phosphorus, sulphur or both. 

 

Since 1885 research on protein and energy metabolism increased throughout the world, 

which allowed to greatly broaden our understanding about protein needs and nutritional 

requirements. At this time the important question was to determine normal protein 

requirements.  

Standards of high protein intakes were recommended in Germany, by Voit, but also in USA 

by Atwater, based on observational studies of protein intake in middle working individuals’ 

class. It was believed that a high protein intake (ca 120 g/day) insured good physical health, 

and even though vegetarians with a lower protein intake could remain in nitrogen balance, 

they exposed themselves to disadvantages. Russel Chittenden, Professor of Physiological 

Chemistry at Yale, demonstrated among three groups of young men, with various physical 

activity levels, that ~ 60 g protein intake/day was sufficient to ensure athletic performance, 

good physical and mental activity and that it represented even more some kind of  
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“physiological economy”. Other scientists were reluctant to accept this recommendation, but 

later studies would only confirm this finding.  

 

Nutrition scientists then believed that proteins ingested with food were absorbed almost 

intact and were only slightly modified. They were reluctant to the discoveries by workers in 

the digestive physiology, stipulating that proteins were cleaved into more soluble 

derivatives, the “amino-acids” under the action of digestive enzymes (such as pepsin or 

trypsin) for their assimilation.  

In 1902 it was still believed that “such a profound decomposition would be a waste of 

chemical potential energy, and that a reunion of such products is highly improbable”. 

Therefore studies on supplementation of mixtures of amino acids, as substitutes for dietary 

proteins, were conducted in animals to test this hypothesis. This led to the discovery of new 

and essential amino acids, such as tryptophan by Hopkins and Coyle in 1902, methionine in 

the 1920s at Harward, isoleucine and threonine in the 1930s by Womack and Rose. By the 

1930’s, William Rose was able to supply all the essential amino acids needed for the growth 

of rats, and to definitely support the “amino-acid” concept.  

Starting in 1942, Rose set out to extend the study to humans adults to find the correct pattern 

of amino acids which was needed to maintain nitrogen balance. Fifteen years later, he was 

still not able to demonstrate that mixture of amino acids could completely replace protein 

intake as nitrogen balance was achieved for low levels of amino acids but only with energy 

intakes higher than what was required with equivalent quantities of intact protein. He 

concluded however that as the nitrogen balance had been reached, the list of essential amino 

acids required by human adults had to be complete.  

Meanwhile, the availability of isotopes, allowed a new approach for the study of the fate and 

distribution of nutrients in the body. In 1939, Rudolf Schoenheimer a pioneer in that domain 

(see chapter 2:  what is a tracer?) was able to quantify protein breakdown, recycling and 

excretion.  

 

In 1960, the FAO (Food and Agriculture organisation of the United Nation) wrote that 

“deficiency of protein in the diet is the most serious and widespread problem in the world”. 

This statement relied on the discovery that “kwashiorkor”, an acute form of childhood  
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protein energy malnutrition, highly prevalent in third-world countries, might be treated by 

high protein nutritional supplement. Much work was carried on to develop substitutes, but it 

appeared later that this globalised worldwide interest was moreover a pretext for food 

industries to make profit and to develop insights into food engineering. Treatment for 

Kwashiorkor has since switched to providing more concentrated food and by correcting for 

electrolyte deficiencies. 

Nowadays, even if scientific reports suggest that there is no need for higher protein 

supplementation in well-nourished populations, it is still widely believed amongst 

individuals that a high protein intake may be beneficial by improving health, well-being and 

physical condition. Food industry reinforces this opinion and makes profit by selling a 

variety of expensive protein or amino acid powders.   
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1.3 PROTEIN METABOLISM (32-34)  

 

1.3.1 Generalities: protein and amino acids 

 

Protein are major components of the body not only quantitatively (they account for more 

than half of the dry weight of a cell) but also qualitatively when considering the 

diversification of their biological functions. 

They are the “work-horses” involved in multiple functional roles as biological catalyst 

(enzymes), regulators of gene expression, transporters of substances in plasma or through 

membranes, defenders of the organism (antibodies, interleukins), but also as components of 

cellular organelles and extracellular matrices.  

This infinite diversity is allowed by the specificity of their single components; the amino 

acids. A protein is a linear sequence of amino acids, varying in length from tens to thousands 

of blocks. There are over twenty different amino acids, which allow a huge diversity of 

possible combinations, theoretically 20n, n being the number of amino acids present in the 

protein. This diversity is even more important when it is considered that some proteins, 

named heteroproteins, contain other components such as ions, carbohydrates or lipids. 

Among the 20 usual amino acids, some amino acids cannot be or are only partially 

synthesized by the organism and must be obtained from the food. Amino acids are divided 

in three categories; the indispensable amino acids, such as valine, leucine, isoleucine, lysine, 

methionine, phenylalanine, threonine, trypthophan and histidine; the conditionally 

indispensable amino acids, such as glycine, arginine, glutamine, proline, cystine, tyrosine, 

and the dispensable amino acids, such as glutamic acids, alanine, serine, aspartic acids, and 

asparagine. 

 

In most cells and tissues, proteins are continuously synthesized and degraded. The whole 

process of synthesis (anabolism) and degradation (catabolism) is referred to as protein 

turnover. To maintain protein homeostasis and nitrogen balance, but also to control lean 

mass gain (in growth) or loss (in dieting), these processes must be tightly regulated by the 

ambient intracellular end extracellular milieu (pool of amino acids, nutritional status, 

hormones insulin and glucagon). 
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1.3.2 Nitrogen balance 

 

The principal metabolic systems responsible for the maintenance of body protein and amino 

acid homeostasis include protein synthesis and degradation, amino acid interconversions, 

and amino acid synthesis. In adults, the maintenance of a constant body composition implies 

that nitrogen intake = nitrogen excretion and that protein synthesis = protein breakdown. 

 

Due to the lack of a more specific test, nitrogen balance (NB), being the resultant of whole 

body protein metabolism, has been accepted as a common criterion to evaluate adequate 

intakes and, though imprecise, is broadly investigated in clinics. Nitrogen balance (NB) 

determination requires a careful estimate of the intake (I) and all routes of nitrogen loss, 

namely urines (U), faces (F) and dermal losses (S); then 

 

NB = I- (U+F+S).  

 

In clinical practice, and even clinical trials, accurate evaluation of nitrogen balance is 

impossible since estimation of nitrogen intake (dietary records/absorption) and loss in urine 

or faeces are often partial and incomplete. Moreover other routes of nitrogen losses, like 

sweat or dermal losses, are very difficult to evaluate. Nitrogen balance evaluation should 

also be corrected for changes in the total body urea pool if blood urea concentrations do not 

remain constant. 

 

Another important point to take in consideration is that nitrogen balance is not only affected 

by dietary protein intake but also by the level of dietary energy intake (35, 36). Consequently 

the estimation of protein requirements, based on nitrogen balance can be affected by the 

amount of energy available (36).  
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Effect of varying protein intake on nitrogen balance 

 

Since body protein content in non-growing humans is maintained within narrow limits 

nitrogen balance is regulated around zero. When nitrogen intake varies, this regulation is 

achieved by compensatory changes in nitrogen excretion.  When protein intake is below 

requirements, body proteins tended to be conserved, and nitrogen excretion is diminished 

over time. When a protein-free diet is consumed, a small amount of nitrogen excretion 

occurs, which represents the obligatory oxidation of protein for basal protein turnover. On 

the other hand, when protein is fed in excess, nitrogen excretion is increased to compensate 

for the excess intake and nitrogen balance is conserved around zero. Compensatory excretion 

is however limited and cannot account for extremely high levels of protein intake (upper 

limit estimated to be ca 225 g protein/day). When dietary protein intake is altered, nitrogen 

balance needs 4 to 7 days to achieve equilibration. Consequently, transient net accumulations 

or loss of nitrogen can occur.  

 

Effect of varying caloric intake on nitrogen balance 

 

The relationship between the sensitivity of nitrogen balance to the addition or removal of 

energy from the diet is characterized by a linear improvement in nitrogen balance with 

increasing in energy intake in a normal range of protein or energy intake. It was estimated 

that, with adequate dietary protein, nitrogen balance improved by 0.1 to 0.3 g/day per 100 

excess kcal added to the diet (37). In rodents, when the diet provided adequate amounts of 

protein, increments in energy intake, produced by adding either carbohydrate or fat in sub-

maintenance diets, caused a linear improvement in nitrogen balance, whereas when the diet 

contained no protein, addition of fat or carbohydrate failed to influence nitrogen balance.  

(38). Also in humans, increments in energy consumption result in better sparing and 

utilization of dietary nitrogen with higher amount of dietary protein (60g) compared to 

lower (40g) (39).  
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Interaction of nitrogen intake and caloric intake on nitrogen balance 

 

The effects of nitrogen and energy intake on energy balance are interrelated and complex. 

The following figure (Figure 1), reproduced from “Basics in Clinical Nutrition”(34) illustrates 

to what extent changes in nitrogen and energy intake may modulate nitrogen balance. 

 

 

 

 

Fig1. Relationship between nitrogen balance and energy intake with diets of different 

protein levels. Between energy intake (A) low and (B) high the two lines are parallel 
(Reproduced from Munro and Allison, 1964, Vol. 1, p 381) 
 

It has been observed that the level of energy intake determines the degree of change in 

nitrogen balance that occurs in response to a change in nitrogen intake. Conversely, the level 

of protein intake determines the quantitative effect of energy intake on energy balance. 

Therefore optimum body protein nutrition is achieved when protein and energy intakes are 

sufficient to meet or balance the needs for amino acids, nitrogen and daily energy 

expenditure.  

 

The protein requirement of an individual is defined as the lowest level of dietary protein 

intake that will balance the losses from the body in an individual with adequate energy 

intake and moderate physical activity. Actual safe levels of protein requirements were issued 

by an International Commission (convened by FAO, WHO and UNO (United Nations 

Office)) in 1985, presupposing the use of first class proteins high in essential amino  
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acids and with an adequate energy supply (40). Protein needs differ with age; requirements 

for young adults range between 0.75-0.80 g/kg body weight, but proteins needs are 

considerably higher in newborns, children, and pregnant women. Protein requirements are 

also considerably increased in early lactation (+ 17.5g protein/day) and in catabolic states 

such as in disease or physical activity. The minimum protein requirement is considered to be 

0.45 g/kg body weight. 

 

1.3.3 Disposal of dietary amino acids and roles of specific organs (33) 

 

Events in the intestine 

 

Dietary proteins amounts to ca 100g/day for an adult and the charge of exogenic protein is 

degraded and absorbed by the gastrointestinal tract. Approximately an additional 70g arises 

in the intestine as a result of intestinal secretions and mucosal cell degranulation. Since faecal 

nitrogen is about 10g protein/day, an equivalent of 160g protein are absorbed per day (see 

Figure 2). 

The process of protein digestion begins in the stomach, with the action of pepsin. In the 

duodenum and small intestine, proteases secreted by the pancreas (exocrine function), such 

as trypsin, chymotrypsin and carboxypeptidase, cleave proteins into small peptides and free 

amino acids. The brush border of the small intestine contains peptidases, which reduces 

peptides to dipeptides and amino acids, which are be then transported across the intestinal 

mucosa. 

The small intestine is an important site of amino acid catabolism; glutamate, aspartate and 

glutamine are 90% catabolised in the first pass. Some of the indispensable amino acids, such 

as valine, leucine, isoleucine, lysine, methionine, phenylalanine and threonine, are also 

significantly catabolised. For the above mentioned amino acids, as much as 30% to 50% does 

not enter the hepatic portal circulation. As such oxidation is often partial, these amino acids 

are converted into other amino acids such as (alanine/proline/citrulline) which can then be 

delivered by the portal vein. 
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Role of the liver 

 

The liver is recognized as the only organ with the ability to metabolize almost all amino 

acids. However amino acid metabolization is often partial, with the carbon skeleton being 

converted into glucose or ketone bodies. Hepatic cells contain two enzymatic pathways 

which allow detoxification of ammonium arising from the catabolism of amino acids in the 

peripheral organs and tissues; urea and glutamine synthesis. The capacity of the liver to 

synthesize urea is very high, so that it can rapidly respond to increased protein ingestion. 

Changes in concentrations of N-acetylglutamate tightly regulated Carbamoyl-phosphate-

synthetase-I, the first enzyme involved in urea synthesis, however the mechanisms involved 

in N-acetylglutamate increases are still unclear but seem probably to be mediated by 

glucagon and glucocorticoïds. 

 

The liver removes about 2/3 of the absorbed amino acids, while the other third, enriched in 

branched chain amino acid (BCAA) reaches the systemic circulation and the peripheral 

tissues. In the liver, one third of amino acids is used for protein synthesis, the remainder 

being metabolised (see Figure 2). 

 

Skeletal muscle and kidney 

 

Skeletal muscle is the major site for BCAA catabolism, as the liver has only very low 

activities of the first two enzymes involved in their catabolism; the branched-chain amino 

transferase and the branched-chain keto acid deshydrogenase. The nitrogen end-products 

are glutamine and alanine, but the bulk of these ketoacids is metabolized within the muscle 

in humans. 

 

The kidneys are also involved in amino acids metabolism in an attempt to maintain acid-base 

status. The two sulphur-containing amino acids, methionine and cysteine, generate sulphuric 

acid on oxidation. The hydrogen ions are neutralized by the bicarbonate buffer system. 

Glutamine, and to a lesser extent, glycine are the predominant substrates metabolized by the 

kidney which one involved in the repletion of the bicarbonate pool. 

 

 



 
CHAPTER 1 : INTRODUCTION 

 - 37 -  

 

Amino acid metabolism contrasts in two important ways with that of carbohydrate and lipid, 

which confers its properties and particularities.  

The first point is that the body has no specific store for amino acids. Proteins are primarily 

synthesized for their specific physiological functions, which implies that all amino acids 

must be available to tissues simultaneously to fulfil protein synthesis requirements. Any 

excess of amino acids should be rapidly degraded to prevent electrolytic disturbances, as 

amino acids are charged molecules. 

The second point is the nature of amino acids end-products. Amino acid catabolism not only 

produces water and carbon dioxide, but also nitrogen containing end-products, such as urea 

and ammonium, and sulphur-containing end-products (principally sulfate). Ammonia is a 

potent neurotoxin, which implies that blood concentrations must be kept low. Its imminent 

detoxification via urea synthesis in confined to the liver. Sulphur-containing end-products 

involve the production of a strong metabolic acid, which have to be cleared by the kidney. 

 

Taken together, the functionality and structure of proteins are maintained by a constant and 

tightly regulated protein turnover, which is an important energy requiring process and may 

be responsible for about 20% of basal metabolic rate (BMR). Similarly, dietary protein intake 

requires immediate metabolism, which is energy consuming and causes a subsequent 

increase in energy expenditure, which contribute substantially to postprandial 

thermogenesis. 
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Fig.2 Components of Adult Nitrogen Balance per day (in reference to Fürst P, 2004)(34) 
In nitrogen balance, for an adult per day; total protein absorption is about 160g, with dietary 
protein ingestion of 100g and intestinal secretion of 70g. Protein excretion amounts to 10g in 
faeces and catabolised protein are 90% excreted as urea and 10% as ammonium. 2/3 of the 
absorbed amino acids are metabolized in the liver, and the other third in peripheral tissues. 
The turnover of protein is estimated to be 300g/day. 
 



 
CHAPTER 1 : INTRODUCTION 

 - 39 -  

 

1.3.4 Hormonal Regulation of protein metabolism  

 

Insulin and glucagon are the principal hormones involved in protein and amino acids 

metabolism, and both are stimulated by amino acid and protein intake (41) . 

Insulin has anabolic functions; it promotes protein synthesis by stimulating transcription and 

translation at the muscle level, and prevents proteolysis. Insulin also increases glucose 

utilization. An anabolic function has also been demonstrated for growth hormone and IGF-I 

either by promoting protein synthesis or inhibiting proteolysis (42). In opposition glucagon 

plays a major role in the catabolism of amino acids and counteracts hypoglycaemia by 

increasing hepatic glucose production. Glucocorticoïds and thyroid hormones also have 

catabolic functions by stimulating proteolysis and/or reducing protein synthesis. 

 

The magnitude of these responses seems to be influenced by the quality and the quantity of 

protein in the diet. The nature of protein (animal vs vegetal) plays a major role as not only 

their amino acid composition but also the presence of biological compounds, such as 

isoflavones present in soya proteins, affects insulin secretion. Protein quantity has also been 

demonstrated to affect the magnitude of these responses, since diets with a low-protein 

composition are associated with reduced insulin secretion, whereas high-protein diets cause 

hypersecretion of insulin (41).  
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1.4 COMPLEXITY OF THE STUDY OF PROTEIN 

 

Due to the complexity of protein metabolism, science yields divergent conclusions regarding 

the physiological effects of dietary proteins. This could be partially explained by some of the 

parameters known to affect the time course of their metabolization and their subsequent 

effects on metabolism. 

 

Indeed studies have shown that for the same amount of protein of comparable digestibility 

and with identical gastric emptying times, protein metabolism is affected by the consistency 

of the meal (liquid formula vs solid meal) (43), by the consistency of protein administration 

(intact protein vs hydrolysate) (44) or by the physical characteristics and types of other 

macronutrients present in the meal, such as carbohydrates, lipids or fibres (45),(46). 

Obviously differences in the kinetics of digestibility and absorption also affect postprandial 

responses (47), such as the elevation of glycemia, concentrations of the main regulatory 

hormones, or lipoprotein and cholesterol profiles (48). Studies also demonstrate differences 

in the anabolic properties of dietary proteins, when associated with physical exercise, pre or 

post exercise sessions (49),(50), or when taken as a single meal or as small portions spread 

throughout the day (51) . 

Human and rodents studies have also investigated the specificity of each amino acid by 

assessing their own properties individually, usually during amino acid infusions (52). Effects 

of branched chains amino acids (BCAA) or essential amino acids (EAA), such as leucine, on 

regulation of satiety, energy expenditure, postprandial thermogenesis or insulin sensitivity 

have been extensively studied, but conclusions remain discrepant. Moreover, oral protein 

intake or parenteral feeding, infusions, provide different routes for amino acid 

administration which have to be taken in consideration. 

 

Keeping these considerations in mind, I will discuss in more detail the actual knowledge 

about the main topics raised by this work. 
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1.5 NUTRITION AND PROTEINS 

 

Nutrition and proteins is a hot topic on its own, highly popular and mediatic. However 

dietary protein requirements and dietary recommendations should be acknowledged as 

problematic and may be very different depending upon specific needs and different 

populations. Four different major population categories can be distinguished based on their 

needs: 

 

- Those who are underweight and undernourished and in whom muscle mass is 

insufficient, such as individuals affected by famine or the elderly. In this context 

nutritional studies focus particularly on the benefits of protein intake on whole body 

function and on muscle mass recovery when combined with sufficient energy intakes. 

The amounts, types and timing of protein supply should respond as efficiently as 

possible to the fundamental and human basic needs (53) (54). 

- Those with kidney dysfunction, in which pathological state studies have to deal with 

how to provide sufficient amounts of protein while preventing the simultaneous 

overload of nitrogen or urea, which one known to be deleterious by increasing 

glomerular blood pressure and glomerular filtration rate (55). 

- Those who are highly sportive and athletic, who aim to optimize performance by 

increasing muscle mass, strength and power and decreasing muscle breakdown. 

Studies focus on the best way to administer protein to induce positive nitrogen 

balance and anabolism. Physical activity and sufficient energy intake, instead of high 

protein intake, appear to be the major factors that promote muscle mass. 

- Those who are obese and overweight with associated comorbidities defined in the 

metabolic syndrome. In such conditions, studies emphasize the effects of proteins 

effects on whole body metabolism, regulation of satiety and energy expenditure and 

subsequent weight and fat loss. 

 

The major emphasis of this work was to gain a better understanding of the effects of proteins 

on features of the metabolic syndrome, by addressing especially the question of fat mass and 

lipid metabolism. 

Our hypothesis relied on the present knowledge of protein properties which could more or 

less impact on improving certain features of the metabolic syndrome. 
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1.6 PROTEINS AND FEATURES OF THE METABOLIC SYNDROME 

 

1.6.1. Dietary proteins: satiety, energy expenditure, weight loss and weight maintenance 

 

Even though common sense may have favoured higher-protein intakes for a long time to the 

detriment of carbohydrates, for weight reducing diets, such as the Atkins diet (1970) or “low-

cab” diets, research on this topic only extensively began in the 1990s.  

As reviewed by Westerep-Plantenga in Annual Nutrition Reviews (56), it is informative to 

define more accurately what a high-protein diet means. Normal- and high- protein diets 

need to be defined in relative and absolute terms in relation to energy intake.  

In relative terms, a protein diet is qualified as “normal” when protein intake accounts for 

10%-15% total energy of the diet, whereas it is qualified as “high” when protein intake 

accounts for at least 18% to 30%, or even 47% total energy. However, in absolute terms the 

amount of protein intake can be the same or even greater in a “normal” protein diet. For 

example, as illustrated by Westertep-Plantenga a ~ 2800 kcal balanced diet, with a normal 

protein intake of 15 % represents 100g protein/day whereas a very-low-energy diet 

providing ~ 500 kcal, a high-protein intake of 47 % is equivalent to 52g protein/day. 

 

Halton et al. indicate that the results of most studies converge to indicate that higher protein 

intakes are associated with increased satiety, energy expenditure, thermogenesis and weight 

loss (57).  

The question of satiety is probably the most difficult to assess among these four parameters, 

since it does not rely on an objective in vivo variable. Up until now evaluating satiety has 

been limited to subjective observation. The two most widely methodologies to evaluate 

satiety are the use of visual analogue scale satiety ratings, or the quantification of energy 

intake during a subsequent meal. Moreover, satiety appears to be influenced not only by a 

wide variety of physico-chemical properties of food such as palatability, food mass, energy 

density, fibres and glycemic index but also by psychological and physical state of the subject, 

such as mood, motivation, stress, anxiety or tiredness. In other words, evaluating satiety is 

limited to subjective appreciation. 
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Even if the regulations of satiety and energy expenditure are far from being completely 

elucidated, some potential mechanisms have been suggested. A preliminary theory was 

proposed by Mellinkof in 1956 (58) which he termed the “amino-static” theory. Since high 

amino acid concentrations are correlated with a reduction in appetite it was believed that 

there was a satiety centre in the brain sensitive to amino acid concentrations. A recent paper 

from Koren et al. contradicted this hypothesis as they found an increase in satiety after high-

carbohydrate and high-protein diets, a decrease in body weight, but no changes in plasma 

amino acid concentrations (59). Interestingly, Nefti et al. showed that protein-induced satiety 

was related to vagal feedback to the nucleus tracts solitarius in the brainstem and to the 

hypothalamus, where it suppresses feelings of hunger (60). Even if this hypothesis is 

engaging and makes sense as levels of amino acids are of primary importance regarding 

tissue growth, there is still a lack of evidence to support this hypothesis.  

 

Among the mechanisms that might contribute to protein-induced satiety, three other 

hypotheses have been proposed by Veldhorst in a recent review, such as changes in the 

concentrations of satiety hormones, increases in energy expenditure or effects on the process 

of gluconeogenesis (61).  

 

Change in concentration of satiety hormones 

 

Taken together, studies have shown some evidence that a high-protein meal, when co-

ingested with carbohydrates, stimulates the secretion of anorexigenic hormones such as 

Glucagon-like peptide-1 (GLP-I) (62) or PYY (63) whereas Ghrelin does not seem to be 

affected. Insufficient information is available on CCK to see any tendency.  

Another hypothesis developed by Westerterp-Plantenga, relied on the observation that there 

is a relationship between energy expenditure and satiety (64). A possible explanation 

sustained by Veldhorst could be that increased energy expenditure at rest is concomitant 

with an elevation in oxygen consumption and body temperature that may lead to sensing 

oxygen deprivation, which in turn seems to promote satiety. This phenomenon has already 

been observed in situations of oxygen deprivation, such as high altitude or chronic 

obstructive pulmonary disease. 
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Increase in energy expenditure & Gluconeogenesis 

 

The relatively strong thermic effect of protein intake may be mediated by the high ATP cost 

of postprandial protein synthesis. Amino acid oxidation may also play a major role, more 

particularly when they are administrated in excess, since they can not be stored and 

therefore have to be degraded. The ATP cost of protein metabolism depends on their nature, 

digestibility, and composition in amino acids. The longer the carbon chain of an amino acid, 

the more ATP is needed for its complete oxidation and urea synthesis. 

Ingestion of rapidly digested protein, such as whey, results in a stronger increase in 

postprandial protein synthesis and amino acid oxidation than slowly digested protein, such 

as casein.  

Gluconeogenesis, induced by protein intake, has also been suggested to contribute to satiety 

or to better food intake regulation. But so far this has only been demonstrated in an animal 

model up to now. It could be related to the improvement of glucose homeostasis, regulated 

by modulation of hepatic gluconeogenesis and subsequent glucose metabolism.  

 

Protein induced satiety has been shown acutely, with single meals containing up to 81% 

protein, but also with high protein ad-libitum diets, lasting from 1 to six months, with a 

significant reduction in body weight attesting even to the satiety effect of protein and/or to 

the increase in energy expenditure. 

Veldhorst et al (61) concluded that mechanisms explaining protein-induced satiety are 

primarily nutrient-specific, meaning dependant on the nature of protein, and are essentially 

related to elevated plasma amino acid concentrations. 

Protein-induced satiety seems to be related to protein-induced energy expenditure and is 

believed to be of prime importance for protein induced weight loss and weight maintenance 

by Westerterp-Plantenga (56). This aspect of satiety was confirmed by Clifton in an editorial 

about high protein diets and weight control (65). Indeed ad libitum or energy controlled high-

protein diets are helpful in increasing weight loss and in weight maintenance, by preventing 

weight regain.  
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1.6.2 Dietary proteins: Type II Diabetes 

 

Insulin resistance and Type II Diabetes are major metabolic disorders associated with obesity 

and the metabolic syndrome. Consequently, the question of the metabolic effects of high 

protein diets on insulin resistance is of major importance. 

When taken together, animals, humans and epidemiological studies show very discrepant 

results and underlie different outcomes on glucose homeostasis with high protein or amino 

acids intakes.  

 

An extensive and interesting article by Tremblay et al. (66) reviewed in detail the role of 

dietary proteins and amino acids in the pathogenesis of insulin resistance. He reviewed 

experimental studies with amino acid infusion which demonstrate that protein and amino 

acids per se can have deleterious effects on glucose homeostasis by promoting insulin 

resistance and increasing gluconeogenesis. These effects are linked to the intrinsic properties 

of protein and amino acids. Increased postprandial amino acid availability, might have direct 

(substrate-mediated) and indirect (hormone-mediated) effects on glucose metabolism (67). 

Endogenous secretion of insulin and glucagon, both hormones that are involved in the 

regulation of glucose homeostasis and hepatic glucose metabolism by altering portal 

insulin/glucagon ratio is stimulated. 

 

The direct effect of amino acid elevation can be shown when the endogenous release of 

glucoregulatory hormones is inhibited, such as during a continuous infusion of somatostatin. 

The direct effect of amino acid on hepatic glucose metabolism is an increase in 

gluconeogenesis and endogenous glucose production without any effect on glycogenolysis 

(68). In the case of insulin resistance, such as in Type II Diabetes, insulin secretion is 

insufficient to compensate for the hyperglycemia. The direct effect of amino acid infusion is a 

reduction in insulin-stimulated whole-body glucose disposal. Amino acids cause a reduction 

in the rate of skeletal muscle glycogen synthesis, which is linked to a direct inhibition of 

muscle glucose transport and/or phosphorylation. 

Among the indirect effects of protein on stimulation of the endogenous release of 

glucoregulatory hormones in Type II Diabetes, it seems probable that β-cells, refractory to 

glucose, retain the ability to respond to non-glucose stimuli such as amino acids, allowing to 

adjust the increase in insulin concentration. 
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A long the same thoughts, when dietary habits are assessed by food intake questionnaires in 

a large sample of individuals, a high meat intake is linked to adverse effects on glucose 

metabolism, insulin resistance, and glucose intolerance (69). 

Taken together, experimental studies with amino acid infusions and epidemiological data 

demonstrate direct induction of insulin resistance and stimulation of endogenous glucose 

production. 

 

However, intervention studies with high-protein diets are in apparent contradiction with the 

above considerations as they demonstrate in the short term an improvement in insulin 

sensitivity, glucose homeostasis and Type II Diabetes (70). The most commonly advanced 

hypothesis is that protein exerts beneficial effects on glucose homeostasis by reducing body 

weight. Indeed all these studies aimed at decreasing body weight. Compared to high-fat or 

high-carbohydrate diets, high-protein diets tend to demonstrate enhanced weight loss, 

subsequent to increased energy expenditure and satiety (71). Consequently, improvement of 

features of the metabolic syndrome, such as insulin sensitivity and type II diabetes, seems to 

be linked more to an effect of protein intake on satiety and body weight loss than to an 

intrinsic property of protein administration. 
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1.6.3 Dietary proteins: Dyslipidemia and lipotoxicity 

 

When insulin sensitivity is considered, studies pertaining to the effect of proteins on plasma 

lipids are again very discrepant in the literature, and it is almost impossible to distinguish 

between the beneficial effects of protein per se and indirect effects mediated by fat loss and 

body weight reduction (72). 

Studies often suggest that improvements in the features of the metabolic syndrome, such as 

the lipidic profile, were first linked to a decrease in body weight. Clifton et al (65) pooled 

results from three randomized clinical trials (73-75) in which overweight/obese subjects 

(BMI> 26 kg/m2) were assigned to ad libitum diets, among which one was high in protein  

(i.e. 25% of energy as protein or the high-protein Zone diet) during at least 6 months. 

Computation of the results demonstrated that the high-protein diet showed greater fat and 

weight loss, better improvement in lipidic profile, in total cholesterol and triacylglycerol and 

reduced associated CVD risk factors. However the conclusion of other studies were more 

prudent as they observed favourable effects of high-protein diets on changes in triglyceride 

and HDL-cholesterol concentrations but less favourable changes in total and LDL-cholesterol 

than conventional, lower proteins diets (76).   

 

Intriguingly, studies were in agreement when attributing dyslipidemia, characterised by 

high plasma concentration of triglycerides and VLDL-cholesterol and low levels of LDL-

cholesterol and HDL-cholesterol, to an increase in carbohydrates intake. Indeed, low-

carbohydrates diets reverse these abnormalities (67). A meticulous study, by Krauss et al (77) 

designed to assess the effect of different carbohydrate intakes,  independently of weight loss, 

on lipid profile clearly demonstrated that moderate carbohydrate restriction had beneficial 

short term effects on dyslipidemia. It can then be argued that with high-protein diets, it is 

more the reduced proportion of carbohydrate than the increased amount of protein 

administration per se which improved dyslipidemia and associated cardiovascular risk 

factors. 

 

Even though this PhD work addresses the global question of the effects of dietary proteins 

on dyslipidemia and whole body lipid metabolism, it specifically focuses on their potential 

effects to prevent ectopic fat accumulation in the liver, hypothetically by increasing hepatic  
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fat oxidation or altering hepatic de novo lipogenesis. This question has recently gained much 

interest, but actual knowledge is still very scarce. An important limitation to the study of 

liver metabolism in humans, contrary to adipose or muscle tissues, is the difficulty to have 

direct access to the tissue and then to liver gene expression. Liver biopsies are considered too 

invasive to be ethically admitted for research purposes. Consequently, the techniques that 

are used to approach liver metabolism are mainly indirect, such as labelled tracers. Imaging 

tools are more informative about the structure of the organ, and recent advances in NMR-

spectroscopy have provided more information about the composition of liver metabolites 

concentrations and liver parenchyma structure. 

 

Until recently little or no data were available in humans. However the role of dietary 

proteins on liver fat and lipotoxicity has begun to be addressed over the last few years in 

rodents. 

The group of Torres, from the Department of Fisiologia de la Nutricio in Mexico conducted 

many studies in rodents on the prevention of lipotoxicity by dietary proteins and believed 

that effects might differ according to the type of proteins (78, 79).  

In a recent review of their work, they reported that the type of dietary protein has a 

significant contribution to the process of lipotoxicity through the modulation of insulin 

secretion and the regulation of adipocyte metabolic function (80). Modulation of insulin 

secretion appeared to be central in improvement of hepatic lipotoxicity. Soy protein 

administration, compared to casein, is associated with an improvement in insulin sensitivity, 

decreased insulin secretion and a decreased insulin-glucagon ratio, probably linked to a 

decrease in the sterol regulatory element binding protein (SREBP-1). SREBP-1 is involved in 

the regulation and expression of more than 30 genes dedicated to the synthesis and uptake of 

cholesterol, FFA, triglycerides and phospholipids in the liver. SREBP-1c acts as a promoter 

for expression of enzymes such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), 

ATP citrate-lyase. Soy protein intakes also showed a decrease in adipocyte hypertrophy, 

hyperleptinemia and free fatty acids, leading to a decrease in the influx of lipids to the liver 

while improving their oxidation. Lipids and ceramide depots were decreased, which reduces 

hepatic lipotoxicity (81) (see Figure 3). 
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Another study in C57BL6 mice investigated the effects of dietary essential amino acids 

(EAA) on high-fat diet induced obesity (DIO) (82). Results were concordant with those of 

Torres et al. in the sense that EAA supplements reduced plasma insulin concentrations, 

which were associated with a decrease in SREBP-1 expression, leading to a decrease in 

hepatic steatosis and de novo lipogenesis. 

 

Taking current knowledge gained from such studies in rodents and basic fundaments of 

protein metabolism in humans together, it is possible to propose an hypothesis that dietary 

protein intake may impact on insulin secretion and insulin sensitivity and consequently 

might affect regulation of hepatic gene expression, such as SREBP-1 and hepatic fat 

metabolism. 

 

 

 

 

Fig 3. The mechanism of action of soy protein (79) 
The amino acid pattern and isoflavones decrease the insulin-glucagon ratio, reducing 
SREBP-1 expression and therefore hepatic lipogenesis. Furthermore, soy protein decreases 
adipocytes hypertrophy and the release of fatty acids (FFA), which reduces the influx of FFA 
into the liver. These changes lower the accumulation of hepatic lipids and ceramide, which 
reduces lipotoxicity. In addition, soy protein increases the thermogenic capacity of brown 
adipose tissue. 
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1.6.4 Dietary proteins and Renal Function 

 

A major consideration point of consideration before recommending an increase of dietary 

protein for treatment of obesity and the metabolic syndrome is the potential adverse effects 

of proteins on renal function and acid-base balance (83). Population-based studies, 

preliminary prospective studies, animal models of kidney disease, and clinical trials, 

although controversial, tended to find associations between dietary protein intakes and 

progression of kidney disease (84). Indeed, experimental data indicate that acutely or 

chronically increased protein intake modulates renal function by increasing renal plasma 

flow (RPF) and glomerular filtration rate (GFR) which leads to hyperfiltration (55).  

 

It is generally accepted that glomerular hyperfiltration can cause progressive kidney damage 

in individuals who already suffer from kidney disease, however there is controversy 

regarding the effects in individuals with normal kidney function (84). The effects of 

chronically increasing protein intake on GFR has been extensively reviewed by King at al. 

(55). Interactions between direct and systemic effects on renal processes seem to best explain 

this phenomenon. The author proposed a hypothetical model to explain the increase in GFR. 

Direct and indirect effects might act together and lead to an increase in preglomerular 

arterial pressure and RPF which might in turn result in an increase in GFR.  

 

Addressing the effects of high-protein diets on glomerular function is even more conflicting 

as the most frequently reported parameter is GFR, the precursor of which depends largely 

upon the method used. The gold standard method to investigate GFR is constant 

intravenous infusion of inulin, which is an ideal filtration marker that is completely filtered 

and is not reabsorbed by the tubular cells. This method is, however, invasive and time 

consuming and cannot be applied to large scale screening. Consequently, serum creatinine 

concentration is a common surrogate measure of renal function in clinical practice. However, 

it is an imperfect filtration marker as it is both flittered and reabsorbed in the renal tubular 

cells and its production is not constant among individuals. 
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A major point with intervention studies addressing the effects of protein is the length of 

dietary intervention. Many studies are performed over short periods of time, which may be 

insufficient to lead to significant kidney dysfunction. Wagner et al demonstrated that one 

week on a high-protein diet increased GFR in elderly subjects but did not cause clinically 

detectable acidosis or renal failure (83). In a prospective cohort study involving 1642 women, 

Knight et al. demonstrated decreased kidney function in women with pre-existing renal 

failure, but not in those with normal renal function (85). 

 

Acquiring knowledge and understanding about the effects of high-protein diets on renal 

function becomes of major importance given the popularity of high-protein weight loss diets. 

A recent clinical trial, by Frank et al, addressed this question when investigating the effects of 

7-day high-protein or normal protein diet on renal hemodynamic and selected clinical-

chemical factors in 24 healthy young males. They concluded that renal hemodynamic and 

urinary excretion of uric acid, sodium and albumin was already impaired after one week on 

the high-protein diet and recommend that more attention is paid to the potential adverse 

effects of high-protein diets on the kidney (86). 

 

1.6.5 Summary; Dietary proteins: enough evidence for practice? 

 

Current knowledge tends to attribute a beneficial role of protein in promoting optimal 

health, by favouring lean body mass retention, weight control, reducing inflammation, 

improving insulin sensitivity, bone and cardiovascular health (87). These effects on weight 

control seem to be linked to an increase in protein-induced energy expenditure and satiety. 

The questions of insulin sensitivity and renal functions are more controversial, as discussed 

above, and further studies of the long term safety of such diets is imperative (72). 

When referred to the review of Brehm & D’Alassio, it  seems to be reasonable to recommend 

diets moderately increased in protein and modestly restricted in carbohydrates and fat, and 

especially saturated fat, with a special focus on long-term compliance and safety of chronic 

high protein intakes (72). However it’s still on debate. 
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1.7 HYPOTHESIS 

 

Current knowledge associates the development of steatohepatitis with obesity and glucose 

intolerance, subsequent to hypercaloric high-fat and/or high-carbohydrate intakes and low 

physical activity. The satietogenic and thermogenic effects of dietary protein intakes are also 

well recognized. Therefore we hypothesized that  

 

1) protein might decrease hepatic steatosis by reducing IHCL content  

2) by reducing hepatic steatosis, protein might improve glucose homeostasis 

3) protein might exert beneficial effects by improving lipid metabolism at the hepatic 

and whole body level 

 

AIMS OF THIS WORK 

 

This aim of this work was to investigate the metabolic effects of dietary protein intake on 

hepatic lipid metabolism and glucose homeostasis. This question was assessed by evaluating 

the effect of dietary protein modulation on  

 

- amount of triglycerides in the liver (IHCL)  

o 1H-NMR 

- exogenous lipid oxidation 

o by labelled 13CO2 in breath after ingestion of 13C-labelled triolein 

- net lipid oxidation and whole body energy expenditure,  

o by indirect calorimetry 

- hepatic beta-oxidation,  

o by plasma concentrations of beta-hydroxbutyrate  

- triglycerides concentrations, 

o by chylomicron-TG and VLDL-TG clearance  

- glucose tolerance 

o by two-steps euglycemic-hyperinsulinemic clamp  

o OGTT  

o HOMA-IS  

o glucose turnover 
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2.1 ISOTOPE TRACER METHODOLOGY (88) 

 

2.1.1 What is a tracer? 

 

Robert L Wolfe and David L Chinkes defined in their famous work “Isotope Tracers in 

Metabolic Research”, a tracer as : “a compound that is chemically and functionally identical 

to the naturally occurring compound of interest (the tracee) but is distinct in some ways that 

enables detection” (89). An ideal tracer should be detected with sufficient precision when 

administered in trace amounts, should not alter or interact with the metabolism and kinetics 

of the tracee, but should however perfectly reflect its metabolism. It is assumed that the 

tracer and the tracee do not differ in their kinetics or their metabolism and that, once the 

tracer is taken up by tissues, it does not re-enter the systemic circulation (90). 

There are 3 general ways in which tracers are used in metabolic research; a) to trace the 

kinetics and metabolism of an injected compound, such as the kinetics of a labelled 

pharmacological agent, b) to measure its rate of incorporation into another compound, such 

as the rate of synthesis of a product (example: protein synthesis), c) to measure the rate of 

appearance of a substrate into plasma by the “tracer dilution” technique, such as for 

endogenous glucose production or lipolysis. 

 

A tracer is made by labelling a molecule otherwise identical to the tracee with one or more 

atoms that are distinct from the most abundant form of the atom. Indeed elements are 

composed of atoms that are chemically identical, but slightly different in mass. Such atoms 

are called isotopes. The difference in mass is due to a different number of nuclear neutrons, 

which, however, do not affect its chemical properties. As an example 12C is the most 

abundant atomic mass for the carbon element at 99%, 13C is its naturally occurring stable 

isotope and 14C is its radioactive one.  

 

There are two major types of tracers; those which are labelled with radioactive isotopes and 

those which are stable. They have major distinct properties.  

Radioactive isotopes undergo spontaneous disintegration until they reach a more stable state 

and form an atom of another element. Disintegration is accompanied by emission of three 

types of radiations, α, β and γ. Consequently the abundance of a radioactive tracer is  
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measured by a scintillation counter. It is expressed as decay or disintegrations per minute 

(dpm)/per unit mass and is called Specific Activity (SA). Even if the use of radioactive 

isotope as tracers is a convenient method for determining its abundance in biological 

samples, the major limitation for studies in human subjects is the health risk associated with 

the process of disintegration. Ionizing radiations are accompanied by the transfer of large 

amounts of energy which can disrupt molecular function, and lead to cell death and tissue 

damage depending on the altered functions. 

 

Stable isotopes present the advantage of not undergoing spontaneous decay. Their most 

obvious advantage is probably that they are safe for human use, presenting almost no 

associated risk when used in tracer amounts. An isotopic effect, leading to a different 

metabolism of the tracee relative to the tracer, has sometimes been reported. However 

studies in vivo have provided little evidence, and these effects should be minimized. Stable 

isotope also present the advantage that there exists a stable isotope for almost every element 

such as 15N, 18O, 18C (91). Actually, recent advances are supporting the use of labelled stable 

isotopes to investigate the effects of diet on nutrients metabolism (92).  

 

Interestingly the use of stable isotopes as metabolic tracers preceded the use of radioactive 

isotopes by almost 20 years. In the early 1930s, Schoenheimer and Rittenberger at the 

University of Columbia, pioneered research in metabolism using the isotope tracer technique 

and stable isotopes, such as deuterium to trace fat metabolism (93) and 15N-glycine to 

demonstrate the dynamic nature of the protein pool (94). In the 1950s-1960s, with the advent 

of scintillation counting, most metabolic studies used radioactive tracers to determine the 

kinetics of substrate metabolism and metabolic rates. Since the 1970s the use of stable 

isotopes regained interest; the wide availability of tracers labelled with stable isotopes, the 

improvement of sample analysis with the advent of the quadruple gas chromatography mass 

spectrometer (GCMS) and an increase in awareness of human safety during clinical 

investigations stimulated the use of stable isotopes. 
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2.2 GAS CHROMATOGRAPHY – MASS SPECTROMETRY (GC-MS) (95, 96) 

 

2.2.1 GC-MS principles 

 

This is a method that combines the features of gas-liquid chromatography and mass 

spectrometry to identify different substances within a test sample. It is composed of two 

major building blocks; the gas-chromatograph (GC) and the mass spectrometer (MS) (Figure 

4). In these experiments, isotopic enrichment analysis are carried out by a Hewlett-Packard 

(HP) 5890 Series II Gas – Chromatograph interfaced with a (HP) 5971 quadrupole mass 

spectrometer, Palo Alto, CA, USA).  

 

 

Fig.4 Schematic diagram of the components of GCMS system 

 

The gas-chromatograph provides a simple, rapid and reproducible method for high-

resolution separation of volatile compounds. Organic compounds must generally be 

converted to derivatives that are thermally stable, chemically inert, and volatile at 

temperature below 300°C. Derivatization is achieved by masking polar groups (N-H/O-H) 

and replacing the hydrogen atoms by acylation, alkylation or sylation. The gas-

chromatograph contains a capillary column which allows elution and separation of 

compounds as a function of their mass and chemical properties. Gas chromatography is a 

microanalytical, very sensitive, method, which requires only small volumes of samples and 

allows detection even at concentrations of 10-12.  

 

The mass spectrometer refines this preliminary fragmentation by splitting each molecule into 

ionized fragments in the ionization chamber, and detecting these fragments using their mass 

to charge ratio (m/z). Detection of an ionized molecule relies on the principle that its  
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particular path can be controlled by electric and magnetic field in a mass-dependant fashion, 

which occurs in the mass analyser. Several methods can be used to ionize the molecules, 

among which electron impact and chemical ionization exist. Electron impact ionization 

consists of bombarding the molecules with free electrons emitted from a filament. 

Consequently, the molecules are fragmented in a typical, characteristic and reproducible 

spectrum of smaller molecules, leading to a spectrum of m/z ratios. This is called “hard 

ionization” in contrast to “soft ionization” which results from molecular collision with an 

introduced gas. Chemical ionization is achieved by introducing a reagent gas, usually 

methane or ammonia, into the ionization chamber which reacts with and ionizes the 

molecule. 

 

Detection of ionized particles occurs by measuring their acceleration in the mass analyser. 

There are a variety of mass analyzers, but metabolic studies frequently employ the 

quadrupole. The quadrupole mass filter consists of four parallel circular rods, electrically 

connected in pairs, which radiate an electrodynamics field when exposed to an alternating 

current. Selectivity of the ionic masses is reached by modulating the amplitude of the 

quadrupole voltage. A range of ionic masses or a single selected ion mass resonates through 

the filter while all other masses are pumped away. The ions that enter the quadrupole field 

drift through the field axis and are subject to oscillations with a frequency that is related to 

the mass charge ratio of the particles reaching the collector. As a linear brushing of voltage is 

imposed, masses are detected as a function of crescent values of m/z ratio.  

 

Detection of ions occurs through the monitoring of the electrical current that it is generated 

in proportion to the abundance of each ion. For computerization, it is amplified by an 

electron multiplier which is then converted into a logical signal that is interpreted by the 

computer. 

 

In the case of metabolic tracer studies an accurate measure of isotopic ratio is to monitor only 

selected peaks associated with a specific substance, which is called selective ion monitoring 

(SIM). 6,6-2H-penta-acetyl glucose was analyzed with a gas chromatograph-mass 

spectrometer (Hewlett Packard, Palo Alto, CA) in the chemical ionization mode with 

selective monitoring of m/z 331 and 333. 1,1,2,3,3-2H5 glycerol enrichments were measured 

on acetylated derivatives with selective ion monitoring at 164.1 and 159 m/z.  
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 2.2.2 Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) (95, 96) 

 

Isotope Ratio Mass Spectroscopy (IRMS) is a specialization of mass spectrometry 

methodology, in which a pyrolysis chamber is inserted between the GC outlet and the mass 

spectrometer inlet. IRMS methods are used to measure the relative abundance of an isotope 

in gaseous form such as 13CO2 versus automatically equilibrated reference CO2 and express 

the enrichment in Atom Percent Excess. To measure the isotopic enrichment in a solid or 

liquid, molecules, separated by GC, are first combusted and heat-cut in the pyrolysis 

chamber and directed then into the ionization chamber. Ionized gas is accelerated in a flight 

tube and isotopes separate to their mass into Faraday collectors. The current of each ion 

beam is then measured using a 'Faraday' detector or multiplier detector. Compared to 

GCMS, which allows detection of almost limitless variety of samples, in IRMS analysis of 

pure gas is limited and sample preparation, for any compound other than pure gas, is more 

tedious, however it reaches a greater precision (1 x 10-5). 
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2.3 TRACERS METHODOLOGY APPLIED TO THIS WORK  

 

Only stable isotopes were used in the present studies to assess metabolism in vivo. Among the 

different ways of tracing metabolism, we either measured the rate of incorporation of the 

tracer into another compound, assessed its rate of appearance into plasma by the “tracer 

dilution” technique, or sometimes both while using the same tracers. We also evaluated 

oxidation of 13C-labelled substrates by the recovery of 13CO2 in expired gas. 

 

2.3.1 Primed continuous infusion of tracers and oral single dose ingestion 

 

Some tracers were constantly infused throughout the study, after a preliminary bolus 

injection, whereas others were administrated orally as a single dose. All tracers were 

furnished by Cambridge Isotope Laboratories, Cambridge, MA. The isotopes were dissolved 

in isotonic saline and subsequently sterilized and tested for sterility and lack of pyrogenicity. 

 

6,6-2H2-glucose: [HOCD2(CHOH)4CHO] 

 

6,6-2H2-glucose was infused during most of the studies. In the two-step clamp investigations, 

it was used to assess endogenous glucose production in the fasting state (bolus: 2mg/kg; 

followed by a  continuous infusion of 20 µg/kg/min) for 120 minutes, hepatic insulin 

sensitivity in the first step (insulin infusion: 0.3 mU/kg/min; 6,6 2H2-glucose 40 µg/kg/min) 

for 90 minutes and whole-body glucose uptake/insulin sensitivity in the second step (insulin 

infusion of 1.0 mU/kg/min; 6,6 2H2-glucose 80 µg/kg/min) for 90 minutes. 

In postprandial studies it was infused continuously throughout the study (bolus 2 mg/kg, 

continuous infusion 40 µg/kg/min), at baseline to assess endogenous glucose production 

(EGP), and during the postprandial phase to assess effects of proteins on glucose turnover, 

rate of appearance (Ra) and disappearance (Rd). 
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1,1,2,3,3- 2H5-glycerol: [(HOCD2)2CDOH] 

 

2H5-glycerol was used in postprandial studies to assess the effects of protein on adipose 

tissue lipolysis according to the dilution principle. The bolus injection was 1 µmol/kg and 

the continuous infusion 0.1 µmol/kg/min. 

 

We also attempted to measure the incorporation of the tracer in TG-VLDL, to trace VLDL 

synthesis and kinetics, however results were inconclusive as sample collections were to 

scarce to model VLDL-TG secretion (97). The methodology was improved in later protocols 

to trace VLDL-TG synthesis. 

 

2.3.2 Oral administration 

 

Simultaneously, we wanted to trace the effects of chronic and/or acute intakes of protein on 

exogenous fat susceptible to affect hepatic lipid metabolism during their metabolism. 

 

1,1,1- 13C3-triolein: [C3C54H104O6] 

The meal was composed of 10 % long chain triglycerides (LCT, mainly as olive oil) labelled 

with 1% 13C-trioleate. Dietary LCT are first delivered to the periphery by chylomicrons and 

thereafter to the liver as captation of remnant-chylomicrons. The rate of appearance of 13CO2 

in expired gas was also assessed to evaluate whole body lipid oxidation. 
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2.4 PRINCIPLES AND CALCULATIONS  

 

2.4.1 Primed continuous infusion 

 

Calculations differ according to whether the organism is studied in steady state conditions or 

not. In steady state conditions, meaning when the concentrations of the tracer and tracee do 

not vary over the time, the dilution of the tracer can be used to determine the rate of 

appearance (Ra) of the tracee in the organism, like endogenous glucose production (EGP). 

As, in steady state conditions, tracee concentrations do not change over time, the Ra of the 

substrate equals its rate of disappearance (Rd), then EGP equals glucose uptake by the 

tissues. 

 

In the 2-step hyperinsulinemic euglycemic clamp studies, it is assumed that steady-state 

equilibrium is reached at each step after one hour of infusion. Then the Ra and Rd of glucose 

metabolism were estimated during the 30 last minutes. The equation used (98) was based on 

Steele’s development (99), and reported as follow in Wolfe’s book (95). 

 

At the isotopic equilibrium, the relative concentration of isotope is equal in the 

infusion mixture and the extracellular fluid (ECF).  Thus, 

[tracer/ (tracer+tracee)] INFUSATE = [tracer/(tracer+tracee)]ECF 

 

Therefore, when multiplicated by the infusion rate, 

[F/Ra] = [tracer/(tracer+tracee)]ECF   

where IE = [tracer/(tracer+tracee)]ECF *100   or IE = [m /((m) + (m+1))] 

Thus ,  

 [F/Ra]  = IE *0.1 

 

Solving for Ra yields, 

Ra  = F/IE *0.1 

 

In order to account for the contribution of the isotope to total Ra, the Ra of unlabeled 

glucose is calculated by subtracting the rate of isotope infusion from the total Ra.  
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Therfore, 

Ra  = [F/IE *0.1]-F 

 

In order to compare between subjects, Ra is expressed in relation to body weight, thus 

Ra  = [[F/IE *0.1]-F]/w 

 

At the isotopic equilibrium:  Ra = Rd = GTo 

Before glucose perfusion:    Ra = GTo = EGP 

During the clamp:                Ra = GTo 

     EGP= GTo – FGcor 

 

where Ra, Rate of appearance (mg/kg/min), Rd, Rate of disappearance (mg/kg/min), GTo, 

Glucose Turnover (mg/kg/min), F, infusion rate of 6,6-2H2 – glucose (mg/min), IE, Isotopic 

Enrichment, w, body weight (kg), FGcor, is glucose infusion rate corrected for the variation 

in plasma glucose concentration (mg/kg/min). 

 

Most of our studies investigated metabolism in non-steady state conditions, looking at the 

postprandial response of metabolites. Consequently the rate of appearance can be calculated 

from the dilution of the tracer at any given time, corrected for changes in tracer dilution per 

unit of time and similarly the Rd is calculated from the Ra, corrected for changes in tracee 

dilution per unit of time. The equations used were adapted from the non-steady state 

equation of Steele based on the single-pool kinetic model (99). The use of non-steady state 

conditions is based on various assumptions regarding the distribution and volume of the 

metabolite pools of which their adequacy in reflecting the complexity of substrate kinetics 

has been extensively questioned (100). It has been admitted that even if the single-pool 

model is imperfect and fails to accurately measure kinetics, it can be used to provide 

reasonable approximations when the equations are corrected to account for the non-ideal 

natural comportment of the substrates. Therefore Steele advanced the concept of a rapidly 

mixing pool that was a fraction (p) of the total extracellular pool of the substrate of interest 

(V). pV values are defined as functions of the variations of Ra and substrate concentrations 

over time. Again, many studies were performed in an attempt to find a single value that 

enables a reasonable approximation of the true value in a variety of circumstances (101). 
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Although the model is imperfect, there has not yet been any other approach that is 

unequivocally better. 

Therefore the Steele’s equation for non-steady state conditions is still widely used and 

generally accepted (101, 102). 

 

Ra = [F-pV [(C1+ C2)/2][(IE2 – IE1)/(t2-t1)]]/[(IE2 + IE1)/2] 

Rd = Ra -[pV [(C2- C1)/(t2-t1)]]   

 

where Ra is the rate of appearance (mg/kg/min), F is the specific isotope infusion rate 

(mg/kg/min), p is the pool fraction, V is the volume of distribution (l/kg), C1 and C2 are 

tracee concentrations at sampling t1 and t2 and IE1 and IE2 are the excess isotopic enrichments 

of tracee at time t1 and t2.  

The pV value chosen for Ra glucose was of 0.150 (l/kg) with a pool fraction (p) of 0.75 and a 

volume of distribution (V) of 0.2 l/kg (101) (103). The volume of distribution used for Ra 

glycerol was 0.23 l/kg (104) (10). 

 

2.4.2 Oral single dose administration  

 

In postprandial studies, meals were labelled with 13C, such as 13C-trioleate. It was thus 

possible to assess the rate of oxidation of the labelled substrate by measuring total and 

labelled carbon dioxide production but also to follow semi-quantitatively pathways of its 

metabolism by measuring plasma concentrations of newly synthesised 13C-substrates. 

Exogenous substrate oxidation was calculated with reference to the equation used for 

quantifying the oxidation of a triglyceride load as described by Binnert et al (105).  
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2.5 INDIRECT CALORIMETRY 

 

2.5.1 Principles 

 

Indirect calorimetry is a widely used technique to assess energy expenditure and substrate 

oxidation in vivo. The fundamental principle is based on the measurement of whole-body 

oxygen consumption and carbon dioxide production over given periods of time. It is based 

on the recognition that each of the three major macronutrients, when oxidized, reacts with a 

known amount of oxygen to produce a know amount of carbon dioxide and water since 

under normal conditions neither oxygen nor carbon dioxide are stored. Their measurement 

represents all of the oxidative process occurring in the body. When the specific respiratory 

quotient of the three macronutrients (carbohydrates, lipids and proteins) and the rate of 

protein oxidation, estimated from the nitrogen-end product (urine urea) is known, it is 

possible to calculate the net oxidation rate of the three substrates individually as well as total 

energy expenditure (106).  

 

An important point to underline is that indirect calorimetry represents only net but not 

actual rates of substrates oxidation. It estimates the net disappearance rate of a substrate 

regardless of the metabolic interconversions that the substrate may undergo before its 

disappearance from its metabolic pool (107). For example, fatty acid oxidation, oxidation of 

ketone bodies and oxidation of glucose formed from glycerol, are all included in net lipid 

oxidation, while oxidation of fatty acids produced from amino acids or from glucose 

compute for net protein and net glucose oxidation respectively (107) (108). 

 

Calculation of net substrate oxidation is done according to the work of Livesey and Elia, in 

which they paid particular attention to the effects of different composition of conventional 

foods on the accuracy of the equations of indirect calorimetry (109). They assessed to what 

extent both errors in the measurement of VO2 and VCO2 and in the assumptions about 

carbohydrate, fat and protein oxidation, may affect results. They concluded that the accuracy 

should be considered to be at the very best within 5% of the true value and that considerably 

larger errors are expected under special circumstances. 

. . 
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The equations used for substrates metabolism were  as follow (108) 

 

Glucose oxidation (mg/min): (4.650 * VCO2)-(3.311 VO2) - 3.581*N 

Lipid oxidation (mg/min):  (1.720 * VO2)-(1.720* VCO2) - 1.776*N 

Protein oxidation (mg/min):  6.25 * N     

 

where VO2  is oxygen consumption (ml/min), VCO2  is carbon dioxide production (ml/min), 

N is urinary nitrogen excretion (mg/min) over the measurement period, and 6.25 is the 

conversion factor for nitrogen excretion to protein oxidation.   

          

Calculation of energy expenditure relies on the use of Weir Formula (110) 

 

EE (kcal/min): [[[(3.941* VO2)+(1.106* VCO2)]*1.44]-(2.17* N)]/1440 

 

where VO2  is oxygen consumption (ml/min), VCO2  is carbon dioxide production (ml/min), 

N is the urinary nitrogen excretion (g/day) among period of gas analysis, and 1440 is the 

number of minutes per day.  

 

In case where high-protein meals, diets or amino acids are administered the urea pool size 

will vary during the measurements and correction factors have to be introduced. The actual 

metabolic nitrogen production rate is equal to urinary urea excretion to which is added the 

change in urea nitrogen pool size (111).  

 

Protein oxidation was assessed as follow 

 

Protein oxidation (mg/min)= 6.25 * [N + [((Ut2-Ut1)*28*0.6* w)/(t2-t1)]]  (111) 

 

where N is the urinary nitrogen excretion (mg/min) during the period of gas analysis, Ut2-

Ut1 are the plasma concentrations of urea (mmol/l) respectively at time t1 and t2, w is body 

weight (kg), 0.6 *w is the urea distribution volume and 28 is computed to the molecular 

weight of the 2 molecules of nitrogen present in urea. 

 

. . 

. . 

. . 

. . 

. . 
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Net protein oxidation was adjusted by taking into account that nitrogen estimated from 

urinary urea represents almost 90 % of protein catabolism in reference to Boden et al (112) 

and 85% in Study II and III in reference to Minehira et al (113). Protein oxidation was 

adjusted as follow  

Study I: Protein oxidation = 6.25 * (N/90*100)  

Study II/III: Protein oxidation = 6.25 * (N/85*100)  

 

2.5.2 Pitfalls in indirect calorimetry 

 

Calculations of indirect calorimetry are based on the assumption that respiratory oxygen and 

carbon dioxide exchanges are equal to what happens at the metabolic and cellular levels, 

meaning to the rate of metabolic oxygen utilization and carbon dioxide productions. This 

implies that any perturbation of this “steady-state” condition will result in erroneous results. 

This assumption is correct for oxygen consumption in almost all circumstances but is more 

critical for carbon dioxide, due to the large size of the endogenous CO2/bicarbonate pool, 

involved in acid-base buffering. Hyperventilation leads to an overestimation of carbon 

dioxide production, which will have implications on the calculation substrate oxidation and 

lead to an overestimation of carbohydrate oxidation over a short period of time. However 

this pitfall can be resolved if measurements are made long enough, as the period of 

hyperventilation will be followed by one of hypoventilation and substrate oxidation 

calculated throughout the whole period of unstable measurements will be representative of 

“true” substrate oxidation. 
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2.6 NUCLEAR MAGETIC RESONANCE SPECTROSCOPY 

 

The objective of in vivo NMR spectroscopy is to identify and quantify important chemicals in 

various body tissues.  

In this work this technology was used to assess the effects of different diets over periods of 4 

to 6 days on the accumulation of fat in the liver, which is called intrahepatocellular lipids 

(IHCL). 

 

Briefly the principle of this technology rely on the property of stable nuclides, those which 

contain odd numbers of protons and/or neutrons to have a magnetic moment and angular 

momentum, i.e. a non zero spin. The most commonly studied nuclei used for in vivo NMR 

spectroscopy are protons (1H), sodium (23Na) or phosphorus (31P). The advantages of 1H 

spectroscopy are that it is easier to perform, it is more widely available, and it provides a 

much higher signal-to-noise ratio than sodium or phosphorus.  

 

Principles of NMR usually involve two sequential steps which lead to the emission of 

specific signals from a molecule in a tissue or metabolites. The first property relies on the 

alignment (polarization) of the magnetic nuclear spins in an applied, constant magnetic field 

and the second on the fact that this alignment is disturbed by applying an electro-magnetic 

field, usually induced by a radio frequency (RF) pulse. The required perturbing frequency is 

dependent upon the static magnetic field and the nuclei of observation. Frequencies are 

specific for metabolites and depend on the configuration of protons within the chemical. 

Consequently metabolites are first identified by their frequencies and are expressed as shift 

in frequency (in parts per million [ppm]) relative to a standard usually water which is 

abundant in tissues. In other words chemical are identified by comparing their frequency 

location/shift to that of water (see Figure 5).  
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Fig 5: This diagram shows metabolites frequency relative to water. The peaks in 1H-NMR 
spectra correspond to different metabolites and are identified primarily by their frequencies.  
The dominant peaks in liver are those of water and lipids. (114). 
 

The position of the 1H-NMR peak on the x-axis (frequency) is used to characterize the actual 

metabolites or chemicals, whereas the y-axis (signal high/intensity) and the peak line width 

give additional chemical information used to determine the “area” and quantify  the amount 

of the observed molecule in the sampled voxel of tissue. 

Because there is no absolute scale for the y-axis an internal denominator or ratio is necessary 

for objective quantification of the metabolite concentrations. Also calculation of the area 

under the spectra is not straightforward and depends on multiple instrumental and 

biophysical parameters (114). 

 

In magnetic resonance imaging, the same frequency variation is first Fourier transformed 

and then used for spatial localization of the signal to a voxel to create a cross-sectional image. 

It is then possible to quantify the volume of a specific organ for example. 

In the present work, all 1H-MRS data were performed by our collaborators in Bern, in the 

research group of Ch. Boesch, Department of Clinical Research, MR Spectroscopy and 

Methodology, University Bern, Switzerland. More methodological information can be 

obtained in the following papers (115-117). 
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3.1 Study I, why? 

 

In the 1990’s much research focused on the metabolic effects of fructose. Indeed the arrival of 

high fructose corn syrup (HFCS) on the market, drastically increased consumption of total 

sugar and fructose also, which was observed to coincide with an increase incidence of 

obesity and insulin resistance.  

Our research group has been particularly interested in understanding the development of 

insulin resistance with fructose overfeeding, which was assessed by the gold standard 

method recognized for measuring insulin sensitivity the “hyperinsulinemic euglycemic 

clamp”. These studies demonstrated that a reduction in insulin sensitivity was observed only 

when large amounts of fructose was supplemented to a standard maintenance diet (3g 

fructose/kg body weight) during 7-day (118). At the same time, and with the development 

of 1H-NMR technology, research began to pay attention to the correlation between ectopic fat 

depot (IHCL) in the liver, obesity, dietary pattern, inactivity and insulin resistance. In our 

group, Lê KA had particularly investigated this aspect in her work and observed that high 

fructose overfeeding increased de novo lipogenesis and IHCL in healthy subjects and 

moreover in subjects with a family history of Type II diabetes (116, 118). However recently, 

one of our last studies demonstrated that short-term overconsumption of glucose increased 

de novo lipogenesis to the same extent as that of fructose (119). 

 

Beside high fructose/carbohydrate intakes, hypercaloric high-fat diets may also play a role 

in the development of NAFLD and insulin resistance. In rodents, high-fat feeding is now 

currently used as an intervention for producing models of hepatosteatosis in rodents. In 

humans, epidemiological data found correlations between high-fat diets, obesity insulin 

resistance and NAFLD, but interventional studies were lacking (120).   

Consequently we assessed the effects of short term, 4-day, hypercaloric high-fat diet (+30% 

energy as saturated fat) on ectopic fat depots in the liver and development of insulin 

resistance in ten healthy young men. We were inspired by the work of Samuel et al (121) who 

demonstrated that short-term high-fat feeding (3 days) in rats was sufficient to specifically 

induce accumulation of triglycerides in the liver in conjunction with the development of 

hepatic insulin resistance. Samuel also demonstrated that increasing energy expenditure and 

fat oxidation through mitochondrial uncoupling by supplementation of 2,4-Dinitrophenol 
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(16mg/kg/day) counteracted the effect of high fat feeding by preventing ectopic fat depot 

and insulin resistance. Therefore we decided to try to reproduce the effects of 2,4-

Dinitrophenol by supplementing the high-fat diet with 1.5g protein/kg body weight, since 

protein intake is known beside to increase postprandial thermogenesis.  

The following study was a randomized controlled trial, in which insulin sensitivity and 

IHCL were assessed after three different controlled diets; a reference isocaloric controlled 

diet (C), a high-fat diet (HF) and a high-fat high-protein diet (HFHP). 

Our results partly reproduced those of Samuel, since high-protein intake was able to prevent 

an increase in IHCL, but we failed to demonstrate a reduction in insulin sensitivity. 

 

Personal contribution 

I was involved in the design and development of the protocol. I carried out the recruitment 

of subjects, the food supplementation to all volunteers and the clinical trial with the help and 

supervision of D.Faeh and the research nurses from the Cardiomet Clinical Investigation 

Center (Cardiomet CIC). I conducted data analysis, and received supervision and help from 

L.Tappy for the writing and revision of the manuscript. 
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ABSTRACT 

 

Background 

High-sugar and fat intakes are known to increase intrahepatocellular lipids (IHCL) and to 

cause insulin resistance. High protein intake may facilitate weight loss and improve glucose 

homeostasis in insulin-resistant patients, but its effects on IHCL remain unknown.  

 

Objective 

We aim to assess the effect of high-protein intake on high-fat diet-induced IHCL 

accumulation and insulin sensitivity in healthy young males 

 

Design 

Ten volunteers were studied in a cross-over design after 4 days on either hypercaloric high-

fat diet (HF), hypercaloric high-fat high-protein (HFHP) diet, or control, isocaloric diet (C). 

IHCL were measured by 1H-MR spectroscopy, fasting metabolism by indirect calorimetry, 

insulin sensitivity by hyperinsulinemic-euglycemic clamp, plasma bile acids (BAs) 

concentrations by ELISA and GC-MS and expression of key lipogenic genes was assessed in 

subcutaneous adipose tissue biopsies. 

 

Results 

HF increased IHCL by 90 ± 26% and plasma tissue-plasminogen-activator-inhibitor-1 (tPAI-

1) by 54 ± 11% (both, p < 0.02). It inhibited plasma free fatty acids by 26 ± 11% and β-

hydroxybutyrate by 61 ± 27% (both, p < 0.05). HFHP blunted the increase in IHCL and 

normalized plasma β-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not 

altered while the expression of SREBP-1c and key lipogenic genes were increased by 

HF/HFHP (p < 0.02). BAs concentrations remained unchanged after HF, but increased by 50 

± 24 % after HFHP (p = 0.14). 

 

Conclusions 

Proteins significantly blunted the effects of a high-fat diet on IHCL and tPAI-1 through 

effects presumably exerted at the level of the liver. Protein-induced increase in BAs 

concentrations may be involved. 
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INTRODUCTION 

 

In animals (122) and healthy humans (116) high-fat or high-fructose diets lead to the 

development of several features of the metabolic syndrome, such as increased plasma 

triglycerides, hepatic and extrahepatic insulin resistance, and liver steatosis. In contrast, 

increasing protein intake has been suggested to exert beneficial metabolic effects by 

promoting weight loss and improving glucose homeostasis in insulin-resistant patients (66, 

123). The effects of dietary protein on hepatic lipids remain however unknown. The aim of 

this study was therefore to investigate the potential beneficial effects of a high-protein diet 

on hepatic steatosis induced by a high-fat diet. For this purpose we monitored liver fat 

(intrahepatocellular lipid: IHCL) concentrations in healthy subjects consuming a control, 

balanced isocaloric diet (C), or hypercaloric diets with a high-fat (HF) or high-fat and high-

protein (HFHP) content. Since adipose tissue metabolism may secondarily impact on hepatic 

lipid content, the effects of these diets on subcutaneous adipose tissue gene expression were 

also studied. In addition, bile acids (BAs) have been recently recognized as important 

regulators of hepatic lipid metabolism, and possibly of total energy expenditure (124-126). 

Therefore, circulating BAs concentrations were also monitored.  
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SUBJECTS AND METHODS 

 

Participants 

Two groups of healthy male volunteers were included in this study. Ten volunteers, aged 24 

± 1 y, and with a mean BMI of 22.4 ± 0.6 kg/m2, took part in the main protocol, and were 

studied in a cross-over design after an isocaloric diet, or a hypercaloric high-fat diet, or a 

hypercaloric high-fat, high-protein diet. Another group of 6 volunteers, aged 25 ± 1 y were 

studied in a complementary cross-over study after a high-fat high-cholesterol (HF-high chol) 

and a high-fat low-cholesterol diet (HF-low chol). All subjects were sedentary, non-smokers 

and had no family history of diabetes.  The experimental protocol was approved by the 

Ethical Committee of Lausanne University School of Medicine. All participants provided 

written informed consent at inclusion. 

 

Study design 

For the main study (effects of high fat and high fat high protein diets), each of the 10 subject 

was studied on three occasions in a cross-over design. They received in randomized order 

during four days either a standard isocaloric control diet (C) (calculated using the equation 

of Harris-Benedict (127) multiplied by a Physical Activity coefficient of 1.4), or a hypercaloric 

high-fat diet (HF) or a hypercaloric high-fat high-protein diet (HFHP). The diets were 

designed to provide the same total carbohydrate intake for all three diets, and the same fat 

intake for HF and HFHP (Table 1). 
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In HF and HFHP, the extra fat intake was provided mainly associated with dairy products 

like (butter, milk and cheese) and the extra protein as eggs, ham, salami and tuna. The study 

was performed on an out-patient basis, and subjects received all their food as pre-packed 

food items with instruction on how and when to prepare and consume them, and were 

instructed not to consume any other food or drinks.  Experimental periods were separated 

by a washout period of at least two weeks. 

 

At the end of the fourth day of each period, IHCL concentrations were measured by proton 

magnetic resonance spectroscopy (1H-MRS). On the morning of the fifth day, an adipose 

tissue biopsy was obtained by needle aspiration from the subcutaneous periumbilical 

adipose tissue under local anaesthesia. Thereafter, an infusion of 6,6 2H2-glucose (Cambridge 

Isotope Laboratories, Cambridge, MA; bolus: 2mg/kg; continuous: 20 µg/kg/min) was 

started. Blood samples were collected at baseline and after 90, 105 and 120 min to measure 

concentrations of basal hormones, substrates and 6,6 2H2-glucose enrichment, and at time 60 

to measure plasma lipids, aspartate aminotransferase (AST) and alanine aminotransferase 

(ALT). After this 120-min baseline measurement period, a 2-step hyperinsulinemic-

euglycemic clamp (0.3 mU/kg/min from 120 to 210 min, then 1.0 mU/kg/min from 210 to 

300 min) with variable 6,6 2H2 glucose infusion was performed, and plasma hormone and 

substrate concentrations were measured at 30 min intervals. Substrate oxidation and energy 

expenditure were continuously measured throughout the test by open circuit indirect 

calorimetry (Deltatrac II, Datex Instrument, Helsinki, Finland) using the equations of Livesey 

and Elia (109). Net protein oxidation was calculated from urinary urea nitrogen excretion 

rate, assuming that urea excretion accounted for 90% total urinary nitrogen excretion (112). 

Urine collected overnight was used for basal protein oxidation, while urine collected at the 

end of the clamp was used for protein oxidation during hyperinsulinemia. 

Since the HFHP diet was considerably enriched in cholesterol compared to the other diets 

due to consumption of eggs and meat-based products, a second complementary cross-over 

study was performed in 6 volunteers. In this study, subjects received during 4 days either a 

high fat-low cholesterol (HF-low chol) diet or a high fat-high cholesterol (HF-high chol) diet. 

The high fat supplementation (+ 30% total energy as fat) was similar to that used in the 

previous study and a high cholesterol intake was ensured by adding 30 g egg yolk/day (ca 

300 mg cholesterol/day). At the end of this period, variations in body weight were assessed, 

IHCL were measured by proton magnetic resonance spectroscopy (1H-MRS), and a fasting  
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blood sample was obtained for measurement of plasma glucose, FFA, triglycerides, 

cholesterol, HDL cholesterol bile acids, AST and ALT. 

 

Analytical procedures 

Plasma metabolites (glucose, free fatty acids, triglycerides, ß-hydroxybutyrate) and insulin 

were determined by classical enzymatic methods and radioimmunoassay respectively, as 

previously reported (116). Adiponectin, tPAI-1, TNF-α, IL-1, IL-6 were analysed by 

immunoassay using a multiplex assay (LINCO Research, St Charles, MO, USA). Total 

plasma bile acid concentrations were measured by Elisa using a kit from (Randox 

Laboratories, Crumlin, Co Antrim, UK). Individual bile acids (BAs) concentrations were 

measured by gas chromatography-mass spectroscopy (GC-MS) (128). Plasma isotopic 

enrichment of 6,6 2H2-glucose was calculated by GC-MS, as previously described (129). Total 

glucose turnover was calculated using Steele’s equations for steady state conditions (99). 

Endogenous glucose production (EGP) was calculated as (total glucose turnover)-(exogenous 

glucose infusion rate). 

 

1H Magnetic resonance spectroscopy 

For the main study (effects of HF and HFHP)  1H-MRS examinations were performed on a 

clinical 1.5 T MR scanner (Signa; General Electric Medical Systems, Waukesha WI, USA) 

using a flexible receive RF coil in combination with the body transmit coil. Data acquisition 

and processing was similar to that described in reference (116). In short: single-voxel 1H-MR 

spectra were acquired with an optimized point-resolved spectroscopy (PRESS) sequence 

(echo time 20 ms, 2-kHz bandwidth, 1024 points). On the basis of coronal (spoiled gradient 

recalled echo sequence, 60° flip angle, 1.5 ms echo time, 0.11 s repetition time, 8 mm slice 

thickness, 2.5 mm gap between slices, 48 cm field of view, 512 x 192 matrix size) and axial 

(fast spin echo sequence, 9 ms echo time, 4 s repetition time, 4 mm slice thickness, 1 mm gap 

between slices, 40 cm field of view, 512 x 128 matrix size) MR images obtained under breath 

hold in expiration, a volume of interest of 55 cm3 was placed in a lateral area of the liver and 

repositioned at the same location in follow-up examinations. Positioning of the receive coil 

made use of external anatomical landmarks. Thirty-two acquisitions with water pre-

saturation were recorded and stored individually for each spectrum. The repetition time (5 – 

6 s) was adjusted such that the subjects could breathe normally and acquisitions could occur  
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during brief breathing arrests in expiration (130). Effects of residual motion were found to be 

evidenced by small shifts in resonance frequency. They were accounted for by aligning all 

individual scans that fell into a frequency window of 12 Hz and by discarding those 

acquisitions with a lipid peak that was shifted by more than 6 Hz. Spectra were processed, 

fitted, and quantitated similarly to earlier descriptions (116) using prior knowledge fitting 

(Figure 1). Quantitation to obtain IHCL in units of mmol/kg was based on the median water 

signal from 8 separate acquisitions obtained without water suppression, a T2 of 50 ms for this 

water signal (as determined earlier), and a liver water content that was experimentally 

determined for each investigation, using proton density weighted MR images acquired with 

the body coil in breath hold and with a water reference standard placed on the subjects 

breast (spoiled gradient recalled echo sequence, single slice of 10 mm, 12°flip angle, 1.8 ms 

echo time, 200 ms repetition time, 21 s total scan time).  

For the complementary study on the influence of cholesterol intake, all MRS measurements 

were performed on a 3T MR scanner (Trio, Siemens, Erlangen, Germany) with slightly 

adapted measurement conditions: localization with a stimulated echo sequence (echo time 

20 ms, repetition time 5 s) without water presaturation. Three spectra were recorded in each 

session. Data processing and model fitting was performed with jMRUI (131) including 

realignment of spectra, elimination of the water peak (Henkel Lancosz singular value 

decomposition using 3 components) for the determination of the lipid peak areas and peak 

area fitting using prior knowledge parameter relations. T2 relaxation was corrected with 

values taken from the literature. IHCL values obtained at 3T with somewhat modified 

methodology are probably systematically somewhat different from those obtained in the 

main study at 1.5 T. However this influence is expected to be small and does not affect the 

conclusions of the study because both parts of the MR investigations were self-contained. 
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FIGURE 1. Localized proton magnetic resonance spectroscopy spectra of liver showing data 
quality (A) and overall results (B) for intrahepatocellular lipids (IHCL). The 3 rows show the 
spectra for the 3 dietary regimens (C, control; HF, high-fat; HFHP, high-fat, high-protein), 
Panel A shows data from a single subject, and panel B shows the averaged spectra from all 
subjects (n = 10). Trimethylammonium (TMA) compounds were unaffected by diet. The 
dashed line indicates the peak of methyl protons used for quantitation. 
 

Gene expression in adipose tissue 

The real-time quantitative PCR assay for mRNA has been previously described and validated 

(132). Hypoxanthine phosphoribosyltransferase (HPRT) mRNA was measured by real-time 

quantitative PCR as a reference gene and the mRNA level of the genes of interest was 

expressed as a percentage ratio referred to the expression of HPRT. Gene expression of 

selected genes involved in lipid, carbohydrate and energy metabolism were measured. The 

complete list is shown in Table 2. 
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Statistical analysis 

All data were expressed as mean ± standard errors of the mean (SEM). The non parametric 

Wilcoxon signed-paired rank test with Bonferroni’s correction was used to test the null 

hypothesis between all three paired dietary conditions (C, HF, HFHP). A non parametric 

one-way analysis of variance was performed to assess differences between HF-high chol and 

HF- low chol). SEM of percentage changes from referred values was calculated as the mean 

of the relative SEM to mean value for both variables. The software used was STATA version 

9.1 (Stata Corp, College Station, TX, USA). 
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RESULTS 

 

Effects of high fat and high fat high protein diets 

All three diets were well tolerated, with neither reported problems of compliance to the diets 

nor side effects. Compliance was verified by interview, and a 49 ± 8% increase in net protein 

oxidation corroborated that compliance to HFHP was good.  

 

Substrates, intrahepatocellular lipids and liver enzymes  

Compared to C, HF did not change substrate concentrations, except for a 26  ± 11 % 

reduction of FFA (p < 0.05), a 61 ± 27 % reduction in ßOHB (p < 0.05) and a 22 ± 14% 

reduction in plasma VLDL-TG (p < 0.05) (Figure 2). HFHP suppressed FFA to the same 

extent as HF (p < 0.02), but normalized plasma VLDL-TG and ßOHB concentrations. HF 

nearly doubled IHCL concentrations (p < 0.02). Compared to HF, HFHP led to a significant 

reduction of IHCL by 22 ± 32 % (p < 0.02) (Figure 2). AST and ALT were not altered by either 

diet except for a 28 ± 15 % increase of ALT with HFHP (p < 0.02) (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
FIGURE 2. Mean (±SEM) effects of a balanced isocaloric diet (control, C), a hypercaloric 
high-fat (HF) diet, or a hypercaloric high-fat, high-protein (HFHP) diet on 
intrahepatocellular lipid (IHCL), VLDL-triglyceride (TG), plasma β-hydroxybutyrate, and 
nonesterified fatty acid (NEFA) concentrations in healthy men (n = 10). Wilcoxon's signed-
rank test with Bonferroni's correction was used for pairwise comparisons. *,**Significantly 
different from control: *P < 0.05, **P < 0.02. Significantly different from HF, P < 0.02. 
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Insulin sensitivity  

Fasting endogenous glucose production was not affected by the HF and HFHP diet. HFHP 

increased fasting glucagon concentrations by 14 ± 9 % compared to HF (p < 0.05), but did not 

alter insulin concentrations. Total glucose turnover, endogenous glucose production, and the 

percent inhibition of glucose production were similar under all conditions at both low and 

high insulin infusion rate, indicating that HF and HFHP did not significantly alter hepatic or 

extrahepatic insulin sensitivity (Table 3). 
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Adipokines, energy metabolism and lipid profile  

HF and HFHP significantly increased plasma leptin concentrations (HF: 2.7 ± 0.4 ng/mL, 

HFHP: 3.1 ± 0.6 ng/mL, both p < 0.02 vs C: 2.3 ± 0.4 ng/mL). Adiponectin concentrations 

were not altered by either diet (HF: 15.8 ± 2.3 µg/mL, HFHP: 15.9 ± 2.4 µg/mL, C: 14.2 ± 1.7 

µg/mL, ns) (not reported in tables or figures). Energy expenditure, as net carbohydrate, lipid  

and protein oxidation rates were not altered by HF compared to C. HFHP increased net 

protein oxidation by 49 ± 8% (p < 0.02), and decreased net lipid oxidation by 28 ± 13% (p < 

0.05), but did not significantly alter net carbohydrate oxidation or energy expenditure (Table 

4). Both HF and HFHP increased total, LDL and HDL cholesterol concentrations compared 

to control condition (all, p < 0.02). Total (p < 0.05) and VLDL-TG (p < 0.02) were slightly 

decreased by HF compared to C (Table 4). 

 

Inflammatory markers  

Plasma-tissue-plasminogen-activator-inhibitor-1 (tPAI-1) concentrations were increased by 

54 ± 11 % with HF (p < 0.02), but were completely normalized with HFHP. In contrast, TNF-

α, IL-1ß and IL-6 were not significantly altered by either diet (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
FIGURE 3. Mean (±SEM) effects of a balanced isocaloric diet (control, C), a hypercaloric 
high-fat (HF) diet, or a hypercaloric high-fat, high-protein (HFHP) diet on plasma 
concentrations of tissue-type plasminogen activator inhibitor-1 (tPAI-1), tumor necrosis 
factor-  (TNF- ), interleukin-1β (IL-1β), and IL-6 in healthy men (n = 10). Wilcoxon's signed-
rank test with Bonferroni's correction was used for pairwise comparisons. **Significantly 
different from control, P < 0.05. Significantly different from HF, P < 0.02. 
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Gene expression in adipose tissue  

HF increased significantly the expression of key genes related to the lipogenic pathway such 

as those coding for the master regulator SREBP-1c (+70 ± 12 %), hexokinase II (+32 ± 10%) (p 

< 0.02), and  fatty acid synthase FASN (+ 133 ± 20%) (p < 0.05). In contrast the expression of 

most genes related to lipolysis and lipid oxidation (HSL, ATGL, PDE-3b, CD36 and CPT-1) 

was not affected, while expression of PLIN, a protein involved in lipid droplet coating, was 

decreased (p < 0.02). There was also no effect of HF on genes related to cholesterol utilisation 

and metabolism (ABCA-1, LDLR) except for LXRα (+17 ± 7%). The expression of adiponectin 

and PPARG was also not modified after HF diet. HFHP tended to further increase the 

expression of lipogenic genes, particularly SREBP-1c, increased importantly the expression of 

CD36, but reduced that of CPT1, a gene related to fatty acid oxidation (both, p < 0.02). It 

increased PPARG mRNA concentrations (+45 ± 15%) (p < 0.02). Finally, HFHP significantly 

increased the expression of LXRα (p < 0.02) and LDLR (p < 0.05) (Table 2).
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Plasma bile acid concentrations  

Total bile acid concentrations were 64 ± 22 % and 50 ± 24 higher after HFHP than after HF 

and C respectively. Although not significant, this difference prompted us to proceed with 

measurement of individual bile acids by GC-MS (Figure 4). Compared to C and HF diets, 

HFHP diet specifically increased plasma cholic acid (CA) concentration by 269 ± 27 % (p < 

0.02) and 248 ± 27 % (p < 0.05), compared to C and HF respectively.  A similar, albeit less 

pronounced profile was observed for chenodeoxycholic acid (CDCA) (+ 125 ± 19 % HFHP vs 

C, p < 0.02; + 108 ± 23 % HFHP vs HF, p < 0.05) and deoxycholic acid (DCA) (+ 63 ± 19 % 

HFHP vs C, p < 0.05; + 46 ± 21 % HFHP vs HF, p < 0.05). The degree of conjugation was also 

assessed under all 3 dietary conditions. The conjugated CA concentrations were decreased 

by 40 ± 21 % upon HFHP compared to HF, p < 0.05 (HFHP: 28.6 ± 5.9 %, HF: 47.8 ± 9.2 %). 

Circulating BAs concentrations were not correlated with IHCL concentrations under any of 

the dietary conditions tested.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
FIGURE 4. A: Mean (±SEM) effects of a balanced isocaloric diet (control, C), a hypercaloric 
high-fat (HF) diet, or a hypercaloric high-fat, high-protein (HFHP) diet on total bile acids 
(BAs). B: Mean (±SEM) concentrations of deoxycholic acid (DCA), chenodeoxycholic acid 
(CDCA), and cholic acid (CA) in healthy men (n = 10). ELISA, enzyme-linked 
immunosorbent assay; GC-MS, gas chromatography–mass spectrometry. Wilcoxon's signed-
rank test with Bonferroni's correction was used for pairwise comparisons. *,**Significantly 
different from control: *P < 0.05, **P < 0.02. Significantly different from HF, P < 0.02. 
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Effects of high fat high cholesterol vs high fat low cholesterol diet 

The concentrations of substrates, AST, ALT and IHCL after these two diets were similar to 

those observed in the first study after the HF diet, except for glucose, and bile acids 

concentration (p<0.02) (Table 5). Body weight did not change between pre and post high fat 

supplementation (HF-low chol delta : -0.02 ± 0.01 kg; HF-high chol delta: +0.4 ± 0.1 kg). Also 

there was no difference between high- and low cholesterol diets in any of the parameters 

tested (Table 5). 
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DISCUSSION 

 

A high fat diet is known to induce intrahepatic fat deposition in rodents (121). Consistent 

with these findings, we also observed that high fat feeding produced a significant 90% 

increase in IHCL after only 4 days in healthy volunteers. There was however no change in 

glucose production or its suppression by hyperinsulinemia. This may appear surprising in 

regard of the association between IHCL concentrations and hepatic insulin sensitivity 

observed in many studies (121, 133, 134) and suggest that IHCL are not directly related to 

hepatic insulin resistance (135).  Surprisingly, we observed a major 26% reduction in fasting 

plasma FFA. The analysis of adipose tissue documented an increased expression of FASN, 

while the expression of genes involved in lipolysis (HSL, ATGL, PDE3, perilipin), and lipid 

oxidation (CPT1) were not significantly affected during HF. Similar observations were also 

reported by Meugnier et al.(135), who found a decrease in FFA concomitant to a marked 

induction of genes related to the lipogenic pathway in skeletal muscle in response to 4 weeks 

of high-fat diet in healthy subjects. Altogether, these results indicate that, in humans, short 

term high-fat feeding shifts the balance between lipogenesis and lipolysis toward lipogenesis 

in adipose tissue, thus stimulating the deposition of excess dietary lipids. Under such 

conditions, plasma FFA concentrations remain low, and a high flux of plasma FFA can 

therefore not be responsible for intrahepatic fat accumulation. We observed instead a major 

61 ± 27 % decrease in fasting plasma ßOHB concentrations, which strongly suggests that 

suppression of beta-oxidation and ketogenesis contributed to the accumulation of 

triglyceride in liver cells. Altogether, these results suggest that hypercaloric, high-fat intakes 

stimulate net fat storage in adipose tissue and in the liver, resulting in IHCL deposition and 

in adipose tissue triglyceride storage. 

Insulin sensitivity was not altered during hyperinsulinemia on a high-fat diet, which 

contrasts with the hepatic insulin resistance observed in rodents very early after being put on 

a high-fat diet (121), but is in agreement with the data observed after 4 weeks of high-fat diet 

in a group of young healthy individuals (135) . Since the study was performed on an 

outpatient basis, it is possible that poor diet compliance would be responsible. This appears 

however, unlikely since urinary urea excretion increased as expected during protein 

overfeeding. Changes in body fat were not monitored, but the fat overload provided in this 

study was not expected to significantly change body fat content over such a short period 

(136).  
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Hepatic insulin resistance may nonetheless develop with longer exposure to a hypercaloric 

high-fat diet leading to a substantial increase in body fat.  

Increasing the dietary protein intake produced a 22 % decrease in IHCL. High-protein intake 

also increased plasma βOHB to normal concentrations, but did not reverse the suppression 

of plasma FFA. In adipose tissue, the effects of HFHP were quite similar to those observed 

after HF alone, with an induction of lipogenic genes, consistent with a switch of adipose 

tissue metabolism toward net fat storage. This pattern even tended to be enhanced with 

HFHP. Furthermore, HFHP increased the expression of PPARG. Given the role of PPARG in 

adipose tissue differentiation, and the metabolic effects of PPARG activation by TZDs (137), 

it is possible to speculate that, in the long term, enhanced expression of PPARG by dietary 

protein may prevent HF-induced insulin resistance by promoting fat deposition in adipose 

rather than ectopic fat depots.   

HF and HFHP had concordant effects in adipose tissue, i.e. a switch toward lipogenesis and 

energy storage, but a divergent effect in the liver, as HF increased while HFHP reduced 

IHCL. This suggests that high-protein intake primarily affected liver metabolism through 

stimulation of hepatic beta-oxidation and ketogenesis. The mechanisms by which protein 

exerted these effects remain speculative, but several tracks can be proposed for future 

investigation. Firstly, high-protein intake increases total amino-acid degradation at the whole 

body level. Since the bulk of amino-acid catabolism takes place in the liver and is an energy-

requiring process, high protein intake may have merely increased hepatic lipid oxidation 

through an increase in hepatic energy expenditure (138). Secondly, protein increased plasma 

BAs, and BAs may inhibit lipogenesis and favour hepatic lipid oxidation through stimulation 

of LXR and FXR (139, 140). Since HFHP was also enriched in cholesterol, we initially 

considered the possibility that this increase was merely secondary to stimulation of BAs 

synthesis by enhanced dietary cholesterol intake. We therefore performed an additional 

study comparing the effects of diets providing the same overload of saturated fat, one with 

high and the other with low cholesterol. The results indicated that the dietary cholesterol 

content did not significantly affect IHCL and BA concentrations, and hence the increase in 

BAs was most likely to be attributed to dietary proteins. Thirdly, a high protein intake causes 

an increased day-long secretion of glucagon which may stimulate hepatic ketogenesis (79, 

141). Finally, numerous metabolic genes are regulated by amino-acids or their metabolites 

(142) and it is possible that the expression of genes involved in lipid synthesis and oxidation, 

or in lipoprotein metabolism were altered in liver cells after high protein intake (143). 
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A high-fat diet is known, in rodents, to increase pro-inflammatory cytokine release through 

activation of the transcription factors Iκκβ et NFκB (144). Furthermore, these pro-

inflammatory cytokines are thought to play a role in the development of fat-induced insulin 

resistance (145,146) . It was therefore a secondary aim of this study to evaluate the effects of 

high fat and high fat, high protein intake on several markers of inflammation. High fat intake 

significantly increased tPAI-1 but failed to alter several plasma pro-inflammatory cytokines, 

while HFHP seemed to restore initial levels. tPAI-1, a fibrinolytic inhibitor, is produced by 

several cell types in the organism, amongst which hepatic stellate cells and adipocytes. A rise 

in tPAI-1 in adipose tissue has been consistently associated with insulin resistance and 

obesity (147) in several large epidemiological studies, and hence may be an early marker of 

insulin resistance (148). In addition, tPAI-1 is thought to be involved in the development of 

hepatic fibrosis  (149). In patients with NAFLD, increased plasma tPAI-1 was strongly 

correlated with liver fat, while tPAI-1 expression was observed in liver cells. Furthermore, 

liver tPAI-1 expression was linked to an increase in TNF-α and TNF-α receptor II, suggesting 

a link between intrahepatic fat accumulation and inflammation (150). Our observation 

therefore suggests that dietary protein modulates fat-induced inflammation. 

Our study has several limitations which have to be considered. First, the effects of a high- 

protein intake were documented in a group of healthy subjects in whom an increase in IHCL 

was produced by a short term hypercaloric high fat feeding. Although this procedure almost 

doubled baseline IHCL, the increase in liver fat was small compared to the fatty liver 

infiltration observed in obese patients with NAFLD. Furthermore, the mechanisms 

responsible for deposition of fat in the liver may not be identical in NAFLD patients and our 

experimental model (151). Second, an increase in protein intake may possibly improve liver 

metabolism while exerting unwanted effects on other systems at the same time. In this 

regard, deleterious effects of protein on glomerular filtration rate and kidney function are of 

special concern (152, 153).  

In summary, our findings indicate that a high protein intake significantly prevents 

intrahepatic fat deposition induced by a short term hypercaloric, high fat diet in humans. It 

remains to be evaluated whether modulating the dietary protein intake, may be included in 

therapeutic or preventive strategies for NAFLD without adverse events. 
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4.1 Study II, why? 

 

Results obtained from Study I determinated the design of the next two protocols which are 

briefly summarized in the following figure (Figure 6) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6: Summary of the main results of Study I.  
Abbreviations HF, high-fat diet; HFHP, high-fat high-protein diet; FFA, free fatty acid; BOBH, 
beta-hydroxybutyrate, VLDL-TG, very low density lipoprotein-triglycerides; IHCL, 
intrahepatocellular lipids, TNF-α, tumor necrosis factor alpha; tPAI-1, tissue plasminogen 
activator inhibitor-1. 
 
 
Proposition of mechanism 
 
High-fat diet (1) inhibits lipolysis in adipose tissue, (2) which leads to a decrease in FFA 
plasma concentration. Since (3) BOHB and (4) VLDL-TG plasma concentrations are 
decreased, hepatic fat oxidation and TG export might be reduced by HF intake, (5) which 
altogether results in an increase in IHCL. (6) Elevation of tPAI-1 and TNF-α plasma 
concentration, which reflects some grade of inflammation are associated with the increase in 
IHCL. 
High-fat high-protein diet (1) (2) does not change FFA plasma concentration when 
compared to HF. Since (3) BOHB and (4) VLDL-TG plasma concentrations are restored to 
normal values, HP intake might counteract effects of HF diet probably by increasing hepatic 
fat oxidation and TG export, (5) which altogether results in a decrease in IHCL, (6) tPAI-1 
and TNF-α plasma concentrations. 
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Given the role of lipotoxicity and NAFLD in the development of features of the metabolic 

syndrome and insulin resistance, these encouraging results incited us to further investigate 

the metabolic effects of high protein intake on hepatic lipid metabolism.  

We were therefore interested in focusing our research on the clinical implications of protein 

supplementation. Indeed NAFLD is frequently increased in obese patients and is considered 

to be the hepatic component of the metabolic syndrome, tightly associated with impaired 

glucose tolerance and dyslipidemia. As reported previously, protein intake has been shown 

to decrease steatosis and improve glucose homeostasis in animal models of steatohepatosis 

as well as in humans. Therefore we evaluated the effects of a 4-week of supplementation 

with 60g/day whey protein on steatosis (by 1H-NMR) and glucose homeostasis (by OGTT) 

in eleven non diabetic obese women, otherwise left ad-libitum. Since protein intake might 

affect renal function, we also controlled renal function every week by calculating creatinine 

clearance from 24-hour urine collections.  

 

These preliminary results confirmed our expectations as intrahepatic and fasting plasma 

triglycerides were reduced in obese subjects after the 4-week whey protein supplementation. 

Since the obese women were allowed to consume a spontaneous diet, a satiating effect of the 

protein supplementation, leading to a decrease in their daily food intake cannot be excluded. 

Theses preliminary results suggest that a high protein diet may in the long term reduce the 

risk of steatohepatitis and cardiovascular disease in obese patients. The present study did 

not observe any adverse renal effects. 
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ABSTRACT 

 

Objective 

High protein diets have been shown to improve hepatic steatosis in rodent models and in 

high fat fed humans. We therefore evaluated the effects of a protein supplementation on 

intrahepatocellular lipids (IHCL), and fasting plasma triglycerides in obese nondiabetic 

women. 

 

Research Design and Methods  

11 obese women received a whey protein supplement (WPS) for 4 weeks, while otherwise 

nourished on a spontaneous diet, IHCL concentrations, visceral body fat, total liver volume 

(1H-NMR), fasting total-triglyceride and cholesterol concentrations, glucose tolerance 

(standard 75 g OGTT), insulin sensitivity (HOMA IS index), creatinine clearance, blood 

pressure and body composition (bio-impedance analysis) were assessed before and after 4 

week WPS. 

 

Results 

IHCL were positively correlated with visceral fat and total liver volume at inclusion. WPS 

significantly decreased IHCL by 20.8 ± 7.7 %, fasting total TG by 15 ± 6.9 %, and total 

cholesterol by 7.3 ± 2.7 %. WPS increased fat free mass slightly from 54.8 ± 2.2 kg to 56.7 ± 2.5 

kg, p = 0.005). Visceral fat, total liver volume, glucose tolerance, creatinine clearance and 

insulin sensitivity were not changed.    

 

Conclusions  

WPS improves hepatic steatosis and plasma lipid profiles in obese non diabetic patients, 

without adverse effects on glucose tolerance or creatinine clearance. 
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INTRODUCTION 

 

Non-alcoholic fatty liver disease (NAFLD) is characterized by an elevated 

intrahepatocellular lipid (IHCL) concentration. Incidence of NAFLD is frequently increased 

in obese patients, and is considered to be the hepatic component of the metabolic syndrome. 

It is tightly associated with the metabolic complications of obesity, i.e. insulin resistance, 

impaired glucose tolerance, and dyslipidemia (9, 11). 

Several reports suggest that a high-protein intake may improve NAFLD. In high-fat fed rats, 

increasing the proportion of protein in the diet reduced hepatic steatosis and dyslipidemia 

(154, 155) . In healthy human male subjects in whom IHCL concentrations had been nearly 

doubled by 4-days of hypercaloric high-fat feeding, increasing the dietary protein intake 

significantly reduced IHCL concentrations (115). These observations suggest that a high 

protein intake may exert beneficial effects in NAFLD patients. We therefore evaluated the 

effects of 4-weeks of supplementation with 60g/day whey protein (Whey Protein 

Supplementation : WPS) in obese non diabetic female patients. 
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SUBJECTS AND METHODS 

 

Participants 

11 obese female patients, aged 38 ± 2 years, were recruited at the obesity clinic of the Centre 

Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. They had a mean body 

weight of 99.7 ± 5.3 kg, mean height of 1.63 ± 0.02 m, and mean BMI of 37.6 ± 1.8 kg/m2. 

None had liver or renal disease, nor were they on antidiabetic or antilipemic agents. They 

were sedentary (less than two sessions of physical activity per week). All reported a daily 

alcohol intake less than 20 g. The experimental protocol was approved by the Ethical 

Committee of Lausanne University School of Medicine. Subjects gave their written informed 

consent before participating in the study. 

 

Study design 

After inclusion, subjects reported in the morning after an overnight fast to the Cardiomet 

Clinical Investigation Center (Cardiomet CIC) of the Lausanne University Hospital. Their 

body weight and blood pressure were measured and their body composition was assessed 

by bioelectrical impedance analysis. Thereafter, they underwent a standard 75 g oral glucose 

tolerance test (OGTT) with measurement of plasma glucose and insulin at time 0 and 120 

min. Fasting plasma triglycerides, total cholesterol, HDL cholesterol, urea, creatinine, ASAT, 

ALAT and glucagon were measured. A 24 hour urine collection was obtained for 

determination of urea and creatinine excretion. Total nitrogen excretion was calculated 

assuming that urea accounted for 85% of total urinary nitrogen (113)and that extra-renal 

nitrogen losses were 2g/day. Total energy expenditure and net substrate oxidation rates 

were measured during 45 min before and over the 120 min after oral glucose ingestion by 

indirect calorimetry (Deltatrac II, Datex Instruments, Helsinki, Finland) 

 

On the following day, intrahepatocellular lipids (IHCL), visceral fat volume, and total liver 

volume were measured by clinical Magnetic Resonance (MR) methods at the Department of 

Clinical Research of University Bern at the Inselspital.  

IHCL content was determined on a clinical 3 T MR system (TIM Trio, Siemens Medical, 

Germany) using a whole body coil for excitation. A volume of interest (2.5 x 2.5 x 3 cm3) was 

localized in the liver using the body array surface coils for signal detection and a double 

echo localization sequence combined with Siemens’ 2D “prospective acquisition correction”  
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(PACE) scheme (156), based on a 2D gradient echo image to monitor the position of the 

diaphragm for triggering in expiration (MRS echo time TE 30 ms, TR according to the 

breathing cycle between 2.5 and 6s, 4000 Hz spectral width, 2048 data points). MRS was 

preceded by fast spin echo MRI (HASTE [Half Fourier Acquisition Single Shot Turbo Spin 

Echo], echo time 89 ms, repetition time 1030 ms, flip angle 150°, nominal resolution 

1.7x1.3x5 mm3) in three planes using the same PACE triggering to visualize the liver and to 

reliably reproduce the placement of the region of interest (ROI) in follow-up examinations. 

The ROI was placed evading large vessels and proximity to extrahepatic fat. The magnetic 

field distribution over the ROI was optimized during breath-hold using the manufacturers 

automated gradient shim routine. For choice of proper flip angle, a B1 mapping scan was 

recorded in expiration prior to MRS. MR spectra were recorded with water presaturation to 

determine the lipid and metabolite spectra (32 acquisitions, 60 Hz suppression bandwidth, 

center frequency at 3 ppm) and without water suppression to acquire the water signal as 

internal standard (16 scans, center frequency at 4.7 ppm). Automatic fitting of the MR 

spectra was performed with the home-written software FiTAID allowing for the use of Voigt 

lines and implementation of prior knowledge restraints (157). The lipid spectrum was 

modeled using 9 Voigt lines to describe all spectral components and initial model 

optimizations based on an average spectrum from several subjects, a further 5 lines were 

used to cover the metabolites and residual water. Absolute quantification was performed in 

analogy to Bortolotti et al (115) and was based on the peak areas of the methylene protons 

that are not neighbors of an allylic or carboxylic carbon, basic assumptions on lipid 

composition, the water peak area from non-water-suppressed scans, an assumed liver water 

content and relaxation corrections based on literature values (131). Results were expressed 

as volume percentage of lipid. 

Volumes of the liver and visceral adipose tissue (VAT) were determined using T1-weighted 

images of the abdomen, recorded in breath-hold (multi-spin-echo technique, echo train 

length 7, echo spacing 7.6 ms, repetition time 452 ms, echo time 38 ms,, flip angle 130°, 30 

axial slices in 6 slabs covering the pelvis at the lower end and the diaphragm at the upper 

end, slice thickness of 10 mm, gap between slices 10 mm, 5 slices per breath-hold sequence, 

acquisition matrix 256 x 147 with a resolution of 2 mm/pixel, body coil was used for 

excitation and signal acquisition). Volumetry was performed using a semi-automatic 

implementation of the point counting method, which represents a sparse sampling scheme 

whereby an operator accepts or rejects points from a regular grid that covers the targeted  
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anatomic structure in a random orientation (158). Visceral fat was counted on images 

between pelvis and the upper end of the diaphragm. MR data was acquired and evaluated 

by operators who were unaware of the preceding dietary regime. 

 

After these initial measurements, the whey protein supplement (WPS) was provided as bags 

containing 20g commercialized whey protein (WheyProtein94®, Sponser, Wollerau, 

Switzerland), with instructions to consume the content of one bag diluted in 300 ml water 30 

min before breakfast, lunch and dinner. Their food and drink intake was otherwise left ad 

libitum. The study was performed as an open label, unblinded, uncontrolled study. 

 

1, 2 and 3 weeks after the beginning of WPS, volunteers returned to the Cardiomet CIC and  

a fasting blood sample was obtained for the measurement of plasma triglycerides, total 

cholesterol, HDL cholesterol, urea, creatinine, ASAT, ALAT  and glycemia. 24-hour urine 

collections were also obtained to measure urea and creatinine excretion. Compliance to WPS 

was assessed by collecting the empty supplementation bags.  

 

After 4 weeks WPS, all measurements performed at inclusion, OGTT and NMR 

determination of IHCL, visceral fat volume, and liver volume were repeated. 

 

Analytic procedures 

After collection, blood and urine samples were sent to the Central Laboratory, CHUV for 

measurements of fasting plasma total- triglycerides, total cholesterol, HDL cholesterol, urea, 

creatinine, ASAT, ALAT and 24 hours urea and creatinine excretion. For the other blood 

parameters, blood was centrifuged at 4°C for 10 minutes, at 3600 rpm, and plasma were 

stored at -20°C /-80°C until further analysis. Glucose concentrations were measured by the 

glucose oxidase method with a Beckman Glucose Analyzer II (Beckmann Glucose Analyzer 

II, Beckmann Instruments, Fullerton, CA). Plasma insulin (RIA kit from LincoMillipore, St 

CharlesBillerica, MissouriMO, USA) and glucagon (RIA kit from LincoMillipore, St 

CharlesBillerica, MissouriMO, USA) concentrations were measured by radioimmunoassays, 

plasma non-esterified fatty acids (NEFA kit from Boehringer MannheimWako Chemical 

GmbH, Mannheim Neuss, Germany), and plasma beta-hydroxybutyrate (BOHB) 

concentrations (kit from Boehringer Mannheim, Mannheim, Germany) were measured 

enzymatically.  
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Statistical analysis 

All data were expressed as mean ± SEMs. Parameters measured every week throughout the 

WPS were analyzed by one way ANOVA for repeated time. An average value (WPS mean) 

was calculated for the whole WPS period, when time effect was not significant. Values were 

compared between pre and post WPS by paired t-tests. The distribution of IHCL 

concentrations was markedly skewed, and data were log-transformed for statistical analysis. 

Correlations between IHCL and other parameters were assessed by the Spearman’s rank 

correlation coefficient test.  

 



 
CHAPTER 4 : STUDY II 

- 106 - 

 

RESULTS 

 

Characteristics of the subjects before and after WPS are shown in Table 1. Obese patients had 

a BMI ranging between 30.9 and 52.4 kg/m2, and IHCL concentrations ranging between 1.9% 

and 20.5 % of liver volume. 5 subjects had NAFLD using a cut-off values of IHCL of 5% (15). 

3 subjects had two hour plasma glucose concentrations > 140 mg/dl (ca 7.8 mmol/l), 

indicating impaired glucose tolerance. Average HOMA index was > 2.77 indicating that 

these group of obese women had significant insulin resistance (159).  

Positive correlations were observed between IHCL and liver volume (ρ = 0.63, p < 0.05), 

visceral fat volume (ρ = 0.86, p < 0.01), ALAT (ρ = 0.73, p < 0.01), and HOMA IS index (ρ = 

0.60, p = 0.05). No correlation was observed between IHCL and BMI or total fat mass. 

 

WPS led to a sustained increase in calculated daily nitrogen excretion (Table 2). Plasma urea 

concentration also increased while plasma creatinine, daily urinary creatinine excretion and 

creatinine clearance did not change. Body weight remained unchanged over the 4 week 

supplementation while body fat mass was slightly reduced and fat free mass was slightly 

increased. Visceral fat volume and liver volume were not changed (Table 1). 

 

After 4 week WPS, IHCL concentrations had decreased by 20.8 ± 7.7 % (p = 0.017), fasting 

plasma triglycerides had decreased by 15.0 ± 6.9 % (p = 0.020) and total plasma cholesterol 

concentration had decreased by 7.3 ± 2.7 % (p = 0.024). Fasting and 2-hour plasma glucose 

and insulin concentrations were not changed (Table 1).  
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Table 1 

Characteristics of subjects, 11 obese women, before and after the month of WPS at 
baseline 

 

 
All values are expressed as mean ± SEMs. Differences between pre and post whey protein 
supplementation (WPS) were assessed by the paired parametric t-test. p-value < 0.05 was 
considered significant, NS, not significantly different.  

  
BASELINE 

 
WPS 

 

 
P-value 

 
 
Anthropometric variables 

    

Body weight (kg)  99.7 ± 5.3 100.2 ± 5.4 NS 
BMI (kg/m2)  37.6 ± 1.8 37.8 ± 1.8 NS 
Fat mass (kg)  44.8 ± 3.4 43.5 ± 3.2 0.009 
Fat free mass (kg)  54.8 ± 2.2 56.7 ± 2.5 0.005   

 
Blood parameters     

Glucose (mmol/L)   5.2 ± 0.2 5.2 ± 0.3 NS 
Insulin (µU/mL)         16.8 ± 2.1      17.2 ± 2.9 NS 
HOMA IS           4.0 ± 0.6 4.3 ± 1.0 NS 
2h-Glucose (mmol/L)     7.6 ± 0.9 7.4 ± 0.8 NS 
2h- Insulin (µU/mL )   111.1 ± 20.6 97.1 ± 19.1 NS 
Glucagon (ng/L)   37 ± 2         40 ± 4 NS 
NEFA (µmol/L )   615 ± 57       616 ± 60 NS 
BOHB (µmol/L)   58  ± 25         41 ± 9 NS 
Triglycerides (mmol/L)    1.65 ± 0.22 1.34 ± 0.17 0.020 
Cholesterol (mmol/L)    5.65 ± 0.32 5.25 ± 0.35 0.024 
HDL-Cholesterol (mmol/L)    1.13 ± 0.07 1.13 ± 0.05 NS 
ASAT (U/L)  21 ± 1         21 ± 1 NS 
ALAT (U/L)  25 ± 3         23 ± 3 NS 

 
Substrate oxidation     

Energy Expenditure (kcal/FFM/min)  0.019 ± 0.001 0.018 ± 0.001 NS 
Carbohydrate oxidation (kcal/FFM/min)   1.39 ± 0.31 1.33 ± 0.35 NS 
Lipid oxidation (kcal/FFM/min)   0.85 ± 0.12 0.63 ± 0.20 NS 
Protein oxidation (kcal/FFM/min)   1.23 ± 0.06 1.59 ± 0.16 0.019 

 
1H-NMR     

IHCL (vol%)   7.8 ± 2.2 6.3 ± 2.1 0.017 
Liver volume (cm3)  1761 ± 138 1756 ± 169 NS 
Visceral mass (cm3)  3213 ± 245 3184 ± 229 NS 
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Table 2  
Evolution of nitrogen and creatinine daily excretion, creatinine and urea plasmatic 
concentration and creatinine clearance during the month of supplementation. 

 

 
Values are expressed as mean ± SEMs. Effects of time during WPS supplementation was 
assessed by a one way ANOVA repeated for time among weeks 1 to 4. When effect of time 
during supplementation was not significant, an average value (WPS) was calculated. 
Difference between week 0 and WPS supplementation was assessed by the paired parametric 
t-test. p-value < 0.05 was considered significant, NS, not significantly different.  

        
 Week 0 Week 1 Week 2 Week 3 Week 4 WPS P-value  
        

        
Urinary Collection        
        

Nitrogen excretion [g/day] 15.6 ± 1.0 19.6 ± 1.4 20.0 ± 1.7 22.3 ± 1.2 20.7 ± 2.0 20.6 ± 0.8 0.000 
Urinary Creatinine [mmol/day] 12.9 ± 0.9 12.3 ± 0.9 12.4 ± 1.0 13.6 ± 0.8 12.2 ± 1.1 12.6 ± 0.5 NS 

        
Plasma Collection        
        

Urea [mmol/L] 4.9 ± 0.2 5.9 ± 0.4 5.5 ± 0.5 6.1 ± 0.4 5.7 ± 0.4 5.8 ± 0.2 0.002 
Creatinine [µmol/L]    68 ± 4    68 ± 2    67 ± 2    67 ± 2    65 ± 2     67 ± 1 NS 
        

Creatinine Clearance [ml/min] 137 ± 12 127 ± 9 131 ± 13 141 ± 9 131 ± 11 132 ± 5 NS 
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DISCUSSION 

 

Previous studies have shown that a high protein diet reduced hepatic lipid concentrations in 

high-fat or high-sucrose fed rodents or humans, suggesting that a high protein intake may, 

directly or indirectly, improve hepatic steatosis (115, 154, 155). We therefore assessed, in 

obese glucose intolerant young women, whether a 4-week supplementation with whey 

protein, with an otherwise spontaneous, uncontrolled food intake, would reduce hepatic 

steatosis and concomitantly improve hyperlipidemia and insulin sensitivity. 

 

IHCL concentrations showed a large interindividual variability in obese subjects, ranging 

from 1.9 % to 20.5%.  IHCL concentrations were correlated with total liver volume and with 

visceral fat volume, but not with total body fat or BMI, corroborating several reports 

showing that hepatic fat deposition is tightly linked to visceral obesity (9, 11, 160). 

Interestingly it seems that when total liver fat is > 5%, liver size increases in proportion to 

liver fat being 2.4 times larger than the pure fat volume. IHCL were also correlated with 

HOMA IS,  here again corroborating the well known association between NAFLD and 

insulin resistance (11) (161).  IHCL were also weakly correlated with ALAT levels, which are 

known to be an insensitive marker of hepatic fat (11).  

 

After 4 week of WPS, IHCL decreased significantly by 21 %, and fasting plasma triglycerides 

and cholesterol concentrations were decreased by 15 % and 8 % respectively. This reduction 

of IHCL concentrations was not related to changes in visceral fat volume or total liver 

volume, nor with important changes in body weight or body fat mass, which indicates that 

the improved IHCL and plasma triglyceride profiles could be attributed to an effect of 

protein rather than to changes in body composition. 

We can only speculate about the possible mechanisms underlying the reduction in IHCL and 

plasma lipids induced by WPS. Although WPS provided ca 250 kcal/day and body weight 

did not change a slight but significant decrease in total body fat was observed suggesting 

that WPS led to a spontaneous decrease in food intake. This hypothesis appears to be 

corroborated by the evolution of daily urinary nitrogen excretion over time. Pre-WPS daily 

nitrogen excretion amounted to ca 15 g/day, which corresponds approximately to ca 94 g 

protein /day assuming 16% nitrogen content in proteins. After WPS, daily nitrogen excretion 

increased significantly to ca 21 g/day, which corresponds to a total daily protein intake of  
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129 g/day. This means that, if subjects were hundred percent compliant and consumed the 

totality of the prescribed 60 g protein supplementation, WPS led to a reduction of 

spontaneous protein intake from other foods by 27%. This can be readily explained by the 

well known satiating effects of dietary proteins (56). It is likely that the satiating effects of 

WPS decreased the intake not only of dietary proteins, but of dietary carbohydrate and fat as 

well. It is therefore possible that a decrease in carbohydrate and lipid intake was responsible 

for the decreased IHCL and plasma triglyceride concentrations observed after WPS. In 

support of this hypothesis, it has indeed been demonstrated, in overfed rats with hepatic 

steatosis, that increasing the dietary protein content of the diet reduced intrahepatic lipids by 

decreasing carbohydrate intake (154). 

Besides a reduction in spontaneous carbohydrate and fat intake, it is possible that a high-

protein intake also reduced hepatic fat via more direct effects. A high protein diet is known 

to enhance post-prandial thermogenesis, an effect which is linked, at least in part, to the high 

energy cost of urea synthesis and amino acid conversion into glucose (162, 163). Since these 

two processes take place in the liver, one can expect that the increased energy requirement of 

the hepatocyte was met, at least in part, by an increased intrahepatic lipid oxidation. 

Although not documented in this study, where only fasting concentrations were monitored, 

feeding high protein meals is also known to increase post-prandial glucagon concentrations 

(164). The ensuing high glucagon : insulin ratio may therefore have favored lipid oxidation 

and ketogenesis while inhibiting de novo lipogenesis (165) . Finally, other, direct effects of 

specific amino-acids on intra-hepatic lipid metabolism may be speculated. 

 

Dietary protein metabolism also has complex interaction with glucose metabolism. On one 

hand, an amino-acid infusion enhances hepatic glucose production (112) and decreases 

whole body insulin mediated glucose disposal (166). While on the other co-ingestion of 

protein and glucose have been shown to decrease post-prandial glycemia, an effect which 

can be attributed to a delayed gastric emptying (167, 168). WPS however failed to 

significantly alter fasting and two hour plasma glucose and insulin concentrations. Insulin 

sensitivity was also not grossly altered, as indicated by the HOMA IS index.    

 

In summary, this study demonstrates that 4 weeks supplementation with 3 times 20 g whey 

protein per day significantly reduced intrahepatic and fasting plasma triglycerides in obese 

subjects consuming an otherwise spontaneous diet. A satiating effect of the protein  
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supplementation, leading to lower carbohydrate and or fat intakes, an increased liver energy 

expenditure, and/or a higher glucagon-insulin ratio, may all be involved in these effects. 

This preliminary, uncontrolled study suggests that a high-protein diet may, in the long term, 

reduce the risk of non-alcoholic steato-hepatitis and of cardio-vascular disease in obese 

patients. While high-protein diet may also have adverse effects, the present study did not 

find any adverse renal effects. 
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5.1 Study III, why? 

 

The results of Study I were encouraging, as discussed in chapter 3. We then designed Study 

II in an attempt to obtain better insights into the clinical implications of high-protein diets, 

but we were also interested in the underlying mechanisms which might explain the potential 

beneficial effects of protein intake. Therefore we designed a third study. 

 

Given the role of lipotoxicity and NAFLD in the development of features of the metabolic 

syndrome and insulin resistance, we further investigated the metabolic effects of high-

protein intake on hepatic lipid metabolism. We hypothesized that protein intake might 

enhance hepatic fat oxidation and favour VLDL-TG export, leading to a decrease in IHCL 

and improvement of glucose homeostasis. 

 

The following protocol was designed to allow a deeper comprehension of the underlying 

mechanisms. We compared the metabolic effects of 2 tests meals with a fixed carbohydrate 

and fat composition and a varied standard or high protein intake after 4-day of an isocaloric 

standardized diet. To further evaluate possible long term effects of protein, the metabolic 

effects of the high protein meal was also tested after 4 days spent on a high-protein diet. 

7 healthy young volunteers were allocated to the different diets in a randomized order. 

Metabolism was assessed over two hours at baseline and during the 6 next hours following 

meal ingestion. 

Measurements with indirect calorimetry provided information on net substrate oxidation 

rates and energy expenditure, whereas 13C-triolein incorporated into the test meals was used 

to calculate exogenous fat oxidation. BOHB plasma concentrations allowed us to estimate 

hepatic beta-oxidation, whereas plasma concentration of VLDL-TG and Chylomicron-TG 

gave information about the kinetics of lipid transition through the liver. Glucose metabolism 

was assessed by continuous infusion of 6,6-2H2-glucose, as well as the postprandial plasma 

glucose and insulin responses. 

The results did not support our hypothesis, that a high-protein meal would increase net 

postprandial lipid oxidation, exogenous lipid oxidation, and stimulate BOHB production, 

indicating that a high-protein meal does not stimulate whole body or hepatic beta-oxidation. 

After 4 days on a high-protein diet, a high-protein meal decreased exogenous fat oxidation, 

impaired postprandial chylomicron clearance and enhanced postprandial triglyceridemia.  
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These results indicate that under the conditions of our study, a 4-day high protein diet has 

no effect on insulin sensitivity. 
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ABSTRACT  

 

Objective 

Protein supplementation may enhance whole body and intrahepatic lipid oxidation. 

Therefore high protein intake was assessed on postprandial lipemia in healthy men. 

 

Design 

Seven healthy young male subjects were studied on 3 occasions: after ingestion of a low (0.5g 

/kg) protein meal, a high (1.5 g/kg) protein meal the carbohydrate and fat composition of 

which was kept constant and after 4 days on a high (1.5 g/kg) protein diet. Net substrate 

oxidation, exogenous fat oxidation, glucose and glycerol kinetics, hormones and substrates 

concentrations were monitored at baseline and during 6 hours after meal ingestion.  

 

Results 

The high-protein meal delayed plasma glucose, insulin, and glucose appearance, and 

reduced postprandial NEFA, glycerol, beta-hydroxybutyrate and net lipid oxidation ( p = 

0.064 ). It did not affect other variables. After 4 days on a high-protein diet, postprandial 

exogenous fat oxidation tended to decrease ( p = 0.169 ) whereas postprandial triglyceride 

concentrations were increased ( p = 0.005 ). 

 

Conclusions 

High-protein meal did not increase net postprandial lipid oxidation nor exogenous lipid 

oxidation, and did not stimulate beta-hydroxybutyrate production, indicating that neither 

whole-body lipid oxidation nor hepatic beta-oxidation were stimulated. After 4 days on a 

high-protein diet, exogenous fat oxidation decreased and postprandial triglyceride 

concentrations were enhanced. A high-protein diet may impair chylomicron clearance. 
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INTRODUCTION 

 

The metabolic syndrome, characterized by visceral obesity, altered glucose homeostasis, 

dyslipidemia, and high blood pressure, is highly prevalent in industrialized countries, and 

represents a major public health burden (8). Insulin resistance is tightly associated with this 

syndrome (169), and it is thought to be the result of impaired mitochondrial function, 

impaired lipid oxidation, and lipotoxicity. Ectopic lipid deposition in the liver, leading to 

non-alcoholic fatty liver disease, and muscle are frequently encountered in association with 

the metabolic syndrome (170) and are closely linked to insulin resistance (171). 

Both dietary factors (172) and low physical activity (173) are involved in the development of 

the metabolic syndrome. Among the dietary factors, high sugar (149) and high saturated fat 

intakes (136) can lead, in animal models and in humans, to the development of several 

features of the metabolic syndrome, including increased intrahepatic lipids . The effects of 

dietary protein are in contrast less well known. While amino-acid infusion can clearly impair 

insulin’s hepatic and extra-hepatic actions (174) (166), several observations suggest that a 

high-protein diet may have beneficial effects on the metabolic syndrome (70). Co-ingestion of 

protein with carbohydrate tends to decrease postprandial glycemia in healthy subjects and in 

insulin-resistant patients (164). A high-protein diet has also been shown to improve glucose 

homeostasis in patients with type 2 diabetes mellitus (175) Furthermore, a hypocaloric high 

protein diet has also been shown to enhance weight loss and improve glucose tolerance in 

obese patients (176). Finally, a high-protein diet reduced intrahepatic fat concentrations in 

carbohydrate fed rats (154), in obese Zucker rats (155), and in healthy human subjects put on 

a high-fat diet for 4 days (115).  

Given the role of lipotoxicity in the development of insulin resistance, the apparent beneficial 

effects of a high-protein diet on glucose homeostasis and on intrahepatic lipids suggested 

that protein may improve insulin action by promoting lipid oxidation. To evaluate this 

hypothesis, we compared the metabolic effects of 2 test meals with a fixed carbohydrate and 

fat but a standard or high protein load. To further evaluate possible effects of protein, the 

metabolic effects of the high protein meal was also tested after 4 days spent on a high protein 

diet. 13C-triolein incorporated in the test meals was used to calculate exogenous fat oxidation, 

while indirect calorimetry provided information on total, net substrate oxidation rates.  
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SUBJECTS AND METHODS 

 

Participants 

7 healthy male volunteers were recruited from students at the University of Lausanne. They 

had a mean age of 21 ± 0.5 years, mean weight of 74 ± 3 kg, mean BMI of 23.2 ± 0.8 kg/m2 

and mean fat mass of 13 ± 0.8 % evaluated from skinfold-thickness measurements using the 

tables of Durnin and Womersley (177). All were in good physical health based on medical 

history and a standard physical examination, were not on any medication at the time of the 

study, had a usual alcohol consumption < 20g/day and were non-smokers. The experimental 

protocol was approved by the Ethical Committee of Lausanne University School of Medicine 

and every participant provided informed, written consent. 

 

Study design 

Every subject took part in 3 tests, separated by at least 3 weeks. During the 4 days preceding 

each test, they consumed a controlled diet, with all food items prepared and provided by the 

investigators to be consumed at home. Subjects were carefully instructed to prepare and 

consume all the food provided according to specific instructions, and to refrain from 

consuming any other foods or beverages during this period. On two occasion, subjects 

consumed a weight-maintenance diet (control diet: CD) providing 140 % basal energy 

requirements (calculated using the equation of Harris-Benedict (127) multiplied by a Physical 

Activity coefficient of 1.4). On the third occasion, subjects consumed the same control diet 

supplemented with 1.5g/kg/day protein (high protein diet: HPD). The protein 

supplementation was provided as dairy products (skimmed milk powder, cottage cheese, 

and yoghurt). Detailed compositions of the diets are given in Table 1.  
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 LPM HPM 

   
Total Energy (kcal)     772 ± 19          921 ± 24 
Total Macronutrients   

Carbohydrates (kcal)     424 ± 11          424 ± 11 
Lipids ( kcal)     270 ± 6          270 ± 6 
Protein (kcal)       77 ± 3          226 ± 7 

Food items   
White bread (g)       70 ± 0.0            70 ± 0.0 
Orange juice (g)     252 ± 4.4          265 ± 3.7 
Sirup (g)       61 ± 4.6            23 ± 3.5 
Olive Oil (g)       15 ± 0.2            15 ± 0.2 
Butter (g)       13 ± 0.7  
Buttermilk (g)           149 ± 1.0 
Serac (g)           109 ± 6.7 
Skimmed milk (g)             51 ± 4 

   

 
Table 1: Energy repartition of the 4-day standardized diets, control diet (CD) and high 
protein diet (HPD) 
 

 CD HPD 

Total Energy (kcal) 2585 ± 32 3000 ± 32 

Total Macronutrients   

Carbohydrates ( kcal) 1370 ± 22 1409 ± 14 

Lipids ( kcal)   810 ± 12 768 ± 8 

Protein (kcal)  405 ± 5   830 ± 11 

All values are expressed as mean ± SEM. 
 
After 4 days on one or the other of these two controlled diets, subjects underwent a 

metabolic test aimed at assessing substrate oxidation and glucose homeostasis in basal 

conditions and after ingestion of a test meal. One test meal was low in protein (low protein 

meal, LPM) contained 55 % carbohydrate, 35 % fat labelled with 1% 13C-triolein (Cambridge 

Isotope Laboratories, Andover, MA, USA), and 10 % protein as cottage cheese . The other test 

meal had the same carbohydrate and fat, and labelled triolein content but was enriched with 

dairy proteins (high protein meal, HPM). The detailed composition of the two test meals is 

provided in table 2.  

 

Table 2: Energy repartition and composition of the low protein meal (LPM) and high 
protein meal (HPM) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
All values are expressed as mean ± SEMs. 
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Each subject was studied on three occasions, i.e. after 4 days of controlled diet and with a 

control test meal (CD-LPM), after 4 days controlled diet with a high-protein test meal (CD-

HPM), and after 4 days high-protein diet with a high-protein test meal (HPD-HPM), 

according to a randomized sequence. 

 

For each metabolic test, subjects came at the Cardiomet clinical investigation unit of the 

Centre Hospitalier Universitaire Vaudois at ca 7 am after an overnight fast. At their arrival, 

subjects were asked to void and were transferred to a bed where they remained quiet in a 

semi-recumbent position for the next 8 hours. An indwelling Teflon® catheter was inserted 

into a vein of one forearm, two continuous infusions were infused throughout the 

experiment, one of labelled 6,6 2H2-glucose (bolus: 2 mg/kg; continuous infusion: 40 

ug/kg/min) and the other of labelled 2H5-glycerol (bolus: 1 µmol/kg, continuous infusion 

0.1 µmol/kg/min) (Cambridge Isotope Laboratories, Andover, MA, USA) . A second 

indwelling catheter was inserted into a vein of the other forearm for periodic blood 

sampling. This arm was maintained in a thermostabilzed box heated at 50°C to achieve 

partial arterialization of venous blood. Respiratory gas exchanges were continuously 

monitored by means of an open flow, continuous indirect calorimeter with a hood system 

(Deltatrac II, Datex Instruments, Helsinki, Finland). After a 105 min period allowed for tracer 

equilibration, and during which basal measurements were performed, the hood was 

removed for 30 min, the subject was asked to void again before ingesting one of the two test 

meals in 20 min. Measurements were thereafter pursued for another 360 min.  

 

Analytical procedures 

 

Blood samples were collected every 30 min throughout the test for the measurement of 

plasma glucose (Beckmann Glucose Analyzer II, Beckmann Instruments, Fullerton, CA), urea 

(Urea Analyzer, Beckmann Instruments Fullerton, CA,USA) plasma insulin (RIA kit from 

Millipore, Billerica, MO, USA), plasma glucagon (RIA kit from Millipore, Billerica, MO, 

USA), plasma nonesterified fatty acids (NEFA kit from Wako Chemical GmbH, Neuss, 

Germany), plasma beta-hydroxybutyrate (BOHB) concentrations (kit from Boehringer 

Mannheim, Mannheim, Germany) and total plasma triglyceride (TG) concentrations (kit 

from Biomérieux, Marcy l’Etoile, France).  For each blood collection time, one blood sample 

was ultracentrifuged and TG concentrations were measured in chylomicrons and VLDL  
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subfractions. Plasma from other blood samples were analysed for 6,6 2H2-glucose and 2H5-

glycerol by GC-MS as previously described (129, 178). Breath collections were obtained at 30 

min intervals throughout the test and were stored in 10 ml vacutainers until analyzed. Breath  

13CO2 isotopic abundance was determined by continuous flow-isotope mass spectrometry 

using a Tracermass C/N (sercon, Crewe, UK). 

 

At the end of the test, the subject was again asked to void. Urine voids were collected for 

determination of urea nitrogen excretion rate. 

 

Calculations 

Net substrate oxidation rates were calculated from oxygen consumption and carbon dioxide 

production averaged over 30 minute periods. Urea nitrogen excretion rate was calculated 

from urinary urea excretion and corrected for changes in the blood urea nitrogen pool size 

over time (179). Total nitrogen excretion was calculated assuming that urea accounted for 

85% of total urinary nitrogen (113) and that extra-renal nitrogen losses were 2g/day. Net 

substrate oxidation rates were calculated using the equations of Livesey and Elia (109) . 

 

Glucose rates of appearance (GRa) and disappearance (GRd) were calculated using Steele’s 

equation for non steady state conditions  using a glucose distribution space of 0.2 and a pool 

fraction of 0.8 (103). Glycerol rates of appearance (GlyRa) and disappearance (GlyRd) were 

calculated from the same equation but adjusted with a volume of distribution of 0.23 (l/kg 

body weight) (104). Exogenous fat oxidation was calculated as described by Binnert et al. 

(105). 

 

Statistical analysis 

All data were expressed as mean ± SEMs. The effects of HPD and HPM and their interactions 

on plasma hormone and substrate concentrations, net substrate oxidation and energy 

expenditure, and glucose and glycerol turnover were assessed by two–way repeated 

measures ANOVA with interaction. The parametric t-test with Bonferroni’s correction was 

used to test the null hypothesis for postprandial response between all three paired dietary 

conditions (CD-CM, CD-HPM, HPD-HPM). Significance was assessed at p ≤ 0.05. The 

software used was STATA version 9.1 (Stata Corp, College Station, TX) 



 
CHAPTER 5 : STUDY III 

 - 124 - 

 

RESULTS 

 

CD-LPM vs CD-HPM 

When subjects received a normal protein, control diet (CD) for 4 previous days, ingestion of 

the HPM resulted in a decreased peak glycemia 30-90 after the meal, but a slightly higher 

glycemia in the latter part of the test, i.e. between 210 and 360 min compared to that 

observed after the LPM (Fig 1; see figure legend for statistics). Peak plasma insulin 

concentrations were slightly increased and plasma glucagon concentrations were 

significantly higher with the HPM (p = 0.001) (Fig 1). The effect of the HPM on the last part of 

the postprandial glycemia curve was mirrored by similar changes in glucose rate of 

appearance (Ra) and oxidation. After the HPM, glucose Ra and Rd increased to a similar 

extent during the 60 min following meal ingestion, but returned more slowly to baseline and 

remained higher from 180 to 300 min compared to that observed after the LPM (Fig 2; see 

figure legend for statistics). Net glucose oxidation increased to the same extent following 

ingestions of the LPM and HPM (Fig 3; see figure legend for statistics). Postprandial total 

energy expenditure (Fig 3) and net protein oxidation (LPM: -7.5 ± 11.2 mg/min, HPM: 16.9 ± 

3.2 mg/min, p = 0.169) were also higher after HPM. 

Plasma NEFA and BOHB concentrations were suppressed to the same extent with LPM and 

HPM during the initial 120 postprandial period. Thereafter, they increased markedly after 

LPM, while they remained suppressed with HPM (Fig 4; see fig legend for statistics). 

Glycerol Ra and net lipid oxidation paralleled the changes in NEFA (Fig 2, 3 and 4; see figure 

legend for statistics). Ingestion of the HPM led to an increase in total plasma TG and 

chylomicron TG concentrations (Fig 5; see fig legend for statistics). This increase was 

however not different between HPM and LPM. 

The postprandial increase in breath 13CO2 was identical after LPM and HPM. Calculated 

cumulated exogenous fat oxidation represented only a minor portion of total lipid oxidation, 

and was similar with LPM (28.7 ± 3.7 %) and HPM (26.2 ± 3.1 %). 

 

CD vs HPD 

The HPD increased basal protein oxidation to 108 ± 12 mg/min (p < 0.05) and decreased 

basal glucose and lipid oxidation (Fig 3), but otherwise did not significantly alter basal 

hormone and substrate concentrations or energy expenditure. When the metabolic responses 

to HPM were compared after CD and HPD, HPD did not significantly alter the glucose,  
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insulin and glucagon responses (Fig 1), nor the postprandial suppression of NEFA, BOHB 

and glycerol (Fig 4). The effect of HPM on glucose Ra and glycerol Ra were also the same 

after HPD and after CD. 

After the HPD, the increase in plasma total TG and chylomicron TG induced by HPM 

ingestion was higher than after both HPM and LPM ingestion after CD (Fig 5). The increase 

in breath 13CO2 over time was also delayed, and cumulated exogenous lipid oxidation was 

reduced to 21.7 ± 3.4 % (p = 0.169). The increase in postprandial energy expenditure elicited 

by HPM was greater after HPD (p = 0.0369) than CD (p = 0.3), but postprandial lipid 

oxidation was similar after HPD. 
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Fig.1 
Plasma concentrations of glucose (mmol/l), insulin (pmol/l) and glucagon (ng/l) at baseline 
and after 4 days on a control diet and ingestion of a low protein (LPM: open diamonds)- or 
high protein (HPM: closed diamonds, full line) - test meal, or after 4 days on a high protein 
diet (HPD) and ingestion of HPM (closed diamonds, dotted line). Values are means ± SEMs. 
The dashed line represents end of meal ingestion.  
* Significant effect of dietary conditions, without interaction between time and dietary 
condition, P ≤ 0.05. Respective p value for time (T) and interaction (I) for glucose (T: p = 0.00; 
I: p = 0.1), insulin (T: p = 0.00; I: p = 0.3) and glucagon (T: p = 0.01; I: p = 0.3). 
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Fig.2 

Rate of appearance of glucose (Ra) (mg/kg/min) and glycerol (mg/kg/min) at baseline and 
after 4 days on a control diet and ingestion of a low protein (LPM: open diamonds)- or high-
protein (HPM: closed diamonds, full line) - test meal, or after 4 days on a high-protein diet 
(HPD) and ingestion of HPM (closed diamonds, dotted line). Values are means ± SEMs. The 
dashed line represents end of meal ingestion.  
* Significant effect of dietary conditions, without interaction between time and dietary 
condition, P ≤ 0.05. Respective p value for time (T) and interaction (I) for glucose Ra (T: p = 
0.00; I: p = 0.3) and glycerol Ra (T: p = 0.01; I: p = 0.3). 
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Fig.3 
Net glucose (CHO) (mg/min), lipid (Lip) (mg/min) oxidation and total energy expenditure 
(Eexp) (kcal/min) at baseline and after 4 days on a control diet and ingestion of a low-
protein (LPM: open diamonds)- or high-protein (HPM: closed diamonds, full line) - test 
meal, or after 4 days on a high-protein diet (HPD) and ingestion of HPM (closed diamonds, 
dotted line). Values are means ±  SEMs. The dashed line represents end of meal ingestion.  
* Significant effect of dietary conditions, without interaction between time and dietary 
condition, P ≤ 0.05. Respective p value for time (T) and interaction (I) for CHO oxidation (T: p  
= 0.00; I: p = 0.4), Lip oxidation (T: p = 0.01; I: p = 0.3) and Eexp (T: p = 0.01; I: p = 0.2). 
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Fig. 4 
Plasma concentrations of glycerol (mmol/l), beta-hydroxybutyrate (BOHB) (µmol/l) and 
NEFA (mmol/l) at baseline and after 4 days on a control diet and ingestion of a low-protein 
(LPM: open diamonds)- or high-protein (HPM: closed diamonds, full line) - test meal, or 
after 4 days on a high-protein diet (HPD) and ingestion of HPM (closed diamonds, dotted 
line). Values are means ± SEMs. The dashed line represents end of meal ingestion. 
* Significant effect of dietary conditions, without interaction between time and dietary 
condition, P ≤ 0.05, excepted for BOHB. Respective p value for time (T) and interaction (I) for 
glycerol (T: p = 0.00; I: p = 0.3), BOHB (T: p = 0.00; I: p = 0.04) and NEFA (T: p = 0.00; I: p = 
0.3). 
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Fig.5 
Plasma concentrations of total-triglycerides (total-TG) (mmol/l), Chylomicron-TG (Chylo-
TG) (mmol/l) and breath 13CO2 (mg/min) at baseline and after 4 days on a control diet and 
ingestion of a low-protein (LPM: open diamonds)- or high protein (HPM: closed diamonds, 
full line) - test meal, or after 4 days on a high-protein diet (HPD) and ingestion of HPM 
(closed diamonds, dotted line). Values are means ± SEMs. The dashed line represents end of 
meal ingestion. 
* Significant effect of dietary conditions, without interaction between time and dietary 
condition, P ≤ 0.05. Respective p value for time (T) and interaction (I) for total-TG (T: p = 0.00; 
I: p = 0.4), Chylo-TG (T: p = 0.00; I: p = 0.3) and breath 13CO2 (T: p = 0.00; I: p = 0.6) 
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DISCUSSION 

 

A high-protein diet has been shown to reduce intrahepatic fat concentrations in both humans 

on a high fat diet and in high sucrose fed rats or obese rats, suggesting that dietary protein 

may either enhance hepatic fat oxidation or decrease hepatic lipogenesis or both (154) (155), 

(180). Furthermore, several observations indicate that a high-protein diet may improve 

insulin sensitivity in insulin resistant humans and rodents (164) (175) (176). Since insulin 

resistance is tightly linked to ectopic lipid deposition in skeletal muscle (181) and the liver 

(10), this further supports the hypothesis that protein may enhance whole body lipid 

oxidation. This hypothesis appeared highly plausible since dietary proteins have a high 

thermic effect and increase postprandial whole body energy expenditure (54). Furthermore, 

since hepatic conversion of amino acids into glucose and ureagenesis are both stimulated 

after protein feeding or amino-acid infusion (182), and since both processes have a high 

energy cost, it is likely that a substantial portion of the thermic effect of protein takes place in 

the liver. Based on these considerations, we hypothesized that ingestion of a protein enriched 

meal would enhance whole body lipid oxidation and increase plasma BOHB concentrations 

(a marker of hepatic beta oxidation and ketogenesis) to a greater extent than a low-protein 

meal. 

 

Our present observations however do not support this hypothesis. When the effect of the 

high-protein meal (HPM) containing 25 % protein were compared to those of a control meal 

containing 10 % protein (LPM), the thermic effect of the meal cumulated over 6 hours was 

indeed increased, but cumulated fat oxidation, calculated from indirect calorimetry, was not 

increased, and even tended to be decreased. Furthermore, suppression of plasma BOHB 

concentrations was more sustained after the high protein meal, consistent with a lowered 

hepatic beta oxidation. 

Plasma glucose, and insulin responses somewhat differed after HPM and LPM. After HPM, 

peak plasma glucose concentrations tended to be blunted, but glucose concentrations 

remained elevated for a longer time, and returned more slowly to baseline values. Similar 

observations have already been reported in the literature and were interpreted as the result 

of a delayed gastric emptying with high protein meals, resulting in a slower absorption of 

glucose (168) (183). This explanation is corroborated by our measures of GRa. The GRa 

return to baseline values was indeed delayed with high-protein meals, consistent with a 
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delayed gastric emptying. The slight increase in GRa and insulin between 120 and 360 min 

after a high protein meal may also explain the continuing inhibition of lipolysis and BOHB 

concentrations observed with high protein meals. 

Postprandial net lipid oxidation was not significantly altered by ingestion of a high-protein 

compared to a low-protein meal. Indirect calorimetry is a robust method to estimate net 

substrate oxidation under basal conditions and after ingestion of pure glucose or lipids, but it 

may become relatively inaccurate when protein oxidation changes over time, since acute 

changes in protein oxidation are not reflected in a single timed urine collection and there is a 

delay between ureagenesis and urinary urea excretion (184). Although correction of urinary 

urea excretion for changes in blood urea nitrogen pool size improves the accuracy of indirect 

calorimetry after protein or amino-acid administration, we nonetheless considered the 

possibility that the technique be not sensitive enough to detect changes in lipid oxidation 

induced by dietary protein. We therefore labelled the lipid of the test meals with 13C-triolein 

and monitored breath 13CO2. This approach provides a measurement of lipid oxidation 

which does not rely on calculation of protein oxidation or non-protein respiratory quotient. 

This approach however basically differs from indirect calorimetry by assessing exclusively 

the direct oxidation of exogenous, labelled lipids ingested with the meal. Thus, changes in 

intestinal lipid absorption kinetics, hydrolysis of chylomicrons by lipoprotein lipase at the 

tissue level, and fatty acids tissue uptake and oxidation may all potentially impact on the 

amount of exogenous lipid oxidation. As with indirect calorimetry, monitoring of breath 

13CO2 production was not significantly different after low- or high protein meals, and even 

tended to be lower after a high protein meal. The postprandial suppression of BOHB, which 

reflect hepatic beta-oxidation, was also identical. The present results provide evidence that 

dietary protein did not acutely enhance total, hepatic, or exogenous lipid oxidation. 

 

Reduction in intrahepatic lipids was reported after consumption of a high protein diet for 

several days (115) . We therefore considered the possibility that stimulation of hepatic or 

whole body lipid oxidation may depend on changes in the cellular substrate pools or in gene 

expression, which may require several days exposure to a high-protein intake. We therefore 

also assessed the effects of a HPM ingested after 4-days of diet supplemented with protein. 

NEFA and BOHB responses to ingestion of a high-protein meal were not altered by 

consumption of a HPD during the days before the HPM. In contrast, after a HPD, the  
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postprandial increase in breath 13CO2 and exogenous fat oxidation were significantly 

reduced, while net total lipid oxidation tended to be lower. Furthermore the postprandial 

plasma total triglycerides and chylomicron triglycerides concentrations were significantly 

increased. Since GRa time course after ingestion of a high protein meal was similar after a 4-

day control diet and a 4-day high protein diet, it is unlikely that the high protein diet 

markedly changed gastric emptying, and hence this enhanced postprandial triglyceride 

response is best explained by a decreased tissue extraction of chylomicrons and oxidation of 

chylomicron-derived fatty acids after the high protein diet. These observations altogether 

allow to definitively refute the hypothesis that dietary proteins stimulate fat oxidation. 

Instead, it raises the issue of a possibly impaired chylomicron-triglyceride clearance, with 

lower postprandial oxidation of exogenous fat and enhanced postprandial 

hypertriglyceridemia with protein overfeeding.  

The high-protein diet used in our experiments was both enriched with protein and 

hypercaloric compared to CD. Since our experiment did not include a hypercaloric, normal 

protein diet, we cannot at this stage discard the possibility that the impaired postprandial 

chylomicron clearance observed after HPD was not the mere consequence of an overfed 

caloric load during the 4 days of controlled diet, rather than a specific effect of proteins. 

Similarly, since we did not include a HPD-LPM test in our study, we cannot at this stage 

evaluate whether a hypercaloric, HPD is sufficient to impair postprandial chylomicron 

clearance, or whether this effect is more directly related to the protein content of the meal.  
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In summary, our present observations clearly indicate that increasing the protein content of a 

mixed meal, whether in an acute setting, or in the course of a 4-day high-protein diet, does 

not increase whole body net lipid oxidation, oxidation of the lipids ingested with the meal, or 

plasma BOHB concentrations. This allows to unequivocally refute the hypothesis that a high- 

protein diet may improve insulin sensitivity and reduce ectopic lipids through stimulation of 

lipid oxidation. On the other hand , it was observed that a hypercaloric high-protein diet 

significantly impaired postprandial chylomicron clearance, enhanced postprandial 

triglyceridemia, and decreased postprandial lipid oxidation. This observation is concerning, 

and further studies will be needed to evaluate whether this is a specific effect of a high-

protein diet or the mere consequence of a calorie excess. 
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6.1 DISCUSSION 

 

The objectives of the present work were to investigate the effects of dietary protein intake on 

hepatic lipid metabolism.  

In an attempt to cover different points of view, this question was addressed using three 

protocols involving various feeding conditions. Study I addressed the effects of a 4-day 

hypercaloric high-fat high-protein diet on insulin sensitivity and on accumulation of fat in 

the liver (IHCL). The effects of whey protein supplementation on IHCL, insulin sensitivity 

and lipid metabolism were assessed in obese women in Study II. Finally, the third study 

(Study III) addressed the effects of a high-protein meal on postprandial lipid metabolism 

after 4 days on a control or a high-protein diet. The major aspects of each experiment are 

reported in Table 1. In an attempt to provide discussion, the principle baseline variables and 

results from the 3 studies are summarized in Table 2. A schematic summary of the major 

interesting results for Study I and III is proposed in Figure 7a and for Study II in Figure 7b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Abbreviations; control diet (C); high-fat diet (HF); high-fat high-protein diet (HFHP); control 
diet, low protein meal (CD-LPM); control diet, high protein meal (CD-HPM); high-protein 
diet, high-protein meal (HPD-HPM); baseline condition (B), after whey protein 
supplementation (WPS); BMI, body mass index 
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Table 2 Legend 
 
All values are expressed as mean ± SEMs.  
 
Abbreviations; control diet (C); high fat diet (HF); high-fat high-protein diet (HFHP); baseline 
condition (B), after whey protein supplementation (WPS); control diet, low protein meal 
(CD-LPM); control diet, high protein meal (CD-HPM); high protein diet, high protein meal 
(HPD-HPM); BMI, body mass index; HOMA-IS, Homeostatsis model assessment-insulin 
sensitivity; NEFA, non esterified fatty acid, BOHB, beta-hydroxybutyrate; TG, triglycerides; 
IHCL, intraheaptocellular lipids. 
 
1 Wilcoxon’s paired signed-rank test adjusted with Bonferroni’s correction; 
2 paired t-test; 
3  paired t-test adjusted with Bonferroni’s correction ;  
a  fat mass was estimated by skinfold thickness in Study I and III and by bioimpedance in 
Study II. 
b  Daily nitrogen excretion was estimated from urea urinary excretion during the clamp 
(Study I), in 24 hours urinary collection (Study II) and during two hours baseline (Study III). 
c  To convert vol % en mmol/kg multiplies by a factor 10.1. 
* significantly different from the control condition, respectively in each study,  p ≤ 0.05 
¶ significantly different from the HF or CD-LPM condition, respectively for each study,  p ≤ 
0.05 
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Accumulation of fat in the liver was a primary endpoint of assessment in Study I and II. 

IHCL were evaluated by 1H- NMR-spectroscopy. In both conditions, i.e. in the condition of a 

model of steatosis induced by a hypercaloric high-fat intake in healthy humans (Study I) or 

in the condition of diagnosed NAFLD in obese patients (Study II), supplementing the diet 

with a protein load led to a significant decrease in IHCL.  

 

After four days of supplementing a hypercaloric high-fat diet with 1.5g/kg/protein, IHCL 

decreased by 22 % in healthy volunteers, whereas giving a supplementation of 60g 

protein/day in obese patients (~ 0.6g/protein kg/day) during one month also led to a 

significant 21 % reduction of steatosis. It is noteworthy that obese patients were however left 

on an ad-libitum diet, which might impact on results (this point will be discussed later in 

“limitations of the study”). Up until now most research has involved the metabolic effects of 

low-carbohydrates diets and has reported improvements in hepatic steatosis and features of 

the metabolic syndrome (185). Consequently Inherent indirect effects of increasing the 

amount/proportion of dietary protein intake cannot be excluded. However no study had 

directly investigated the effects of dietary protein on IHCL in humans (186). This observation 

might be of importance since fatty liver is recognized to be an important component of the 

metabolic syndrome and reduction in liver fat content might improve the metabolic 

syndrome. 

 

As a potential mechanism, I first hypothesized that, consequent to the increase in energy 

expenditure required for the protein metabolism, lipid metabolism and lipid oxidation might 

be promoted. Increase in energy expenditure following meal ingestion has already been 

extensively reported (56, 57, 163). We did not report any effect of chronic protein 

supplementation on energy expenditure at baseline but we did observe a significant effect of 

acute protein ingestion, which increased energy expenditure 1.2 times and with chronic 

protein supplementation 1.7 times. Sustained elevation in postprandial thermogenesis 

requires a higher postprandial energy supply which was hypothesized to be provided by 

increased lipid oxidation. 

 

Net and whole body lipid oxidation, as energy expenditure, was calculated from gas 

exchanges, using indirect calorimetry. None of the three studies demonstrated an increase in 

lipid oxidation at baseline or following a protein load. At baseline, even in the fasting state or 
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in the postprandial state, increases in protein oxidation tended to favour carbohydrate 

oxidation at the expense of lipids. In study I chronic protein ingestion increased protein 

oxidation by 49%, carbohydrate by 4% and tended to reduce lipid oxidation by 28% at 

baseline. WPS supplementation resulted in a significant 29% increase in protein oxidation 

and a significant 26% reduction in lipid oxidation. In study II lipid oxidation was 

significantly reduced by 33 % whereas protein oxidation increased by 81 %. 

Altogether these three studies converged to indicate that whole body lipid oxidation tended 

to be inhibited by high protein diets. 

 

The third study was partly designed in an attempt to trace the metabolic fate of a lipid load, 

i.e. exogenous fat oxidation, labelled with 13C-triolein, with or without concomitant protein 

ingestion. Results clearly demonstrated that exogenous fat oxidation tended to be reduced by 

9 % with a protein load and that chronic ingestion of protein amplified this effect, with a 

decrease of 24 %. None of the results suggested that chronic protein intake improved 

exogenous fat oxidation.  

 

We were also interested in hepatic endogenous fat oxidation. It has been demonstrated that 

fat metabolism/oxidation is highly correlated with BOHB plasma concentrations (187, 188).  

Consequently we monitored BOHB plasma concentrations as an indirect marker of hepatic 

fat metabolism. At baseline, in fasting state, as well as in postprandial state, BOHB 

concentrations did not significantly increase among the different studies with the protein 

intakes. It has been previously reported, based on animal studies, that modulation and 

reduction of the insulin/glucagon ratio might favour hepatic lipid oxidation (79). In none of 

our studies was this ratio modified whether at baseline or even in the postprandial state. 

Altogether, these data clearly do not support the hypothesis that dietary protein decreases 

liver steatosis by driving substrate metabolism toward lipid oxidation. 

 

At the hepatic level, two other major key regulatory pathways might be involved in the 

import and the export of fat to the liver. Delivery of fat to the liver is closely related to 

adipose tissue metabolism. It results from the ability of adipose tissue to take up lipids from 

the blood, mostly by regulation of chylomicrons and/or VLDL clearance, and to release free 

fatty acids from adipocytes by lipolysis of adipose tissue triglycerides. Export of triglycerides 

from the liver mainly occurs through the secretion of VLDL-triglycerides. The three different  
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studies showed different aspects and led to a divergent understanding of the modulation of 

hepatic fat transport by proteins. 

 

In Study I, the protein supply was administered together with a hypercaloric high fat intake. 

High-fat intake led to a decrease in lipolysis in adipose tissue, mirrored by a 26% decrease in 

fasting NEFA plasma concentrations, and led to an increased activity of adipose lipogenic 

genes. The addition of protein tended to further enhance these effects of lipids. High-fat 

intake tended to decrease plasma concentrations of VLDL-TG by 22%, which was interpreted 

as a reduced export of TG from the liver. As protein prevented the increase in IHCL and 

restored VLDL-TG plasma concentrations, it appeared plausible that protein might favour 

export of TG from the liver. At this stage we did not believe that protein might account for a 

decrease in VLDL-TG clearance. 

In the third study, the same protein supplementation, but without a fat overload, did not 

affect fasting concentrations of NEFA or VLDL-TG in the fasting state, which supported the 

hypothesis that inhibition of adipose tissue lipolysis and VLDL-TG secretion might be 

primarily attributed to the fat load. The high protein meal led to significant ~ 3 times 

increase in postprandial triglycerides responses but only after short-term protein 

supplementation, which was first expected to be reflected by an increase in VLDL-TG 

secretion. Surprisingly, elevation of plasmatic triglycerides concentrations were 80% 

explained by an increase in chylomicron-TG whereas VLDL-TG plasmatic concentrations 

account for 20% of this change. This observation drove us to propose an effect of dietary 

protein on adipose tissue to decrease VLDL/chylomicron-TG clearance, through modulation 

of the activity of the lipoprotein lipase (LPL).  

To our knowledge, the effects of dietary protein on LPL have never been reported before. As 

plasma TG concentrations are linked to an increased risk of cardiovascular disease, benefits 

of protein ingestion, especially in healthy, normal BMI subjects, might become critical. 

Observation of changes in chylomicrons-TG concentrations failed to inform about the 

amount of dietary fat delivered to the liver; does it increase or decrease? At this stage, this 

still remains an open question and raises interesting perspective for future research (will be 

detailed later, see perspective section), moreover as little information is available regarding 

the influence of the amount or nature of dietary proteins on postprandial lipid responses 

(189). 
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In the clinical study, the design of protocol and the selection of subjects were very different; 

subjects were obese women and food provision was uncontrolled over the month. Patients 

were supplied with 60g/protein per day and left otherwise on a free ad-libitum diet. A 

significant decrease of 21% in IHCL was observed, as well as a significant 15% decrease in 

total-triglycerides and a 7% decrease in cholesterol. As it will be discussed later (see section 

compliance of subjects), it is plausible that patients altered their usual diet in response to the 

satiating effect of protein intake and thus unconsciously decreased their daily carbohydrate 

and fat intakes. Indeed, they almost all reported a feeling of increased satiety with WPS 

protein intake.  

Altogether, these results did not support the hypothesis that protein intake might decrease 

steatosis by increasing the export of fat from the liver by increased VLDL-TG secretion. It 

appears more likely that the delivery of fat to the liver was reduced, which might possibly 

explain the reduction of IHCL observed in the first study. This speculation will however 

need further investigations to be supported. 

 

Even if our first endpoint was to assess effects of protein on hepatic fat metabolism, we were 

also interested in looking at modulation of insulin sensitivity by protein intake. As it was 

discussed in the introduction, the effects of protein on insulin sensitivity are still 

controversial, as infusion of amino acids have been reported to induce insulin resistance (66), 

whereas hypocaloric high protein diets seems to improve insulin sensitivity in obese glucose  

intolerant subject (70). Moreover fatty liver has been linked to the development of insulin 

resistance. 

We did not report any effects of protein on insulin sensitivity either with the 

hyperinsulinemic euglycemic clamp, or with HOMA-IS indexes. For the control feeding 

conditions, subjects were healthy young men. Even if we were able to observe a significant 

decrease in IHCL concentrations after 4-day of high-fat high-protein diet, elevation of IHCL 

might be insignificant compared to the content of IHCL in obese patients and too fast to alter 

insulin sensitivity. This is in accordance with others studies from our research group, 

investigating the effects of hypercaloric fructose conditions, which have demonstrated that 

elevation of IHCL are rapidly affected (116) and that insulin sensitivity might develop later 

(118). 
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However, clearly in obese patients, an effect of improved insulin sensitivity, or glucose 

tolerance concomitant to a decrease in IHCL was expected. Here again, we failed to observe 

such an effect. First, even if reduction in IHCL and total fat mass was significant after the 

month of supplementation, total body weight was not reduced; therefore these changes 

might be too small to clearly impact on insulin sensitivity. Second, obese patients were fed 

on a free ad-libitum diet and even if they were asked to record their food intakes before the 

days preceding OGTT, we had not specifically assessed their usual dietary intakes. Therefore 

it is possible that measured fasting glycemia and insulinemia were also influenced by the 

previous day dietary intake. 

 

In the metabolic syndrome, the question about what might be the central cause of this global 

metabolic disorder, either the fatty liver, or the adipose tissue (9) or the insidious 

development of insulin resistance is still debated (190). In the first definitions of the 

metabolic syndrome (WHO, EGIR, 1999) presence of insulin resistance and/or impaired 

glucose tolerance was the central determinant of the pathology (8), nowadays fatty liver 

becomes more involved as an initial event (191). Without pretending for an answer, the 

central metabolic role of the liver in regulating plasma substrate concentrations, makes this 

organ very susceptible to changes in dietary intakes. Short-term hypercaloric studies may 

therefore inform us only of the early stage of the development of features of the metabolic 

syndrome, and insulin sensitivity might possibly develop later. 
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6.2 LIMITATIONS 

 

Some limits of these studies have to be acknowledged. 

 

The small sample of subjects (ca 7-11 in each study) always raises questions about the 

reliability of statistics on results. However significance in statistics on small samples is 

mostly attained only when a similar pattern of response is present among all the subjects. 

Consequently, with the usual level of a probability of error of 5%, we can be rather confident 

in the results. 

 

The periods of supplementation might also be arguable, as they were chosen to be really 

short. It is possible that longer supplementation would have changed results, but we aimed 

to assess early stages of disease development. Previous reports from our research group have 

demonstrated that 3 days of carbohydrate or fat overfeeding are sufficient to affect 

metabolism (192). The question about protein supplementation is somehow different as it has 

been reported that 7 days are needed to reach nitrogen balance, when protein intakes have 

been changed (34). Assuming that point, we thought that, as for fat, 4 days of protein 

supplementation were enough to assess early changes in disease development. 

Noteworthy the high-fat high-protein diet provided 50% calories above requirements. For 

ethical reasons and for the health of subjects, such diets should not be administrated in the 

long term. In the study III, we wanted to reproduce the same load in quantity of proteins as 

in Study I. Therefore, periods of supplementation were a compromise between time and 

effects. 

 

A major point which is also arguable is the compliance of volunteers in such experimental 

design as they received food and instructions to consume diets at home but were otherwise 

left on their own during the period of dietary supplementation. They had to record the food 

consumed, and were asked to be honest by emphasizing the fact that the most important 

point for us was to know exactly what had been really consumed. 

Hypercaloric, high-fat diets were expected to increase steatosis in the liver when strictly 

consumed, which was indeed observed. Another easy way to assess higher protein 

consumption was to estimate protein intakes from nitrogen losses in the urine. In the 

standardized high-protein diets, if they were strictly consumed, we expected an excretion of  
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nitrogen approximately 32g/day. We failed to report such an increase maybe for two 

reasons; we did not collect the 24 hours urine, which is necessary to assess daily nitrogen 

excretion, and probably a new nitrogen balance was not reached after 4 days. However 

nitrogen excretion calculated in urinary urea samples collected at the end of the clamp in 

Study I and after two hours baseline in Study III increased significantly by 49% and 80% 

respectively. In the study with whey protein supplementation in obese patients, as it was 

explained in the manuscript, we expected a 64% of change in urea production. The results 

observed were 15% lower, which indicates either that subjects did not take the whole protein 

supplementation, or likely that they restricted their usual diet as a consequence of the 

satiating effects of protein. Whatever the reason, we can assume that the protein intake in 

those patients was increased by 39%, which corresponded to a mean increase of 37 g/protein 

per day, and that those effects were observed already after one week and did not change 

during the remaining three weeks of protein supplementation. 

 

Another confounding variable which might affect results is the proportion of energy for 

macronutrients in the diet. When modifying the intake of a macronutrient either the caloric 

content of diets is maintained but the proportion of the three macronutrients is then altered, 

or the proportion of macronutrients does not change but the total intake of calories is 

increased. Both of them present pitfalls. In the first case it makes it impossible to distinguish 

between effects resulting from the increase in the proportion of a macronutrient or the 

decrease in the two others. In the second case, it makes it impossible to distinguish if 

metabolic changes results from an excess energy intake or from increase in a specific 

macronutrient.  

 

Consequently one may question our results; will IHCL also increase when saturated fat 

represent 60% of an isocaloric weight maintenance diet? Will dietary protein also affect 

chylomicrons-TG clearance when administrated under an isocaloric condition? As we 

presumed that obese patients reduced their carbohydrate and fat intakes, would the 

reduction in IHCL and the improvement of plasma triglycerides and cholesterol 

concentrations also be observed if their habitual diets were strictly maintained? Would 

results be significantly different if the types of protein were the same in each study? 
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This last question raises another critical point which may be addressed to that work. As 

reported in Table 1, the nature of supplemented protein differed between studies. Proteins 

were mostly supplemented as meat and fish in Study I, whereas it was whey in Study II and 

casein in Study III. Actually current literature tends to demonstrate that the nature of 

protein, and even more their specific content in some amino acids, impact on postprandial 

lipemia (193).  
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6.3 PERSPECTIVES 

 

All these questions underline the difficulty and impossibility of one single study to answer to 

complex questions dealing with human nutrition. Instead of solving questions, this work 

raises more questions and opens new perspectives of research.  

 

First, the effects of protein to decrease lipoprotein clearance were not expected. We 

presumed that protein ingestion would increase VLDL-TG secretion, but we were really 

surprised to observe a decrease in chylomicron-TG clearance. The interesting question 

beyond this is if and how protein might modulate the transport of fat from and to the liver. 

The uptake of fat from the liver might be indirectly assessed by studying the kinetics of 

chylomicron, from their synthesis in the intestine to their uptake as chylomicron-remnants 

from the liver. Detection of apoB-48 has been reported to be ideal for the determination of 

chylomicron kinetics, being specific to chylomicrons, only synthesized in the intestine, and 

indicative to particle number (194). This will give insights into the effects of protein on 

gastric emptying, chylomicron-TG synthesis, and clearance. Labelling the incorporation of 

13C-oleate in VLDL-TG, as previously described by Heath et al (195) will give additional 

information on the flux (kinetics and amount) of fatty acids from the diet into the 

endogenous pool. To assess more specifically the effects of protein on postprandial lipemia 

and export of fat from the liver, kinetics of VLDL-TG synthesis might be assessed by 

measuring incorporation of 2H5-glycerol in VLDL-TG after a bolus injection of 2H5-glycerol 

(196, 197).  

 

Another point which needs however to be elucidated is whether it is the hypercaloric load of 

our diets or the protein content of them which impact on postprandial lipemia. It would then 

be interesting to follow lipoproteins kinetics in a similar experimental design, i.e. after 4-day 

of different protein dietary conditions; such as an isocaloric control diet, an isocaloric high 

protein diet, or a hypercaloric high protein diet with various nature of proteins such as 

casein/whey/cod or soya proteins. 

 

An important aspect of hepatic fat metabolism which has not been addressed yet is the 

effects of protein on de novo lipogenesis. It is known that hypercaloric high-fructose 

consumption leads to an increase in de novo lipogenesis, resulting in fat accumulation in the  
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liver, an elevation of plasma TG concentrations, and an increased export of VLDL-TG. TG 

effects of a hypercaloric high fructose consumption have been extensively addressed by our 

research group. Therefore the question of the effect of proteins on de novo lipogenesis under 

conditions of hypercaloric fructose consumption is of particular interest for us. It might be 

proposed to follow the metabolism of a fructose load (0.3g/kg body weight) after 6 days of 

supplementation of 3g/kg body weight of fructose with or without concomitant protein 

supplementation. The fructose load might also be ingested with or without protein. 

Metabolism of a fructose load, labelled with 13C-fructose, might be allow to specifically 

assess the effects of protein on 13C-glucose synthesis, lactate, fructose, but also on 

incorporation of 13C-palmitate in VLDL-TG, or apparition of 13CO2 in breath. 
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6.4 CONCLUDING REMARKS 

 

Altogether results of these three studies allow us to clearly refute the hypothesis that 

supplementation of proteins reduce IHCL by increasing stimulation of whole body fat 

oxidation, hepatic beta oxidation, or exogenous fat oxidation. The question of the effects of 

high protein intakes on hepatic lipid metabolism is still open and will need further 

investigation to be elucidated. The question of the observed decrease in IHCL induced by a 

high protein intake need to be clarify as it appeared, once explained by a direct effect of 

protein ingestion on IHCL, and once to be secondary to the satietogenic effects of protein on 

food intake. In parallel an important point which needs to be investigated is if the variation 

in hepatic TG concentrations is better explained by an increase in export of fat from the liver 

or by a decreased uptake of fat from the liver. The effects of protein on postprandial lipemia 

and lipoproteins kinetics have been little investigated up to now and might be therefore an 

interesting question of research, the more so that an elevation of plasmatic TG concentrations 

is highly linked to an increased incidence of cardiovascular disease. Thus the amount and 

nature of dietary proteins all affect carbohydrate and fat, but the complexity of protein 

metabolism is far to be solved and completely understood.   
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6.5 SCHEMATIC REPRESENTATION 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7a: General summary of major results from Study I and III showing effects of 4-day 
hypercaloric high protein intakes on postprandial lipemia with high protein ingestion. 
Postprandial thermogenesis is increased (VO2), as net protein oxidation (Poxid), whereas 
whole body lipid oxidation (Loxid), exogenous fat oxidation (13CO2) are decreased and 
hepatic beta oxidation did not change (BOHB). Chylomicron-triglycerides (CM-TG) 
clearance is impaired and VLDL-triglycerides (VLDL-TG) concentrations tended to increase. 
Consequently, the decrease in intrahepatocellular lipids (IHCL) might not be explained by a 
stimulation of whole-body or hepatic lipid oxidation but rather than by an altered hepatic 
flux of lipids, by modifying fat importation and/or exportation to the liver. Protein might 
affect activity of Lipoprotein Lipase (LPL). Respiratory quotient (QR) 
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Fig.7b: General summary of major results from Study II, showing effects of one month of 
whey protein supplementation on steatohepatitis and lipemia. Net protein oxidation (Poxid) 
is increased, whereas whole-body lipid oxidation (Loxid) tends to decrease. Plasmatic 
concentration of total-triglycerides (total-TG) and total-Cholesterol (total-Chol) are 
decreased. Visceral fat and liver volume are positively correlated to intrahepatocellular lipids 
(IHCL). These metabolic effects might probably be consequent to a spontaneous decrease on 
food intake mediated by the satietogenic effect of protein.  
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