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A novel framework 
for spatio‑temporal prediction 
of environmental data using deep 
learning
Federico Amato1*, Fabian Guignard1, Sylvain Robert2 & Mikhail Kanevski1

As the role played by statistical and computational sciences in climate and environmental modelling 
and prediction becomes more important, Machine Learning researchers are becoming more aware 
of the relevance of their work to help tackle the climate crisis. Indeed, being universal nonlinear 
function approximation tools, Machine Learning algorithms are efficient in analysing and modelling 
spatially and temporally variable environmental data. While Deep Learning models have proved to 
be able to capture spatial, temporal, and spatio-temporal dependencies through their automatic 
feature representation learning, the problem of the interpolation of continuous spatio-temporal 
fields measured on a set of irregular points in space is still under-investigated. To fill this gap, we 
introduce here a framework for spatio-temporal prediction of climate and environmental data using 
deep learning. Specifically, we show how spatio-temporal processes can be decomposed in terms of a 
sum of products of temporally referenced basis functions, and of stochastic spatial coefficients which 
can be spatially modelled and mapped on a regular grid, allowing the reconstruction of the complete 
spatio-temporal signal. Applications on two case studies based on simulated and real-world data will 
show the effectiveness of the proposed framework in modelling coherent spatio-temporal fields.

Data science plays a primary role in tackling climate and environmental challenges1,2. While the amount of obser-
vations from earth-observing satellites and in-situ weather monitoring stations keeps growing, climate modelling 
projects are generating huge quantities of simulated data as well. Analysing these data with physically-based 
models can be an extremely difficult task. Consequently, climate change researchers have become particularly 
interested in the role played by Machine Learning (ML) towards the advances of the state-of-the-art in climate 
modelling and prediction3. In parallel, ML researchers are becoming aware of the relevance of their work to help 
tackle the environmental and climate crisis4.

Environmental spatio-temporal data are usually characterized by spatial, temporal, and spatio-temporal 
correlations. Capturing these dependencies is an extremely important task. Deep Learning (DL) is a promising 
approach to tackle this challenge, especially because of its capability to automatically extract features both in 
the spatial domain (with Convolution Neural Networks (CNNs)) and in the temporal domain (with the recur-
rent structure of Recurrent Neural Networks (RNNs)). However, significant efforts must still be spent to adapt 
traditional DL techniques to solve environmental and climate-related spatio-temporal problems5.

Recent years have seen numerous attempts to use DL to solve environmental problems, such as precipitation 
modelling6,7 or extreme weather events8 and wind speed forecasting9. However, until now most of the efforts 
have been focused on transposing methodologies from computer vision to the study of climate or environmental 
raster data—i.e. measurements of continuous or discrete spatio-temporal fields at regularly fixed locations10. 
These data are generally coming from satellites for earth observation or from climate models outputs. Nev-
ertheless, especially at the local or regional scales, there could be several reasons to prefer to work with direct 
ground measurements—i.e. measurements of continuous spatio-temporal fields on a set of irregular points in 
space—rather than with raster data11. Indeed, ground data are more precise than both satellite products and 
climate models output, generally with a higher temporal sampling frequency of phenomena and without miss-
ing data due to e.g. clouds. On the other hand, the direct adaptation of models coming from traditional DL is 
more complex in the case of spatio-temporal data collected over sparsely distributed measurement stations. In 
this case, the approaches discussed in literature to date only permit to perform modelling at the locations of the 
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measurement stations and, up to our knowledge, no ML-based methodology has been proposed to solve spatio-
temporal interpolation problems having as input spatially irregular ground measurements.

To tackle this gap, we propose an advanced methodological framework to reconstruct a spatio-temporal field 
on a regular grid using spatially irregularly distributed time series data. The spatio-temporal process of interest 
is described in terms of a sum of products between temporally referenced basis functions and corresponding 
spatially distributed coefficients. The latter are considered as stochastic and the problem of the estimation of the 
spatial coefficients is reformulated in terms of a set of regression problems based on spatial covariates, which 
are then learned jointly using a multiple output deep feedforward neural network. The proposed methodology 
permits to model non-stationary spatio-temporal processes.

Across two different experimental settings using both simulated and real-world data, we show that the pro-
posed framework allows to reconstruct coherent spatio-temporal fields. The results have practical implications, 
as the methodology can be used to interpolate ground measurements of climate and environmental variables 
keeping into account the spatio-temporal dependencies present in the data.

The remainder of this paper is structured as follows. First, the literature related to our study is reviewed. Sub-
sequently, the framework for the decomposition of spatio-temporal data and for the modelling of the obtained 
random spatial coefficients is introduced, elaborating on the technical details with respect to the regression 
models used in the experiments. The proposed methodology is then tested on synthetic and real-world case 
studies. Finally, results are discussed and future research directions are drawn.

Related works
In this section, we contextualize our methodological framework in relation to existing work in the field. Classical 
methods for spatio-temporal modelling include state-space models12 and Gaussian Processes based on spatio-
temporal kernels13, including their applications in geostatistics14. The latter includes the widely adopted kriging 
models, which can encounter issues in correctly reproducing non-linear spatio-temporal behaviours, as in the 
case of complex climatic fields. Moreover, the use of kriging models assumes a deep knowledge of the depend-
ence structure present in the data, to be applied to correctly specify its representation via the covariance function 
used while modelling15. Finally, in kriging the use of high number of covariates, despite being possible in what 
is generally referred to as co-kriging, is often complicated and has some very restrictive constraints. Traditional 
ML algorithms have also been used to solve spatio-temporal problems16. However, these techniques typically 
require human-engineered spatio-temporal features, while DL can automatically learn feature representations 
from the raw spatio-temporal data17.

The motivation for this study originates from recently proposed DL approaches to analyse spatio-temporal 
patterns. Geospatial problems have been studied with non-Euclideian spatial graphs via graph-CNNs18. Genera-
tive adversarial networks (GAN) have also been used together with local autocorrelation measures to improve the 
representation of spatial patterns19. Image inpainting techniques have been adapted to the imputation of missing 
values in gridded spatial climate datasets by reconstructing missing values using stacked partial convolutions 
and an automatic mask updating mechanism via transfer learning20. Still, this approaches did not consider the 
temporal dimension of the studied phenomena.

When the temporal dimension is considered and the data are collected as raster, the underlying spatio-
temporal field can be modelled with techniques which already proved their effectiveness in extracting features 
from images and videos, like CNNs21, RNNs22 or with mixed approaches like in Convolutional Long Short-Term 
Memory networks7. Bayesian methods have also been proposed together with RNNs to quantify prediction 
uncertainties23.

Differently, few approaches have been proposed to model data collected at spatially irregular locations. Sev-
eral studies investigated the ability of ML techniques to solve the problem of imputation of missing data in 
environmental time series24,25. Concerning forecasting problems, a common approach to take into account the 
correlation among the different measurement locations is to consider them as nodes in a graph, which can then be 
modelled using specific DL architectures26–28. The main limitation of such methodology is that prediction is only 
possible at the spatial locations of the measurement stations and not at any spatial location of potential interest.

Nonetheless, to the best of our knowledge, no study has been conducted on the possibility of performing 
interpolation of spatio-temporal data at any spatial location using DL, highlighting the novelty of the framework 
proposed in this paper.

Methods
As already discussed, when working with spatio-temporal phenomena it is difficult to realistically reproduce 
the spatial, temporal and spatio-temporal dependencies in the data. One way of keeping into account these 
dependencies is to adopt a basis function representation29. Numerous basis functions can be used to decompose 
spatio-temporal data, including complete global functions as with Fourier analysis, and non-orthogonal bases as 
with wavelets. Here we use the reduced-rank basis obtained through a principal component analysis (PCA), also 
known as an Empirical Orthogonal Functions (EOFs) decomposition in the fields of climatology, meteorology 
and oceanography30.

While in ML PCA is generally applied to reduce the dimensionality of the input space, here we use it on 
the output space—i.e. the spatio-temporal target variable we want to interpolate—in order to decompose the 
data into fixed temporal bases and their corresponding spatial coefficients. The latter are then considered as the 
target variable in a spatial regression problem, which can, in principle, be solved using any ML technique. More 
specifically, the framework that we propose for the interpolation of continuous spatio-temporal fields starting 
from measurements on a set of irregular points in space consist of the following steps. First, a basis function 
representation is used to extract fixed temporal bases from the spatio-temporal observations. Then, the stochastic 
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spatial coefficients corresponding to each basis functions are modelled jointly at any desired spatial location 
with a DL regression technique. Finally, the spatio-temporal signal is recomposed, returning a spatio-temporal 
interpolation of the field.

In the following, we discuss details about the decomposition of the spatio-temporal signal using EOFs and 
about the structure of the regression problem to be solved to perform the spatial interpolation of the coefficients. 
We also provide the mathematical formulation of spatio-temporal semivariograms, which will be later used to 
empirically evaluate the quality of the prediction models.

Decomposition of spatio‑temporal data using EOFs.  Let us suppose that we have spatio-temporal 
observations {Z(si , tj)} at S spatial locations {si : 1 ≤ i ≤ S} and T time-indices {tj : 1 ≤ j ≤ T} . Let Z̃(si , tj) be 
the spatially centered data,

where

is the global mean at time tj.
The centred data Z̃(si , tj) can be represented with a discrete temporal orthonormal basis {φk(tj)}Kk=1

 , i.e.

such that

where αk(si) is the coefficient with respect to the k-th basis function φk at spatial location si , and 
K = min{T , S − 1} . Notice that the scalar coefficient αk(si) only depends on the location and not on time, while 
the temporal basis function φk(tj) is independent of space. The decomposition (1) is theoretically justified by 
the Karhunen-Loève expansion31, which is based on Mercer’s theorem32.

Z̃(si , tj) := Z(si , tj)− µ̄(tj),

µ̄(tj) :=
1

S

S
∑

i=1

Z(si , tj),

(1)Z̃(si , tj) =

K
∑

k=1

αk(si)φk(tj),

E[αk(si)] = 0, for k = 1, . . .K ,

Var[α1(si)] ≥ Var[α2(si)] ≥ · · · ≥ Var[αK (si)] ≥ 0,

Cov[αk1(si),αk2(si)] = 0, for all k1 �= k2,

Figure 1.   The architecture of the proposed framework. The temporal bases are extracted from a decomposition 
of the spatio-temporal signal using EOFs. Then, a fully connected neural network is used to learn the 
corresponding spatial coefficients. The full spatio-temporal field is recomposed following Eq. (1) and used for 
loss minimization.
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The basis computation is related to the spectral decomposition of empirical temporal covariance matrix. 
However, a singular value decomposition (SVD) is more efficient in practice. Furthermore, the SVD performed 
on (S − 1)−

1
2 · Z̃(si , tj) yields directly the normalized spatial coefficients29.

Practically, EOFs computation is equivalent to a PCA33–35, where time-indices are considered as variables 
and the realizations of those variables correspond to the spatial realizations of the phenomenon. As in classical 
PCA, the relative variance of each basis is given by the square of the SVD singular values. Therefore, in case of a 
reconstruction with a truncated number K̃ ≤ K of components, the decomposition (1) compresses the spatio-
temporal data and reduces its noise.

Modeling of the coefficients.  The—potentially truncated—EOFs decomposition returns for each spatial 
location si , corresponding to the original observations, K̃ random coefficients αk(si) . These coefficients can be 
spatially modelled and mapped on a regular grid solving an interpolation/regression task.

To demonstrate the effectiveness of the proposed approach, we will model the coefficients using a deep feed-
forward fully connected neural network36. The structure of the network is described in Fig.1. Spatial covariates 
are used as inputs for the neural network having a first auxiliary output layer where the spatial coefficients are 
modelled. A recomposition layer will then use the K̃ modelled coefficients and the temporal bases φk resulting 
from the EOFs decomposition in order to reconstruct the final output—i.e. the spatio-temporal field—follow-
ing Eq. (1).

The described network has multiple inputs, namely the spatial covariates—which flow through the full stack 
of layers—and the temporal bases directly connected to the output layer. It also has multiple outputs, namely 
the spatial coefficients for each basis, all modelled jointly, and the output signal. While the network is trained by 
minimizing the loss function on the final output, having as auxiliary output the spatial coefficients maps ensures 
a better explainability of the model, which is of primary importance in earth and climate sciences.

It has to be highlighted that instead of the proposed structure, any other traditional ML algorithm could 
have been used to model the spatial coefficients as a standard regression problem, indicating a rather interesting 
flexibility of the proposed framework. However, the proposed DL approach has two main advantages. The first 
is that most classical ML regression algorithms cannot handle multiple outputs, and thus one would have to fit 
separate models for each coefficient map without being able to take advantage of the similarities between the 
tasks. The second advantage is that our proposed DL approach minimizes the loss directly on the final prediction 
target, i.e. the reconstructed spatio-temporal field of interest. Differently, when using single output models, each 
of these is separately trained to minimize a loss computed on the spatial coefficients. This should, in principle, 
lead to a lower performance than with the proposed DL approach minimizing directly the error computed on 
the full reconstructed spatio-temporal signal.

Spatio‑temporal semivariograms.  Semivariograms can be used to describe the spatio-temporal correla-
tion structures of a dataset. The (isotropic) empirical semivariogram is given by29,37

where Ns(h) is the set of all location pairs separated by a Euclidean distance of h within some tolerance, Nt(τ ) 
is the set of all time points separated by a temporal lag of τ within some tolerance and # denotes the cardinality 
of a set.

In this study, variography is used to understand the quality and the quantity of spatio-temporal dependences 
extracted by the model from the original data through a residuals analysis38. The semivariograms are numerically 
computed with the gstat R library39,40.

Results
The proposed methodology has been applied on two different datasets: a simulated spatio-temporal field, and a 
real-world dataset of temperature measurements. For both applications we will first introduce the dataset. Data 
generation/collection as well as the approaches used to allocate training, testing and validation sets are described. 
Then, the main results from the spatio-temporal prediction approach are presented and discussed.

γ (h, τ) =
1

2 · #Ns(h) · #Nt(τ )

∑

si ,sk∈Ns(h)

∑

tj ,tl∈Nt(h)

[

Z(si , tj)− Z(sk , tl)
]2
,

Figure 2.   Cumulative percentage of variance explained by the first 50 components of the EOFs decomposition 
for the simulated dataset. As expected from the data generating process, the sum of the relative variances of the 
20 first components reach the total variance of the data.
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The spatial coefficient maps are modelled using a fully connected feedforward neural network. The network 
has been implemented in Tensorflow41. For both experiments the following configuration has been adopted. 
Kernel initializer: He initialization; Activation function: ELU; Regularization: Early Stopping. Optimizer: Nadam; 
Learning Rate scheduler: 1Cycle scheduling; Number of Hidden Layers: 6; Neurons per layer: 100; Loss function: 
Mean Absolute Error. Batch Normalization has been used in the real world case study.

Experiment on simulated dataset.  To produce realistic 2-dimensional spatial patterns, 20 Gauss-
ian random fields with Gaussian kernel are simulated from the RandomFields R package42 and noted 
Xk(s), k = 1, . . . , 20 . Time series Yk(tj) of length T = 1080 , for k = 1, . . . , 20 , are generated using an order 1 
autoregressive model. Then, the simulated spatio-temporal dataset is obtained as a linear combination of the 
spatial random fields Xk(s) , where Yk(tj) plays the role of the coefficients at time tj , i.e.

where ε is a noise term generated from a Gaussian distribution having zero mean and standard deviation equal 
to the 10% of the standard deviation of the noise-free field. Spatial points si , i = 1, . . . , S = 2000 are sampled 
uniformly on a regular 2-dimensional spatial grid of size 139× 88 , which will constitute the training locations. 
The spatio-temporal training set {Z(si , tj)} is generated by evaluating the sequence of fields (2) at the training 
locations. Spatio-temporal validation and testing sets are generated analogously from 1000 randomly selected 
locations each.

The training and validation sets are decomposed following the methodology described in the previous section. 
The cumulative percentage of the relative variance for the first 50 components is represented in Fig. 2. Note that 
without the addition of the ε term the total variance would have been explained with the first 20 components, 
which is the number of elements used to construct the simulated dataset, see Eq. (2). Nonetheless, even in the 
presence of the additional noise these components explain about 99% of the variance. Therefore, the neural 
network is trained using two inputs, namely the spatial covariates corresponding to the x and y coordinates, 
and K̃ = 20 outputs.

The Mean Absolute Error (MAE) computed on the test set after the modeling with the proposed neural 
network approach is indicated in Table 1. We also compare the output of the proposed framework to the results 
obtained using a different strategy. Specifically, instead of predicting all the spatial coefficients at once with the 
proposed multiple outputs model, we investigated the impact in terms of test error performance due to the 
separate modeling of each coefficient map. To this aim, both fully connected feedforward neural network (NN) 
and Random Forest (RF)—which is popular in environmental and climatic literature—have been used to predict 
the individual spatial coefficient maps, which are then used together with the temporal bases to reconstruct the 
spatio-temporal field. The neural network has the same structure as the one used with the multiple output strat-
egy, with the exception of the recomposition layer, which is indeed absent. The RF models were implemented in 
Scikit-learn43 and trained using 5-fold cross validation. It is shown that the use of the proposed multiple output 
model helps to significantly improve the performances with respect to the approaches based on separate single 
output models, which have significantly worse performances.

(2)Z(s, tj) =

20
∑

k=1

Xk(s)Yk(tj)+ ε,

Figure 3.   Model outputs for the simulated spatio-temporal field defined by Eq. (2). Top left : A snapshot of 
the true spatial field at the fixed time indicated by the vertical dashed in the temporal plot below. Top right : 
The predicted map at the same time. Bottom : The true time series (in black) and the predicted time series (in 
orange) at the fixed location marked by a cross in the maps above.
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Randomly chosen examples of prediction map and time series are shown and compared with the true spatio-
temporal field in Fig. 3. The predicted map recovers the true spatial pattern, and the temporal behaviours are 
fairly well replicated too.

Figure 4 shows the spatio-temporal semivariograms of the simulated data, of the output of the model and 
of the residuals—i.e. the difference between the simulated data and the modelled one. All semivariograms are 
computed on the test points. The semivariogram on the modelled data shows how the interpolation recovered the 
same spatio-temporal structure of the (true) simulated data, although its values are slightly lower. This imply that 
the model has been able to explain most of the spatio-temporal variability of the phenomenon. However, it must 
be pointed out that even better reconstruction of the spatio-temporal structure of the data could be recognizable 
in the semivariograms computed on the training set, similarly to how the training error would be lower than the 
testing one. Finally, almost no structure is shown in the semivariogram of the residuals, suggesting that almost 
all the spatially and temporally structured information—or at least the one described by a two-point statistic 
such as the semivariogram—has been extracted from the data. It also shows a nugget corresponding to the noise 
used in the generation of the dataset.

Experiment on temperature monitoring network.  The effectiveness of the proposed framework in 
modelling real-world climate and environmental phenomena is tested on a case study of air temperature predic-
tion in a complex Alpine region of Europe. This area (having projected bounds 486660, 77183, 831660, 294683 
meters in the spatial reference system CH1903/LV03) constitutes a challenging—but representative—example. 
Indeed, the region is traversed from south-west to north-east by the Alps chain. This forms a natural barrier, 
which leads to marked differences in temperature between the two sides of the mountain range. Starting from 
measurements sampled with hourly frequency from 1st July 2016 to 30th June 2018 over 369 meteorological sta-
tions, whose spatial distribution represents different local climates of the complex topography of the region, we 
will model the spatio-temporal temperature field on a regular grid with a resolution of 2500 meters. Data were 
downloaded from MeteoSwiss (https​://gate.meteo​swiss​.ch) and include measurements from several meteoro-
logical monitoring networks of Switzerland, Germany and Italy. The data were thoroughly explored and obvious 
outliers were removed. Missing data, corresponding to approximately 1% of the entire dataset, were replaced by 
a local spatio-temporal mean obtained from the values of the eight stations closest in space over two contigu-
ous timestamps, yielding an average over 24 spatio-temporal neighbours44,45. Before modelling, the dataset was 
randomly divided into training, validation and testing subsets, consisting of 220, 75 and 74 stations respectively.

The first three components resulting from the EOFs decomposition of the training and validation sets, 
together with the corresponding temporal bases functions and normalized spatial coefficients, are displayed in 
Fig. 5. The first two temporal bases clearly show yearly cycles, and a closer exploration of the time series would 
reveal other structured features such as daily cycles—here not appreciable because of the visualisation of a large 
amount of time-indices. The normalized spatial coefficient maps unveil varying patterns at different spatial scales.

Table 1.   Comparison of the test MAE resulting from a model following our novel framework—in which all 
the spatial coefficients are learned at once with a multiple output deep neural network—and the one obtained 
through an approach in which each coefficient map is predicted using a separate single output regression 
model.

Dataset Multiple outputs Single output (NN) Single output (RF)

Simulated 1.978 8.340 6.709

Temperature (all comp.) 1.148 1.599 1.682

Temperature (24 comp.) 1.285 1.628 1.683

Figure 4.   Variography for the simulated dataset model. Spatio-temporal semivariograms have been computed 
on the test points for the simulated data (left), the model implemented using the first 20 EOFs components 
(center) and its residuals (right).

https://gate.meteoswiss.ch
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Fig. 6 shows that 95% of the data variation is explained by the first 24 components. Hence, we implemented 
two different models. The first one is developed by using all the available components ( K̃ = K = 294 ), while the 
second one adopts a compressed signal keeping 95 % of data variance ( K̃ = 24 ). It is well known that temperature 
strongly depends on topography, and in particular on elevation46. Hence, in addition to latitude and longitude, 
altitude is added as a spatial covariate in the two models. The trained models will therefore have three inputs, i.e. 
the three spatial covariates, and K̃ outputs, with the latter changing in the two experiments conducted.

Predicted maps of temperature at a randomly chosen fixed time are shown in Fig. 7 for both model, together 
with time series at a random testing station. The predicted temperatures at the testing station are compared with 
the true measurements on accuracy plots and on a time series plot. The model with K̃ = 294 replicates extremely 
well the temperature behaviour. The predicted map captures the different climatic zones, while the predicted time 
series retrieves very well the temporal dependencies in the data. In particular, highly structured patterns such 
as daily cycles are recovered as well as the variability at smaller temporal scales and abrupt behaviour changes. 
The accuracy plot further highlights how well the predictions fit the true values. The model with K̃ = 24 shows 
comparable results while the dimensionality of the data has been significantly reduced, indicating that it is pos-
sible to obtain similar accuracy with compressed data.

Even if not strictly required to model the spatio-temporal field, the spatial coefficient maps can be obtained 
from the neural network as auxiliary outputs (shown in Fig. 5). Their usage is extremely relevant from a diagnos-
tic and interpretation perspective. Indeed, climate and Earth system scientists are accustomed to the use of EOFs 
as exploratory data analysis tool to understand the spatio-temporal patterns of atmospheric and environmental 
phenomena. Hence, the full reconstruction of the spatial coefficients on a regular grid represents a useful step 
towards a better explainability of the modelled phenomena. Specifically, these maps could be interpreted from 

Figure 5.   Temperature monitoring network, first 3 components of the EOFs decomposition. Top row : The 
temporally referenced basis functions. Center row : The normalized spatial coefficients of the corresponding 
EOFs. Bottom row: The corresponding predicted spatial coefficients provided by the auxiliary outputs of the 
fully connected neural network (all components).

Figure 6.   Cumulative percentage of variance explained by the first 50 components of the EOFs decomposition 
for the temperature monitoring network dataset. The sum of the relative variance of the first 24 components 
reaches 95% of the total data variation.
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a physical standpoint to analyze the contribution of each temporal variability pattern29,31. In our case study, the 
globally emerging structures correspond to different known climatic zones. As an example, the first map in the 
bottom row of Fig. 5 clearly shows the contribution of the first temporal basis in the Alps chain, while the third 
map indicates a strong negative contribution of the corresponding temporal basis at the south of the chain.

As in the case of the simulated dataset, we performed a comparison between the multiple output strategy, 
where the spatial coefficients are modelled jointly, and the use of separate regression models to predict each 
coefficient map (Table 1). Once more, the latter approach results in a higher error, both for the models with all 
the components and for the model with the first 24 ones. In both cases, the use of a single output strategy results 
in comparable error rates between the RF and the neural network models. Again, we can conclude that the use 
of a single network to model jointly the spatial coefficients and the spatio-temporal fields yields better perfor-
mances, since the algorithm is trained to minimize a loss computed on the final output after the recomposition 
of the signal.

A variography study was performed on the test data. Figure 8 shows the spatio-temporal semivariograms for 
the raw test data and for the modelled data and residuals resulting from the models, with all the components and 
with only the first 24 ones. While both models are able to coherently reconstruct the variability of the raw data, 
the semivariogram for the model including all the components has a sill, i.e. the value attained by the semivari-
ogram when the model first flattens out, comparable to the one of the raw data. The sill of the semivariogram 
computed on the modelled data using 24 components is slightly lower, indicating that a certain amount of the 
variability of the data has not been captured by the model. This is somehow related to the fact that about 5% of 
the variability of the training data was not explained by the first 24 components, as indicated in Fig. 6. The two 
semivariograms for the residuals show that the models were able to retrieve most of the spatio-temporal structure 
of the data. Nonetheless, it can be seen how residuals still show a small temporal correlation, corresponding to 
the daily cycle of temperature. This is likely because the spatial modeling of each component induces an error, 

Figure 7.   Model outputs for the temperature monitoring network. Top left : The predicted map of temperatures 
using all EOFs components, at the fixed time indicated by the vertical dashed line in the temporal plot below. 
Top right : The predicted map using only the first 24 components at the same time. Center : The true time 
series (in black) at a testing station marked by a cross in the maps above, the predicted time series with all 
EOFs components (in orange) and the predicted time series with the first 24 EOFs components (in green). For 
visualization purposes, only the first 42 days of the time series are shown. Bottom left: Accuracy plot at the 
testing station for the model with all EOFs components. Bottom right: Accuracy plot at the testing station for 
the model with the first 24 EOFs components.
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which in the reconstructed field becomes proportional to its corresponding temporal basis. This suggests that 
even if the spatial component models are correctly modeled, some temporal dependencies may subsist.

Discussion
In this paper we introduced a framework for spatio-temporal prediction of climate and environmental data using 
DL. The proposed approach has two key advantages. First, the decomposition of the spatio-temporal signal into 
fixed temporal bases and stochastic spatial coefficients allows to fully reconstruct spatio-temporal fields start-
ing from spatially irregularly distributed measurements. Second, while the spatial prediction of the stochastic 
coefficients can be performed using any regression algorithm, DL algorithms are particularly well suited to solve 
this problem thanks to their automatic feature representation learning. Furthermore, our framework is able 
to capture non-linear patterns in the data, as it models spatio-temporal fields as a combination of products of 
temporal bases by spatial coefficients maps, where the latter are obtained using a non-linear model. Moreover, it 
can be shown that the basis-function random effects representation induces a valid marginal covariance function 
without requiring a complete prior knowledge of the phenomena by the modeller, which would instead be neces-
sary in the applications based on traditional geostatistics. Finally, even if the traditional ML and geostatistical 
techniques could be used to model separately each single spatial coefficient map, the use of a single DL model 
allows the development of a network structure with multiple outputs to model them all coherently. Besides, the 
recomposition of the full spatio-temporal field can be executed through an additional layer embedded in the 
network, allowing to train the entire model to minimize a loss computed directly on the output signal. We showed 
that the proposed framework succeeds at recovering spatial, temporal and spatio-temporal dependencies in both 
simulated and real-world data. Furthermore, the proposed framework can eventually be generalized to study 
other climate fields and environmental spatio-temporal phenomena—e.g. air pollution or wind speed—or to 
solve missing data imputation problems in spatio-temporal datasets collected by satellites for earth observation 
or resulting from climate models.

Researchers in the field of ML are becoming more aware of the relevance of their work in tackling climate 
change issues, environmental risks (e.g., pollution, natural hazards), renewable energy resources assessment, 
thus contributing to the new emerging field of environmental, and in particular climate, informatics. With this 
paper, we sought to broaden the agenda of spatio-temporal data analysis and modelling through deep learning.

Being adaptable to every machine learning models, the approach discussed in this paper may enable users 
interested in measuring the uncertainties of their model output to use methods allowing its explicit estimation, 
like for example Gaussian Processes. Nonetheless, further research has to be developed to define procedures 
to quantify the propagation of uncertainty through the diverse steps of the proposed framework. In addition, 
further studies must be conducted to analyse the consistency of the spatio-temporal predictions provided by this 

Figure 8.   Variography for the temperature monitoring network models. Spatio-temporal semivariograms have 
been computed on the test points. Top row: semivariograms for the raw data (left), the model implemented 
using all the EOFs components (center) and its residuals (right). Bottom row: semivariograms for the model 
implemented using the first 24 EOFs components (left) and its residuals (right).
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framework and more generally by any other data-driven method with the patterns observed in the real physical 
models determining the studied phenomena. With this concern, a promising research direction comes from the 
possibility of integrating physical and data-driven models. These integrated or hybrid models should ideally be 
constrained by physical laws while ensuring flexibility and adaptation capacity. Finally, additional fundamental 
studies will be conducted to extend our approach for spatio-temporal forecasting and multivariate analysis.
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