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Abstract 6 

 7 

The present study investigated the organic gunshot residue (OGSR) background level of police vehicles 8 

in Switzerland. Specimens from 64 vehicles belonging to two regional police services were collected 9 

and analysed by LC-MS in positive mode. The driver’s and back seats were sampled separately to 10 

monitor potential differences between locations and to assess the risks of a suspect being contaminated 11 

by OGSR during transportation to a police station. 12 

The results showed that most of the 64 vehicles were uncontaminated (44 driver’s seats and 38 back 13 

seats respectively). Up to six of the seven targeted compounds were detected in a single sample, once 14 

on a driver’s seat and twice on back seats. The contamination frequency generally decreased as the 15 

number of compounds detected together increased. The amounts detected were in the low ng range and 16 

less than amounts generally detected just after discharge on a shooter. Our data indicated that detecting 17 

a combination of four or more compounds on a police vehicle seat appears to be a relatively rare 18 

occurrence. The background contamination observed was most probably due to secondary transfer from 19 

police officers (e.g. through recent participation in a shooting session or firearm manipulation) or from 20 

firearms stored in the vehicles. The present results might be used as a recommendation to minimize 21 

contact of a suspect with contaminated surfaces if OGSR is implemented in routine work in parallel to 22 

IGSR analysis.  23 
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1. INTRODUCTION 27 

Gunshot residues (GSR) are one of the forensically relevant traces produced by the discharge of a 28 

firearm. The residues consist of vapour and particulate matter expelled mainly from the muzzle, but also 29 

from other firearm openings, that might deposit onto the target, the shooter, potential bystanders and 30 

objects close to the firearm [1, 2]. The production and transfer of GSR depend on a number of factors 31 

such as the type of firearm, the ammunition, the number of shots fired, the properties of the recipient 32 

material and the environmental conditions [3]. While in casework GSR are frequently used to estimate 33 

the shooting distance or distinguish entrance and exit wounds, they also help in assessing the potential 34 

involvement of an individual in a shooting incident [4, 5]. Inorganic GSR (IGSR) mainly originate from 35 

the primer and other metallic parts of the firearm and ammunition (i.e. barrel, bullet and cartridge case), 36 

whereas organic GSR (OGSR) are produced by incomplete combustion of the propellant [4-6]. While 37 

IGSR are routinely analysed in forensic laboratories using scanning electron microscopy coupled to 38 

energy dispersive X-ray spectroscopy (SEM-EDX) [1, 4], OGSR analysis is still rarely applied in 39 

casework. This may be explained by the absence of a standardised protocol (collection, extraction and 40 

analysis), as several analytical methods have been proposed and investigated for the analysis of 41 

propellants and OGSR without one outperforming the others in all particulars. Spectroscopic techniques, 42 

such as Raman [7-9], Fourier transformed infrared spectroscopy (FTIR) [10, 11] or ion mobility 43 

spectrometry (IMS) [12-14] detect OGSR based on spectral information, without formal compound 44 

identification. While these methods are non-destructive, their sensitivity remains limited (IMS) or is yet 45 

to be demonstrated on real specimens (Raman, FTIR). On the contrary, bulk analytical techniques such 46 

as micellar electrokinetic capillary electrophoresis (MEKC) [15-18], gas chromatography (GC) [19-21] 47 

or liquid chromatography coupled to mass spectrometry (LC-MS) [22-27], separate and identify the 48 

compounds, can be very sensitive, but involve the dissolution of the specimen.  49 

Studies showed that GSR are lost relatively quickly from the hands, even without washing, resulting in 50 

very low amounts still remaining on a shooter’s hands a few hours after discharge [1]. Thus, very 51 

sensitive analytical techniques are required. Recent OGSR forensic studies utilizing LC-MS analysis 52 

have demonstrated the detection of OGSR on the hands of a shooter up to four hours after discharge 53 

[28] and highlighted secondary transfer in several scenarios [29, 30]. Currently, OGSR can be detected 54 

at the sub-picogram level, due to major improvements in MS sensitivities in the last decade. Moreover, 55 

new technical developments are expected and should further enhance detection capabilities using LC-56 

MS, increasing the potential of this technique for the analysis of OGSR. However, sensitivity 57 

improvements generally lead to increased background signal, requiring careful interpretation of the 58 

results and evaluation of the various activities that can produce such traces.  59 

The interpretation of GSR evidence requires background or prevalence studies in relevant populations, 60 

which are case- and country-specific. GSR prevalence can depend on occupation, living area 61 

(city/countryside, known firearm violence), and firearm possession (legal and illegal) but also on the 62 

population type, e.g. individuals vs objects (clothing, vehicles, public places). For example, the 63 
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probability of finding GSR on the hands of a police officer who carries a service weapon and regularly 64 

practices shooting might be higher than on a citizen with absolutely no contact with firearms. 65 

Consequently, the evidentiary value of a GSR trace will vary accordingly with the case circumstances 66 

and the explanation provided by the defense [31]. Background studies in a police environment might 67 

also play a role in police management. Indeed, monitoring the GSR background would highlight 68 

potential risks of secondary transfer from police officers and premises, thus helping in establishing 69 

procedures to avoid such transfer to individuals arrested, transferred in police vehicles and detained in 70 

police facilities. 71 

Various background studies have been conducted, targeting IGSR and/or OGSR (Table 1). However, 72 

their number remains relatively limited. Other types of studies aiming at reconstructing events of a 73 

shooting case have also been reported. For example, a simulation of shooting was carried out to 74 

quantitate GSR contamination of a car’s interior surfaces when a firearm was discharged within a car, 75 

showing a significant amount of characteristic IGSR particles on the window headliner and dashboard 76 

[32]. 77 
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Table 1: Summary of background/prevalence studies targeting IGSR and/or OGSR 78 

Reference GSR type Population type Population size Country Surface sampled Analytical technique Main results 

Gialamas et al, 

1995 [33] 

IGSR Police 43 USA Hands SEM-EDX  3 specimens with one PbBaSb particle in a population of 43 non-shooting 

police officers 

Berk et al, 2007 

[34] 

IGSR Police 201 USA Vehicles and 

detention facilities 

SEM-EDX  total of 56 PbBaSb particles found in 23 specimens 

 two vehicles with one particle 

 54 particles recovered from detention facilities with a maximum of seven 

particles collected from a table surface and restraining bars 

Lindsay et al, 

2011 [35] 

IGSR Firearm 

manufacture 

employees 

13 Canada Hands SEM-EDX  PbBaSb particles found on nine of the employees 

 no more than two characteristic particles found on the hands of the five 

individuals who had no direct contact with firearms  

 for the other four employees: number of particles from nine to 424 

Gerard et al, 

2012 [36] 

IGSR Police 66 police officers 

28 civilians 

working in police 

environment 

18 vehicles 

Canada Hands, clothes, 

equipment and 

vehicles 

SEM-EDX  at least one PbBaSb particle on the hands of 60% of patrol and plainclothes 

officers and on 24% of their equipment 

 no IGSR particles found on the 28 civilians working in a police environment 

 2 of the 18 vehicles sampled had one characteristic GSR particle 

Brozek-Mucha, 

2014 [37] 

IGSR Civilian & police 50 shooters 

100 non-shooters 

Poland Hands SEM-EDX  one PbBaSb particle detected among individuals who had no contact with 

firearms 

 numerous particles found among shooters showing a strong correlation with 

the time elapsed since the last shooting session 

Hannigan et al, 

2015 [38] 

IGSR Arrested people 100 Ireland Upper body 

garments 

SEM-EDX  98% of the specimens collected from the cuffs negative 

 up to two PbBaSb particles detected on two garments 

Cook, 2016 [39] IGSR Police 33 Australia Hands SEM-EDX  28 officers with PbBaSb particles on their hands, with an average of 64 such 

particles 

Lucas et al, 2016 

[40] 

IGSR Civilian 289 Australia Hands SEM-EDX  overall prevalence of 0.3% for characteristic PbBaSb particles, 8% for PbSb 

and about 7% for single Pb, Ba or Sb particles 

Comanescu et al, 

2019 [41] 

IGSR Civilian 50 USA Vehicles Graphite Furnace 

Atomic Absorption 

 no positive specimen 

Lucas et al, 2019 

[42] 

IGSR Police 76 Australia Hands SEM-EDX  7.9% of the officers returned at least one characteristic PbBaSb particle 

 75% of the officers had at least one consistent particle (in average < 5) 
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Northrop, 2001 

[15] 

OGSR Civilian 100 USA Hands MEKC  no positive specimen 

Bell and 

Seitzinger, 2016 

[43] 

OGSR Civilian 73 USA Hands IMS  less than 5% of positive specimens 

Ali et al, 2016 

[44] 

IGSR & 

OGSR 

Police 70 USA Police stations SEM-EDX & LC-MS  one characteristic IGSR particle detected (interview desk) 

 ethylcentralite quantified in two specimens 

Hofstetter et al, 

2017 [45] 

OGSR Civilian and 

police 

27 civilians 

25 individuals 

working in police 

laboratory 

Switzerland Hands LC-MS  no positive civilian specimen 

 two positive police specimens 

Manganelli et al, 

2019 [46] 

OGSR Civilian and 

police 

122 civilians 

115 police 

officers 

Switzerland Hands and 

wrists/sleeves 

LC-MS  civilians: 18% of positive hand specimens and 11.5% wrists/sleeves 

 police officers: 36.5% of positive hand specimens and 33% wrists/sleeves  

79 
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The studies summarized in Table 1 show that prevalence can vary significantly depending on the 80 

targeted population. The items/people directly in contact with firearms generally presented the highest 81 

prevalence. Occupations involved in police forces or in firearm manufacture generally lead to a higher 82 

background than for civilians. Similarly, activities such as hunting or recreational shooting should be 83 

taken into account in the evaluation of OGSR evidence. To the best of our knowledge, only two studies 84 

have investigated the presence of IGSR [34, 36] in police vehicles in North America. Both concluded 85 

that the level of contamination was very low (one characteristic PbBaSb particle detected at most). 86 

Another study investigated secondary transfer to volunteers from police vehicles, resulting in two 87 

positive specimens, but did not take specimens from the vehicles themselves [44]. The number of studies 88 

in vehicles remains very limited and no data regarding OGSR prevalence in police vehicles has been 89 

published to date. The aim of the present study was thus to provide data pertaining to the OGSR 90 

background levels of police vehicles in Switzerland. Specimens from 64 vehicles were collected from 91 

two regional police services and analysed by LC-MS in positive mode. The driver’s seat and the back 92 

seats were sampled separately to monitor potential differences between locations and to assess the risks 93 

of a suspect being contaminated by OGSR during transportation to a police station. 94 

 95 

2. MATERIALS AND METHODS 96 

2.1 Specimen collection and preparation 97 

Specimens were collected from 64 police vehicles in collaboration with two regional police services. 98 

Collection was performed using carbon stubs from Plano (Wetzlar, Germany), consisting of an adhesive 99 

carbon tab 12 mm in diameter mounted on a 12.5 mm aluminium inserted in a plastic vial and sealed 100 

with a screw cap. Two stubs were collected per vehicle: the first one from the driver’s seat and the 101 

second from the back seats. The stubs were dabbed about 200 times on the seats (the whole surface was 102 

sampled), following recommendations from Zeichner et al. [47] for clothing items. 103 

 104 

For compound extraction, the carbon adhesive was removed from the stub with clean tweezers and 105 

transferred to a 20 mL scintillation vial containing 1 mL MeOH. The vial was placed in an ultrasonic 106 

bath at room temperature for 15 minutes before filtration of the resulting extract through a 0.2 µm 107 

Chromafil PTFE syringe filter (Macherey-Nagel, Düren, Germany) to remove carbon particles. To 108 

detect potential laboratory contamination during specimen preparation, methanol blanks were prepared 109 

before and after each extraction session. Likewise, a blank carbon tab was extracted to check for 110 

potential contamination originating from the stub batch. For all these control samples, no OGSR were 111 

detected. 112 

 113 

 114 

 115 
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2.3 Chemicals 116 

Acetonitrile, methanol, formic acid (FA) and water were of ULC/MS grade (Biosolve, France). The 117 

study targeted seven OGSR compounds: diphenylamine (DPA) from Fluka (Buchs, Switzerland); 118 

ethylcentralite (EC), N-nitrosodiphenylamine (N-nDPA), 4-nitrodiphenylamine (4-nDPA), akardite II 119 

(AK II) from Sigma–Aldrich (Buchs, Switzerland); 2-nitrodiphenylamine (2-nDPA) from Alfa Aesar 120 

(Karlsruhe, Germany); methylcentralite (MC) from MP Biomedicals (Illkirch, France). Standard 121 

solutions at 1 mg/mL were prepared in MeOH and stored at 4°C.  122 

 123 

2.4 Instrumentation 124 

The specimens were analysed using an Exion ultra-high performance liquid chromatography (UHPLC) 125 

coupled to a QTrap 6500 from AB Sciex. The UHPLC instrument was equipped with a binary pump 126 

enabling a maximum delivery flow rate of 10 mL/min, an autosampler, and a thermostatically-controlled 127 

column compartment. Separation was obtained using a C18 Kinetex core-shell column (Phenomenex). 128 

A C18 pre-column cartridge (SecurityGuard ULTRA) was placed before the analytical column for 129 

protection. All UHPLC parameters are described in Table 2. 130 

 131 

Table 2. UHPLC parameters 132 

UHPLC parameters 

Column type 

Column temperature 

Flow rate 

Injection volume 

C18 (2.6 μm, 2.1 mm × 100 mm) 

40 °C 

0.4 mL/min 

5 µL 

Gradient table t / min % A % B 

 H2O + 0.1% FA ACN + 0.1% FA 

0 65 35 

0.5 65 35 

4 40 60 

4.5 0 100 

5 0 100 

5.5 65 35 

7 65 35 
 

 133 

Electrospray ionization was operated in positive mode. For all target compounds, the ion [M+H]+ was 134 

defined as the precursor ion and quantification was obtained from the SRM measurements (Table 3). 135 

The source parameters were the following: the desolvation temperature (TEM) was set to 400°C, the 136 

nebulizer gas to 65 psig, the turbo gas to 65 psig, the curtain gas to 30 psig and the IonSpray voltage to 137 

5000 V. Data acquisition and instrument control were monitored using Analyst® software (version 138 

1.6.3). Data treatment and quantitation were performed using MultiQuant® software (version 3.0.2). 139 

Semi-quantitative data were obtained from a calibration curve (10 levels, 2 replicates) measured for each 140 
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sequence of experiments with levels ranging between the LOD and 10 ng/ml (EC and MC), 20 ng/mL 141 

(2-nDPA, 4-nDPA and AK II), 40 ng/mL (N-nDPA) and 100 ng/mL (DPA). 142 

Table 3: MS parameters 143 

Target compounds SRM transitions LOD [ng/mL] Declustering 

potential [V] 

Collision energy 

[V] 

Collision cell 

exit potential 

[V] 

Diphenylamine (DPA) 170.1  93.0 

170.1  152.0 

0.2 51 

71 

31 

37 

10 

4 

N-nitrosodiphenylamine 

(N-nDPA) 

199.0  169.0 

199.0  66.0 

0.02 30 

30 

15 

29 

20 

8 

2-nitrodiphenylamine (2-

nDPA) 

215.0  180.0 

215.0  198.0 

0.02 60 

60 

23 

19 

20 

20 

4-nitrodiphenylamine (4-

nDPA) 

215.0  198.0 

215.0  167.0 

0.05 60 

60 

19 

45 

20 

18 

Ethylcentralite (EC) 269.1  148.0 

269.1  120.0 

0.005 80 

80 

19 

29 

16 

14 

Methylcentralite (MC) 241.1  134.0 

241.1  106.0 

0.005 60 

60 

20 

33 

16 

14 

Akardite II (AK II) 227.0  170.2 

227.0  91.9 

0.005 80 

80 

23 

35 

20 

15 

 144 

3. RESULTS AND DISCUSSION 145 

The police vehicle population involved 64 vehicles, 31 from one regional police service and 33 from 146 

another. The vehicles had various functions: part were used by patrols for road surveillance or other 147 

community policing activities (Gendarmerie), others by the “Police de Sûreté”, and some for group 148 

and/or prisoner transportation. In the “Gendarmerie” whose main mission is to maintain security and 149 

order, the officers wear uniforms and generally drive marked police vehicles. The “Police de Sûreté” is 150 

mainly involved in investigations of crimes and officers are in civilian clothes. These officers generally 151 

travel in unmarked police cars. “Gendarmerie” vehicles often contain firearms that are permanently 152 

present within the vehicle and are rarely used in practice. The driver’s seat was targeted to evaluate the 153 

extent of secondary transfer from police officers. The back seat was sampled as well as it is used for 154 

suspect transportation and could be a contamination source. Data was collected regarding the permanent 155 

presence of one or more firearms and their location(s) within the vehicle, and whenever available the 156 

frequency of passenger compartment cleaning. 157 

The results showed that most of the 64 vehicles were uncontaminated (44 driver’s seats and 38 back 158 

seats respectively, see Figure 1). Interestingly, the back seats (26 vehicles) were slightly more 159 

contaminated than the driver’s seats (20 vehicles). The number of compounds detected simultaneously 160 

was up to six out of the seven targeted, detected once on a driver’s seat and twice on back seats. As a 161 

general trend, increased numbers of compounds detected simultaneously exhibited lower detection 162 

frequencies. Thus, based on these data, the combined presence of four or more compounds in a police 163 
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vehicle seat appears to be a relatively rare occurrence, as only nine cars presented such results (3 of them 164 

both on the driver’s and back seats).  165 

 166 

Figure 1: Prevalence versus number of compounds detected in police vehicles (n = 64). The numbers of cars in each category 167 

are indicated above the histogram bars.  168 

 169 

As the samples were collected from two regional police services, the data was separated according to its 170 

origin to investigate potential differences (Figure 2). It can be observed that the OGSR background level 171 

varied slightly between the two services. OGSR were detected in more cars from police service 1 (42.4% 172 

and 60.6% for the driver and back seat respectively) than in cars from police service 2 (19.4% for both 173 

driver and back seats). These results might be explained by three factors: the presence and location of 174 

permanent firearms within the vehicle; the cleaning frequency; and the random sampling of cars 175 

available at the time of specimen collection. In police service 1, the firearms (submachine guns) were 176 

laid, covered by a blanket, over the back seat and/or in the trunk, whereas in police service 2, the guns 177 

were stored in a box fastened to the car door or in a box attached to the rear of the back seat in the trunk. 178 

The process of storing firearms in boxes might minimize seat contamination, as GSR might be deposited 179 

inside the box instead of the seat. Such an explanation applies only to back seat contamination and 180 

should not influence background levels on the driver’s seat. One factor potentially influencing 181 

background levels on both front and back seats is the cleaning frequency. Unfortunately, information 182 

regarding cleaning frequency could not be obtained for all cars. For eleven cars in police service 1, the 183 

last cleaning occurred five weeks before specimen collection, for one car three days and for another one 184 

the day before. However, for the second service, marked police cars (representing about half of the 185 

sampled vehicles) are cleaned (inside as well as outside) on a daily basis. For the unmarked cars, this 186 
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information could not be obtained. Interestingly, in police service 2, the unmarked cars had less OGSR 187 

background (two out of 17 cars with only one compound detected) than the marked cars that were 188 

cleaned on a daily basis (six out of 13). Major differences between those cars were their use by 189 

uniformed police officers, carrying a visible service weapon and the presence of guns within the car 190 

(marked cars) versus plainclothes police officers, carrying a concealed service weapon and the absence 191 

of other firearms within the vehicle. Such trend was not observed for police service 1 as the background 192 

levels were similar for marked and unmarked cars. However, it remains difficult to identify the real 193 

cause of the observed differences, as the limited number of cars sampled might not be representative of 194 

the whole vehicle population. 195 

 196 

Figure 2: Prevalence versus number of compounds detected on the a) driver seat, b) back seat of police vehicles as a function 197 

of police service (n1 = 33, n2 = 31). The numbers of cars in each category are indicated above the histogram bars. 198 

 199 
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As to the number of times a specific OGSR compound was observed (Figure 3), EC was the most 200 

frequently encountered in the sampled vehicles (20% and 26.6% of all cars for the driver and back seats, 201 

respectively). AK II, DPA and N-nDPA followed with percentages between 9 and 20%. The DPA 202 

derivatives, 2-nDPA and 4-nDPA were slightly less frequently detected than DPA and N-nDPA. It is 203 

interesting to note that MC was only detected once. This might indicate that the propellant used by these 204 

police services in shooting training sessions or in duty does not contain this compound. No significant 205 

differences were observed in the occurrence of compounds between the two services. 206 

 207 
Figure 3: Number of occurrences versus compound in police vehicles (n = 64) 208 

 209 

A recent study investigated OGSR prevalence on the hands and wrists/sleeves of police officers from 210 

three Swiss police services [46]. It indicated that N-nDPA and EC were the most frequently detected 211 

compounds (29.6% and 21.7% on hands for N-nDPA and EC respectively), closely followed by DPA 212 

plus derivatives and AK II. MC was also only detected once. In spite of the different percentages, the 213 

results between both studies regarding the type of compounds detected are in good agreement. Thus, the 214 

OGSR compounds detected in police vehicles are most certainly transferred from police officers and 215 

firearms through secondary transfer. Nevertheless, an environmental source cannot be totally excluded 216 

when for example only one compound is detected. A background study involving new vehicles could 217 

provide information on the environmental presence of these compounds on car seats. However, the 218 

absence of OGSR compounds in most of the police vehicles tends to indicate that these compounds are 219 

not normally present on car seats. 220 

 221 

The amounts detected in the specimens (Figure 4) were in the low and sub-nanogram range, except for 222 

two specimens at 12.3 ng/mL (DPA) and 8.16 ng/mL (N-nDPA). It is interesting to see that the highest 223 

values were for DPA and N-nDPA, while the other compounds were all detected below 1 ng/mL. There 224 

were no significant differences between the amounts detected on the driver’s and back seats. The results 225 
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of Figure 4 were represented as boxplots, but only outliers were observed, as the values for the medians, 226 

the first and third quartiles were all equal to zero. This highlights the low number of cars positive to 227 

OGSR and the very low amounts detected, thus indicating that detecting a specific compound happened 228 

in less than 25% of the specimens. Compared to amounts that are detected on the hands of shooters just 229 

after discharge or to the prevalence study of police officers involving sampling just after shooting 230 

training (highest values above 100 ng), the amounts detected in vehicles are much lower. 231 

 232 

Figure 4: Prevalence in the police vehicle population: Amount of analyte detected. The letters D and B denote the driver and 233 

back seat respectively (n = 64) 234 

 235 

The specimens with the highest compound numbers (five and six) were investigated in greater depth in 236 

order to explain the background level and to qualitatively evaluate if there was a correlation between 237 

the number of compounds and the amount detected on both seats. In total, six vehicles had five or six 238 

compounds detected on either the driver or the back seat (Table 4). While in four vehicles, contamination 239 

was present on both seats, it was not the case for two cars. In vehicles 20 and 29, no OGSR was detected 240 

on the driver’s seat, whereas six and five compounds were detected on the back seat respectively. Thus, 241 

detecting a high number of compounds on the back seat was not indicative of similar contamination of 242 

the driver’s seat. It is thus reasonable to assume that contamination of driver and back seats is not 243 

necessarily correlated and that secondary transfer may occur independently from two separate sources. 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 



 

13 
 

Table 4: summary of the results from the six police vehicles with the highest background level 252 

Car Driver seat OGSR Back seat OGSR nb 

 Number of compounds Compounds detected Number of compounds Compounds detected 

Car 16 5 
N-nDPA, 4-nDPA, 2-nDPA, 

AK II, EC 
4 

N-nDPA, 2-nDPA, AK II, 

EC 

Car 20 0 - 6 
DPA, N-nDPA, 4-nDPA,  

2-nDPA, AK II, EC 

Car 26 2 N-nDPA, EC 6 
DPA, N-nDPA, 4-nDPA,  

2-nDPA, AK II, EC 

Car 29 0 - 5 
DPA, N-nDPA, 4-nDPA,  

2-nDPA, EC 

Car 33 5 
DPA, N-nDPA, 4-nDPA,  

2-nDPA, EC 
5 

DPA, N-nDPA, 2-nDPA, 

AK II, EC 

Car 4 6 
DPA, N-nDPA, 4-nDPA,  

2-nDPA, AK II, EC 
5 

DPA, N-nDPA, 4-nDPA,  

2-nDPA, EC 

 253 

For car 16, a police officer had used the vehicle to go to a shooting session two months before specimen 254 

collection. There was no firearm present permanently in the car. No information regarding the last 255 

cleaning was available. Contamination through secondary transfer from the shooting police officer 256 

might be a valid hypothesis as OGSR persistence is expected to be longer on car seats compared with 257 

hands. However, no data is currently available and the persistence of such contamination should be 258 

investigated. For car 20, no firearm was stored in the vehicle, but it was used to drive groups of police 259 

officers to courses or shooting sessions, which might explain the presence of OGSR on the back seats. 260 

No information regarding last cleaning could be obtained. For car 29, a submachine gun was present on 261 

the back seat, but no information could be obtained regarding its recent use or manipulation. Contact 262 

with the submachine gun might be an explanation for that contamination. For car 4, a gun was stored in 263 

a box fastened to a door and the car was theoretically cleaned in the last 24 hours, so it is more difficult 264 

to find an explanation for this background. Can a contamination persist in spite of the cleaning or was 265 

it contaminated after the cleaning? It must be highlighted that for each compound, car 4 had the highest 266 

values detected in the study. For cars 26 and 33, no firearm was present in the car, no information 267 

regarding last cleaning was available and no concrete explanation could be found. In all cases, vehicles 268 

were used by police officers carrying firearms and these might be a source of contamination, even though 269 

the present results indicate that it is a relatively rare occurrence. 270 

 271 

In terms of degree of contamination, the scenario producing the highest amounts and numbers of OGSR 272 

on car seats would probably be the discharge of a firearm within the vehicle. That would represent a 273 

primary transfer scenario. The use of a firearm on duty is anecdotal in Switzerland. The discharge of a 274 

firearm within a police vehicle would be even rarer. No data regarding the amounts to be expected in 275 

such an instance was found in the literature and it would be interesting to perform some experiments to 276 

assess the degree of contamination that can result from a discharge within a vehicle. Experiments 277 
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performed by Burnett and Lebiedzik for IGSR showed heavy contamination of interior surfaces such as 278 

the dashboard or the window frame when a firearm was discharged by the driver of a vehicle through 279 

an opened window [32]. Secondary transfer scenarios would most probably lead to lower background 280 

levels than primary transfer scenarios as evidenced by some studies regarding secondary transfer from 281 

a shooter or a firearm to a third party [29, 30]. The most common hypotheses would then be secondary 282 

transfer from contaminated police officers or from firearms that are either present or manipulated in the 283 

vehicle. The background level of police vehicles might also be influenced by factors such as the car 284 

cleaning frequency, the number of users and frequency of use. One might expect a higher OGSR 285 

contamination if a vehicle is used to go to a shooting training than during normal duty. The same line of 286 

reasoning holds for the number of users, as the probability of secondary transfer might increase with 287 

that number. Logically, the more frequently a car is used, the higher the probability of secondary transfer 288 

from the various users. However, it is also possible that the persistence of OGSR might decrease when 289 

the number of users and the frequency of the vehicle use increases. Such parameters might be interesting 290 

study perspectives. 291 

 292 

Other OGSR prevalence studies involving cars could not be found in the literature. However, two studies 293 

investigated the presence of IGSR in police vehicles. Berk et al. found one PbBaSb particle in two 294 

vehicles [34] and Gerard et al. found one PbBaSb particle in two of the 18 vehicles sampled [36]. Both 295 

studies concluded that the risk of secondary transfer from police vehicles was low, even though possible. 296 

The present study for OGSR showed that most of the police vehicles sampled were free from OGSR. 297 

However, up to six compounds were detected simultaneously in a number of vehicles in amounts up to 298 

10 ng. As a precaution, suspect transportation should be performed in cars not used by heavily 299 

contaminated users or within which a firearm is present or was manipulated. Another recommendation 300 

would be the regular cleaning (vacuuming) of the vehicle’s interior surfaces with a monitoring of the 301 

efficiency of the procedure on removal of GSR in general. Experiments involving the transportation of 302 

individuals in police vehicles would provide data as to the real risk of OGSR tertiary transfer from the 303 

seats to an individual transported in such vehicle. 304 

 305 

4. CONCLUSIONS 306 

 307 

The present study aimed at evaluating the OGSR background level in police vehicles. Specimens from 308 

the driver and back seats were separately collected from 64 cars from two regional police services in 309 

Switzerland. The results showed that most of the 64 vehicles were uncontaminated (44 driver seats and 310 

38 back seats respectively). The number of compounds detected on a single seat was up to six 311 

compounds, detected once on a driver and twice on back seats. A trend was observed, as the 312 

contamination frequency decreased with the number of compounds detected together. The amounts 313 

detected were in the low ng range and inferior to amounts generally detected just after discharge on a 314 
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shooter. Our data indicate that detecting a combination of four or more compounds on a police vehicle 315 

seat appears to be a relatively rare occurrence. 316 

In the light of the anecdotal firearm use on duty in Switzerland, it seems logical that the background 317 

contamination observed is due to secondary transfer from police officers (for example contaminated 318 

through recent participation to a shooting session or firearm manipulation) or from firearms stored in 319 

the vehicles. Thus, the background might be different in other countries in which firearms are more 320 

often used on duty (in a car chase for example). The present results might be used as a recommendation 321 

to minimize contact of a suspect with contaminated surfaces if OGSR is implemented in routine work 322 

in parallel to IGSR analysis. Therefore, regular cleaning of police vehicles’ interior surfaces and 323 

monitoring of the GSR background of cars usually used for suspect transportation should be performed. 324 

Moreover, to help interpretation of the GSR evidence, a specimen from the vehicle might also be 325 

collected before suspect transportation as a blank to evaluate risks of secondary transfer from the police 326 

car back seats. Another option would be to protect the hands of the suspect by plastic bags. However, 327 

that would not exclude potential contamination from the car seats to the suspect’s clothing for example. 328 
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