
Comparative Genomics Suggests that the Fungal
Pathogen Pneumocystis Is an Obligate Parasite
Scavenging Amino Acids from Its Host’s Lungs
Philippe M. Hauser1*, Frédéric X. Burdet1,2¤, Ousmane H. Cissé1, Laurent Keller3, Patrick Taffé4,
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Lausanne, Switzerland, 3 Département d’Écologie et Évolution, University of Lausanne, Lausanne, Switzerland, 4 Data Center, Swiss HIV Cohort Study, Centre Hospitalier

Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

Abstract

Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding
its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate
parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the
7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established
experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the
KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control
for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism
(65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes.
However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the ‘‘amino acid
metabolism’’ category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427,
P,0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard
amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were
detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P,0.0001). This finding strongly
suggests that species of the genus Pneumocystis are scavenging amino acids from their host’s lung environment.
Consequently, they would have no form able to live independently from another organism, and these parasites would be
obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to
P. jirovecii infection given that the only source of infection would be other humans.
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Introduction

Fungi of the genus Pneumocystis each infect a unique mammalian

species [1,2]. Although P. jirovecii infecting humans is the most

frequent AIDS-defining pneumonia and a major cause of

mortality in immuno-compromised patients [3], progress in

understanding its pathogenicity and epidemiology has been

hampered by the lack of a long-term in vitro culture method. In

that respect, it is crucial to know whether species of the genus

Pneumocystis are obligate parasites depending strictly on their host,

or if they have a form capable of replicating in nature

independently of other organisms [4]. Obligate parasitism has

been suggested on the basis of their strict host specificity [5–7],

patterns of co-evolution with hosts [5,8], genetic flexibility of

chromosome ends responsible for expression of a single antigen

encoding gene [9,10], and the fact that they scavenge cholesterol

from their host to build their own membranes [11]. Scavenged

cholesterol is found in the membrane together with specific sterols

that Pneumocystis synthesizes de novo [12]. However, the issue of

whether Pneumocystis species also have a free-living form in nature

remains controversial. Indeed, closely related plant pathogens of

the genus Taphrina also show strict host specificity and co-evolution

with hosts [13], yet they have free-living forms.

The loss of biosynthetic pathways of essential molecules such as

amino acids, co-factors, nucleotides, and/or vitamins is a hallmark

of obligate humans’ parasites, such as Encephalitozoon cuniculi [14],

Plasmodium falciparum [15,16], Cryptosporidium hominis [15], Leishmania

major [15], Coxiella burnetti [17], and Legionella pneumophila [18].

Unambiguous proof that a parasite does not have a free-living

form can thus be obtained from the demonstration that it has lost

such vital functions. The almost completed Pneumocystis carinii

genome (http://pgp.cchmc.org), which is a very close relative of P.

jirovecii infecting rats, provides an opportunity to investigate

whether species of this genus have lost essential cellular functions
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Table 1. Number of KEGG orthologs (KO) predicted for P. carinii and S. pombe in 56 pathways that correspond to basal
metabolism and cellular processesa.

Number of KOs

Map no.
S. pombe
(reference) S. pombe P. carinii

P. carinii/
S. pombe

Carbohydrate Metabolism

Glycolysis/Gluconeogenesis 10 23 22 14 0.64

Citrate cycle (TCA cycle) 20 21 20 19 0.95

Pentose phosphate pathway 30 15 15 8 0.53

Fructose and mannose metabolism 51 11 10 8 0.80

Galactose metabolism 52 10 7 4 0.57

Starch and sucrose metabolism 500 15 11 12 1.09

Amino sugar and nucleotide sugar metabolism 520 15 14 10 0.71

Inositol phosphate metabolism 562 7 6 6 1.00

Pyruvate metabolism 620 19 16 12 0.75

Glyoxylate and dicarboxylate metabolism 630 7 4 3 0.75

Propanoate metabolism 640 9 8 4 0.50

Butanoate metabolism 650 9 8 4 0.50

OVERALL KOs 101 86 62 0.72

Energy Metabolism

Oxidative phosphorylation 190 47 41 46 1.12

Carbon fixation in photosynthetic organisms 710 11 11 9 0.82

Reductive carboxylate cycle (CO2 fixation) 720 6 6 4 0.67

Nitrogen metabolism 910 9 9 3 0.33

Sulfur metabolism 920 11 8 2 0.25

OVERALL KOs 82 73 63 0.86

Lipid Metabolism

Fatty acid biosynthesis 61 6 5 4 0.80

Steroid biosynthesis 100 13 12 9 0.75

Glycerolipid metabolism 561 6 3 3 1.00

Glycerophospholipid metabolism 564 16 13 7 0.54

Ether lipid metabolism 565 5 2 1 0.50

Sphingolipid metabolism 600 7 5 2 0.40

Biosynthesis of unsaturated fatty acids 1040 5 4 4 1.00

OVERALL KOs 52 41 28 0.68

Nucleotide Metabolism

Purine metabolism 230 59 55 37 0.67

Pyrimidine metabolism 240 47 44 32 0.73

OVERALL KOs 77 72 48 0.67

Amino Acid Metabolism

Alanine, aspartate and glutamate metabolism 250 20 19 8 0.42

Glycine, serine and threonine metabolism 260 21 20 7 0.35

Cysteine and methionine metabolism 270 22 18 4 0.22

Valine, leucine and isoleucine degradation 280 5 5 3 0.60

Valine, leucine and isoleucine biosynthesis 290 13 14 5 0.36

Lysine biosynthesis 300 10 7 0 -

Lysine degradation 310 11 10 7 0.70

Arginine and proline metabolism 330 26 24 3 0.13

Histidine metabolism 340 8 9 0 -

Tyrosine metabolism 350 8 7 2 0.29

Phenylalanine metabolism 360 6 6 1 0.17

Tryptophan metabolism 380 6 6 4 0.67

Pneumocystis May Scavenge Amino Acids from Host
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making them obligate parasites. In the present study, we analysed

the P. carinii draft genome using that of the closely related yeast

Schizosaccharomyces pombe as a control for the annotation procedure.

Results and Discussion

The draft genome of P. carinii totalizes ca. 7.0 Mb. It is made of

numerous unassembled contigs and covers 70 to 100% of the

whole genome on the basis of karyotype analyses. We predicted

8’085 (redundant) peptides corresponding to approximately 4’000

complete or partial protein-coding genes using a gene model

designed for Augustus software [19]. The predicted protein

sequences were mapped onto the KEGG biochemical pathways

using blast best hits against Yarrowia lipolytica and Neosartorya fischeri

NRRL 181. The selection of this pair of reference proteomes was

critical to ensure the best annotation results (see Methods). The

proteome of the yeast S. pombe was used as a control in the

mapping procedure. This species is the closest relative of

Pneumocystis species with a sequenced genome, as it is also a

member of the lineage Archiascomycetes. The latter is one of the

three major lineages of the Ascomycetes (archi-, hemi- and

euascomycetes), and includes also free-living and plant parasitic

yeasts [20].

Among the peptides we predicted, 1205 for P. carinii (14.9% of

8’085 peptides) and 701 for S. pombe (14.1% of 4’974 genes) were

annotated and mapped into the KEGG atlas of biochemical

pathways. About two thirds of the peptides of each organism

(65.7% [792] and 73.2% [513], respectively) were mapped into 56

pathways corresponding to the basal metabolism and standard

cellular processes (Table 1). In agreement with transcriptome data

[21], numerous and crucial P. carinii enzymes were identified for

the metabolism of carbohydrate, energy, lipid, nucleotide, amino

acids, glycans, cofactors, and vitamins, as well as for transcription,

translation, cell cycle, DNA metabolism, and various important

Number of KOs

Map no.
S. pombe
(reference) S. pombe P. carinii

P. carinii/
S. pombe

Phenylalanine, tyrosine and tryptophan biosynthesis 400 20 15 8 0.53

OVERALL KOs 128 114 40 0.35

Metabolism of Other Amino Acids

beta-Alanine metabolism 410 5 5 0 -

Selenoamino acid metabolism 450 10 8 4 0.50

Cyanoamino acid metabolism 460 6 5 0 -

Glutathione metabolism 480 13 13 7 0.54

OVERALL KOs 31 28 11 0.39

Glycan Biosynthesis and
Metabolism

N-Glycan biosynthesis 510 18 16 11 0.69

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 563 8 8 5 0.63

OVERALL KOs 26 24 16 0.67

Metabolism of Cofactors
and Vitamins

Ubiquinone and other terpenoid-quinone biosynthesis 130 5 3 3 1.00

One carbon pool by folate 670 12 9 5 0.56

Riboflavin metabolism 740 8 6 4 0.67

Vitamin B6 metabolism 750 7 7 4 0.57

Nicotinate and nicotinamide metabolism 760 6 5 3 0.60

Pantothenate and CoA biosynthesis 770 9 9 1 0.11

Folate biosynthesis 790 7 3 2 0.67

Porphyrin and chlorophyll metabolism 860 14 13 11 0.85

OVERALL KOs 67 54 32 0.59

Transcription

RNA polymerase 3020 17 17 12 0.71

Spliceosome 3040 12 12 11 0.92

OVERALL KOs 29 29 23 0.79

Translation

Aminoacyl-tRNA biosynthesis 970 24 24 21 0.88

GENERAL OVERALL KOs 485 427 278 0.65

aThe reference gene numbers of S. pombe are those obtained from KEGG. Maps with less than five reference genes of S. pombe are not shown. KOs which are redundant
in the pathways are counted only once in ‘‘OVERALL KOs’’.

doi:10.1371/journal.pone.0015152.t001

Table 1. Cont.
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cellular processes. However, genes identified in ‘‘amino acid

metabolism’’ pathways were underrepresented. This category

comprised 114 genes for S. pombe but only 40 for P. carinii.

Accordingly, the proportion of P. carinii genes relatively to those of

S. pombe was significantly smaller for this category of genes (40

versus 114 [35.1%]) than for all other categories taken together

(278 versus 427 [65.1%], P,0.002, test for two binomial

proportions).

Importantly, a further analysis revealed that many genes

responsible for the metabolism of the 20 standard amino acids

were present, but all except two of those involved in their

biosynthesis were lacking in P. carinii. Overall, we identified only

two orthologues (EC 2.6.1.1, Aspartate transaminase; EC 1.4.1.2,

Glutamate dehydrogenase) of the 54 genes specifically dedicated to

the amino acids biosyntheses reported in KEGG for S. pombe. By

contrast, all these 54 genes were identified upon reannotation of

the S. pombe proteome (Table 2). The genes dedicated to these

biosyntheses identified in P. carinii were greatly underrepresented

relatively to those of S. pombe (2 versus 54 [3.7%] against 278

versus 427 [65.1%], P,0.0001, test for two binomial proportions).

The non-detection of these genes could also not be accounted for

by the clustering of their loci, as genomic data show that they are

not clustered but dispersed all over the genome in the close fungi S.

pombe (http://old.genedb.org/genedb/pombe/), Saccharomyces cere-

visiae (http://www.yeastgenome.org/), Aspergillus (http://www.

aspgd.org/), and Neurospora crassa (http://www.broadinstitute.

org/annotation/genome/neurospora/MultiHome.html).

Obligate parasitism of P. carinii would be consistent with its

small genome size and low gene content relative to those of the

closely related free-living fungi S. pombe and S. cerevisiae (Table 3).

The evolution of obligate parasitism and loss of biosynthetic

pathways has been shown to result in genome size reduction in

both eukaryotic and prokaryotic obligate parasites [22,23].

Compaction by reduction of intergenic space and number of

introns has also been documented in P. carinii and E. cuniculi,

respectively [24]. The microsporidian fungi are extreme cases of

eukaryotic obligate parasitism scavenging several essential com-

pounds from humans, i.e. amino acids, nucleotides, lipids, and

vitamins [13], and yet they harbour the smallest known eukaryotic

genomes, 2.3 Mb and ca. 2’000 genes for E. intestinalis [25]. Other

eukaryotic obligates parasites depend on their host for fewer

molecules and have larger genomes (Table 3). P. falciparum, L.

major, and C. hominis scavenge amino acids [15,16], whereas

Pneumocystis species would scavenge at least amino acids and

cholesterol [11]. The composition of the extracellular host

environment, or of several hosts’ environments for some parasites,

probably determines the extent of gene loss. C. hominis and

Pneumocystis species may have lost more genes than P. falciparum and

L. major, possibly 20 to 30% of the genome of their free-living

ancestor, because they have a single host rather than two. The

presence of a single rRNA operon in P. carinii genome [26], the

unique example among fungi, may constitute a specific adaptation

to the lung environment.

Table 2. Number of enzymes dedicated to the biosyntheses
of amino acids identified in P. carinii and S. pombea.

No of dedicated enzymes

Amino acid
in S. pombe
(reference)

in
S. pombe

in
P. carinii

Ala 1 1 0

Asp 1 1 1

Asn 1 1 0

Arg 3 3 0

Cys 2 2 0

Glu 1 1 1

Gln 1 1 0

Gly 1 1 0

His 6 6 0

Ileb 4 4 0

Leuc 3 3 0

Lys from aspartate 0 0 0

Lys from pyruvate 7 7 0

Met 3 3 0

Phe 2 2 0

Pro 1 1 0

Ser 3 3 0

Thr from glycine 1 1 0

Thr from homoserine 2 2 0

Trp 5 5 0

Tyr 2 2 0

Valb 4 4 0

TOTAL 54 54 2

aThe reference gene numbers of S. pombe are those obtained from KEGG.
bThe four enzymes are the same for Ile and Val syntheses.
cOne of the enzymes is also involved in Ile and Val syntheses.
doi:10.1371/journal.pone.0015152.t002

Table 3. Some features of free-living microorganisms and obligate parasites.

Genome size
(approx. Mb)

Gene content
(approx. no.)

Number of rDNA
loci (approx. no.)

Minimum metabolic
requirements

Number
of hosts

S. cerevisiae 13 6300 150 none 0

S. pombe 14 5000 120 none 0

P. falciparum 23 5300 4–8 amino acids 2

L. major 33 6200 20–60 amino acids 2

C. hominis 10 4000 4–5 amino acids 1

P. carinii 8 4000 1 amino acids cholesterol 1

E. cuniculi 3 2000 20 amino acids nucleotides
lipids vitamins

1

doi:10.1371/journal.pone.0015152.t003
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The multiple amino acid requirements of P. carinii suggested

here implies that Pneumocystis species may have no form able to live

independently from another organism, and thus that these

parasites are obligate in addition to being opportunistic. P. jirovecii

would be together with Candida species and the dermatophytes

among the few Ascomycetes that can be described, in the present

state of the knowledge, as obligate parasites. Obligate parasitism

would have important implications for the management of patients

susceptible to P. jirovecii infection because the only source of

infection of this pathogen to be protected from would be humans.

The proteolytic activity of Pneumocystis species [27], their surface

proteases [28], their amino acid [29] and oligopeptide (our

unpublished observation) permeases, may be involved in scaveng-

ing amino acids, as described in other Ascomycetes [30]. These

processes would constitute new virulence factors contributing to

pathogenicity and which may be used as targets for pharmaceu-

tical intervention. The effect of HIV protease inhibitors on P.

carinii [31] may reflect inhibition of these processes. Finally,

understanding Pneumocystis’ metabolic requirements may help to

develop a method of in vitro growth of these fungi. Nevertheless,

many unsuccessful attempts of growth in presence of amino acids

have been reported [2], suggesting that other factors are required

to promote their growth.

Methods

P. carinii gene prediction
The sequences of the draft genome of P. carinii were retrieved

from the Pneumocystis genome project website (http://pgp.cchmc.

org/). They consisted of 4’278 contigs totaling 6’345’403 bps and

were accompanied with 1043 ESTs totaling 1’416’543 bps. These

sequences are considered by M.T. Cushion (personal communi-

cation) to cover approximately 90% of the P. carinii genome which

consists of ca. 8 Mb on the basis of karyotype analyses [32].

Complementary Illumina sequences consisting of 4’426 contigs

totalling 4’408’129 bps and presenting 86% of overlap with those

of the genome project were also obtained from M.T. Cushion.

Altogether, the sequences analyzed here are estimated to include

at least 7.0 Mb of unique sequences covering 70 to 100% of the

whole P. carinii genome. Repetitive sequences may have been

missed in these sets of sequences but they are thought to be scarce

in fungi [33,34].

Initially, 70 annotated genes of P. carinii were retrieved from

Genbank. They have been used to train a gene model for SNAP

[35], a gene-prediction program suitable for small training set.

Preliminary investigations of the predicted pathways revealed that

some proteins of the ‘‘standard’’ pathways (e.g., the TCA cycle)

were actually missed by SNAP. A few of these missed genes were

manually annotated on the contigs based on the alignment of the

closest fungal homologs using GeneWise [36]. The training set was

completed and a better gene model was then built for SNAP. In

parallel, an ab initio gene model was produced using GeneMark-ES

Ver. 2.3 [37]. We then supplied both the SNAP and the

GeneMark gene models, together with the P. carinii contigs and

ESTs, to the MAKER pipeline for genome annotation [38]. In

addition to attempting to reconcile the gene predictions from the

different models, MAKER also considers the exon evidences

obtained from the mapping of the ESTs, and from the UniProt

protein homologies. MAKER returned the predictions of 2’566

genes on the P. carinii contigs. These genes were most often

consistent with the predictions by SNAP. However, SNAP and

MAKER can only produce prediction of complete gene (i.e. genes

that are incomplete because they are located at an extremity of a

contig cannot be detected, or portions of them are wrongly

reported as complete). Based on the MAKER gene annotations,

i.e. a much larger set of genes that was initially available, we built a

gene model for Augustus [19], which is a gene-prediction program

capable to annotate properly an incomplete gene located at the

extremity of a contig. It should be noted that Augustus is

distributed with a gene model for S. pombe, that we did not find

working well on Pneumocystis contigs. This overall gene prediction

strategy eventually yielded a total of 3’977 complete or partial

genes from the contigs of P. carinii. Augustus was also used to

detect the correct reading frame in the ESTs and yield an

additional 1’211 coding sequences, mostly incomplete and also

mostly redundant with those already predicted from the contigs.

The illumina sequences yielded 2’897 peptides. The whole

procedure eventually yielded 8’085 predicted peptides with an

average length of 287 amino acids. We estimate that they account

roughly for about four thousands distinct protein-coding genes.

Mapping into KEGG
The P. carinii predicted proteome was compared to 18 complete

fungal proteomes listed in Table 4 and to Dictyostelium discoideum

proteome, using the blastp program [39] with default parameter

values and a Bit-score threshold of 45. This yielded 638’304

pairwise alignments that were stored in HitKeeper [40], our

relational database management system dedicated to sequence

analysis. For every fungal proteome, the collection of the ‘‘KEGG

Orthologs’’ [41] (KO) were also stored in HitKeeper, and

provided the mappings between the proteins and the KEGG

biochemical pathways. Given one or several ‘‘reference’’ pro-

teomes as intermediary data set, the highest scoring blastp matches

was retained for every P. carinii peptide. Reciprocal best hits were

not considered because of the fragmented and partially redundant

nature of the predicted P. carinii proteins.

Table 4. Proteomes investigated for transfer the KEGG
annotations of the P. carinii predicted proteome.

Dictyostelium discoideum

Schizosaccharomyces pombe

Encephalitozoon cuniculi

Ustilago maydis

Filobasidiella neoformans

Yarrowia lipolytica

Candida glabrata

Candida albicans

Kluyveromyces lactis

Pichia stipitis

Saccharomyces cerevisiae

Debaryomyces hansenii

Vanderwaltozyma polyspora DSM 70294

Eremothecium gossypii

Neurospora crassa

Magnaporthe grisea

Botryotinia fuckeliana B05.10

Aspergillus niger CBS 513.88

Aspergillus oryzae

Neosartorya fischeri NRRL 181

doi:10.1371/journal.pone.0015152.t004
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Preliminary investigations showed that the most critical

parameter in this annotation procedure was the choice of the

intermediary organism(s), and not the blast parameters or the

score threshold, for example. Indeed, a non-negligible amount of

internal inconsistencies and mapping errors are known to be

present in KEGG, as well as in many other databases with the

same scope [42]. One could have conjectured that an organism

that is taxonomically close to Pneumocystis should have been chosen.

However, the exhaustiveness and internal consistency of the

KEGG annotations proved highly variable among the different

organisms. Utilizing more than one proteome as intermediary data

set is easy to implement with HitKeeper, but its benefits in term of

annotation transfer cannot be easily predicted. To determine the

best intermediary set to use, we attempted to re-predict the

annotation of the S. pombe proteome, through one, two, three or all

the 18 proteomes. The principle of this numerical experience is

presented in Figure 1. The results of these simulations are

presented in Figure 2 and reveal that the choice of the

intermediary data set has a profound influence on mapping

precision and recall. With a single species, the best results were

obtained with Neosartorya fischeri NRRL 181. When two organisms

were considered as forming the intermediary data sets, the best

Figure 1. Principle of the numerical experience used to optimize the precision and recall of the annotation predictions. The S. pombe
proteome (right box) was blasted against an intermediary set of fungal proteins, i.e. the proteome of S. cerevisiae in this example (middle box), and
only the highest scoring blast matches were retained. By utilizing the S. cerevisiae mapping to the KEGG Orthologs (between the middle and left
boxes), one can produce a mapping through S. cerevisiae of the S. pombe proteins to the KEGG Orthologs. The latter mapping can then be compared
with the one that is actually provided by KEGG to compute precision and recall values. The experience was systematically repeated using different
proteomes as intermediary data sets (or several proteomes at once), to eventually determine the optimal one.
doi:10.1371/journal.pone.0015152.g001

Figure 2. Estimation of the quality of the mapping onto KEGG maps by performing a re-prediction of the annotation of S. pombe
proteome through intermediary data set consisting of one, two, three, or 18 fungal proteomes. The KO - S. pombe association pairs
obtained by ‘‘blasting’’ an intermediary data set were evaluated a posteriori as true positive (TP) or false positive (FP) according to the KO - S. pombe
mapping which is provided by KEGG. Those missed KO - S. pombe pairs existing in KEGG were taken as false negatives (FN). The overall quality of the
obtained mapping can be expressed in terms of precision TP/(TP+FP) and recall TP/(TP+FN).
doi:10.1371/journal.pone.0015152.g002

Pneumocystis May Scavenge Amino Acids from Host
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pairs turned out to be Yarrowia lipolytica + N. fischeri NRRL 181 on

the one hand, and Y. lipolytica + Aspergillus oryzae on the other hand.

No further improvement was observed for any possible trios of

organisms. When all species were used as the intermediary data

sets, a serious decrease in the precision was observed, while the

coverage remained acceptable. These simulation results were

obtained with data downloaded from KEGG on the 15th January

2010. The strategy for selecting the optimal intermediary data set

was repeated with a different release of KEGG, and yielded a

distinct ‘‘optimal data reference set’’. However, it led exactly the

same conclusions regarding Pneumocystis biochemistry.

Our Pneumocytis prediction parameters are included in the

release of Augustus software as well as on the Augustus website

(http://augustus.gobics.de/). The peptides we predicted as well as

their annotations are posted on P. Hauser’s web page (http://

www.chuv.ch/imul/imu_home/imu_recherche/imu_recherche_

hauser.htm), as well as on the Pneumocystis genome project website

(http://pgp.cchmc.org/).
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