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Abstract 

4 

The purpose of this chapter is to give insights into metacaspase of Leishmania protozoan parasites as 5
arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of 6 
debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible 7
expression systems, metacaspase-deficient yeast cells (Δyca1) have been instrumental in studying the activ-   8
ity  of  Leishmania major  metacaspase  (LmjMCA).  Here,  we  describe  techniques  for  purification  of 9
LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA 10 
substrates. 11 

Key words Leishmania, Cysteine peptidase, Arginine-specific peptidase, Metacaspase, Enzymatic 12
assay, Protease inhibitors 13 

1 Introduction 14 

In  2000,  Uren  et  al.  described  a  group  of  cysteine  proteases 15

orthologous to caspases but absent in mammals, which was named 16

metacaspases [1]. Metacaspases belong to the C14 family of CD 17

clan of cysteine proteases [2] and possess caspase-like domain with 18

a highly conserved catalytic dyad of histidine and cysteine. They 19

are divided into two structurally different types: type I metacas- 20

pases with an additional N-terminal extension that is similar to ini- 21

tiator/inflammatory caspases and type-II metacaspases with an 22

insertion of around 200 amino acids between two caspase-like sub- 23

units. Interestingly, genomic analysis reveals the presence of a large 24

pool of metacaspases in unicellular and filamentous cyanobacteria 25

that are still poorly studied [3], whereas metacaspases from plants, 26

Saccharomyces cerevisiae, and protozoan parasites have rather been 27

extensively investigated. 28 

Depending  on  the  species,  Leishmania  protozoan  parasites 29

induce different forms of diseases ranging from cutaneous, muco- 30

cutaneous or visceral leishmaniasis. All the Leishmania species 31

express a unique type of metacaspase harboring a central catalytic    32

Peter V. Bozhkov and Guy Salvesen (eds.), Caspases, Paracaspases, and Metacaspases: Methods and Protocols, 
Methods in Molecular Biology, vol. 1133, DOI 10.1007/978-1-4939-0357-3_12, © Springer Science+Business Media New York 2014 
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33 domain (containing the conserved catalytic dyad histidine and 
34 cysteine) flanked by an N-terminal domain containing a mitochon- 
35 drial localization signal and a less conserved proline-rich C-terminal 
36 domain (61.4–100 % homology), which probably plays a role in 
37 protein–protein interactions. Interestingly, although the N-terminal 
38 mitochondrial localization signal is functional, most of Leishmania 
39 major metacaspase (LmjMCA) is detected in the cytoplasm either 
40 in a full length or in a processed form corresponding to the central 
41 catalytic domain lacking the N- and the C-terminal domains [4]. 
42 Due to the mitochondrial localization signal and the proline- 
43 rich  sequences,  LmjMCA  N-  and  C-terminal  domains  could 
44 preclude expression and activity measurement of metacaspase. 
45 Therefore, it is necessary to limit expression and activity measure- 
46 ment of LmjMCA to the 251 amino acids (amino-acid residues 
47 63–314 of LmjF35.1580) predictive of the catalytic domain (cd- 
48 LmjMCA). To do so, the DNA sequence encoding the catalytic 
49 domain was amplified and the PCR product was inserted into the 
50 pESC-His vector (Stratagene) using appropriate cloning sites [5]. 
51 This   vector   contains   a   galactose   inducible   promoter   and 
52 N-terminally  6×  His  and  C-terminal  FLAG  epitope  encoding 
53 sequences respectively allowing purification with Ni-NTA resin or 
54 with murine monoclonal antibodies against the Penta-His-epitope 
55 (α-His5; Qiagen) or the FLAG epitope (α-FLAG; Stratagene). 
56 A single step was sufficient to enrich for enough material for spe- 
57 cific enzymatic activity tests (Subheading 3.6; Fig. 1). 
58 In contrast to caspases that have strict substrate specificity 
59 towards  aspartic  acid,  metacaspases  rather  cleave  arginines  or 
60 lysines at the substrate P1 position [5–8]. 

Fig. 1 cd-LmjMCA was purified from yeast expressing cells on an Ni-NTA resin and 
analyzed by 12 % SDS-PAGE and staining with Coomassie or by immunoblotting 
using the α-5His antibody. Lanes 1–3, Coomassie staining. Lane 1, molecular mass 
markers; Lane 2, whole cell lysate; Lane 3, cd-LmjMCA purified on Ni-NTA column. 
Lanes 4 and 5, immunoblotting with anti-5His antibody. Lane 4, whole cell lysate 
expressing cd-LmjMCA; Lane 5, cd-LmjMCA purified on Ni-NTA column 
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Fig. 2 Enzymatic activity of cd-LmjMCA with the peptidyl substrate Ac-VRPR- 
AMC. Protein extracts from Δyca1 yeast cells transformed with the pESC-His 
vector alone (vector control) and expressing the catalytic domain of LmjMCA 
(cd-LmjMCA) wild type (wt) and its respective H147A and C202A mutants, were 
evaluated for their activity towards Ac-VRPR-AMC substrate. The AMC release 
was measured every 15 min for 2 h to determine the activity as the slope of the 
resulting linear regression. Relative activity is expressed as the fold-increase rela- 
tive to the activity of the vector control. Data show mean ± standard deviation 

LmjMCA has been found to be an arginine-specific cysteine 61 

protease able to complement the yeast metacaspase (YCA1). In the 62 

evaluation of specific recognition of the A. thaliana metacaspase 63

AtMC9 using a peptide library, amino acids valine, arginine, pro- 64

line, and arginine were found to be important in positions P4, P3, 65 

P2, and P1, respectively, allowing the design of the optimized tet- 66 

rapeptide substrate VRPR[9]. To examine the specificity  of  67 

LmjMCA for this peptide, the catalytic domain of LmjMCA (cd- 68 

LmjMCA) can be expressed in Δyca1 yeast cells and tested with the 69 

fluorogenic         substrate         (Subheading         3.9;         Fig.   2).
70 

Enzymatic activity of cd-LmjMCA can be tested in whole yeast  71

cell lysate providing that specific substrates and inhibitors are avail- 72

able. Total protein extracts of Δyca1 yeast cells expressing cd- 73

LmjMCA were tested for their enzymatic activity with 74 Boc-
GRR-AMC, z-GGR-AMC, and Ac-VRPR-AMC substrates in 75 the 
presence of different inhibitors such as a broad caspase inhibitor 76 z-
VAD-fmk, the cysteine protease inhibitor E64, and the serine pro- 77

tease inhibitors PMSF, leupeptin, and aprotinin (Subheading 3.5; 78

Fig. 3). The caspase inhibitor z-VAD-fmk produced a low but sig- 79 

nificant inhibition of cd-LmjMCA activity with both Boc-GRR- 80

AMC (p value = 0.0008) and z-GGR-AMC (p value < 0.0001) but 81

not with the Ac-VRPR-AMC substrate. The cysteine protease inhib- 82

itor E64 had no significant effect on cd-LmjMCA activity with the 83

three substrates. The serine protease inhibitors PMSF and aprotinin 84

had no effect on cd-LmjMCA activity with both Boc-GRR-AMC   85
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Fig. 3 Effect of protease inhibitors on cd-LmjMCA enzymatic activity. Protein extracts from Δyca1 yeast cells 
transformed with the pESC-His vector expressing the catalytic domain of LmjMCA (cd-LmjMCA) were tested 
for enzymatic activity with the Boc-GRR-AMC, Z-GGR-AMC, and Ac-VRPR-AMC substrates in absence or pres- 
ence of 100 μM z-VAD-fmk, 100 μM E64, 10 mM PMSF, 1 mM leupeptin, and 100 μM aprotinin. The AMC 
release was measured every 15 min for 2 h to determine the activity as the slope of the resulting linear regres- 
sion. Relative activity was calculated as the fold increase relative to the activity of the vector control (with and 
without protease inhibitors). Data show mean ± standard deviation. *P < 0.05 
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2 Materials 

and z-GGR-AMC substrates, however, cd-LmjMCA activity with 
the Ac-VRPR-AMC substrate was increased when these two latter 
inhibitors were added. However, this increase was not always 
observed. The increase of activity of cd-LmjMCA with the Ac-VRPR- 
AMC substrate in the presence of PMSF and aprotinin could be due 
to a protective effect over cd-LmjMCA by inhibition of its degrada- 
tion by other proteases. Since these experiments were done with 
total protein extracts, the influence of other yeast proteases cannot 
be excluded. Interestingly, leupeptin, a serine protease inhibitor, 
which can also inhibit some cysteine proteases such as calpains and 
cathepsins, completely abrogated cd-LmjMCA activity with all three 
substrates (Boc-GRR-AMC  p-value < 0.0002;  z-GGR-AMC p-
value < 0.001; and Ac-VRPR-AMC p-value < 0.0001). Although 
the structural similarity of cd-LmjMCA with caspases could explain 
the slight inhibition found with z-VAD-fmk for Boc-GRR-AMC 
and z-GGR-AMC, this inhibitor was not able to affect the activity of 
cd-LmjMCA towards Ac-VRPR-AMC, the most preferred substrate 
of this metacaspase (Fig. 3). 

All chemicals used are of Molecular Biology grade unless specified 
and solutions are prepared with deionized water. When not 
specified, incubations are performed at room temperature. 
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2.1   Leishmania 
Metacaspase  Gene 

1. L. major metacaspase gene: LmjF.35.1580 (Gene ID: 3684453). 
 

108

2.2    YCA1 Disrupted 1. Metacaspase  disrupted  yeast  cells:  Euroscarf  YCA1  disrupted 109

Yeast Cells Expressing strain (yca1Δ cells) Accession Number Y02453 (BY4741; MAT 110

cd-LmjMCA a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YOR197w::kanMX4) 111

transformed with the pESC-His vector (Stratagene, La Jolla) or 112

with the pESC-His expressing LmjMCA or its inactive forms 113

cd-LmjMCA H147A and cd-LmjMCA C202A [5]. 114 

2. Inactive   forms   of   cd-LmjMCA   obtained   by   using   the 115

QuikChange®multi site-directed mutagenesis kit (Stratagene). 116

2.3    Yeast Media 1. YPD medium: 20 g/l Difco peptone, 10 g/l Yeast extract, 117

and  Transformation H2O to 950 ml, pH 6.5. Autoclave, let cool down to 55 °C, 118

and add 50 ml of 40 % glucose filtered through a 0.22 μm size 119

filter (Final concentration of glucose: 2 %). 120 

2. YPD plates: same as YPD medium but supplemented with 121

20 g/l agar. 122 

3. 10× Dropout [4] amino acid solution (without histidine when 123

using the pESC-His vector): 200 mg/ml l-adenine hemisul- 124

fate salt, 200 mg/ml l-arginine HCl, 200 mg/ml l-histidine, 125

300 mg/ml l-isoleucine, 1,000 mg/ml l-leucine, 300 mg/ml 126

l-lysine HCl, 200 mg/ml l-methionine, 500 mg/ml l- 127

phenylalanine, 2,000 mg/ml l-threonine, 200 mg/ml l- 128

tryptophan,  300   mg/ml   l-tyrosine,   200   mg/ml   l-uracil, 129

1,500 mg/ml l-valine. Pass the solution through a 0.22 μm 130

size filter and aliquot in 50-ml tubes. Store at 4 °C. 131 

4. SD/DO/Glucose medium: for 1 L weigh 6.7 g of Yeast nitro- 132

gen base without amino acids and add H2O to 850 ml. Control 133

the pH (pH 5.8). Autoclave and let cool down to 55 °C. Add 134

100 ml of the 10× DO solution (without histidine) and then 135

50 ml of 40 % glucose or galactose (filtered; final concentra- 136

tion 2 %).
 

137 

5. SD/DO/Glucose plates: same as SD/DO medium (without 138

histidine) supplemented with 20 g/l agar. 139 

6. 10× TE: 0.1 M Tris–HCl, 10 mM EDTA, pH 7.5. Pass the 140

solution through a 0.22 μm filter and store at −20 °C. 141 

7. 10× LiAc: 1 M LiAc, pH 7.5. Pass the solution through a 142

0.22 μm filter and store at −20 °C. 143 

8. 1× TE/1× LiAc solution: 500 μl 10× TE, 500 μl 10× LiAc, 144

adjust to 4 ml with H2O. Use freshly prepared solution. 145 

9. PEG  1,000/Tris/LiAc  solution:  4  ml  of  50  %  PEG  1,000 146

solution, 500 μl 10× TE, and 500 μl 10× LiAc. 147 

10. 87 % glycerol. 148 
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149 

150 
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152 
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164 

165 
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168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

2.4 Yeast Lysis (TCA 
Protocol) and Protein 
Extraction (Glass 
Beads) for SDS-PAGE 
Analysis 

2.5 Enzymatic 
Activity Test in Whole 
or Purified Cell Lysates 

1. Solution B: 3.67 ml H2O, 925 μl 10 M NaOH, 370 μl β-
Mercaptoethanol, 50 μl 100  mM  PMSF  in  isopropanol, 50
μl 0.5 M EDTA/KOH, pH 7.0.

2. Trichloroacetic acid (TCA).
3. Acetone.
4. Lysis buffer: 0.5 % NP40, 20 mM HEPES, pH 8.0, 84 mM

KCl, 10 mM MgCl2, 0.2 mM EDTA, 0.2 mM EGTA, 1 mM
DTT,  5  μg/ml  Aprotinin,  5  μg/ml  Leupeptin,  1  μg/ml
Pepstatin, 1 mM PMSF.

5. Pierce BCA protein assay kit (Thermo Scientific) with BSA as
standard.

1. Lysis buffer for whole cell lysate activity test: 50 mM KH2PO4,
pH  7.5,  500  mM  NaCl,  1  mM  EDTA,  5  mM  DTT,  1  %
CHAPS, 5 μg/ml Aprotinin.

2. Lysis buffer for purified cell lysate activity test: 50 mM
NaH2PO4, pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 % 
Triton X-100.

3. Washing Buffer for purified cell lysate activity test: 50 mM
NaH2PO4, pH 8.0, 300 mM NaCl, 20 mM imidazole.

4. Elution Buffer for purified cell lysate activity test: 50 mM
NaH2PO4, pH 8.0, 300 mM NaCl, 250 mM imidazole).

5. Amicon Ultra-4 centrifugal device (Millipore).
6. Base buffer: 150 mM NaCl, 25 mM HEPES, 10 % glycerol,

pH 7.5. Store at 4 °C.
7. 10 % CHAPS solution: 1 g CHAPS in 10 ml H2O. Store at

4 °C.
8. Activity buffer for whole cell lysate activity test: 3.92 ml Base

buffer, 40 μl 10 % CHAPS, 20 μl 2 M DTT.
9. Activity buffer for purified cell lysate activity test: 3.52 ml Base

buffer, 40 μl 10 % CHAPS, 20 μl 2 M DTT, 400 μl 1 M CaCl2.
10. Fluorogenic substrates: Boc-Gly-Arg-Arg-7-amino-4-

methylcoumarin (Boc-GRR-AMC), Z-Gly-Gly-Arg-7-
amino-4-methylcoumarin (Z-GGR-AMC) (both from
Bachem AG, Switzerland), and N-acetyl-Val-Arg-Pro-Arg-7-
amino-4-methylcoumarin (Ac-VRPR-AMC) (Sigma).

11. Protease inhibitors: Benzyloxycarbonyl-Val-Ala-Asp (1010)
fluoromethylketone (z-VAD-fmk), E64, PMSF, leupeptin, and
aprotinin.

12. Trypsin powder (Boehringer Manheim GmbH, Germany).
13. 96-well black plates (Optiplate-96 F, PerkinElmer).
14. Spectrophotometer.
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2.6   Sodium Dodecyl 1. The Bio-Rad Power Pac 3000 system or similar. 190 

Sulfate– 2. Separating gel (12 %): mix 1.625 ml H2O, 2 ml 30 % acryl- 191
Polyacrylamide Gel amide–Bis-acrylamide solution (29.2:0.8 acrylamide–Bis- 192
Electrophoresis acrylamide), 1.3 ml 1.5 M Tris/HCl buffer, pH 8.8, 25 μl 193
(SDS-PAGE) 20 % SDS; 50 μl 10 % ammonium persulfate (APS) and 2 μl 194

tetramethylethylenediamine (TEMED). 195 

3. Stacking gel (3.9 %): mix 2.64 ml H2O, 0.67 ml 30 % acryl- 196

amide–Bis-acrylamide solution, 0.5 ml 1 M Tris/HCl buffer, 197

pH 6.8, 20 μl 20 % SDS; 40 μl 10 % APS, 8 μl TEMED, and 198

20 μl bromophenol blue. 199 

4. 4× Tris/HCl/SDS solution: 91 g Tris base, 2 g SDS, 500 ml 200

H2O, pH 8.8. 201 

5. 2× SDS sample loading buffer (100 ml final volume): 25 ml 4× 202

Tris/HCl/SDS  solution,  20  ml  glycerol,  4  g  SDS,  2  ml 203

β-Mercaptoethanol (or 3.1 g DTT), 1 mg bromophenol blue, 204

adjust to 100 ml with H2O. 205 

6. 10× SDS electrophoresis running buffer: 250 mM Tris base, 206

1.92 M glycine, 1 % SDS. Adjust pH to pH 8.3 when diluting 207

to 1×. 208 

7. Gel  staining  solution:  50  %  methanol,  0.05  %  Coomassie 209

Brilliant Blue R-250, 10 % acetic acid. 210 

8. Gel destaining solution: 5 % methanol, 7 % acetic acid. 211 

2.7   Western Blotting 1. The Bio-Rad Power Pac 3000 system or similar. 212 

2. 10× gel transfer buffer: 250 mM Tris base, 1.92 M glycine. 213 

3. 1× gel transfer buffer solution: 10 ml 10× gel transfer buffer, 214

20 ml methanol, pH 8.3–8.4, adjust to 1 L with H2O. 215 

4. Nitrocellulose membrane (Whatman, GE Healthcare Life sci- 216

ences or similar). 217 

5. Filter paper, cut to the size of the gel. 218 

6. Ponceau S Solution: 0.5 g Ponceau S, 1 ml glacial acetic acid, 219

adjust to 100 ml with H2O. 220 

7. 1× Tris Buffered Saline supplemented with tween 20 (TBST): 221

25 mM Tris, 150 mM NaCl, 3 mM KCl, pH 7.5, 0.1 % 222

Tween 20. 223 

8. Blocking buffer: 1× TBST, 5 % nonfat dry milk (NFDM). 224 

9. Primary antibody: 1/200 anti-Flag antibody or 1/1,000 anti- 225

Histidine antibody in TBST with 1 % NFDM. 226 

10. Secondary antibody: 1/2,500 horseradish peroxidase- 227

conjugated antibody in TBST with 1 % NFDM. 228 

11. Glass plate. 229 

12. ECL Western Blotting Detection Reagent (GE Healthcare). 230 
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3 Methods 

3.1    Yeast 
Transformation 

13. Filter papers.
14. Plastic wrap.
15. Cassette and X-Ray film.

1. Plate Δyca1 cells (see Note 1) from frozen stock onto YPD
plates using a platinum loop, which has been previously steril-
ized by flaming and then cooled quickly on the plate.

2. Incubate at 30 °C for 4 days and then inoculate 1 ml of YPD
medium with 1 colony and vortex for 2 min.

3. Transfer to 49 ml of YPD medium (total volume 50 ml) and
place on a shaker at 30 °C overnight.

4. The next day, dilute the overnight culture to OD600 0.2–0.3 in
300 ml (see Note 2) and further incubate at 30 °C with shak-
ing for 2 h or until OD600  reaches 0.4–0.6.

5. Centrifuge at 1,000 × g for 5 min in 50 ml tubes, dilute and
pool pellets in 50 ml H2O, centrifuge at 1,000 × g for 5 min at
room temperature.

6. Resuspend pellet in 1.5 ml of 1× TE/1× LiAc fresh solution.
7. Add 10 μl of 10 mg/ml herring sperm carrier DNA in a 1.5-ml

vial, heat at 95 °C for 5 min and quick chill on ice.
8. Leave on ice and add 1 μg of cd-LmjMCA plasmid and mix.
9. Add 100 μl of yeast cell suspension and vortex.

10. Add 600 μl of PEG1000/Tris/LiAc fresh solution and vortex
for 10 s.

11. Incubate at 30 °C with shaking for 30 min.
12. Add 70 μl of DMSO from stock solution and mix by inversion

at 42 °C for 15 min (heat shock).
13. Leave on ice for 2 min, then microfuge at 10,000 × g for 5 s.
14. Resuspend the pellet in 500 μl of 1× TE.
15. Dilute with 1× TE and plate 100 μl of dilutions 1:1, 1:10,

1:100, and 1:1,000 on YPD plates and incubate at 30 °C for
3 days to obtain colonies.

16. Verify that the transformation was efficient and that your cells
have the desired plasmid by using standard minilysate protocol.

17. Grow overnight culture: inoculate one transformed  colony
into 1  ml  of  SD/DO/Glucose  medium,  vortex,  transfer  to
9 ml of SD/DO/Glucose medium, and incubate at 30 °C with
continous shaking overnight.

18. Prepare frozen stock of transformed yeast cells: mix 700 μl of
the overnight culture and 300 μl of 87 % glycerol, mix and
store at –70 °C.
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3.2   Induction 1. Inoculate  one transformed colony into 1 ml of SD/DO/ 
 

272

of the cd-LmjMCA Glucose medium and vortex. 273 

Expression in 2. Transfer to 9 ml of SD/DO/Glucose medium and incubate at 274
Transformed 30 °C with continous shaking overnight. 275 
Yeast Cells 3. Dilute overnight culture to OD600 0.05–0.1 in 10 ml (see Note 3) 276

in a 100-ml Erlenmeyer flask (ten times culture volume) and 277

incubate at 30 °C with shaking for 6 h or until OD600  reaches 278

0.4–0.6. 279 

4. Centrifuge 1 ml of culture at 10,000 × g for 1 min and store 280

pellet at –70 °C (non induced control). 281 

5. For the galactose induction, centrifuge the culture at 1,000 × g 282

for  5  min  and  dilute  the  pellet  with  10  ml  of  SD/DO/ 283

Galactose medium and then incubate at 30 °C with shaking 284

overnight. 285 

6. Measure OD600 after at least 16 h of induction. 286 

7. Centrifuge the culture at 1,000 × g for 5 min and store pellet at 287

–70 °C (galactose induced culture) until use. 288 

8. The pellets are ready for lysis and analysis. 289 

3.3    Yeast Lysis (TCA 1. Dilute frozen pellet of the 10 ml cultures (non-induced and 290

Protocol) for SDS- galactose induced) with 500 μl of 1× TE and centrifuge at 291

PAGE Analysis 10,000 × g for 1 min at 4 °C. 292 

2. Resuspend the pellet with 500 μl of H2O and add 75 μl of 293

Solution B. 294 

3. Shake 10 min at 4 °C and add 280 μl of 72 % TCA. 295 

4. Put on ice for 5 min and then centrifuge at 10,000 × g for 296

10 min at 4 °C. 297 

5. Add 700 μl of acetone to the pellet and centrifuge at 10,000 × g 298

for 10 min at 4 °C. 299 

6. Repeat the wash with acetone. 300 

7. Let dry the pellet and then resuspend in 50 μl of 1× PBS (see 301

Note 4). 302 

8. Store at –70 °C until use. 303 

3.4   Yeast Protein 1. Dilute frozen pellet with 50 μl of lysis buffer, transfer to a 1.5- 304

Extraction ml vial with 0.08 g glass beads. 305 

(Glass Beads) 2. Vortex ten times, 1 min each, and collect supernatant. 306 

3. Wash beads with 50 μl of lysis buffer and collect supernatant. 307

4. Pool supernatants and centrifuge at 10,000 × g for 1 h at 4 °C. 308

5. Collect and store supernatant at –70 °C in lysis buffer contain- 309

ing protease inhibitors. 310 

6. Protein concentration in supernatant can be measured using a 311

BCA protein assay reagent with BSA as standard. 312 
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3.5 cd-LmjMCA 
Enzymatic Activity in 
Whole Yeast Cell 
Lysate 

3.6 Purification of 
Leishmania 
Metacaspase  Catalytic 
Domain  (cd-LmjMCA) 
from Yeast on Ni-NTA 
Resin 

1. Harvest transformed yeast cells from a 50 ml culture following
24 h of induction. The pellet can be kept frozen at –70 °C.

2. Resuspend the frozen pellet in 100 μl of lysis buffer, transfer to
a 1.5-ml vial and add 0.08 g of glass beads.

3. Vortex ten times, 1 min each.
4. Collect and save supernatant.
5. Wash the beads with 50 μl of lysis buffer, collect and save

supernatant.
6. Pool supernatants and centrifuge at 10,000 × g for 1 h at 4 °C.

Collect and store supernatant at –70 °C in lysis buffer contain-
ing protease inhibitors.

7. Measure protein concentration in the supernatant using a BCA
protein assay reagent with BSA as standard.

8. For one black-plate well, add 196 μl of Activity buffer and 4 μl
of 10 μg/μl total protein extract (40 μg total protein per well).
Prepare duplicate or triplicate wells.

9. Dilute 50 mM of substrate-AMC to 5 mM with Activity buffer
and add 2 μl of diluted substrate per well (final concentration
50 μM). Read fluorescence each 15 min for 2 h at 24 °C with
360 nm excitation and 460 nm emission wavelengths.

10. As a positive control use 10 ng of trypsin per well in the 200 μl
reaction volume. As negative controls, use protein extracts
from yeast cells transformed with the pESC-His vector or
expressing cd-LmjMCA (H147A) and cd-LmjMCA (C202A).

11. Determine enzymatic activity by calculating the slope of the
linear regression. Express results in arbitrary milli-fluores-
cence units per minute per μg of protein (mFU/min/μg), or
as the fold increase relative to the activity of the vector control
(see Note 5).

12. To test the effect of different protease inhibitors on the enzy-
matic activity, supplement activity reactions with the following
concentrations of inhibitors: 100 μM z-VAD-fmk, 100 μM
E64, 10 mM PMSF, 1 mM leupeptin, and 100 μM aprotinin.

1. Resuspend frozen pellet from a 500 ml culture after induction
with galactose for 18 h in 2.5 ml of lysis buffer.

2. Add 2.5 g of glass beads (0.25–0.5 mm) and vortex ten times,
1 min each (see Note 6).

3. Collect and save supernatant.
4. Wash the glass beads with 2.5 ml of lysis buffer, collect and

save supernatant.
5. Pool the supernatants, centrifuge at 10,000 × g for 1 h at 4 °C,

and save supernatant (contains soluble proteins).
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6. Wash 1 ml 50 % Ni-NTA resin with 2 ml of lysis buffer and
add the supernatant (soluble proteins) to the washed resin.

7. Incubate overnight at 4 °C  on a wheel.
8. Centrifuge at 1,000 × g for 5 min at 4 °C, wash the resin twice

with 500 μl of Washing Buffer.
9. Elute protein by adding three aliquots of 500 μl of Elution

Buffer and then pool the eluates.

355 

356 

357 

358 

359 

360 

361 

10. Centrifuge the three pooled elutions at 10,000 × g for 1 min 
 

362

at 4 °C. 363 

11. Pool the supernatants and concentrate eluted proteins in 1× 364

PBS with an Amicon Ultra-4 centrifugal device prior to pro- 365

tein concentration measurement. 366 

12. Store at −80 °C until use for the activity test. 367 

3.7   Sodium Dodecyl 1. Wash gel glass plates and mount the electrophoresis system 368

Sulfate– according to manufacturer’s protocol. 369 

Polyacrylamide Gel 2. Prepare separating gel, fill to the three quarters the glass plate, 370
Electrophoresis add some isopropanol on the gel to obtain a flat surface and 371
(SDS-PAGE) wait for the gel to polymerize. 372 

3. Prepare stacking gel, fill the gel glass plate up to the edge, 373

insert the comb and wait for the gel to polymerize. 374 

4. Mix each sample (20 μg of total protein from yeast lysates) with 375

2× SDS sample loading buffer in a ratio 1:1 (v/v), boil samples 376

for 5 min at 95 °C, spin in microfuge and load on the gel. 377 

5. Run gel for 20 min at 80 V and then for 45 min at 180 V with 378

chamber on ice. 379 

6. Stain the gel with Coomassie Blue (see Note 7): Soak the gel 380

in a staining solution and incubate with shaking at room tem- 381

perature for 1 h to overnight. 382 

7. Soak the gel in a destaining solution and incubate with shaking 383

at room temperature for 30 min. Repeat until background dis- 384

appears. Store the gel in water or dry (see Notes 8 and 9). 385 

3.8   Western Blotting 1. Equilibrate the gel, four filter papers, and sponges in 1× trans- 386

fer buffer. 387 

2. Mount a sandwich in the following way: white sponge, two filter 388

papers, nitrocellulose membrane, gel, two filter papers, green 389

sponge (white sponge oriented to the cathode—red face). 390 

3. Remove bubbles by rolling a 15-ml tube over the sandwich. 391 

4. Run in 1× transfer buffer for 1 h at 100 V with chamber on ice. 392

5. After protein transfer, incubate the nitrocellulose membrane 393

on a shaker at room temperature for 5 min in Ponceau S 394

Solution. 395 
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396 
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411 

412 

413 

414 

415 

416 

417 

418 

6. Incubate on the shaker at room temperature for 2 min in water
to remove excess of Ponceau S red.

7. Take a picture and mark molecular weights with a pencil.
8. Incubate on a shaker at room temperature for 10 min in water

to complete destaining.
9. Incubate the membrane on the shaker for 1 h at room tem-

perature or overnight at 4 °C in the blocking buffer.
10. Incubate the membrane on a shaker overnight at 4 °C with the

first antibody.
11. Wash four times for 15 min each with TBST.
12. Incubate the membrane on a shaker for 1 h at room tempera-

ture with the secondary antibody.
13. Wash four times for 15 min each with TBST (see Note 10).
14. For membrane development, deposit the membrane on a clean

glass plate.
15. Dry quickly with a filter paper.
16. Overlay 1.5 ml of a developing solution (1:1 of ECL solutions

A:B for a 0.125 ml/cm2  membrane) and wait for 2 min.
17. Dry with a filter paper and cover the membrane with a plastic

wrap.
18. Insert the membrane in a cassette and expose to an X-Ray film

for different times (e.g. 2 s, 10 s, 2 min, 10 min); develop the
film (see Note 11).
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3.9 cd-LmjMCA 
Activity  Measurement 
with the Ac-VRPR- 
AMC Substrate 

1. Use 1 μg of purified protein in a total 200 μl volume per well
of a 96-well black plate.

2. Add 196 μl of activity buffer and 1–4 μl of Ni-NTA purified
cd-LmjMCA per well. Prepare duplicate or triplicate wells.

3. Dilute Ac-VRPR-AMC in Activity buffer to the final concen-
tration 5 mM and add 2 μl of diluted substrate per well (final
concentration 50 μM). Read fluorescence each 15 min for 2 h
at 24 °C with 360 nm excitation and 460 nm emission
wavelengths.

4. As a positive control use 10 ng of trypsin per well in the 200 μl
reaction volume.

5. Determine enzymatic activity by calculating the slope of the
linear regression. Express results in arbitrary milli-fluores-
cence units per minute per μg of protein (mFU/min/μg), or
as the fold increase relative to the activity of the vector control
(see Note 5).
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4 Notes 

Acknowledgements 

1. Δyca1 cells can be obtained from Euroscarf Accession Number
Y02453.

2. ~10 ml overnight culture in 290 ml of YPD medium.
3. ~400 μl overnight culture in 9.6 ml of  SD/DO/Glucose

medium
4. Protein concentration can be measured using the BCA protein

assay reagent (Pierce Biotechnology, Inc., Rockford, IL) with
BSA as standard.

5. Enzymatic activity tests must be performed at least three times
and means and standard deviations must be calculated. The
Student t test is used in statistical analysis and significance is
considered when p < 0.05.

6. Use 1 g of beads per 1 ml of lysis buffer.
7. Detection limit is 0.3–1 μg/protein band.
8. First dilute Coomassie Blue in methanol.
9. If you want to keep your gel (after staining), we suggest to put

a plastic sheet (candy wrap plastic) over a filter paper; Put the
gel over the plastic sheet and soak with water; Put another
plastic sheet over the gel; Perforate with a needle around the
gel border; Put it on the desiccator at 70 °C under vacuum for
1 h.

10. For competitive blot, first incubate with the peptide at 10 μg/ml,
then add antibody and incubate on wheel 60 for min at room
temperature.

11. Stripping membranes: 15 min shaking in 0.1 M of glycine–
HCl pH 2–3; rinse with 1 M of NaCl in 1× PBS; wash 2 × 5 min
in 1× TBS–0.1 % Tween-20; rinse with H2O; expose film for
10 min to detect former signal. If there is no signal the mem-
brane is ready to be blocked and exposed to a new primary
antibody.

The authors are grateful to the members of the Fasel’s group and 
to Dr. Frank Madeo who provided the pFM21 construct, which 
served as a control. This work was funded by the grants FNRS N° 
3100A0-116665/1 and IZ70Z0-131421 to NF. 
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