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Abstract
Aim: Species distribution information is essential under increasing global changes, 
and models can be used to acquire such information but they can be affected by dif-
ferent errors/bias. Here, we evaluated the degree to which errors in species data 
(false presences–absences) affect model predictions and how this is reflected in com-
monly used evaluation metrics.
Location: Western Swiss Alps.
Methods: Using 100 virtual species and different sampling methods, we created ob-
servation datasets of different sizes (100–400–1,600) and added increasing levels of 
errors (creating false positives or negatives; from 0% to 50%). These degraded data-
sets were used to fit models using generalized linear model, random forest and 
boosted regression trees. Model fit (ability to reproduce calibration data) and predic-
tive success (ability to predict the true distribution) were measured on probabilistic/
binary outcomes using Kappa, TSS, MaxKappa, MaxTSS and Somers’D (rescaled 
AUC).
Results: The interpretation of models’ performance depended on the data and met-
rics used to evaluate them, with conclusions differing whether model fit, or predic-
tive success were measured. Added errors reduced model performance, with effects 
expectedly decreasing as sample size increased. Model performance was more af-
fected by false positives than by false negatives. Models with different techniques 
were differently affected by errors: models with high fit presenting lower predictive 
success (RFs), and vice versa (GLMs). High evaluation metrics could still be obtained 
with 30% error added, indicating that some metrics (Somers’D) might not be sensitive 
enough to detect data degradation.
Main conclusions: Our findings highlight the need to reconsider the interpretation 
scale of some commonly used evaluation metrics: Kappa seems more realistic than 
Somers’D/AUC or TSS. High fits were obtained with high levels of error added, show-
ing that RF overfits the data. When collecting occurrence databases, it is advisory to 
reduce the rate of false positives (or increase sample sizes) rather than false 
negatives.
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1  | INTRODUC TION

As biodiversity and ecosystems are under growing pressure by global 
changes, we need to urgently increase our understanding of, and 
associated capacity to model, the main factors driving changes in 
the distributions of species, assemblages and ecosystems (Dawson, 
Jackson, House, Prentice, & Mace, 2011). Species distribution mod-
els (SDMs; Guisan, Thuiller, & Zimmermann, 2017) allow modelling 
the distribution of species and their assemblages at different spatial 
and temporal scales (D’Amen, Rahbek, Zimmermann, & Guisan, 2017; 
Ferrier & Guisan, 2006). SDMs statistically correlate species observa-
tions (presence–absence or presence‐only) with environmental data 
(Guisan & Thuiller, 2005) and are commonly evaluated by assessing 
their predictive performance and accuracy (Peterson et al., 2011). 
The most used metric is, by far, the area under the receiver operat-
ing characteristic curve (AUC‐ROC; Fourcade, Besnard, & Secondi, 
2018). It is calculated by plotting a model’s sensitivity against its 
false‐positive rate at all possible thresholds (Hanley & McNeil, 1982), 
measuring the model’s performance in discriminating between spe-
cies presences and absences (Lobo, Jimenez‐Valverde, & Real, 2008). 
Alternative metrics have also been proposed, mainly due to the 
known limitations of the AUC (e.g., dependence on the calibration 
area, ignores spatial distribution of errors, relies on the ranking of 
sensitivity/specificity across thresholds and ignores the probability 
values given by a model or equally weights omission/commission er-
rors; Lobo et al., 2008; Peterson, Papes, & Soberon, 2008; Jiménez‐
Valverde, 2012; Jiménez‐Valverde, Acevedo, Barbosa, Lobo, & Real, 
2013). The most common alternatives are Cohen’s Kappa (Kappa; 
Cohen, 1960) and the true skill statistic (TSS; Allouche, Tsoar, & 
Kadmon, 2006). Kappa corrects the overall accuracy of model pre-
dictions by the accuracy expected to occur by chance while TSS 

corrects Kappa’s dependency on prevalence (see Table 1 for more 
information). Moreover, SDMs can contain uncertainty from vari-
ous sources (reviewed by e.g., Barry & Elith, 2006; Beale & Lennon, 
2012), including errors associated with species data (e.g., unavail-
able absence data, small or insufficient sample sizes, unexplored 
geographical bias or spatial errors; e.g., Fielding & Bell, 1997; Pearce 
& Ferrier, 2000; Jenkins, Powell, Bass, & Pimm, 2003), environmen-
tal variables (e.g., missing important ones; Mod, Scherrer, Luoto, & 
Guisan, 2016) or modelling techniques (e.g., Guisan, Zimmermann, 
et al., 2007; Thibaud, Petitpierre, Broennimann, Davison, & Guisan, 
2014). One problem commonly affecting SDMs concerns the inabil-
ity to separate potentially false and true species’ absences obtained 
through field surveys (Lahoz‐Monfort, Guillera‐Arroita, & Wintle, 
2014) leading to underestimation of species occupancy (i.e., when 
occupied sites are misclassified as unoccupied; Guillera‐Arroita, 
Ridout, & Morgan, 2010), incorrect inference about species distri-
butions or inaccurate predictions (Lahoz‐Monfort et al., 2014). The 
wrongly recorded absences (false absences) in presence–absence 
datasets or the omission of presences in presence‐only models can 
then lead to predictions that will reflect where the species is more 
or less likely to be detected instead of the locations where if should 
occur or not (Kéry, 2011; Lahoz‐Monfort et al., 2014). This means 
that one would eventually model what is called the “apparent distri-
bution” and not the true distribution (Kéry, 2011). Additionally, some 
environmental relationships that are important to explain species 
occurrence and distribution might be wrongly identified or com-
pletely missed when false absences/presences are recorded (Kéry, 
2011). The effect of detection errors on model performance is likely 
to depend on the modelling techniques used as those differ in their 
ability to fit complex response curves (i.e., species–environment re-
lationships; Guisan, Zimmermann, et al., 2007; Merow et al., 2014).

K E Y W O R D S

artificial data, AUC, ecological niche models, evaluation metric, habitat suitability models, 
Kappa, model fit, predictive accuracy, TSS, uncertainty

TA B L E  1   Detailed information about the evaluation metrics used to assess the predictive performance of SDMs (adapted from Liu et al., 
2005 and Allouche et al., 2006), a is true positives (or presences), b is false positives (or presences), c is false negatives (or absences), d is true 
negatives (or absences), n (=a + b + c + d) is the total number of sites. Sensitivity is the probability that the model will correctly classify a 
presence (a/a + c). Specificity is the probability that the model will correctly classify an absence (d/b + d)

Metric Acronym Definition/Formula Scale References

Area under the receiver 
operating curve

AUC Calculated by plotting a model's sensitivity against its 
false‐positive rate at all possible thresholds

0/+1 Hanley and McNeil 
(1982)

Somers’ rank correlation Somers'D 2(AUC – 0.5) −1/+1 Harrell (2015)

Cohen's Kappa Kappa
(

a+d

n

)

−
(a+b)(a+c)+(c+d)(d+b)

n2

1−
(a+b)(a+c)+(c+d)(d+b)

n2

−1/+1 Cohen (1960)

True skill statistic TSS Sensitivity +Specificity − 1 −1/+1 Allouche et al. (2006)

Kappa maximization MaxKappa Kappa statistic is maximized −1/+1 Guisan et al. (1998); 
Huntley et al. (1998) 

TSS maximization MaxTSS TSS statistic is maximized −1/+1 Liu et al. (2005)
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Several of these issues have received considerable attention 
in recent years, providing information to improve survey designs, 
proposing approaches to account for imperfect detection and eval-
uating the impacts of non‐detection of species in models of indi-
vidual species (Gu & Swihart, 2004; Guillera‐Arroita et al., 2010; 
MacKenzie et al., 2002). However, the majority of the studies 

focusing on uncertainties in SDMs used real species observations, 
putting a limit to proper assessment of model accuracy because the 
complete distribution and the species–environment relationships 
cannot be entirely known and may result from factors that cannot 
be controlled. A way to avoid these limitations is to use artificial 
data (Austin, Belbin, Meyers, Doherty, & Luoto, 2006) in a virtual 

F I G U R E  1   Workflow of the analytical steps followed in the study. Step 1—We started by creating binary distribution maps for 100 virtual 
species from models based on real species’ data (using either generalized linear models (GLM), boosted regression trees (BRT) or random 
forests (RF) as modelling techniques and the receiver operating characteristic (ROC), true skill statistic (TSS) or KAPPA as thresholding 
techniques). Step 2—For each species, we sampled presence–absence data using three different sample sizes (100–400–1,600) and two 
sampling designs (EqualPrev and TruePrev). Step 3—To each of the sampled datasets, errors were added according to six different levels 
(0%—training data without error added, the control; 10%, 20%, 30%, 40% and 50%—training data with error added) and two different types 
of error (errors added to presences, creating false negatives or added to absences, creating false positives). Step 4—Each occurrence dataset 
was used to create single species distribution models (probability and binary maps), using three different modelling techniques (GLM, 
BRT and RF). Step 5—The predictions for each species were then evaluated with three evaluation approaches: model fit probability (MFp), 
predictive success probability (PSp) and predictive success binary (PSb), using different metrics: maximized Kappa (MaxKappa), maximized TSS 
(MaxTSS) and Somers’D (rescaled measure of AUC) for MFp and PSp; Kappa and TSS for PSb
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ecologist approach (see Zurell et al., 2010 for a review), where all the 
information necessary for a study can always be obtained in a fully 
artificial or semi‐artificial world, allowing complete or at least partial 
control on the data and models being tested (Austin et al., 2006). In 
one of the first application to SDMs, Hirzel, Helfer, and Metral (2001) 
created virtual species to test different habitat suitability methods 
and their predictive power under different scenarios. Virtual species 
have been used to test different ecological models and assumptions, 
to test different approaches to sample species data (Hirzel & Guisan, 
2002), to downscale coarse‐grain data into high‐resolution predic-
tions (Bombi & D’Amen, 2012) or to measure the relative effect of 
different factors affecting predictions (Thibaud et al., 2014).

In this study, we take a virtual ecologist approach, using 100 
virtual species defined from real observations in a real mountain 
landscape with large environmental gradients, to investigate: (a) the 
effect of sample size when error is added to the data; (b) the model 
performance behaviour when different levels of errors are added to 
the training data (to presences or absences) and how different eval-
uation approaches influence the conclusions of that performance, 
(c) how different metrics traditionally used to evaluate SDM pre-
dictions perform with those errors (d) what are the implications for 
interpreting the performance/reliability of models when using those 
metrics, (e) how different modelling techniques deal with degraded 
training data and (f) how different types of errors affect models and 
metrics. Taking into account the frequent use of SDMs in ecology, 
evolution and conservation, this paper provides an essential analysis 
of the potential effects of errors in species data on SDM reliability 
and on the interpretation of common evaluation metrics.

2  | METHODS

2.1 | Analytical framework

We implemented a virtual ecologist approach (see Figure 1), based 
initially on real data in a real landscape (i.e., which can also be consid-
ered as a semivirtual study; Albert et al., 2010) in the western Swiss 
Alps (a priority research area; https://rechalpvd.unil.ch), covering ap-
proximately 700 km2. We defined the distributions of virtual species 
based on predictions of models fitted on real data in this study area 
to keep ecological realism (see Step 1 below). The approach con-
sisted of five steps:

2.1.1 | Step 1. Creating virtual species

From a set of real species data (previously sampled in the study area), 
we generated 100 virtual species, by fitting SDMs (initial SDMs in 
Figure 1) using presence–absence data against five environmental 
predictors: summer mean monthly temperatures (2–19°C), sum of 
winter precipitation (65–282 mm), annual sum of potential solar ra-
diation (KJ), slope (°) and topographic position (unitless; indicating 
ridges and valleys; see Supporting Information Appendix S1).

The models were fitted using generalized linear models (GLMs; 
McCullagh & Nelder, 1989), random forests (RFs; Breiman, 2001) 
or boosted regression trees (BRTs; Friedman, Hastie, & Tibshirani, 
2000) as modelling techniques. These modelling techniques were 
chosen because GLMs allow hump‐shaped and linear response 
curves that can be easily justified by ecological niche theory while 
RFs and BRTs have been increasingly used in recent years as they 
allow for more complex combinations and interactions of environ-
mental factors, which can result in more complex species–envi-
ronment relationships. This study set‐up allowed us to check if the 
complexity of those relationships could influence the outcome of 
our study.

The resulting probability distributions were transformed into 
presence–absence data (considered as our “true” virtual species 
distribution) using three thresholding approaches: (a) threshold 
that corresponded to the point on the receiver operating charac-
teristic plot (ROC; sensitivity against 1 specificity across successive 
thresholds; Hanley & McNeil, 1982; Swets, 1988) with the short-
est distance to the top‐left corner (0,1) of that plot (Cantor, Sun, 
Tortolero‐Luna, Richards‐Kortum, & Follen, 1999); (b) threshold 
maximizing Kappa (MaxKappa; Huntley, Berry, Cramer, & McDonald, 
1995; Guisan, Theurillat, & Kienast, 1998); and (c) threshold maxi-
mizing TSS (MaxTSS; which is equivalent to the sensitivity–specific-
ity sum maximization described in Liu, Berry, Dawson, & Pearson, 
2005). By using a number of different thresholding techniques, we 
minimize the bias of thresholding techniques on the interpretation 
of the results.

In this study, all initial environmental and species data were avail-
able at a 25 m resolution. In real‐world studies, the spatial resolution 
can have an important influence on model predictions, with diverging 
results being observed between small‐ and large‐scale studies (e.g., 
Meyer & Thuiller, 2006; Mertes & Jetz, 2018; Record et al., 2018), or 
when changing resolution or extent (e.g., Thuiller, Brotons, Araujo, & 
Lavorel, 2004; Guisan, Graham, Elith, & Huettmann, 2007). This can, 
for instance, result from the scale dependency of the environmen-
tal predictors (Vicente et al., 2014) and spatial stochastic effects at 
smaller spatial scales (Scherrer et al., 2018; Steinmann, Eggenberg, 
Wohlgemuth, Linder, & Zimmermann, 2011). As a result, the distri-
bution of real species cannot usually be fully explained by the abiotic 
predictors, as dispersal and biotic factors also play a role and interact 
with scale (Soberon & Nakamura, 2009). Here, we avoid this problem 
by using a virtual species approach, with the same predictors being 
used to create the species and fit their distribution models, and 
therefore, the initial species distributions are fully explained by the 
chosen predictors at the study scale (extent and resolution). This ap-
proach guaranteed that the virtual species showed realistic response 
curves for our landscape resulting in realistic species assemblages. 
In theory, the resolution should thus not matter in our study and 
should not affect our findings. All models were run in R software 
version 3.3.3 (R Core Team, 2017), using biomod2 default settings 
(Thuiller, Lafourcade, Engler, & Araujo, 2009), as in most published 
studies.

https://rechalpvd.unil.ch
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2.1.2 | Step 2. Sampling observations from virtual 
species maps

Virtual species presence–absence data were randomly sampled to 
create training datasets of different sizes (100–400–1,600) using 
two sampling designs: (a) selection of species data with equal num-
ber of presences–absences (equal prevalence; “EqualPrev”) and (b) 
selection of species data taking into account a presence–absence 
ratio reflecting the true prevalence of the species (species true prev-
alence; “TruePrev”). These datasets served as control (0% error) to 
establish a baseline of the potential (re‐)sampling bias for the dif-
ferent sampling schemes, modelling techniques and species (Step 2, 
Figure 1).

2.1.3 | Step 3. Addition of errors to the training data

For each sampling design and size, errors were randomly added 
(using software R) to the training data according to six different lev-
els (i.e., “levels of error”; 0% (no error added), 10%, 20%, 30%, 40% 
and 50%). These errors were added either to presences only (creat-
ing false negatives [FN] by changing presences to absences), or to 
absences only (creating false positives [FP] by changing absences to 
presences; Step 3, Figure 1).

2.1.4 | Step 4. Modelling procedure

The control dataset (without error) and all the datasets with er-
rors added were used to create SDMs (final SDMs in Step 4, 
Figure 1) using the same environmental predictors and modelling 
techniques employed to initially create the virtual species. This 
ensures that—without error added (i.e., controls)—the models can 
potentially replicate perfectly the distributions of our species, 
since all information that initially defined these distributions is 
available (i.e., same predictors), and the response curves could be 
fitted perfectly (i.e., if using the same technique). The only factors 
that can affect the performance are therefore the sample size, the 
change of modelling technique, the threshold method and the er-
rors added, which we can untangle through the control and the 
known full distribution. In other words, having SDM predictions 
for our control and degraded datasets allowed us to distinguish 
decreases in model performance only caused by resampling (using 
the control dataset), the thresholding effect and from the effects 
caused by the errors added to the presences (FN) and/or the ab-
sences (FP).

2.1.5 | Step 5. Evaluating predictions across 
species and levels of errors

Finally, we evaluated all predictions built for each sample size, sam-
pling design, modelling technique and threshold approach by meas-
uring model fit on probability (MFp) at sampled sites and predictive 
success for probabilistic (PSp) and binary predictions (PSb) across 
the whole area (i.e., evaluation approaches; see description below), 

using five widely used agreement/evaluation metrics (for more infor-
mation see Table 1 and Liu et al., 2005): Cohen’s Kappa (Kappa), true 
skill statistic (TSS), maximized Kappa (MaxKappa), maximized TSS 
(MaxTSS) and a rescaled measure of AUC, Somers’ rank correlation 
(Somers’D; Harrell, 2015). Somers’D was used instead of AUC, be-
cause its rescaled between −1 and +1, making it directly comparable 
to the other used evaluation metrics (and is therefore also intuitively 
interpretable along the same scale as a correlation coefficient).

Depending on the evaluation data used (i.e., evaluation approach 
hereafter), different evaluation metrics were used. For MFp/PSp, we 
calculated MaxKappa, MaxTSS and Somers’D, while for PSb only ob-
served Kappa and TSS under a chosen threshold could be calculated 
(Step 5, Figure 1):

1.	 Model fit probability (MFp) corresponds to the ability of the 
model to reproduce the training data. It was measured by 
comparing predicted probabilities of the different models 
(control and the various levels of errors) to the data used 
to fit those models and thus was conducted on the same 
set of points used to build the models (presence–absence 
in training dataset with errors added; and without errors 
for the control).

2.	 Predictive success probability (PSp) is the potential of the model 
to recreate the complete true distribution of a species when 
the model is trained with degraded (or not) training data. It 
was calculated by comparing predicted probabilities of the dif-
ferent models (control and various levels of errors) to the origi-
nal true species distribution map (presence–absence), giving 
Somers’D, MaxTSS and MaxKappa across the whole study 
area.

3.	 Predictive success binary (PSb) is the ability of the model to predict 
the complete true distribution of the species based on the de-
graded (or not) training data, using only information available to 
the model (no information about the truth available for threshold 
selection). It was calculated by comparing binary predictions of 
the different models (control and various levels of errors) to the 
complete true distribution dataset. To create binary predictions, 
MaxTSS (for the calculation of TSS) and MaxKappa (for the calcu-
lation of Kappa) thresholds were selected based on the predicted 
probabilities and the training data used in each model (calibration 
data with error).

Evaluating model predictions with the control data (no error 
added) allows to measure the effect of sampling and, more par-
ticularly, since the sampling design was random, to assess the ef-
fect of sample size. Also, to assess if evaluation values decrease 
with increasing errors in the training data, we standardized all 
our degraded models with the corresponding control (0% error) 
to eliminate resampling effects (see Results; difference = [evalua-
tion value of degraded model—evaluation value of control model]). 
Therefore, negative values indicate that model performance de-
creased compared to the control (i.e., the higher the decrease, the 
higher the effects of errors added).
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3  | RESULTS

3.1 | Model evaluation using training data without 
errors added: effects of sampling

Evaluation values increased with increasing sample size, regardless 
of the sampling design (“EqualPrev” and “TruePrev”; Figure 2) with 
the exception of model fit probability (MFp) which decreased when 
models were fitted by GLMs/BRTs.

The MFp for the initial models (i.e., 0% with no errors added) 
was always above 0.75 for all modelling techniques and metrics 
(except MaxKappa in “TruePrev”) and mostly close to 1 (which can 
be considered an excellent model) when species were created by 
GLMs or fitted using BRT/RF. In contrast, the predictive success 

probability (PSp) and predictive success binary(PSb) showed much 
higher variation, ranging from 0.75 to 1 for all metrics when spe-
cies were created by GLMs, but from 0.25 to 1 when created by 
BRT/RF (Figure 2).

Somers’D presented always the highest evaluation values, usually 
followed by MaxTSS and MaxKappa (Figure 2; MFp/PSp). MaxKappa 
was the metric that presented the greatest range of variation, while 
models evaluated by Somers’D presented very similar values. When 
PSb was measured, TSS had the highest values and Kappa the low-
est, independently of the modelling technique used (Figure 2).

Models fitted using species created by GLMs showed the high-
est evaluation values (usually above 0.75 for all metrics; Figure 2). 
However, models fitted using virtual species created by BRTs/RFs 

F I G U R E  2   Evaluation values of control model (using training data without errors added; 0%) for “EqualPrev” (left column; a, c and e) 
and “TruePrev” (right column; b, d and f) sampling designs, with measured MFp, PSp and PSb for virtual species (n = 100), created using 
generalized linear models (GLM), boosted regression trees (BRT) or random forests (RF; initial SDMs) and with different sample sizes 
(100–400–1,600). Model fit probability (MFp) and predictive success probability (PSp) were measured using maximized Kappa (MaxKappa; 
yellow), maximized TSS (MaxTSS; green) and Somers'D (blue), while predictive success binary (PSb) was measured using Kappa (gold) and 
true skill statistic (TSS; light green). For each sample size, three sets of three box plots are displayed, corresponding to models fitted (final 
SDMs) using either GLMs (solid plots), BRTs (dashed plots) or RFs (dotted plots) and evaluated with corresponding metrics. The same applies 
to PSb, but only two box plots are displayed in each of the three model sets, corresponding to the two metrics used
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presented a wider range of values, with model performance being 
worse than when species were created by GLMs. Independently of 
the modelling technique used to create the species, we observed 
that models fitted by RFs had higher evaluation values of MFp/PSp 
while models fitted by GLMs presented the highest values of PSb.

3.2 | Effects on model evaluation of adding errors 
to the training data

As the patterns observed across sample sizes were similar, we only 
report results on the intermediate sample size (i.e., 400; but see 

F I G U R E  3   Observed difference of measured model fit probability (MFp), predictive success probability (PSp) and predictive success 
binary (PSb) between control (training data without errors added; 0%—sampled data) and degraded data (training data with errors added) 
models, under the sampling design EqualPrev and sample size 400, for virtual species created using GLM (generalized linear models). 
Errors were added to the occurrence dataset, creating either false positives (errors added only to absences; left column; a, c and e) or false 
negatives (errors added only to presences; right column; b, d and f). MFp and PSp were measured using maximized Kappa (MaxKappa; 
yellow), maximized TSS (MaxTSS; green) and Somers'D (blue), while PSb was measured using Kappa (gold) and true skill statistic (TSS; light 
green). For each level of error, three sets with three plots are observed, corresponding to models fitted using either GLMs (solid plots), BRTs 
(dashed plots) or RFs (dotted plots). For PSb, only two plots are present in each of the three sets
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Supporting Information Appendix S2–S3 for complete results on 
“EqualPrev” and “TruePrev” sampling designs, respectively). The ef-
fect of error added decreased with sample size, with more accurate 
models being observed at higher sample sizes (i.e., difference be-
tween control and degraded models was smaller).

Regardless of the evaluation approach, as errors were increas-
ingly added to training data, evaluation values decreased when 
compared with the control models (Figure 3). This decrease in model 
performance was more pronounced in model fit probability and pre-
dictive success binary (MFp/PSb). Still, models whose performance 

F I G U R E  4   Observed difference of measured model fit probability (MFp), predictive success probability (PSp) and predictive success 
binary (PSb) between control (training data without errors added; 0%—sampled data) and degraded data (training data with errors added) 
models, under the sampling design TruePrev and sample size 400, for virtual species created using GLM (generalized linear models). Errors 
were added to the occurrence dataset, creating either false positives (errors added only to absences; left column; a, c and e) or false 
negatives (errors added only to presences; right column; b, d and f). MFp and PSp were measured using maximized Kappa (MaxKappa; 
yellow), maximized TSS (MaxTSS; green) and Somers'D (blue), while PSb was measured using Kappa (gold) and true skill statistic (TSS; light 
green). For each level of error, three sets with three plots are observed, corresponding to models fitted using either GLMs (solid plots), BRTs 
(dashed plots) or RFs (dotted plots). For PSb, only two plots are present in each of the three sets
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decreased the most in each approach depended on the modelling 
technique used (Figures 3 and 4). As a result, random forests (RF) 
presented higher model performance when MFp/PSp were mea-
sured and generalized linear models (GLM) when PSb was measured.

In general, the creation of false positives (FP; Figure 3, left) had a 
stronger negative effect on model performance than false negatives 
(FN; Figure 3, right), but in some rare cases, the creation of FN could 
have a stronger effect on model performance (e.g., Figures 3e–f, PSb 
evaluated by TSS in models fitted by RFs).

Somers’D displayed the smallest decrease in model perfor-
mance when errors were added to the calibration data (for MFp/
PSp), regardless the technique used to fit the models (Figure 3) or 
to create the virtual species (Supporting Information Appendix S2). 
The strongest decrease in model performance (for MFp/PSp) was 
usually presented by MaxKappa, while MaxTSS presented interme-
diate values (Figure 3). When measuring PSb, true skill statistic (TSS) 
usually showed a smaller decrease in model performance (Figures 
3e–f), except when creating false negatives for species generated 
either by BRTs (e.g., Supporting Information Figure S5: Appendix 
S2) or RFs (e.g., Supporting Information Figure S8: Appendix S2).

The results obtained with sampling design “TruePrev” (Figure 4 
and Supporting Information Appendix S3) did not differ from those 
previously described in “EqualPrev” (Figure 3 and Supporting 
Information Appendix S2), except when models were evaluated 
with MaxKappa (Figure 4a–b; FN have a stronger effect on model 
performance when fitted by GLMs) or Kappa (Figure 4f). However, 
this is most likely an artefact of the difference in the number of 
species with successful models, which was lower when FN were 
created. This difference in number was due to the presence re-
duction in some species when adding FN, making it impossible to 
correctly fit a model.

Additionally, the use of different threshold techniques (to create 
initial models) did not bias the results and their interpretation, with 
the same patterns being observed across techniques (see Supporting 
Information Appendix S4).

After increasingly degrading the data and when MFp/PSp were 
measured, models fitted by GLMs (Figures 3 and 4) presented the 
highest decrease when compared with control models. On the op-
posite side, models fitted by RFs (Figures 3 and 4) were the least af-
fected by the addition of degraded data. Still, when measuring PSb, 
the decrease in model performance was higher for models fitted by 
RFs and more stable for models fitted by GLMs (especially as the 
errors added increased).

We performed an additional evaluation approach, predictive suc-
cess on calibration data (PSc), not providing the results here since it 
is a subset of PSb and accordingly yielded similar patterns (but see 
Supporting Information Appendix S5).

4  | DISCUSSION

We used a virtual ecologist approach with artificial species data to 
evaluate the degree to which errors in presences/absence data (see 

Graham, Ferrier, Huettman, Moritz, & Peterson, 2004; Guillera‐
Arroita et al., 2010; Tyre et al., 2003 for examples of causes like 
false‐negative errors or imperfect detection, taxonomic inaccura-
cies or biases in the spatial coverage of data) can affect SDM predic-
tions and assess the reliability of currently used evaluations metrics. 
By using artificial data, we prevented limitations of real‐world data 
(most previous studies used real species data from surveys, herbaria 
or museums; e.g., Hernandez, Graham, Master, & Albert, 2006; 
Osborne & Leitao, 2009; Mitchell, Monk, & Laurenson, 2017), al-
lowing us to have complete knowledge of the full species distribu-
tion and to simulate errors in presence/absence data with complete 
control of the factors affecting their distribution. The models must 
then find a signal in the degraded (or not) training data and be able 
to predict to the known remaining distribution which is largely un-
affected by errors. Our work revealed four main findings. First, as 
expected, the effect of degraded data decreased as sample size in-
creased. Second, the classification of a model along a range of per-
formance (e.g., poor, fair, good, excellent) strongly depended on the 
metric used to evaluate it. Models evaluated by Somers’D (a rescaled 
measure of the AUC) still corresponded to high values of predictive 
performance (according to the interpretation scales as in Araujo, 
Pearson, Thuiller, & Erhard, 2005; fail: AUC < 0.7, fair: >0.7, good 
>0.8, excellent >0.9; refined from the initial scale by Swets, 1988, 
note nr 11). This suggests that whatever the modelling technique 
used, AUC, Somers D and related metrics produce over‐optimistic 
evaluations, potentially affecting the conclusion of studies that rely 
solely on it (e.g., conservation prioritization studies, assessment of 
future climate change impacts on plants or animals, current and fu-
ture threats and spread of invasive species). However, other metrics, 
such as Kappa (or MaxKappa), can provide more realistic evaluation. 
Third, we confirmed that predictions with too good model fit (MFp) 
usually presented low predictive success (PSb), with data‐driven 
techniques such as RF usually tending towards higher overfitting and 
lower prediction success, while model‐driven technique like GLMs 
showing the opposite (Petitpierre, Broennimann, Kueffer, Daehler, & 
Guisan, 2017; Randin et al., 2006). Fourth, the creation of false posi-
tives had a stronger effect in decreasing model performance than 
the creation of false negatives. We discuss these findings below.

4.1 | Confirming the effect of sample size and 
controlling for it

We found that the effects of degraded data consistently decreased 
with sample size, showing sample size as an important factor affect-
ing model performance. This relationship between model perfor-
mance and sample size is well known (e.g., Stockwell & Peterson, 
2002; Wisz et al., 2008; Thibaud et al., 2014; Mitchell et al., 2017). 
It can be partially explained by the fact that with greater number 
of presence/absence data, a more complete (broader) information 
about the occupied environmental space will likely be available. This 
improves parameter definition, leading to more accurate predic-
tions (Carroll & Pearson, 1998). Our results could be useful since we 
showed that accurate models (i.e., when all the metrics show high 
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evaluation values) could be generated even when substantial levels 
of errors (>30%) are present in the training data (if a large enough 
sample is collected and the adequate modelling techniques are used).

4.2 | Importance of contrasting model fit and 
predictive success

Different conclusions about model performance can be inferred 
depending on how model performance is measured (i.e., our differ-
ent evaluation approaches). To our knowledge, this is the first study 
to formally test and compare the outputs of these evaluation ap-
proaches to assess model predictions. This was possible through 
the use of virtual species allowing us to simultaneously assess how 
well models reproduced the partially degraded training data (MFp), 
how well they predicted the true distribution of species despite the 
added errors, taking into account restrictions of real‐world data 
(PSb) and without those restrictions when the evaluation with the 
complete distribution knowledge was available (PSp). Studies with 
real data have contrasted model fit, internal validation and external 
validations (e.g., Petitpierre et al., 2017; Randin et al., 2006; Wenger 
& Olden, 2012), which is distinct from what was done here using and 
only possible with artificial data.

As expected, all evaluation approaches showed a decrease in 
model performance with increasing degraded data (and in both sam-
pling designs, EqualPrev and TruePrev). However, we showed that 
the different evaluation approaches are complementary, since pre-
dictions with good (i.e., high values) model fit (MFp) usually presented 
a bad (i.e., or low values) predictive success (PSb). Additionally, the 
same pattern is reflected in the different modelling techniques (i.e., 
techniques with good MFp had poor PSb and vice versa). This re-
flects the classical trade‐off between model (over‐) fitting and model 
predictive performance, and is supported by previous works show-
ing a decrease in evaluation values between model fit and indepen-
dent evaluation (e.g., Randin et al., 2006; transferability test, where 
General Additive Models (GAMs) fit better than GLMs but predict 
worse to independent data).

4.3 | How do evaluation metrics reflect model 
performance?

A consistent pattern was identified, with models evaluated by 
Somers’D (rescaled AUC) always yielding the highest evaluation val-
ues, usually followed by MaxTSS and MaxKappa, or TSS and Kappa 
(for probabilistic and binary predictions, respectively). Within the 
same model, Somers’D values had very small differences when com-
pared with the control model (even with errors >30%). Somers’D 
(rescaled AUC; from −1 to 1) was used instead of the widely used 
AUC to allow direct comparisons to the other evaluation metrics, 
as they all range between −1 and +1, being interpreted roughly in a 
same way as correlation coefficients. This means that when consid-
ering Somers’D (or AUC, with even higher evaluation values, concen-
trated between 0.5 and 1), all models evaluated in this study would 
be considered at least fair (based on thresholds proposed by Swets 

(1988, note nr 11); i.e., models with AUC values above 0.7 are con-
sidered “useful for some purpose,” while models with AUC > 0.9 are 
considered as being “of rather high accuracy”). However, when eval-
uated by the other metrics, a large amount of these models would be 
considered poor or not different than random. Therefore, conclud-
ing whether a model is good, fair or poor partly depends on the eval-
uation metric used and not only on model performance. In particular, 
our results suggest a strong tendency of Somers’D (i.e., AUC) to yield 
over‐optimistic evaluations. We also observed, although in a lesser 
measure, a tendency of TSS (resp. MaxTSS) to yield over‐optimistic 
values, whereas Kappa (resp. MaxKappa) proved to better reflect 
the level of errors added to the training data. These results are sup-
ported by recent findings showing that AUC/TSS are not the most 
efficient metrics to assess model performance (being over‐optimistic 
or unrealistic) and that these could be classified as having good per-
formance even when “dummy” data (e.g., pseudopredictors derived 
from paintings; Fourcade et al., 2018) or wrong information (e.g., 
locational uncertainty; Graham et al., 2008; Mitchell et al., 2017) 
was used. As a result, many models could be considered as satis-
factory despite generating partially wrong spatial predictions. Our 
results confirm these previous criticisms and show how important 
it is to take into account these drawbacks in future uses of AUC (or 
Somers’D)—and to a lesser extent of TSS—to assess model perfor-
mance. Some suggested approaches might be to assess the spatial 
predictions when comparing models (Mitchell et al., 2017; Randin 
et al., 2006) or accounting for the most relevant section of the ROC 
curve (Peterson et al., 2008; assuming that true absences and inde-
pendent data exist). However, as noted by Fourcade et al. (2018), this 
“perfect” data are usually unavailable and detailed screening of ROC 
plots can be difficult when modelling multiple species. Therefore, 
the use of AUC needs to be considered with great care in future 
studies and the interpretation scales (Araujo et al., 2005; Swets, 
1988) used to assign a level of model performance to its values need 
to be revisited. We believe it is probably more effective and produc-
tive to investigate new ways/methods to correctly evaluate model 
performance and predictions, with the use of artificial data being 
a useful tool to completely assess the value of these new methods.

4.4 | How do different modelling techniques deal 
with the degraded training data?

The contrasted results of predictions with high model fit (random 
forests) presenting low values of predictive success (i.e., higher 
with generalized linear models) and vice versa clearly show that 
some techniques (like RF/BRT) are good at finding a signal in the 
degraded training data (i.e., can fit complex responses; Merow et 
al., 2014) and still deliver a good MFp (as seen in Figures 3 and 4). 
However, these techniques are not as good at predicting to inde-
pendent data (in our case to the rest of the distribution, largely un-
affected by errors). On the other hand, techniques like GLMs reflect 
better the errors in training data (though showing a drop in MFp), 
but are still fairly good (within a reasonable range of error added) 
at predicting the true distribution of the species across the whole 
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study area (PSb). Considering predictive success binary (PSb) as the 
expected aim for any predictive model, it turns out that some mod-
elling techniques (here GLM) are able to “compensate” for errors 
added to the training data (i.e., still fit a similar response curve, e.g., 
unimodal, with increase error bonds) while others are not (random 
forests; i.e., might fit totally different response curves, adapted 
to the modified training data). So, models with simpler response 
curves (like GLM) tend to better manage errors when present in the 
species data, resulting in better predictions to independent data 
(see e.g., Randin et al., 2006 when compared to GAMs), and better 
fit to ecological theory (Austin, 2002, 2007 ). More complex meth-
ods (here RF/BRT) seem to overfit the degraded data, maintaining 
a good/high model fit (MFp) but at the cost of a poorer/low predic-
tive success (PSb; see also Merow et al., 2014).

4.5 | How do different types of errors affect 
models and metrics?

The creation of false positives (FP) had a stronger negative effect on 
model performance than when false negatives (FN) were created. 
This is especially true when species had the same number of pres-
ences–absences (“EqualPrev”), not being obvious when sampling 
true prevalence (“TruePrev”), possibly due to the characteristic low 
prevalence of some species. False positives had a stronger negative 
effect because presences are expected to be on average more in-
formative. They generally occur in a unimodal and limited way along 
environmental gradients, contributing to a fairly clear signal that can 
be captured in a model. On the other hand, absences are usually less 
informative since they can span entire environmental gradients and 
thus be found for example, on both sides of the mode of a species’ 
occurrences (i.e., would need a bimodal response to be captured). 
Depending on the species, absences can still hold a signal in some 
cases (e.g., low elevations for alpine plants), but it is likely to be on 
average much weaker than that of presences. We can think of the 
creation of false negatives (in “EqualPrev”) the same way as one uses 
pseudo‐absences (i.e., when real absences are not available), setting 
the weights of those pseudo‐absences to 0.5 (therefore ensuring 
equal prevalence). As the addition of errors to presences/absences 
decreased model performance in both cases, it is important to ac-
count for imperfect detection in models (see Guélat & Kéry, 2018; 
Lahoz‐Monfort et al., 2014 for recommendations).

4.6 | Conclusions, recommendations and 
perspectives

Our study showed that much can be learned by using artificial data 
where truth is known, especially by contrasting model fit and predic-
tive success, and modellers would gain much by using these virtual 
approaches more systematically in the future in complement to real 
data. Several important findings emerged specifically from this study:

1.	 The effect of errors added to species data decreased with 
increasing sample size.

2.	 Different conclusions about model performance can be inferred 
depending on how it is measured (i.e., which metrics and which 
data):

3.	 Models with high evaluation values can be obtained even with 
high levels of error artificially added to the training data;

4.	 The classical classification or interpretation of a model as excel-
lent, good, fair or poor strongly depends on the metric used to 
evaluate it and thus can be misleading;

5.	 Evaluation metrics matter: We identified AUC as a particularly 
over‐optimistic metric and in a lesser measure MaxTSS (TSS for 
binary predictions), with often high evaluation values produced 
even with high levels of errors in the training data, thus not neces-
sarily translating a good predictive success; therefore, we recom-
mend the use of MaxKappa.

6.	 Modelling techniques were differently affected by added error, 
with some delivering better measures of predictive success (GLMs 
here) and others delivering better model fit (RFs).

7.	 The creation of false positives had a stronger effect on the meas-
ured evaluation approaches than the creation of false negatives.

A particularly important finding in our study is thus the need to 
seriously reconsider the current use of AUC (here rescaled, Somers’D) 
and its scale of interpretation. We advise caution when models are 
solely evaluated with this metric (and to a lesser extent by TSS and 
MaxTSS) as the interpretation of their quality, reliability and trans-
ferability might be too optimistic and lead to biased conclusions. The 
incorrect interpretation of how good/accurate a model is might have 
serious consequences if not considered. For example, the prioritiza-
tion of specific areas for conservation can be wrong if the models used 
for that prioritization are over‐optimistic or biased. The same can be 
said if invasive species prevention/eradication efforts are occurring, 
with an over‐optimistic prediction possibly leading to management 
being directed to areas where those efforts are unnecessary. Taking 
into account previous and current studies, the most appropriate mea-
sure might be to completely cease to use AUC and instead focus on 
more effective evaluation metrics. Based on our results, we recom-
mend using MaxKappa (resp. Kappa) if one wants a metric that better 
reflects the actual level of errors in the predictions. As it is usually 
preferable to evaluate models using spatially independent data 
(Guisan et al., 2017; James, Witten, Hastie, & Tibshirani, 2013), our 
results suggest that techniques that are better at reproducing ecolog-
ical theory (Austin et al., 2006), like GLMs here, tend to show a better 
overall behaviour for modelling species distributions. However, addi-
tional modelling techniques (e.g., as found in Elith et al., 2006) should 
also be tested to determine the most suitable ones. Additionally, ef-
fort should be put in minimizing false‐positive rates when collecting 
training data (e.g., improving species identification or detectability). 
Finally, research using a virtual ecologist approach could also be em-
ployed to further develop more reliable evaluation metrics that could 
be properly tested in a “controlled environment.” In a general manner, 
a more systematic use of artificial data bears the potential to improve 
methodological developments considerably in future ecological and 
evolutionary research.
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