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Abstract 

A Knudsen flow reactor has been used to quantify surface functional groups on aerosols 

collected in the field. This technique is based on a heterogeneous titration reaction between a 

probe gas and a specific functional group on the particle surface. In the first part of this work, 

the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, 

Pb(NO3)2, Cd(NO3)2) and Diesel reference soot (SRM 2975) has been studied. Five probe 

gases have been selected for the quantitative determination of important functional groups: 

N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and 

HCl (for basic sites of different strength), O3 (for oxidizable groups). The second part 

describes a field campaign that has been undertaken in several bus depots in Switzerland, 

where ambient fine and ultrafine particles were collected on suitable filters and quantitatively 

investigated using the Knudsen flow reactor. Results point to important differences in the 

surface reactivity of ambient particles, depending on the sampling site and season. The 

particle surface appears to be multi-functional, with the simultaneous presence of antagonistic 

functional groups which do not undergo internal chemical reactions, such as acid-base 

neutralization. Results also indicate that the surface of ambient particles was characterized by 

a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26 to 6 

formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 

probe in the range 0.01 to 0.20 formal molecular monolayer). Kinetic parameters point to fast 

redox reactions (uptake coefficient 0 > 10-3 for O3 probe) and slow acid-base reactions (0 < 

10-4 for N(CH3)3 probe) on the particle surface. 
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1.   Introduction 

The presence of anthropogenic particulate matter in the atmosphere is nowadays considered to 

be a major environmental problem. Indeed, exposure to PM10 and PM2.5 (particulate matter 

with an aerodynamic diameter smaller than 10 and 2.5 m, respectively) is associated with a 

range of adverse health effects, including cancer (Bhatia et al., 1998), respiratory (Neuberger 

et al., 2004) and cardiovascular (Pope et al., 2004) diseases. So far, several mechanisms have 

been proposed to explain harmful effects of particulate matter. According to the most 

probable hypotheses, particle surface characteristics (chemical reactivity, surface area) are of 

prime importance for the understanding of the toxicity of particulate matter (Brown et al., 

2001). Surface chemistry is important, because it controls the molecular and cellular 

interactions with the critical parts of the respiratory-tract components, such as lung lining 

fluid and different cells (Kendall et al., 2004a). Therefore, physico-chemical characteristics of 

the particle surface impacting the lung may affect the initial physiological responses, and thus 

control the downstream effects. For instance, the presence of several components adsorbed on 

particles, such as metal ions (Park et al., 2006) and organics (Mauderly and Chow, 2008), has 

been found to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress 

in biological systems. 

 

Moreover, particles are involved in atmospheric processes, and suspected to play a role in 

global climate change (Finlayson-Pitts and Pitts, 2000). They are able to scatter incoming 

solar radiation and, in some cases, to absorb it as well, converting absorbed energy to heat, 

and therefore contributing to the warming of the troposphere. Particles are also involved in 

the formation of clouds, and may affect the concentration of atmospheric trace gases by 

heterogeneous chemical reactions (Cwiertny et al., 2008). 

 

Over the past 10 years, great efforts have been placed onto the surface characterization of 

particulate matter. So far, experiments have been carried out mainly by means of different 

spectroscopic methods. X-ray Photoelectron Spectroscopy (XPS; Qi et al., 2006), Fourier 

Transform Infra-Red (FT-IR; Fermo et al., 2006) and Raman (Sze et al., 2001) have been 

often used to investigate carbonaceous and inorganic particles, but these techniques do not 

focus exclusively on the gas-particle interface. Near-Edge X-ray Absorption Fine Structure 

(NEXAFS) spectroscopy is an emerging tool in the surface characterization of carbonaceous 

particles (Braun, 2005). C (1s) NEXAFS spectra have the advantage to present molecular 

fingerprints allowing to distinguish various kinds of carbonaceous particles, such as graphite 
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or Diesel soot. Electron Energy Loss Spectroscopy (EELS) is a related technique which has 

been widely used in the analysis of carbonaceous particles (Chen et al., 2005), often in 

association with Transmission Electron Microscopy (TEM). However, these electron 

spectroscopies are hampered by low to modest energy resolution as well as a limited 

sensitivity for surface species. 

 

The Knudsen flow reactor represents an alternative technique that allows the characterization 

of surface functional groups present on particles at a high sensitivity, typically in the range of 

1% of a formal molecular monolayer. This method is based on a heterogeneous chemical 

reaction between a gas-phase probe molecule and a specific functional group on the surface of 

a sample. Over the past 15 years, this technique has been used especially in the field of 

atmospheric chemistry. Heterogeneous reactions have been investigated on different types of 

particle surrogates, such as soot (Stadler and Rossi, 2000), mineral dust (Ullerstam et al., 2003; 

Karagulian and Rossi, 2005) or sea salt (Rossi, 2003). Even if the present titration reactions are 

undertaken in the gas-phase, we surmise that the particle surface composition will not 

significantly change when the particle is immersed into a liquid, such that the results of the 

present approach may still give useful clues for solution studies. An advantage of this 

technique over spectroscopic methods is that kinetic data and the identification of reaction 

products may be obtained. On the other hand, the identification of surface functional groups is 

indirect and afforded by the chemical reactivity of the surface in terms of surface composition. 

The results may be difficult to interpret because of several possible competing reactions. 

 

The aim of the present research was to use the Knudsen flow reactor technique to measure 

functional groups present on the surface of particles sampled in occupational situations. A 

study was first undertaken to test the reactivity of several probe gases towards laboratory-

generated aerosols. Preliminary work was already performed in our laboratory by Demirdjian 

and Rossi (2005), who tested the reactivity of four probe gases towards several laboratory-

generated aerosols. We have extended this work in order to find other probe gases allowing 

the quantification of additional functional groups present on the particle surface, especially 

those which are suspected to play a role in adverse health effects of particulate matter (metal 

ions, acids). In the second part of the study, we sampled ambient fine and ultrafine particles in 

several bus depots in Switzerland, and investigated surface functional groups of these 

samples. The kinetics of titration reactions were also measured to obtain further information 

on the reactivity of particulate matter. 
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2.   Material and methods 

2.1 Knudsen flow reactor 

The Knudsen flow reactor has previously been described in detail in the literature (Caloz et 

al., 1997). Briefly, this technique is used for the study of heterogeneous chemical reactions 

between a gas-phase probe molecule and a solid-phase sample. For each type of functional 

group present on the aerosol surface (such as carbonyl, acidic, basic, or oxidizable groups), 

the interaction of a suitable titrant molecule with the aerosol is studied. The type and number 

of probe molecules taken up by the sample, whose mass and surface area have previously 

been measured, reveals the identity and number of functional groups present on the surface of 

the sample. 

 

The experimental setup of the Knudsen flow reactor is shown in Figure 1, the parameter 

setting in Table 1 and a typical raw data of a titration experiment in Figure 2. The background 

pressure in the reactor is maintained between 10-6 and 10-5 mbar. Prior to every titration 

experiment, the content of the sample-holder is pumped during a few minutes, in order to 

obtain the same pressure as in the reactor. Water and light volatile compounds adsorbed onto 

particles may be removed during this step. The principle of a titration experiment consists of 

exposing particles deposited on a suitable filter to the probe gas in the reactor. If a 

heterogeneous reaction occurs between the probe gas and the surface functional groups, a part 

of the gas will be taken up by the sample, and the mass spectrometer (MS) signal will quickly 

decrease, as shown in Figure 2. Once all the functional groups on the surface of the sample 

have reacted with the gas, the MS signal will come back to its initial value. The number of 

gas-phase probe molecules taken up by the sample is then calculated by integrating the MS 

signal (see hatched curve in Figure 2), that has previously been calibrated using measured 

flow rates of probe gases. Finally, the number of gas-phase probe molecules taken up by the 

sample is divided either by the particle mass (molecule/mg, see paragraph 2.5) or by the 

particle surface area (molecule/cm2, see paragraph 2.6). 

 

2.2 Probe gases 

Prior to the field campaign, the reactivity of several probe gases was tested using laboratory-

generated aerosols. In preliminary, Demirdjian and Rossi (2005) tested the reactivity of four 

probe gases: trimethylamine (N(CH3)3), hydroxylamine (NH2OH), ozone (O3) and nitrogen 

dioxide (NO2). Within the framework of the present study, we have evaluated several 
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additional probe gases, and decided on N(CH3)3, NH2OH, trifluoroacetic acid (CF3COOH), 

hydrochloric acid (HCl) and O3. 

 

Table 2 shows reactions which were generally expected to occur between these five probes 

and the particle surface at the conditions of the Knudsen flow reactor. Indeed, heterogeneous 

reactions were studied at ambient temperature, the residence time of the gas-phase probe 

molecules in the reactor was comprised between 20 s and 1 min, and their concentration in the 

reactor was low (in the range 1·1013-5·1013 molecule/cm3). Thus, a reaction may be observed 

using this technique only if it occurs at ambient temperature, and if the kinetics is fast enough 

to enable a reaction during the residence time of the probe gas in the reactor. This has led to 

the choice of allowed reactions displayed on the left of Table 2, whereas the reactions on the 

right were rejected based on the above criteria. 

 

The base N(CH3)3 (Sigma-Aldrich Chemie; purum, ≥99.0%, Fluka 92251) was chosen for the 

quantification of acidic sites (Reaction 1 of Table 2). N(CH3)3 is also known to form stable 

complexes with transition metal ions (Reaction 2 of Table 2). N(CH3)3 may therefore be 

considered a specific reagent interacting with Lewis acid sites on the particle surface. 

 

NH2OH was expected to specifically react with carbonyl functions to form oximes (Reaction 

3 of Table 2). NH2OH is also known to be involved in redox reactions (Davis et al., 1951) and 

in the complexation of several metal ions (Cheng et al., 1994). It may also react as a base, but 

its proton affinity (803 kJ/mol; Jolly, 1991) indicates that NH2OH is a much weaker base than 

N(CH3)3 (proton affinity = 942 kJ/mol; Jolly, 1991). NH2OH was prepared by thermal 

decomposition of tertiary hydroxylammonium phosphate according to the method of Schenk 

(1963). 

 

Two acids of different strength, CF3COOH and HCl, were used to quantify basic sites. 

CF3COOH (Sigma-Aldrich Chemie; purum, Fluka 91700) tends to react with basic sites 

according to Reaction 5 of Table 2, while HCl (prepared by a reaction between H2SO4 and 

NaCl) is expected to react according to Reaction 6 of Table 2. Regarding the acidity, HCl is a 

far stronger acid than CF3COOH in solution, but this trend is opposite in the gas-phase. 

Because of the absence of solvent effects in the gas-phase, acid-base properties of organic 

compounds are indeed different from solution acidities. The gas-phase acidity of a compound 

AH is determined by the enthalpy change of deprotonation (fH°deprot), according to the 
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reaction AH  A- + H+. fH°deprot of CF3COOH is 1351 kJ/mol (Cumming and Kebarle, 

1978), while that of HCl is 1395 kJ/mol (Trainham et al., 1987). This means that CF3COOH 

needs less enthalpy to undergo deprotonation, and therefore it is a stronger acid in the gas-

phase than HCl. We surmise that gas-phase acidities/basicities are more applicable than 

solution values in the present context, because species adsorbed on a surface do not undergo 

extensive solvation after charge separation compared to aqueous solution. 

 

Finally, O3 is a strongly oxidizing probe, and was chosen to quantify oxidizable sites. The 

main expected reaction is the ozonolysis of carbon-carbon double bonds (Reaction 9 of Table 

2), whereas it decomposes on metal oxide surfaces (Dhandapani and Oyama, 1997). 

Oxidation of alcohols and aldehydes into carboxylic acids is too slow to be observed using 

this technique. O3 was prepared daily by corona discharge in pure oxygen by means of an 

ozone generator (Fischer Technology, model 502), and was condensed in a vessel filled with 

silica gel and maintained in a cold methanol bath (-80°C). 

 

2.3 Laboratory-generated aerosols 

In preliminary work, Demirdjian and Rossi (2005) tested the reactivity of probe gases towards 

several laboratory-generated aerosols. Their titration experiments were carried out on two 

Secondary Organic Aerosols (SOA; limonene and toluene) and on one soot sample (toluene). 

In anticipation of the sampling campaign, we chose to carry out titration experiments on four 

different types of aerosol surrogates for particulate matter expected in bus depots. We used 

limonene SOA as a surrogate of organic aerosols, Pb(NO3)2 and Cd(NO3)2 as surrogates for 

soluble metals ions, and a sample of certified Diesel particulate matter (SRM 2975). 

 

Limonene SOA was obtained by oxidation of limonene 145 (Sigma-Aldrich Chemie; purum, 

Fluka 89188) in the presence of ozone. A flow of limonene vapor in air (250 ml/min), ozone 

(3 ml/min), dry air (30 ml/min) and wet air (150 ml/min) was admitted into a reactor (volume 

= 480 cm3), and the outlet of the reactor was linked to a denuder coated with potassium iodide 

in order to destroy excess ozone. Under these conditions, the relative humidity in the reactor 

was 37%. Limonene SOA was finally collected on a Teflon membrane filter (Millipore; 

Fluoropore membrane filter, 0.22 m, Ø 47 mm, FGLP04700) located immediately after the 

potassium iodide denuder. The yield of limonene SOA YSOA was calculated using Equation 1: 
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 YSOA   =   
tMWF

M SOA

 lim

                                                                                 Equation 1 

 

where MSOA [g] is the gravimetrically determined mass of limonene SOA collected on the 

Teflon filter, F [mole/h] the flow rate of limonene into the reactor, MWlim [g/mole] the 

molecular weight of limonene, and t [h] the duration of SOA generation. 

 

Lead (II) nitrate (Pb(NO3)2; Merck; GR for analysis ACS, 107398) and cadmium (II) nitrate 

(Cd(NO3)2; Acros Organics; cadmium nitrate tetrahydrate 99+%, 212342500) particles were 

obtained by atomization of an aqueous salt solution (2 g/l). We used a constant output 

atomizer (TSI Inc., model 3076), and the aerosols were dried after flowing in a stream of 

filtered air across two diffusion dryers (TSI Inc., model 3062) filled with silica gel and 

connected in series. Under these conditions, the relative humidity after passage across the 

both diffusion dryers was 5%. Particles were also collected on a Teflon membrane filter. 

 

A commercially available certified Diesel soot sample (SRM 2975, NIST) was also 

investigated using the Knudsen flow reactor. A few milligrams of powder were weighed on a 

teflonized Petri dish and installed in the sample-holder of the Knudsen flow reactor. 

 

2.4 Field campaign 

A field campaign was conducted in several bus depots in Switzerland between March 2006 

and February 2007. The aim of this field campaign was to collect particles on filters, and to 

quantify several surface functional groups of these samples using the Knudsen flow reactor. 

For each bus depot, sampling took place during two consecutive days. We installed our 

equipment in mechanical maintenance yards as close as possible to the workplace. Particles 

collected originated either from tens of Diesel buses or from activities of workers during 

repair and maintenance of the buses (solvents, Diesel fuel, engine trial runs, dust, cigarette 

smoke, etc.). A description of the sampling sites is given in Table 3. 

 

Filters used during the sampling had to allow passage of considerable air flows across the 

high-volume samplers (580 l/min), and at the same time had to be chemically inert towards 

the probe gases used in the Knudsen flow reactor. We evaluated several filter types and 

passivation methods, and finally decided to use quartz microfiber filters, after chemical 

passivation with a reactive silane reagent in order to decrease their reactivity towards the 
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probe gases. We first cut filters of 150 mm diameter and several filters of 47 mm diameter for 

the blanks from quartz microfiber sheets (Whatman; QM-A, 20x23 cm sheets, 1851865). 

These filters were cleaned in a solution of chromic acid for 4 h, and were washed seven times 

with tap water and three times with bidistilled water. The filters were then dried at 150°C 

during 2 h, and were left overnight in a solution of 20% dichlorodimethylsilane (Acros 

Organics; 99+%, 11331-0010) in toluene inside a desiccator, in order to avoid toluene 

evaporation and reaction of the silane with air moisture. The following day, the filters were 

washed three times with toluene and once with distilled methanol, and were finally dried at 

120°C during 1 h. 

 

After preparation of the filters, ambient particles were sampled in each bus depot with two 

high-volume samplers (Digitel, model DH 77) located side by side. Particles were collected 

on silanized quartz microfiber filters of 150 mm diameter at an air flow of 580 l/min during 

approximately 8 h for each day of sampling. An impactor was installed above the filter-holder 

in order to remove particles larger than 4 m. Immediately after sampling, the filters of 150 

mm diameter were cut into five smaller filters of 47 mm diameter, and put into a desiccator 

filled with argon. This experimental setup allowed for a total of 10 small filters of 47 mm 

diameter to be used for surface chemical titration using the Knudsen flow reactor. 

 

2.5 Particle mass 

The particle mass deposited on the filters was measured gravimetrically using an analytical 

balance (Mettler Toledo, model AT 201). For the laboratory-generated aerosols, the Teflon 

filters were weighed before and after aerosol generation. For the field campaign, five small 

filters of 47 mm diameter coming from one high-volume sampler and five blanks, which had 

been silanized in the same batch, were let to stabilize overnight at constant relative humidity 

and temperature. All the filters were subsequently weighed, and the particle mass deposited 

on the filters was calculated by subtracting the average mass of the blanks from the loaded 

filters. 

 

2.6 Particle size distribution 

A Scanning Mobility Particle Sizer (SMPS; TSI Inc., model 3934) was used to monitor the 

size distribution and to calculate the surface area of the laboratory-generated aerosols. The 

aerosol sampling flow was set at 0.3 l/min, and the sheath flow at 3 l/min. An impactor of 

0.0508 cm diameter was installed at the inlet of the SMPS in order to remove particles larger 
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than 1 m. The particle size distribution was measured in the range 15-750 nm, with a 

scanning time of 150 seconds. The SMPS was regularly calibrated by atomization of solutions 

containing latex polymers of known size (80 and 300 nm; Duke Scientific Corporation). The 

particle size distribution was used to calculate the particle surface area S. For that purpose, the 

software considered each particle as a sphere of radius r, according to S = 4r2. The geometric 

standard deviation (g) was calculated in order to provide an indication of the particle 

dispersion. g was calculated according to Equation 2: 

 

 ln g   =   
1

)ln(ln 2






N

ddN
n

mi
gii

                                                                   Equation 2 

 

where m is the first channel, n the last channel, Ni [particle/cm3] the concentration within the 

channel i, di [nm] the midpoint diameter for size channel i, dg [nm] the geometric mean 

diameter, and N [particle/cm3] the total concentration. 

 

The normalization of the titration results of the certified Diesel SRM 2975 particles was 

performed using the values of the BET surface area specified by the manufacturer rather than 

using the measured particle size distributions based on mobility diameters. We concede that 

the specific surface area calculated using the SMPS and that measured by the BET technique 

may be significantly different. Indeed, the mobility measurement considers each particle to be 

spherical, while the N2 adsorption used in the BET technique takes into account the shape and 

the porosity of the particles. This may lead to a significantly higher value of the specific 

surface area determined by the BET technique, which may be considered as an upper limit to 

the surface area determined by the effective mobility diameter. Therefore, we may not 

directly compare the surface area of SRM 2975 with the aerosol samples measured using the 

SMPS. 

 

For the field campaign, further equipment had to be used for the particle surface area, because 

the upper size limit of the SMPS was fixed at 750 nm, while the high-volume samplers were 

set to collect particles up to 4 m (PM4). In order to take into account the particle fraction 

between 750 nm and 4 m, we used in addition an Andersen type cascade impactor (Andersen 

Inc.; model 2000, nine-stages) at a sampling flow of 28 l/min, and collected particles on glass 
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microfiber filters installed on each of the nine stages of the apparatus. At each sampling site, 

the Andersen impactor was installed next to the high-volume samplers, and the sampling was 

performed simultaneously. The particle mass deposited on each filter stage was measured 

gravimetrically, and the four stages corresponding to sizes between 750 nm and 4.7 m were 

used to calculate the missing particle surface area when using the SMPS. The particle mass 

was converted into surface area using the surface/volume ratio and an estimated density of 1.8 

g/cm3. Finally, data collected with the SMPS (for particles smaller than 750 nm) and the 

Andersen impactor (for particles in the range 750 nm-4 m) at each sampling site were 

combined in order to determine the surface area of all PM4 samples collected using the high-

volume samplers. Calculations indicated that approximately 10-30% of the total PM4 surface 

area was due to particles in the size range 750 nm-4 m. Therefore the use of the Andersen 

impactor was necessary to correct data obtained from the SMPS by adding the missing 

surface area. However, we are aware of the approximation due to the transfer of this 

correction factor obtained from an aerodynamic (Andersen impactor) to a mobility 

measurement (SMPS). We deem this difference to be less than 10%. 

 

2.7 Kinetics of heterogeneous titration reactions 

Besides the quantification of surface functional groups on aerosol particles, we also measured 

the uptake kinetics of reactions between aerosols and probe gases, in order to obtain further 

information about the reactivity of the collected particulate matter. The kinetic parameter 

studied within the framework of this project was the initial uptake coefficient 0, which 

corresponds to the probability that a collision between a probe gas and a sample leads to a 

chemical reaction just after opening the sample compartment. The 0 value can range from 0, 

which corresponds to no reaction, to 1, when each collision between the probe gas and the 

sample leads to an uptake of the probe gas. For the case of 0 equal to 1, the reaction will be 

saturated very quickly. The uptake coefficient 0 was calculated using Equation 3: 

 

0   =   

unik

                                                                                                     Equation 3 

 

where kuni [s
-1] is the first order rate constant for the uptake reaction, and  [s-1] the collision 

frequency of a molecule with the geometric surface area of a sample. kuni was calculated using 

Equation 4: 
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kuni   =   







1

S

S

R

0  · kesc                                                                                    Equation 4 

 

where S0 [V] is the MS signal at steady state, and SR [V] the MS signal immediately after the 

beginning of the reaction, as shown in Figure 2. kesc [s
-1] is the escape rate constant of the 

probe gas from the reactor, and is measured experimentally. Finally, in order to calculate 0 in 

Equation 3,  was determined as follows: 

 

   =   







V4

c
 · As                                                                                          Equation 5 

 

where c  [cm/s] is the mean velocity of the gas-phase probe molecule, V [cm3] the volume of 

the reactor, and As [cm2] the geometric surface area of the sample. Further information on 

kinetic parameters may be found in Caloz et al. (1997). 

 

3.   Results and Discussion 

3.1 Laboratory-generated aerosols 

Particle size distributions measured using the SMPS indicated that laboratory-generated 

aerosols had systematically a single mode (>230 nm for limonene SOA, approximately 55 nm 

for inorganic particles), and followed a perfect log-normal distribution. The geometric 

standard deviations (g) were 1.58 for limonene SOA, and 1.75 for inorganic particles. We 

note that the used equipment did not allow us to check whether or not particles larger than 

750 nm were generated. We make the assumption that the contribution of particles larger than 

750 nm to the total surface area will be small, which is in agreement with the measured 

particle size distribution from the SMPS. 

 

The yield of limonene SOA, calculated using Equation 1, indicated that only 2% of the 

limonene used for SOA generation was converted into SOA and collected on the Teflon filter. 

In contrast, the yield was much higher (55%) in the previous study of Demirdjian and Rossi 

2005. Actually, the present limonene SOA sample and that of Demirdjian and Rossi (2005) 

were not generated under the same conditions. The main difference between both conditions 

was the residence time of limonene in the reactor, which was approximately 2 min for the 
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conditions of Demirdjian and Rossi (2005), and 1 min under the present conditions. This 

difference explains the low yield obtained under the present conditions. Moreover, previous 

publications highlighted reduced yields due to deposition and loss of particles to the walls of 

the reactors (Shilling et al., 2008). 

 

The uptake of probe gases on laboratory-generated aerosols and Diesel soot SRM 2975 is 

shown in Figure 3. The number of gas-phase probe molecules taken up by the samples was 

divided either by the particle mass (Figure 3, left column) or by the particle surface area 

(Figure 3, right column) as discussed above. In order to facilitate comparison between these 

values, we also calculated the approximate number of molecules per cm2 forming a complete 

molecular monolayer on the particle surface using the density of each probe (Table 4). 

 

Figures 3(a), 3(b) and Table 4 indicate that the surface of SRM 2975 is characterized by an 

important density of acidic sites interacting with N(CH3)3, corresponding to approximately 

15% of a monolayer, while that of limonene SOA and of inorganic aerosols corresponds to 

less than 5% of a monolayer. This confirms the high degree of oxidation of the particle 

surface for soot collected from a heavy duty industrial forklift engine. The fact that inorganic 

aerosols interact with this probe suggests that metals could form coordination complex with 

N(CH3)3. 

 

NH2OH reacted to a large extend with all the samples. This result indicates the presence of an 

important amount of carbonyl functions on the surface of limonene SOA and SRM 2975. 

However, reactions with Pb(NO3)2 and Cd(NO3)2 are more surprising. These reactions might 

be due to complexation of metal ions by NH2OH. It is also possible that NH2OH decomposes 

on metal surfaces, by analogy to the oxidation of NH2OH to NO on a Fe2O3-TiO2 catalyst 

(Larrubia et al., 2001). The number of NH2OH taken up corresponds to several molecular 

monolayers (see Table 4). This suggests that during the time scale of a titration experiment 

(approximately 10 minutes), subsurface reactions with NH2OH, consisting of diffusion and 

subsequent reaction of carbonyl compounds from within the bulk of the aerosol with NH2OH, 

may take place, akin to the reaction of NH2OH with limonene SOA (Demirdjian and Rossi, 

2005). 

 

Of both acidic probes which were used to quantify basic sites on the particle surface, the 

uptake of HCl was higher than for CF3COOH on Pb(NO3)2, Cd(NO3)2 and SRM 2975 aerosol. 
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CF3COOH is a stronger acid in the gas-phase, and therefore was expected to react with more 

basic sites, even with the weakest ones. Thus the extensive reaction of HCl in comparison to 

CF3COOH can not be explained exclusively on the basis of gas-phase acidities. Enthalpy 

changes of these reactions have been calculated using thermodynamic data (Wagman et al., 

1982), and may provide an explanation for these changes. However, thermodynamic data for 

trifluoroacetic acid and trifluoroacetates are not available in the literature. Therefore we used 

the analogous values given for acetic acid and acetates. For instance in the case of Pb(NO3)2, 

results indicate that the reaction with HCl is less endothermic (Reaction B: H°f = +12.1 

kJ/mol) than that with CH3COOH (Reaction A: H°f = +45.3 kJ/mol), and therefore should 

be favored during the titration experiment in the Knudsen flow reactor. 

 

 Pb(NO3)2   +   2 CH3COOH   ↔   Pb(CH3COO)2   +   2 HNO3                    Reaction A 
                  -451.9                  2 · (-486.0)                        -963.8                   2 · (-207.4)            H°f = +45.3 kJ/mol 
               crystalline          aqueous, ionized                 crystalline            aqueous, ionized 

 

 Pb(NO3)2     +     2 HCl     ↔     PbCl2     +     2 HNO3                                  Reaction B 
                  -451.9                2 · (-167.2)              -359.4              2 · (-207.4)                             H°f = +12.1 kJ/mol 
               crystalline                 ∞ H2O              crystalline       aqueous, ionized 

 

Ozone reacted only with particles containing organics, such as limonene SOA (7.7% of a 

complete molecular monolayer, Table 4) and SRM 2975 Diesel particle (1.2% of a complete 

molecular monolayer, Table 4). However, in our earlier study (Demirdjian and Rossi, 2005; 

DR), limonene SOA did not react with O3. The results for limonene SOA presented here 

suggest an incomplete oxidation of the precursor. This could be related to the shorter 

residence time of limonene in the reactor pointed out above, or to a lower O3 concentration in 

the present experiments compared to DR, or both. Thus, limonene SOA obtained under the 

present conditions was less oxidized than that generated by DR. This may explain the 

difference in reactivity towards O3 observed between both samples. Indeed, if limonene SOA 

is more oxidized, more acidic sites and carbonyl functions are expected. This is confirmed for 

the uptakes of N(CH3)3 and NH2OH. Actually, the uptake of N(CH3)3 corresponds to 5.0% of 

a monolayer for the DR sample, as compared to 3.6% for the present sample, confirming the 

presence of a larger number of acidic sites on the surface of the DR limonene SOA. For the 

surface density of carbonyl functions, the uptake of NH2OH corresponded to more than 31 

monolayers for the DR sample, and five monolayers for the present sample, thus confirming a 

higher content of carbonyl functions for the DR sample. The significant uptake of ozone on 
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Diesel SRM 2975 is indicative of the presence of unsaturated carbon-carbon double bonds, 

which could be either olefinic or aromatic in nature. Such Diesel particles apparently 

significantly differ from toluene soot (Demirdjian and Rossi, 2005). Based on N(CH3)3, 

NH2OH and O3 uptake, SRM 2975 presents a significantly higher degree of oxidation 

compared to toluene soot. 

 

Figure 3 and Table 4 indicate that the reactivities of Pb(NO3)2 and Cd(NO3)2 towards all 

probe gases, except for the case of the non-interacting ozone, are significantly different from 

each other, although the oxidation state of the metal ion and the conditions used to generate 

these particles were identical. For the reactivity towards HCl, chemical thermodynamic 

properties of Reactions B and C indicate that the reaction of HCl with Cd(NO3)2 is 

exothermic (Reaction C:H°f = -15.6 kJ/mol), whereas that with Pb(NO3)2 is endothermic 

(Reaction B:H°f = +12.1 kJ/mol). Reaction C should therefore be favored over Reaction B, 

which is in agreement with the uptake of HCl being higher by a factor of five for Cd(NO3)2 

(9.0·1014 molecule/cm2) compared to Pb(NO3)2 (2.0·1014 molecule/cm2). 

 

 Cd(NO3)2     +     2 HCl     ↔     CdCl2     +     2 HNO3                                 Reaction C 
                  -456.3                 2 · (-167.2)             -391.5               2 · (-207.4)                             H°f = -15.6 kJ/mol 
               crystalline                 ∞ H2O               crystalline       aqueous, ionized 

 

On the other hand, we cannot exclude the formation of hydroxides during the generation of 

inorganic aerosols, according to Reactions D and E. In this case, nitric acid (HNO3) would 

evaporate, while Pb(OH)2 (Reaction D) and Cd(OH)2 (Reaction E) would be collected on the 

Teflon filters and react with HCl or CF3COOH in the Knudsen flow reactor. Thus, it is 

possible that during the generation of inorganic aerosols, a mixture of nitrates and hydroxides 

is produced and collected on the Teflon filters. 

 

 Pb(NO3)2   +   2 H2O   ↔   Pb(OH)2   +   2 HNO3                                         Reaction D 

 

 Cd(NO3)2   +   2 H2O   ↔   Cd(OH)2   +   2 HNO3                                        Reaction E 

 

Boehm and Voll (1970) reported that basic oxides on the surface of amorphous carbon have 

more affinity towards CH3COOH than HCl. Figures 3(e), 3(f), 3(g), 3(h) and Table 4 indicate 

a selectivity of limonene SOA for CF3COOH over HCl uptake. Therefore, we assume that the 
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generation of limonene SOA leads to formation of basic oxides on the SOA surface. This 

result has been observed on other combustion aerosols such as amorphous carbon as well 

(Setyan et al., 2008). Similar considerations suggest that SRM 2975 Diesel particles lack such 

basic oxide functions on their surface. 

 

The uptake coefficients 0 of the titration reactions between probe gases and laboratory-

generated aerosols are shown in Table 5. Reactions with 0 smaller than 10-4 may be 

considered as slow, while those higher than 10-3 as fast. Table 5 reveals large values of 0 for 

the rate of N(CH3)3 uptake on SRM 2975 as well as for NH2OH uptake on SRM 2975 and 

limonene SOA. A look at the corresponding uptake values displayed in Table 4 indicates that 

there is no apparent relationship between the kinetics (Table 5) and uptakes (Table 4). This 

suggests that the kinetic behavior is different for different kinds of particles using the same 

probe and/or reflects a different reaction mechanism for probe uptake for the same class of 

particles. 

 

3.2 Field campaign 

Prior to the field campaign, we had to ascertain that the silanized quartz fiber filters were 

chemically sufficiently inert towards the used probe gases. Figure 4 displays the reactivity of 

silanized and non-silanized quartz fiber filters towards all used probe gases. Results indicate 

that silanization of filters decreased their reactivity up to 50 times for HCl, which was the 

most reactive probe. We therefore considered silanized quartz fiber filters as suitable filters 

for the field campaign. 

 

Size distributions of ambient particles measured using the SMPS showed a very large 

variability during the working period in the bus depots, depending on the activities of 

workers. One mode in the size range 50-70 nm was systematically present on all the scans, 

and a second mode in the size range 20-30 nm was sometimes observed immediately after the 

passage of buses next to the SMPS, due to the emission of small particles. 

 

Figure 3 shows the uptake of probe gases on aerosols collected in the field. These results were 

obtained by first subtracting each sample by a blank which had been silanized in the same 

batch. Then, the number of gas-phase probe molecules taken up by the whole sample was 

divided by the particle mass (molecule/mg; Figure 3, left column). In order to determine the 
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density of functional groups on the particle surface (molecule/cm2; Figure 3, right column), 

the number of gas-phase probe molecules taken up by the whole sample was divided by the 

particle surface area. As for laboratory-generated aerosols, we also expressed these results as 

the percentage of a complete molecular monolayer on the particle surface using the density of 

each probe, in order to facilitate comparison between these values (Table 4). 

 

In Figure 3, results expressed as the number of probe molecules taken up per particle mass 

(left column) do not show the same detailed trends as those expressed according to the 

particle surface area (right column). In order to obtain insight on a molecular level into the 

reactivity of the particle surface, we base the following discussion on results expressed as the 

number of probe molecules taken up per unit of particle surface area (molecule/cm2). This 

choice is motivated by previous studies, which pointed out the importance of surface 

reactivity to the toxicity of nanoparticles (Warheit et al., 2007) and to the ability of particulate 

matter to adsorb a wide variety of compounds (proteins, surfactant components) in the lung 

(Kendall et al., 2004b). 

 

In Figure 3 (right column), the surface reactivity of the collected aerosols showed a large 

variability according to the workplace and the season. Indeed, the difference of probe gas 

uptake between the most reactive and the less reactive sample could reach a factor of 100. 

These differences may be due to various activities of the workers in the bus depots, and also 

to the background of outdoor air. Moreover, almost all the samples reacted with the five probe 

gases, which indicate that the particle surface is multi-functional, with the simultaneous 

presence of antagonistic functional groups on the same particle, such as Lewis acids and 

bases. Apparently, these mutually reactive sites are able to coexist on the particle surface 

without the occurrence of the expected neutralization reaction. 

 

There were several similarities between laboratory-generated aerosols and aerosols collected 

in the field. First, the uptake of NH2OH on all samples was very large. As with the laboratory-

generated aerosols, these results indicate the presence of an important amount of carbonyl 

functions on the particle surface. This result is in agreement with previous studies, which also 

suggested that carbonyl functions are significant constituents of ambient particulate matter 

(Reff et al., 2005). Moreover, Figures 3(f) and 3(h) indicate that HCl reacted to a larger extent 

compared to CF3COOH with all the samples. As discussed for laboratory-generated aerosols, 

particulate matter sampled in all the bus depots seems to contain a low amount of basic oxides 
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that are related to / pyrone structures (Setyan et al., 2008). On the other hand, among all the 

investigated samples (laboratory-generated aerosols as well as aerosols collected in the field), 

limonene SOA is the only one to have a higher selectivity towards CF3COOH (5.3% of a 

monolayer, Table 4) than towards HCl (less than 0.5% of a monolayer, corresponding to the 

limit of detection for HCl; Table 4). This result suggests that limonene SOA is perhaps not a 

good surrogate for organic aerosols in bus depots. 

 

Figures 3(b) and 3(j) show that aerosols collected in the field present anticorrelated 

reactivities towards N(CH3)3 and O3. Indeed, particles sampled in the bus depot 2 in winter 

reacted strongly with O3 (Figure 3(j)), but not with N(CH3)3 (Figure 3(b)). On the other hand, 

particles sampled in summer reacted with N(CH3)3 (Figure 3(b)), while reactions with O3 

were near the limit of detection ((Figure 3(j)). This suggests that during summer, particles 

may have undergone photo-oxidation, which generated carboxylic acids and increased the 

oxidation state of the organic aerosol. The presence of carboxylic acids on particles in 

summer explains the reactivity of these samples towards N(CH3)3, while the very weak 

reactions with O3 may be attributed to the fact that such a high oxidation status prevents 

further oxidation by the O3 probe. In contrast, photo-oxidation does not occur in winter, and 

therefore compounds adsorbed on particles sampled in winter were in a reduced state. These 

samples did not react with N(CH3)3 because of the absence of carboxylic acids, whereas they 

underwent oxidation by O3. This observation points to the influence of the background of 

outdoor air on the results, because photo-oxidation usually does not occur in an indoor 

environment. These observations are in agreement with results obtained by previous studies 

(Kawamura and Ikushima, 1993), which also noticed higher levels of acids in particulate 

matter during summer. Moreover, the presence of a higher content of acidic sites on particles 

sampled in summer may play a role in the formation of SOA, since Jang et al. (2002) found 

that acidic surface sites on atmospheric aerosol particles catalyze carbonyl heterogeneous 

reactions, and consequently lead to a large increase in SOA production. 

 

Compared to laboratory-generated aerosols and certified Diesel soot SRM2975, the uptake of 

probe gases on aerosols collected in the field was in general of the same order of magnitude. 

The reactivity of samples containing organics (aerosols collected in the field, limonene SOA 

and SRM 2975) towards N(CH3)3, NH2OH and O3 may be explained by the degree of partial 

oxidation, while that towards HCl and CF3COOH is mainly explained by the presence of 

basic sites, including basic oxides. However, due to the very complex mixture of aerosols 
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collected in the field, we are unable to express the observed reactivity in terms of fractions of 

model or laboratory aerosol present in ambient particles. 

 

Concerning the kinetics of the titration reactions, Table 6 displays the uptake coefficient 0 of 

the titration reactions between probe gases and aerosols collected in the field. All aerosol 

samples reacted fairly slowly with N(CH3)3, which points to the presence of organic 

carboxylic rather than mineral acids. Except for the aerosols collected in bus depot 2 in 

winter, NH2OH reacted roughly at a uniform rate with all aerosol samples with 0 being on the 

order of 10-4. Moreover, all aerosol samples consistently reacted faster with HCl than with 

CF3COOH (0(HCl) > 0(CF3COOH)). The fastest titration reaction throughout all aerosol 

samples was invariably that with O3. If there are oxidizable groups present on the aerosol, or 

if the uptake is significant (see Figure 3), then the reaction becomes very efficient with 0 > 

10-3. The ability of aerosols collected in the field to undergo fast redox reactions with O3 and 

slow acid-base reactions with N(CH3)3 is an interesting outcome of this study, regarding the 

health effects of particulate matter. Indeed, the quantification of the density of surface 

functional groups by titration with selected probe gases may not be sufficient to explain the 

reactivity of particulate matter if the kinetics is very slow. For instance, if the particle surface 

is characterized by a high density of acidic sites, the slow kinetics may prevent excessive 

damages in biological systems due to acid-base reactions, and therefore may well reduce the 

adverse health effects of particulate matter. 

 

4.   Conclusion 

In this paper, we report the use of a novel method allowing the quantitative characterization of 

functional groups on the surface of particulate matter. The Knudsen flow reactor provides an 

alternative approach to spectroscopic methods, focusing more on the chemical reactivity of 

the particle surface. We do not claim that this method allows one to study the reactivity of 

aerosol particles in the aqueous phase. Rather, it provides benchmark data that allows one to 

map the surface composition of the aerosol interface that represents the first step in the effort 

of future fundamental understanding of the condensed phase reactivity in biologically relevant 

environments. The sensitivity of the method allowed detecting less than 1% of a molecular 

monolayer of surface functional groups. 
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The work undertaken on laboratory-generated aerosols allowed the selection of five different 

probe gases, namely N(CH3)3, NH2OH, CF3COOH, HCl and O3, for the titration of important 

functional groups, such as acids, bases, carbonyl functions and oxidizable sites. 

 

In the second part of this work, the Knudsen flow reactor was successfully used for the first 

time to study aerosols collected in the field. Results showed important differences in surface 

functional groups, depending on sampling sites, season, particle sources, activities of workers 

and background of outdoor air. The particle surface in bus depots was usually characterized 

by a high content of carbonyl functions, and showed a high degree of partial oxidation. 

However, because of the extensive variability of the particle surface in the different bus 

depots, we are unable to give a description of the surface of typical ambient fine and ultrafine 

particles. The ability of almost all samples to react with the five probe gases indicates that the 

particle surface is multi-functional, with the simultaneous presence of antagonistic functional 

groups which do not undergo internal chemical reactions, such as acid-base neutralization. 

The measurement of kinetic parameters for aerosols collected in the field indicated that redox 

reactions of oxidizable sites on the surface of particulate matter were fast, while reactions of 

acidic sites on particulate matter towards N(CH3)3 were rather slow. 

 

Results reported in this paper point out interesting perspectives of this technique in the fields 

of atmospheric chemistry and health effects of particulate matter. However, additional work 

has still to be performed in order to find probe gases allowing the quantification of other 

functional groups. In particular, it would be important to find probe gases reacting specifically 

with metal ions and oxidizing agents, because these classes of compounds are suspected to 

play a central role in health effects of particulate matter. 
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Figure 1 

Schematic drawing of the Knudsen flow reactor. 

 

Figure 2 

Typical raw data of a titration experiment using the Knudsen flow reactor. Sample: aerosols 

collected in the bus depot 2 (summer, day 2) on silanized quartz fiber filter. Probe gas: HCl. 

m/z: 36. S0: MS signal at steady state. SR: MS signal immediately after the beginning of the 

reaction. 

 

Figure 3 

Uptake measurements of N(CH3)3 (a and b), NH2OH (c and d), CF3COOH (e and f), HCl (g 

and h), and O3 (i and j) on aerosols using the Knudsen flow reactor. Error bars: combined 

uncertainty due to mass, surface area and uptake parameters. N/A: not available. N/D: not 

detected (lower than the limit of detection). ▲: laboratory-generated aerosols. ■: bus depot 1. 

●: bus depot 2. ♦: bus depot 3. ○ and ◊: night time sampling. The broken horizontal line 

represents the limit of detection, which takes into account the response of the blank filter to 

the specific probe gas. 

Left column: Number of gas-phase probe molecules taken up per mg of aerosol 

[molecule/mg]. 

Right column: Number of gas-phase probe molecules taken up per cm2 of aerosol 

[molecule/cm2]. 

 

Figure 4 

Uptake measurements of probe gases on silanized and non-silanized quartz fiber filters using 

the Knudsen flow reactor. Units: number of gas-phase probe molecules taken up per filter of 

47 mm diameter. 
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Table 1: Knudsen flow reactor parameters. 

 
Parameter Value 
Volume of the reactor V = 1830 [cm3] 
Estimated surface area of the reactor S = 1300 [cm2] 
Geometric surface area of the samples As = 17.3 [cm2] 
Escape orifice diameter Ø = 1 [mm] 
Chopper frequency 225 [Hz] 
Concentration of probe gases in the reactor 1·1013 to 5·1013 [molecule/cm3] 
Molecular flow rate of probe gases 2·1014 to 1·1015 [molecule/s] 
Escape rate constant kesc = 0.01· MWT /  [s-1] 
T = temperature [K]. 
MW = molecular weight [g/mol]. 



 28

Table 2: List of different chemical reactions during the titration experiments in the Knudsen 
flow reactor. 
 
Probes Probable reactions occurring at the 

conditions of the Knudsen flow reactor 
Reactions not expected to occur at the 
conditions of the Knudsen flow reactor 

N(CH3)3 Reaction 1: acid-base reaction (Hossain et al., 
2004) 

N

CH3

CH3CH3

N
+
CH3

H

CH3

CH3

H
+

A A+ .
 

 
Reaction 2: metal complexation (Guilbault 
and Billedeau, 1971) 
Mn+   +   x N(CH3)3   →   [M(N(CH3)3)x]

n+ 

 

NH2OH Reaction 3: addition (Jencks, 1959) 

O
R'

R R

R'
N OH+ NH2OH + H2O

 

Reaction 4: Hydroamination (Beauchemin et 
al., 2008) 

R''

R'''R'

R
R

H

R'

NHOH

R''

R'''
> 10 h

NH2OH
T > 100°C

+

CF3COOH Reaction 5: acid-base reaction 

F3C
O

OH
F3C

O

O
B B H

++ .
 

HCl Reaction 6: acid-base reaction 

ClB H
++ HClB .

 

Reaction 7: addition (Raley et al., 1948) 
R''

R'''R'

R
R

H

R'

Cl

R''

R'''
+ HCl

h or

peroxide
 

 
Reaction 8: (Landini et al., 1974) 

R OH R Cl+ HCl + H2O
catalyst

105 °C / 30 h

 
O3 Reaction 9: ozonolysis (Horie and Moortgat, 

1998) 
R''

R'''R'

R
O

R'

R

+ O3 +     Criegee
intermediates

 

Reaction 10: ozonation (Cohen et al., 1975) 

CR' H

R

R''

R' C

R

R''

OH+ O3

 
 
Reaction 11: ozonation (Bachman and 
Strawn, 1968) 

R' C NH2

R

R''

R' C

R

R''

NO2+ O3

 
 
Reaction 12: ozonation (Erickson et al., 1969) 

C N
R'

R
C O

R

R'
O N+ O3 +

 
 
Reaction 13: (Klein and Steinmetz, 1975) 

R R COOH+ O3 +



 29

Table 3: Description of sampling sites, including average temperature and humidity during 
the sampling period. 
 

Sampling site Description of the sampling sites 
Average 

temperature 
[°C] 

Average relative 
humidity 
[% rH] 

Bus depot 1 
Day 1 

Mechanical yard: repair and maintenance of 
buses and trolleybus 

22.2±1.7 33.5±2.9 

Bus depot 1 
Day 2 

Mechanical yard: repair and maintenance of 
buses and trolleybus 

20.8±0.8 42.7±3.8 

Bus depot 2 
Summer – Day 1 

Mechanical yard: repair and maintenance of 
buses 

23.2±1.7 42.9±3.6 

Bus depot 2 
Summer – Day 2 

Mechanical yard: repair and maintenance of 
buses 

22.6±1.2 36.4±7.6 

Bus depot 2 
Summer – Night 1 

Nearby a track used by all the buses and 
trams to join their respective parking place 

23.2±0.7 53.3±5.8 

Bus depot 2 
Summer – Night 2 

Nearby a track used by all the buses and 
trams to join their respective parking place 

21.4±0.6 34.7±3.6 

Bus depot 2 
Winter – Day 1 

Mechanical yard: repair and maintenance of 
buses 

21.0±0.2 40.2±3.6 

Bus depot 2 
Winter – Day 2 

Mechanical yard: repair and maintenance of 
buses 

20.8±0.6 34.7±2.9 

Bus depot 3 
Day 1 

Mechanical yard: repair and maintenance of 
buses and trolleybus 

24.9±1.8 29.9±7.3 

Bus depot 3 
Day 2 

Mechanical yard: repair and maintenance of 
buses and trolleybus 

24.1±1.2 26.4±5.1 

Bus depot 3 
Night 1 

Maintenance yard: cleaning and fuel filling 
of buses and trolleybus 

21.3±1.9 43.7±8.2 

Bus depot 3 
Night 2 

Maintenance yard: cleaning and fuel filling 
of buses and trolleybus 

19.5±2.5 33.8±11.5 
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Table 4: Titration experiments using the Knudsen flow reactor. Unit: % of a complete 
molecular monolayer. 
 
 N(CH3)3 NH2OH CF3COOH HCl O3 
1 monolayer 
(±uncertainty) 

3.6 (±0.2) . 1014 
[molecule/cm2] 

7.9 (±0.5) . 1014 
[molecule/cm2] 

4.0 (±0.3) . 1014 
[molecule/cm2] 

8.6 (±0.5) . 1014 
[molecule/cm2] 

7.4 (±0.5) . 1014

[molecule/cm2] 
limonene SOA   3.6 % 493.7 %     5.3 % not detected     7.7 % 

Pb(NO3)2   4.4 % 202.5 %     2.1 %   23.3 % not detected 

Cd(NO3)2   2.0 % 797.5 %     5.5 % 104.7 % not detected 

SRM 2975 14.7 % 189.9 % not detected     0.3 %     1.2 % 
Bus depot 1 
Day 1 

not available not available not available not available not available 

Bus depot 1 
Day 2 

not available not available not available not available not available 

Bus depot 2 
Summer - Day 1 

  1.9 % 148.1 %   50.8 %   55.2 %   16.8 % 

Bus depot 2 
Summer - Day 2 

18.6 % 646.8 %   59.0 %   87.7 %   38.9 % 

Bus depot 2 
Summer - Night 1 

20.0 % 384.8 % 131.0 % 187.2 %   33.6 % 

Bus depot 2 
Summer - Night 2 

  0.7 % not available   13.4 %     9.3 %     3.1 % 

Bus depot 2 
Winter - Day 1 

not detected   42.3 %   11.0 %     9.7 % 362.2 % 

Bus depot 2 
Winter - Day 2 

not detected   29.2 %   51.0 %   40.3 % 535.1 % 

Bus depot 3 
Day 1 

  4.2 %   29.9 %   10.7 %   16.3 %     6.6 % 

Bus depot 3 
Day 2 

  7.8 %   25.7 %     6.7 %   13.8 %     7.0 % 

Bus depot 3 
Night 1 

12.5 %   87.3 %   62.8 %   67.7 %     3.6 % 

Bus depot 3 
Night 2 

  9.9 %   30.3 %     3.0 %     9.5 % not detected 
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Table 5: Uptake coefficient 0 of heterogeneous chemical reactions between probe gases and 
laboratory-generated aerosols in the Knudsen flow reactor, based on the geometric surface 
area of the sample. 
 
 N(CH3)3 NH2OH CF3COOH HCl O3 
limonene SOA 2.5 (±0.1) · 10-4 2.4 (±0.4) · 10-3 7.1 (±0.6) · 10-5 not detected 4.7 (±0.4) · 10-4 
Pb(NO3)2 3.5 (±0.2) · 10-4 2.0 (±0.3) · 10-4 2.9 (±0.2) · 10-3 5.8 (±0.2) · 10-2 not detected 
Cd(NO3)2 9.9 (±0.6) · 10-5 2.0 (±0.3) · 10-4 1.8 (±0.1) · 10-3 6.3 (±0.2) · 10-4 not detected 
SRM 2975 2.4 (±0.1) · 10-2 1.5 (±0.3) · 10-2 not detected 2.9 (±0.1) · 10-3 5.8 (±0.5) · 10-4 
Values in bracket: standard deviation of duplicates. 
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Table 6: Uptake coefficient 0 of heterogeneous chemical reactions between probe gases and 
aerosols collected in bus depots, based on the geometric surface area of the sample. 
 
 
 

N(CH3)3 NH2OH CF3COOH HCl O3 

Bus depot 1 
Day 1 

7.6 (±1.1) · 10-5 1.9 (±0.4) · 10-4 7.8 (±1.0) · 10-5 1.1 (±0.2) · 10-4 2.0 (±0.1) · 10-3 

Bus depot 1 
Day 2 

not detected 2.3 (±0.7) · 10-4 1.0 (±0.1) · 10-4 1.7 (±0.2) · 10-4 2.6 (±0.2) · 10-3 

Bus depot 2 
Summer - Day 1 

7.4 (±0.4) · 10-5 2.4 (±0.2) · 10-4 2.0 (±0.4) · 10-4 4.3 (±0.3) · 10-4 1.0 (±0.1) · 10-3 

Bus depot 2 
Summer - Day 2 

9.1 (±0.3) · 10-5 4.6 (±0.1) · 10-4 2.0 (±0.1) · 10-4 4.3 (±0.1) · 10-4 1.5 (±0.2) · 10-3 

Bus depot 2 
Summer - Night 1 

1.0 (±0.1) · 10-4 3.3 (±0.1) · 10-4 4.1 (±0.4) · 10-4 1.6 (±0.1) · 10-3 1.2 (±0.1) · 10-3 

Bus depot 2 
Summer - Night 2 

9.4 (±0.3) · 10-5 not available 1.0 (±0.1) · 10-4 1.5 (±0.1) · 10-4 7.0 (±0.7) · 10-4 

Bus depot 2 
Winter - Day 1 

not detected 7.5 (±1.5) · 10-4 4.2 (±0.6) · 10-3 4.5 (±0.8) · 10-3 3.6 (±0.3) · 10-3 

Bus depot 2 
Winter - Day 2 

not detected 1.5 (±0.1) · 10-3 1.4 (±0.1) · 10-2 1.8 (±0.3) · 10-2 3.3 (±0.5) · 10-3 

Bus depot 3 
Day 1 

5.2 (±0.1) · 10-5 3.0 (±0.4) · 10-4 9.7 (±1.1) · 10-5 1.4 (±0.1) · 10-4 9.8 (±1.0)  · 10-4 

Bus depot 3 
Day 2 

7.9 (±0.7) · 10-5 1.4 (±0.1) · 10-4 7.3 (±0.1) · 10-5 9.2 (±0.3) · 10-5 1.7 (±0.1) · 10-3 

Bus depot 3 
Night 1 

6.2 (±0.5) · 10-5 2.0 (±0.6) · 10-4 1.2 (±0.1) · 10-4 1.6 (±0.1) · 10-4 9.4 (±0.9) · 10-4 

Bus depot 3 
Night 2 

1.1 (±0.1) · 10-4 1.4 (±0.3) · 10-4 5.0 (±0.2) · 10-5 5.4 (±0.1) · 10-5 not detected 

Values in bracket: standard deviation of duplicates. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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