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Abstract 14 

Resistance to pathogens is often invoked as an indirect benefit of female choice, but 15 

experimental evidence for links between father's sexual success and offspring resistance is 16 

scarce and equivocal. Two proposed mechanisms might generate such links.  Under the first, 17 

heritable resistance to diverse pathogens depends on general immunocompetence; owing to 18 

shared condition-dependence, male sexual traits indicate immunocompetence independently 19 

of the male's pathogen exposure. In contrast, other hypotheses (e.g., Hamilton-Zuk) assume 20 

that sexual traits only reveal heritable resistance if the males have been exposed to the 21 

pathogen. The distinction between the two mechanisms has been neglected by experimental 22 

studies. We show that Drosophila melanogaster males that are successful in mating contests 23 

(one female with two males) sire sons that are substantially more resistant to the intestinal 24 

pathogen Pseudomonas entomophila – but only if the males have themselves been exposed to 25 

the pathogen before the mating contest. In contrast, sons of males sexually successful in the 26 

absence of pathogen exposure are less resistant than sons of unsuccessful males. We detected 27 

no differences in daughters' resistance. Thus, while sexual selection may have considerable 28 

consequences for offspring resistance, these consequences may be sex-specific. Furthermore, 29 

contrary to the "general immunocompetence" hypothesis, these consequences can be positive 30 

or negative depending on the epidemiological context under which sexual selection operates.  31 

Keywords: good genes, parasites, immunocompetence, Hamilton-Zuk hypothesis, female 32 

choice, Drosophila 33 

   34 



Joye and Kawecki    2 

1. Introduction 35 

The "good genes" hypothesis for sexual selection posits that traits enhancing male mating 36 

success are indicators that the male carries genetic variants improving non-sexual components 37 

of offspring fitness (relative to alternative alleles, i.e., "bad genes") [1]. In genetic terms, this 38 

means a positive correlation between a male's sexual traits and his breeding value for non-39 

sexual fitness components [2, 3].  One fitness component often invoked in this context is 40 

resistance to pathogens and parasites: female preference for costly male display traits is 41 

hypothesized to bring indirect genetic benefits in terms of offspring resistance [4-7], and 42 

sexual selection is proposed to act in synergy with natural selection for improved resistance 43 

[8, 9] (Here we use resistance in a broad sense of reducing the impact of pathogen presence 44 

on host fitness, including behavioural avoidance, barriers to infection, immune defence and 45 

physiological tolerance of infection.) Despite its intellectual appeal and the research effort 46 

devoted to it, this idea remains controversial [3, 10-12]. In particular, very few studies 47 

experimentally tested the prediction that more sexually attractive or successful males actually 48 

do sire offspring more resistant to pathogens; their results are equivocal. In the three-spined 49 

stickleback, offspring of fathers with a stronger ornament (redder belly) became less heavily 50 

infected upon experimental exposure to a cestode parasite [13]. In contrast, in Drosophila, 51 

survival after a bacterial infection did not differ between offspring of sexually successful 52 

versus unsuccessful males [14]. Female mice mated to their preferred males did produce 53 

offspring more resistant to Salmonella than females mated to non-preferred males [15], but 54 

this appears mediated by MHC heterozygote advantage [16], and thus supports the 55 

"compatible genes" hypothesis [17] rather than the "good genes". In trout, offspring survival 56 

under conditions favouring opportunistic pathogens was positively correlated with father's 57 

melanin ornamentation, but negatively with carotene ornamentation; it is not clear which 58 

plays a greater role in female choice [18]. No relationship between father's attractiveness and 59 

measures of offspring immune response was found in scorpion flies [19, 20], whereas in 60 

ostrich one of several measures of plumage positively correlated with one of three measures 61 

of immune response [21]. Similarly mixed results about additive genetic correlations between 62 

sexually selected traits and resistance have emerged from quantitative genetic estimates [9, 63 

22-26] and experimental evolution [27-30].  64 

The study we report here suggests that those mixed results can be at least in part explained by 65 

a distinction between two ways in which a positive correlation between a male's sexual traits 66 

and his breeding value for pathogen resistance could be generated. The currently prevailing 67 

view is that variation in pathogen resistance relevant for sexual selection is largely due to 68 

general immunocompetence that determines resistance to a broad range of pathogens, and 69 

which depends on (or is an aspect of) the individual's physiological condition [6, 9, 31]. The 70 

condition is thought to be heritable because it captures a significant part of genetic variance 71 

for fitness maintained by mutation-selection balance and other mechanisms; sexual display 72 

traits evolve to be honest signals of condition [8, 32], and thus of immunocompetence [7, 9, 73 

33].  74 

An alternative scenario, first proposed by Hamilton and Zuk [4], assumes that variation in 75 

resistance is specific to pathogen species or genotypes, which undergo constant turnover; 76 

male sexual traits reveal heritable resistance to currently prevalent parasites and pathogens 77 
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(rather than general immunocompetence). This correlation is generated by differential 78 

consequences of pathogen exposure for the health of males with different degrees of 79 

resistance, and these health consequences are revealed by sexual display traits [4, 5, 34-38]. 80 

Thus, male sexual traits only "capture" variation in resistance to pathogens to which the males 81 

have been exposed [38]. In the absence of any pathogen, resistant males are not expected to 82 

be healthier and thus not more sexually attractive or successful [38]; they may be less 83 

successful if resistance carries a physiological cost [5]. Thus, under this "specific resistance" 84 

scenario the identity of "good genes" depends on the environmental context; offspring 85 

resistance is an indirect benefit of mating choice only if both fathers and offspring are 86 

exposed to the same pathogens [4, 5]. 87 

Both these scenarios have been originally invoked in the context of display traits targeted by 88 

mate choice, but may apply as well to traits involved in intra-sexual competition for mates, as 89 

these traits are also costly and likely condition-dependent, and often are the same traits as 90 

those involved in mate choice [39]. The relative and absolute importance of these two 91 

hypothetical scenarios linking pathogen resistance and sexual selection remains unresolved 92 

[11]. Yet, the predictions about consequences of sexual selection differ between these 93 

scenarios in a crucial way. Under the "general immunocompetence" scenario, fathers' sexual 94 

success predicts offspring resistance to diverse pathogens irrespective of whether or not the 95 

fathers have been exposed to any pathogens [38]. In contrast, under the "specific resistance" 96 

scenario, sexually successful males sire offspring with higher resistance to a pathogen only if 97 

the males have themselves been exposed to the pathogen while they were developing their 98 

sexual traits; sexual success in the absence of pathogens does not predict offspring resistance 99 

[38].  100 

The aim of the present study was to test these distinct predictions. To our knowledge, the 101 

distinction has not been experimentally addressed; in none of the experimental studies 102 

summarized above were the fathers experimentally exposed to pathogens, although in some 103 

[13, 18, 23] they might have been naturally exposed. We tested if sexually successful 104 

Drosophila melanogaster males sire offspring more resistant to an intestinal pathogen 105 

(Pseudomonas entomophila) than unsuccessful males, and, crucially, if this depends on 106 

whether the males' success is determined after they have been exposed to the pathogen. This 107 

pathogen causes substantial mortality in Drosophila, and fly populations harbour natural 108 

genetic variation in resistance to this pathogen [40, 41]. This variation has been found 109 

associated with differences in ROS production, tendency to lose gut wall integrity and activity 110 

of gut repair [40, 41]. In contrast, genetically higher resistance to P. entomophila does not 111 

seem to be mediated by greater expression of antimicrobial peptides or reduced ingestion of 112 

the bacteria ([40, 41]), in spite of flies being able to learn to avoid this pathogen ([42]).  113 

We staged mating contests in which two males (sires) from a single outbred population 114 

competed for a female, where either both sires were earlier exposed to the pathogen or both 115 

were sham-treated. Drosophila females have full control over mating, and although the 116 

outcome of such contests is affected by male-male agonistic interactions, it contains a large 117 

component of female choice [43]. Subsequently, we quantified pathogen resistance of 118 

offspring sired by these winner and loser males before the infection treatment and the mating 119 

contest. This excluded potential non-genetic effects of father's infection or contest outcome on 120 
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offspring resistance, and prevented potential transmission of the pathogen from infected 121 

fathers to offspring. Mean resistance of the offspring was thus an unbiased estimate of the 122 

sire's breeding value (his "genetic quality") for that trait [2, 44], allowing us to test its 123 

relationship with attractiveness. 124 

 125 

2. Methods 126 

(a) Fly maintenance 127 

We used flies from a population collected in 2007 in the canton of Valais, Switzerland, and 128 

maintained in the laboratory since at a population size of >1000 adults. Flies used in the 129 

experiments were raised at 25°C, relative humidity 55% and 12:12 photoperiod on standard 130 

yeast-cornmeal-sugar medium under density of about 250 larvae per bottle with 30 ml of food 131 

(controlled by egg counting). Virgin flies of both sexes were collected within 12 h of 132 

emergence. Virgin females were maintained in groups in food vials until used in the 133 

experiment; their virginity was verified by the absence of larvae. All fly transfers were done 134 

under light CO2 anaesthesia. 135 

 136 

(b) Father's sexual success and offspring resistance 137 

The design of our main experiment is summarized in Figure 1. Immediately after being 138 

collected, sires were dusted with red or blue powder (Sennelier), then maintained for 72 hours 139 

in groups of about 50 in vials with food. Subsequently, each sire was placed with two virgin 140 

females in a vial containing 10 ml of food and given 48 hours to mate before being removed 141 

for the next step of the experiment. Females were given another 24 hours to lay eggs before 142 

being removed from the vials; the vials were then kept until offspring collection.  143 

After removal from the mating vials we haphazardly paired a red-dusted and a blue-dusted 144 

sire; each sire duo was then subject to either the infection or the sham treatment (described 145 

Figure 1. The design of the experiment to study the relationship between a sire's sexual success 
and his breeding value for resistance to P. entomophila. For explanations see Methods 
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below) for 20 h. After the infection or sham treatment, each sire duo was transferred to a new 146 

food vial divided by a removable longitudinal partition (Supplementary Figure 1). The sires 147 

were placed on one side of the partition and a virgin female on the other side; they were 148 

maintained so overnight to let them habituate and the CO2 effect wear off. The next morning 149 

(40 h after the beginning of the infection or sham treatment), we removed the partition, 150 

bringing the two sexes together. We observed the flies until the first mating occurred; the 151 

male that mated was defined as the "winner" and its less successful counterpart the "loser". 152 

Replicates in which no mating occurred within 2 h or in which one or both males were dead 153 

before the mating contest were discarded. Where mating occurred, flies were retained in the 154 

vial and the survival of "winner" and "loser" males until 72 h post-infection was recorded. 155 

To assess resistance of the offspring, 17 days after initial mating (4-6 days after adult 156 

eclosion) we collected 10 female and 10 male offspring per sire. The offspring were orally 157 

infected (in single sex groups) as described below and subsequently transferred to food vials; 158 

the number of dead and alive flies was scored at 24, 48 and 72 hours from beginning of the 159 

infection treatment.  160 

This entire experiment was performed in three blocks spread over several months. Per block 161 

and infection/sham treatment we assessed the resistance of offspring of five winner-loser duos 162 

(3 blocks × 2 treatments × 5 duos × winner and loser × 2 sexes × 10 offspring = 1200 163 

offspring in total). The design was paired in that we compared offspring of winner and loser 164 

from the same duo, i.e., two sires that directly competed with each other (see section 2e). If 165 

either sire of a duo failed to produce enough offspring, the entire duo was discarded to avoid a 166 

sampling bias. To obtain this number of replicates, many more mating contests were set to 167 

allow for sire mortality prior to contest, unresolved contests (i.e., no mating) and insufficient 168 

number of offspring (i.e., fewer than 10 offspring of each sex for either sire of a winner/loser 169 

pair). Thus, the number of replicate duos whose offspring's resistance was assessed was 170 

smaller than the total number of mating contests.  171 

 172 

(c) Bacterial culture and infection protocol 173 

As the experimental pathogen we used Pseudomonas entomophila, a gram-negative bacterium 174 

originally isolated from D. melanogaster, which is virulent upon intestinal infection at 175 

sufficiently high doses [41, 45]. The Pseudomonas entomophila strain was originally provided 176 

by Bruno Lemaitre [45] and maintained at –80°C. Cultures were first initiated on solid 177 

medium (triptone, yeast, NaCL, agar and 5% milk). Milk was added to screen colonies for 178 

protease activity, which is a marker of virulence and which will form a pale halo around the 179 

colony [46]. A single colony from the plate was used to initiate culture in 50 ml of liquid 180 

medium (with the same composition as the solid media but without agar and milk) for 24 181 

hours at 28.5°C on a shaker at 190 rpm. The 50 ml of culture were then transferred into 200 182 

ml of fresh medium and kept in the same conditions for another 24 hours. The content was 183 

subsequently centrifuged for 20 minutes at 4°C and 3000 rpm. The pellet was resuspended in 184 

0.9% NaCl solution to the optical density (OD) of 200 at 600 nm. For infection of the sires 185 

and their male offspring, the final bacterial suspension was obtained by adding the same 186 

volume of a 5% sucrose solution, reducing the final OD to 100. The same bacterial 187 
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concentration was used to infect the female offspring in the first experimental block; however, 188 

it resulted in over 90 % mortality for daughters of all sire categories. Aiming to reduce 189 

mortality and thus to increase the resolution of potential differences in daughter resistance, for 190 

the remaining two experimental blocks we halved the final concentration used to infect female 191 

offspring to OD 50. The infectious suspension was always prepared on the day when the flies 192 

were to be infected. 193 

Prior to infection flies were first starved for 2 hours in empty vials to increase their 194 

consumption of bacteria. For the infection treatment, the flies were transferred to vials with a 195 

filter paper disc soaked with 100 µl of bacterial mix placed on top of agarose and left there for 196 

20 hours. Subsequently, they were transferred to vials with food and monitored for survival 197 

until 72 h from the onset of infection. Based on previous studies [40, 41, 45], comparing 198 

survival at 72 h post-infection offers good resolution of differences between treatments in 199 

resistance to P. entomophila. For the sham treatment, sires were manipulated in the same way 200 

as sires in the infection treatment except that the paper disk was infused with 100 µl of 50:50 201 

mixture of 0.9 % NaCl and 5 % sucrose.  202 

 203 

(d) Infection and the ability to mate 204 

In order to verify if our infection treatment impaired males' ability to mate in the absence of 205 

male-male competition or mate choice, in a separate experiment we performed mating trials 206 

that excluded these factors. Virgin males (raised and handled as in the main experiment 207 

except not being dusted with colour powder) were either infected with P. entomophila or 208 

sham-treated as described above. Thereafter a single male and a virgin female were placed on 209 

opposite sides of a vial divided by a partition, as in mating contests described above and left 210 

to habituate overnight. The next day, the partition was removed and the mating trial started 211 

and we scored whether mating occurred within the 2 h period. Replicates in which the male 212 

was dead or immobile before the trial were discarded, leaving 29 males in the infection 213 

treatment and 50 in the sham treatment. 214 

 215 

(e) Statistical analysis 216 

All statistical analyses were performed using R (version 3.5.1) and the RStudio plugin 217 

(version 1.1.463). Colour of the powder used to mark males had no detectable effect on their 218 

probability of winning (p = 0.37, binomial test), in agreement with our previous unpublished 219 

results. We focused on offspring resistance in terms of the likelihood of surviving 72 h post-220 

infection. Using survival until 48 h post-infection led to the same conclusions; statistics for 221 

both time points are reported in Supplementary Table S1. With offspring survival as the 222 

binary response variable, we used the glmer function of R package lme4 to fit generalized 223 

mixed models with logit link and binomial error distribution. Mating outcome (winner or 224 

loser), treatment (infection or sham) and offspring sex (where both sexes were analysed 225 

together) were the fixed effects. The main unit of replication – winner-loser duo – was 226 

included as a random explanatory variable; block was also treated as a random variable (an 227 

alternative analysis with block treated as a fixed factor resulted in the same conclusions). To 228 
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test directly if survival odds ratios differed between sons and daughters of sires of the two 229 

treatments, we also fitted generalized mixed models separately for infected and sham-treated 230 

sires and tested for the interaction between contest outcome and offspring sex with the 231 

likelihood ratio test.  Marginal means were estimated with emmeans; pairwise contrasts were 232 

performed with pairs function of the emmeans package. A further analysis was performed 233 

with father's success in the mating contest and father survival (as a binary variable: the fathers 234 

were either dead or alive after 72 hours) as fixed factors, only including data from the infected 235 

treatment. Because the infectious dose used for female offspring in blocks 2 and 3 was 236 

reduced compared to block 1 (see above), we repeated all analyses involving female offspring 237 

with data from blocks 2 and 3 only. None of the conclusions were affected; thus, we only 238 

report the analysis including all the blocks.  239 

 240 

3. Results 241 

(a) Father's sexual success predicts sons' resistance 242 

The relationship between a sire's winning versus losing the mating contest and resistance of 243 

his offspring to P. entomophila depended on offspring sex (contest outcome × sire infection 244 

treatment × offspring sex interaction:  χ2
1 = 7.4, p = 0.0067, likelihood ratio test, GLMM on 245 

probability of surviving 72 h post-infection; for detailed analysis see Supplementary Table 246 

S1a). This justified splitting the analysis by offspring sex.  247 

The relationship between father's success and pathogen resistance of his male offspring had 248 

opposite signs depending on whether or not the contest took place after pathogen exposure 249 

(contest outcome × sire infection treatment interaction: χ2
1 = 38.6, p < 0.0001, Supplementary 250 

Table S1b). When the fathers were infected prior to the contest, the odds of surviving 72 h 251 

post-infection were five times greater for sons of winners than for sons of losers (Figure 2a,c; 252 

odds ratio 5.1, z = 5.83, p < 0.0001). The opposite was the case for sham-treated sires – here 253 

the winners' sons were half as likely to survive infection than losers' sons (Figure 2a,c; odds 254 

ratio 0.49, z = 2.6, p = 0.007). These differences were consistent among three experimental 255 

blocks performed weeks apart, despite considerable variation among blocks in overall 256 

mortality (Supplementary Figure S2a). 257 

In contrast to sons, we did not detect any relationship between the father's winning versus 258 

losing the mating contest and his daughters' survival upon infection (contest outcome χ2
1 = 259 

0.02, p = 0.89; contest outcome × sire infection χ2
1 = 3.0, p = 0.083). The pattern of 260 

survivorship differences did resemble that for sons (Fig 2b), but was not consistent among 261 

blocks (Supplementary Figure S2b); odds ratio for daughters of winners versus losers was 262 

1.44 for infected sires (z = 1.14, p = 0.25) and 0.65 for sham-treated sires (z = 1.35, p = 0.18). 263 

Daughters suffered higher mortality than sons (χ2
1 = 303.5, p < 0.0001), and this was 264 

consistent across the three experimental blocks (Supplementary Figure 2), despite daughters 265 

in blocks 2 and 3 being infected with a reduced dose of the pathogen (see Methods).  266 

To compare these survival odds ratios for daughters with those for sons, we tested for an 267 

interaction between mating outcome and offspring sex separately for infected and sham-268 

treated sires. Although this test was not significant for sham-treated sires (χ2
1 = 0.5, p = 0.48), 269 
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it was for infected sires (χ2
1 = 9.8, p = 0.0017). Thus, even if daughters of infected winners 270 

might have been somewhat more resistant than daughters of infected losers, father's success 271 

made less difference to their odds of surviving the infection than it did to that of the sons. 272 

We monitored the survival of sires after the mating contest. Only four out of 50 sham-treated 273 

sires died within 72 h. As expected, mortality was higher among infected sires. Infected 274 

winners had a higher likelihood than losers of surviving until 30 h after the end of the contest 275 

(i.e., 72 h post-infection). Among all replicates in which contest between infected sires was 276 

resolved, 26 out of 32 winners and 11 out of 32 losers survived (p = 0.0003, Fisher’s exact 277 

test); for the subset of sires whose offspring resistance was assayed, 13 out of 15 winners and 278 

7 out of 15 losers survived (p = 0.05). This demonstrates that, unsurprisingly, fathers that 279 

were phenotypically more resistant in terms of mortality were more likely to win the mating 280 

contest. However, when father's survival 72 h post-infection was added to the statistical 281 

model as a binary explanatory variable, it was not associated with differences in sons' survival 282 

upon infection (χ2
1 = 1.2, p = 0.26; Supplementary Table 2). In other words, both among 283 

winners and among losers, sires that died had sons as susceptible as the sons of sires that 284 

Figure 2. The relationship between the father's sexual success and offspring resistance to P. 
entomophila. (a) Post-infection survival curves of sons and (b) of daughters of sires that won versus 
lost a mating contest, depending on whether the sires were themselves exposed to the pathogen 
prior to the mating contest (inf.) or not (sham). (c) The distribution of pairwise differences in the 
proportion of sons' surviving 72 h post infection for each winner/loser sire duo, depending on the 
sire's treatment. (d) The proportion of offspring of each sex surviving 72 h post infection broken 
down by sire's winner/loser status and his own survival 72 h post-infection (only for sires subject to 
the infection treatment prior to mating contest). Symbols in (a), (b) and (d) are means ± SE. 



Joye and Kawecki    9 

survived the infection (Figure 2d). This shows that sons' survival upon infection was better 285 

predicted by the father's success in the mating contest than by the father's own survival.  286 

 287 

(b) Infection does not impair the ability to mate 288 

While the above results are consistent with the "specific resistance" hypothesis, how confident 289 

can one be that they are mediated by sexual selection, in particular in the case of infected 290 

males? The mating contests took place 40 h after the onset of infection (Figure 1), when 291 

mortality had already started to occur; about 40% of replicates set up for the mating contests 292 

were discarded because at least one of the two males was dead or inactive. One could thus 293 

question whether the winner/loser outcome for infected males reflects male-male competition 294 

or female choice rather than the losers simply being too morbid to court and mate. Based on 295 

qualitative observations, all males involved in the mating contests were active and courted at 296 

least some of the time. Furthermore, if a substantial number of infected males had indeed been 297 

unable to mate, we should have seen more cases of mating failure during the contest between 298 

infected than between sham-treated males. This was not the case; in both treatments about 299 

25% of contests did not produce mating within the 2 h of contest duration (11/43 between 300 

infected versus 17/71 between sham-treated, p = 1.0, Fisher's exact test). 301 

As a further test of the infected males' ability to mate, we performed a separate experiment in 302 

which a single infected or sham-treated male was allowed to interact with two virgin females 303 

for 2 h, in the same time frame as in the mating contests. In this setting, the proportion of 304 

males that failed to mate was not significantly different between treatments (6/29 = 21% for 305 

infected, 16/50 = 32% for sham treated; p = 0.31, Fisher’s exact test). These results show that, 306 

in spite of pathogen virulence, our infection treatment did not impair the males' ability to mate 307 

within the time frame of the mating contests. Thus, the outcome of the mating contests can be 308 

attributed to the relative sexual competitiveness/attractiveness of the males. 309 

 310 

4. Discussion 311 

We found that fathers that are more successful in a mating contest sire sons that are more 312 

resistant to P. entomophila – if the contest takes place after the fathers have been exposed to 313 

the pathogen. In contrast, males that win the contest in the absence of P. entomophila 314 

exposure sire sons that are less resistant to the pathogen. These differences in resistance are 315 

manifested, respectively, as five- and two-fold differences in odds of surviving 72 h post-316 

infection. The experimental design allowed us to exclude non-genetic paternal effects of 317 

winning versus losing or of pathogen exposure (such as transgenerational immune priming 318 

[47]) on offspring resistance. Thus, our results are most parsimoniously interpreted as 319 

mediated by additive effects of genes passed on by the sires, as postulated under the "good 320 

genes" hypothesis.  321 

These results demonstrate that the relationship between male traits under sexual selection and 322 

the males' breeding value ("genetic quality") for resistance to a pathogen can depend strongly 323 

on the epidemiological context under which competition for mates and mate choice take 324 

place. They support the scenario envisioned by Hamilton and Zuk [4] and Adamo and Spiteri 325 
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[37], under which male sexual traits reflect health as determined by their interactions with the 326 

pathogen, and thus can only reveal the male's breeding value for resistance if the male has 327 

been exposed to the pathogen. They do not support the "general immunocompetence" 328 

scenarios, which postulate a positive genetic correlation between sexual success and 329 

resistance to pathogens irrespective of pathogen exposure, mediated by shared condition-330 

dependence of sexual traits and immunocompetence [6, 9, 31, 33].  331 

This conclusion is consistent with findings in ecological genetics of pathogen resistance in 332 

Drosophila. If variation in pathogen resistance were mainly mediated by a condition-333 

dependent general immunocompetence, resistance to different pathogens should be highly 334 

positively correlated. Yet, in Drosophila natural genetic variation in resistance seems largely 335 

uncorrelated across different pathogens [48, 49]. Even variation in resistance to the same 336 

pathogen may have different genetic bases depending on the route of infection: experimental 337 

populations that evolved high resistance to oral infection with P. entomophila showed no 338 

changes in resistance to systemic infection and vice versa [49]. Furthermore, flies raised on a 339 

nutrient-poor larval diet show similar resistance to P. entomophila as flies raised on standard 340 

diet, despite being only half the normal body weight [41], suggesting that resistance to this 341 

pathogen is largely condition-independent.  342 

Without prior exposure to the pathogen, males that sired more resistant sons were less 343 

successful in the mating contests, although the magnitude of the difference was smaller than 344 

between the offspring of infected winner and loser males. This is interesting because two 345 

independent experimental evolution studies failed to detect any costs of improved P. 346 

entomophila resistance in terms of larval fitness traits, larval competitive ability, stress 347 

resistance or reproductive output [50, 51]. This suggests that traits under sexual selection are 348 

more sensitive to subtle trade-offs of resistance than life history traits under natural selection. 349 

Interestingly, the success of an infected father in the mating contest predicted his sons' 350 

resistance better than the father's own post-infection survival. Both of these findings are 351 

consistent with the notion that sexually selected traits are particularly sensitive to heritable 352 

differences in the physiological condition of the organism [8, 32, 33] – with the twist that in 353 

the absence of pathogens the resistant individuals may actually be in lower condition because 354 

of physiological trade-offs of resistance.  355 

An unexpected aspect of our results is the apparent sex-specificity of the relationship between 356 

father's sexual success and offspring resistance. Although the effects on daughters tended in 357 

the same direction as those on sons, they were not significant; the mating outcome × offspring 358 

sex interaction indicates that they were significantly smaller (in terms of odds ratio) than on 359 

sons. Although not generally the case for P. entomophila infections in D. melanogaster [52], 360 

in our study females showed a substantially lower post-infection survival than males. Halving 361 

the bacterial concentration used to infect daughters (in the last two experimental blocks, see 362 

Methods) did little to change this. Possibly, the effect of genes passed on by winner versus 363 

loser fathers on offspring resistance vanishes as the overall virulence of the infection 364 

increases, which could explain the absence of detectable effects on daughters' survival. 365 

Alternatively, alleles that differentiate winners from losers may have truly sex-specific effects 366 

on offspring resistance. This possibility is supported by increasing evidence that natural 367 

genetic variation may affect pathogen resistance in sex-specific or even sexually antagonistic 368 
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way [53, 54]. Under this interpretation, the indirect genetic benefits of sexual selection in 369 

terms of pathogen resistance could be largely limited to male offspring. 370 

This study demonstrates that consequences of sexual selection for offspring pathogen 371 

resistance can be large and strongly context-dependent. It implies that sexual selection will 372 

promote the evolution of pathogen resistance when the pathogen is prevalent in the 373 

population, but will oppose it when the pathogen is absent. Females that mate with successful 374 

males will benefit in terms of offspring fitness if both generations are exposed to the pathogen 375 

(because their offspring will be more resistant) or if both experience no pathogen pressure 376 

(because the offspring will be genetically less resistant and thus avoid paying the pleiotropic 377 

costs of resistance). However, "good genes" may become "bad genes" if the epidemiological 378 

situation changes radically between the generations, as inherent in the Hamilton-Zuk [4, 34] 379 

and Adamo-Spiteri [5, 37] models. It remains to be tested to what degree sexual selection in 380 

the presence of P. entomophila affects offspring resistance to other pathogens and vice versa. 381 

Nonetheless, it is clear that in this system and under the type of mating competition 382 

implemented here, male sexual success is not an unconditional predictor of offspring 383 

resistance. The hypothesis that sexually selected traits reveal the breeding value for general 384 

immunocompetence independently of pathogen exposure may well still apply to other species 385 

and other pathogens. However, our results support the call for a greater experimental effort to 386 

test hypotheses assuming that the link between heritable pathogen resistance and sexual traits 387 

is generated by interactions of males with specific pathogens [10, 11].  388 
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Supplementary Figures S1 and S2. 

Supplementary Tables S1 and S2. 

 

 

Supplementary Figure 1. A scheme of the vial used for mating contests. Flies of the two sexes 

are placed on opposite sides of a cardboard divider and let acclimatize. The assay is initiated 

when the separator is removed through the slit in the plug.  

 



  

Supplementary Figure S2. Post-infection survival curves of offspring of winner and loser 

fathers (the same data as in figure 2a,b) split by experimental block. (a) sons and (b) 

daughters. Symbols are means ± SE. 

  



Supplementary Table 1. The results of likelihood ratio tests of factors included in the generalized mixed model fitted to offspring survival until 

48 h and until 72 h from the beginning of infection.  

(a) Joint analysis of offspring of both sexes 

Factor 
48 h post-infection  72 h post-infection 

χ2
1 p χ2

1 p 

Mating outcome (winner/loser) 2.8 0.091  2.1 0.14 

Treatment (infection/sham) 0.3 0.58  0.02 0.89 

Mating outcome × treatment 17.2  < 0.0001  28.2  < 0.0001 

Offspring sex 230.3     < 0.0001  303.5   < 0.0001 

Mating outcome × offspring sex 3.0 0.081  3.0 0.081 

Treatment × offspring sex 0.1 0.74  0.1 0.81 

Mating outcome × treatment × offspring sex 8.0 0.0046  7.4 0.0067 

Block (random) 22.9   < 0.0001  15.7   < 0.0001 

Winner-loser duo (random) 3.8 0.051  10.1 0.0015 
 

(b) Separate analysis for offspring of each sex 

Factor 
Sons 48 h  Daughters 48 h  Sons 72 h  Daughters 72 h 

χ2
1 p χ2

1 p χ2
1 p  χ2

1 p 

Mating outcome (winner/loser) 5.3    0.021  0.00 0.98  5.6 0.018  0.02 0.89 

Treatment (infection/sham) 0.3  0.59  0.03 0.86  0.01 0.92  0.01 0.96 

Mating outcome × treatment 22.9 < 0.0001  0.9 0.33  38.6 < 0.0001  3.0 0.083 

Block (random) 1.2 0.27  22.9 < 0.0001  4.2 0.041  10.2 0.0014 

Winner-loser duo (random) 6.3 0.012  1.7 0.19  15.4 < 0.0001  10.8 0.0010 



Supplementary Table 2. Likelihood ratio test of father's success versus father's post-
infection survival as predictors of offspring survival 72 h post-infection (GLMM with 
binomial error distribution and logit link). Only sires subject to the infection treatment are 
included.   

Sons  Daughters 

Factor χ2
1 p χ2

1 p 

Mating outcome (winner/loser) 33.9 <0.0001  0.1 0.75 

Father's survival (dead/alive) 1.2 0.26  2.6 0.10 

Mating outcome × father's survival 1.8 0.18  0.0 0.98 

Block (random) 4.5 0.033  15.3 < 0.0001 
 

 


