Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Leishmania metacaspase: an arginine-specific peptidase. Authors: Martin R, Gonzalez I, Fasel N Journal: Methods in molecular biology (Clifton, N.J.) Year: 2014 Volume: 1133 Pages: 189-202 DOI: 10.1007/978-1-4939-0357-3_12

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

UNIL | Université de Lausanne Faculté de biologie

et de médecine

Leishmania Metacaspase: An Arginine-Specific Peptidase Chapter Title Copyright Year 2014 Copyright Holder Springer Science+Business Media New York Author Family Name Martin Particle Given Name Ricardo Suffix Division Department of Biochemistry Organization University of Lausanne Address Ch. des Boveresses 155, 1066, Epalinges, Switzerland Author Family Name Gonzalez Particle Given Name Iveth Suffix Division Department of Biochemistry Organization University of Lausanne Ch. des Boveresses 155, 1066, Address Epalinges, Switzerland Corresponding Author Fasel Family Name Particle Nicolas Given Name Suffix Division Department of Biochemistry Organization University of Lausanne Address Ch. des Boveresses 155, 1066, Epalinges, Switzerland The purpose of this chapter is to give insights into metacaspase Abstract of Leishmania protozoan parasites as arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible expression systems, metacaspase-deficient yeast cells ($\Delta y cal$) have been instrumental in studying the activity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA substrates.

Metadata of the chapter that will be visualized online

KeywordsLeishmania - Cysteine peptidase - Arginine-specific peptidase -(separated by "-")Metacaspase - Enzymatic assay - Protease inhibitors

Leishmania Metacaspase: An Arginine-Specific Peptidase

Ricardo Martin, Iveth Gonzalez, and Nicolas Fasel

Abstract

The purpose of this chapter is to give insights into metacaspase of *Leishmania* protozoan parasites as 5 arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of 6 debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible 7 expression systems, metacaspase-deficient yeast cells ($\Delta ycal$) have been instrumental in studying the activ-8 ity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of 9 LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA 10 substrates. 11

Key words Leishmania, Cysteine peptidase, Arginine-specific peptidase, Metacaspase, Enzymatic 12 assay, Protease inhibitors 13

1 Introduction

In 2000, Uren et al. described a group of cysteine proteases 15 orthologous to caspases but absent in mammals, which was named 16 metacaspases [1]. Metacaspases belong to the C14 family of CD 17 clan of cysteine proteases [2] and possess caspase-like domain with 18 a highly conserved catalytic dyad of histidine and cysteine. They 19 are divided into two structurally different types: type I metacas- 20 pases with an additional N-terminal extension that is similar to ini-21 tiator/inflammatory caspases and type-II metacaspases with an 22 insertion of around 200 amino acids between two caspase-like sub- 23 units. Interestingly, genomic analysis reveals the presence of a large 24 pool of metacaspases in unicellular and filamentous cyanobacteria 25 that are still poorly studied [3], whereas metacaspases from plants, 26 Saccharomyces cerevisiae, and protozoan parasites have rather been 27 extensively investigated. 28

Depending on the species, Leishmania protozoan parasites 29 induce different forms of diseases ranging from cutaneous, muco- 30 cutaneous or visceral leishmaniasis. All the Leishmania species 31 express a unique type of metacaspase harboring a central catalytic 32

4

3

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

domain (containing the conserved catalytic dyad histidine and cysteine) flanked by an N-terminal domain containing a mitochondrial localization signal and a less conserved proline-rich C-terminal domain (61.4–100 % homology), which probably plays a role in protein–protein interactions. Interestingly, although the N-terminal mitochondrial localization signal is functional, most of *Leishmania major* metacaspase (LmjMCA) is detected in the cytoplasm either in a full length or in a processed form corresponding to the central catalytic domain lacking the N- and the C-terminal domains [4].

Due to the mitochondrial localization signal and the prolinerich sequences, LmjMCA N- and C-terminal domains could preclude expression and activity measurement of metacaspase. Therefore, it is necessary to limit expression and activity measurement of LmjMCA to the 251 amino acids (amino-acid residues 63-314 of LmjF35.1580) predictive of the catalytic domain (cd-LmjMCA). To do so, the DNA sequence encoding the catalytic domain was amplified and the PCR product was inserted into the pESC-His vector (Stratagene) using appropriate cloning sites [5]. This vector contains a galactose inducible promoter and N-terminally 6× His and C-terminal FLAG epitope encoding sequences respectively allowing purification with Ni-NTA resin or with murine monoclonal antibodies against the Penta-His-epitope (α -His5; Qiagen) or the FLAG epitope (α -FLAG; Stratagene). A single step was sufficient to enrich for enough material for specific enzymatic activity tests (Subheading 3.6; Fig. 1).

In contrast to caspases that have strict substrate specificity towards aspartic acid, metacaspases rather cleave arginines or lysines at the substrate P1 position [5-8].

Fig. 1 cd-LmjMCA was purified from yeast expressing cells on an Ni-NTA resin and analyzed by 12 % SDS-PAGE and staining with Coomassie or by immunoblotting using the α -5His antibody. *Lanes* 1–3, Coomassie staining. *Lane* 1, molecular mass markers; *Lane* 2, whole cell lysate; *Lane* 3, cd-LmjMCA purified on Ni-NTA column. *Lanes* 4 and 5, immunoblotting with anti-5His antibody. *Lane* 4, whole cell lysate expressing cd-LmjMCA; *Lane* 5, cd-LmjMCA purified on Ni-NTA column

Fig. 2 Enzymatic activity of cd-LmjMCA with the peptidyl substrate Ac-VRPR-AMC. Protein extracts from $\Delta yca1$ yeast cells transformed with the pESC-His vector alone (vector control) and expressing the catalytic domain of LmjMCA (cd-LmjMCA) wild type (wt) and its respective H147A and C202A mutants, were evaluated for their activity towards Ac-VRPR-AMC substrate. The AMC release was measured every 15 min for 2 h to determine the activity as the slope of the resulting linear regression. Relative activity is expressed as the fold-increase relative to the activity of the vector control. Data show mean ± standard deviation

LmjMCA has been found to be an arginine-specific cysteine 61 protease able to complement the yeast metacaspase (YCA1). In the 62 evaluation of specific recognition of the A. thaliana metacaspase 63 AtMC9 using a peptide library, amino acids valine, arginine, pro- 64 line, and arginine were found to be important in positions P4, P3, 65 P2, and P1, respectively, allowing the design of the optimized tet- 66 rapeptide substrate VRPR[9]. To examine the specificity 67 LmjMCA for this peptide, the catalytic domain of LmjMCA (cd- 68 LmjMCA) can be expressed in $\Delta y cal$ yeast cells and tested with the 69 fluorogenic substrate (Subheading 3.9: Fig. 2). 70

Enzymatic activity of cd-LmjMCA can be tested in whole yeast 71 cell lysate providing that specific substrates and inhibitors are avail- 72 able. Total protein extracts of $\Delta y cal$ yeast cells expressing cd- 73 LmjMCA were tested for their enzymatic activity with 74 Boc-GRR-AMC, z-GGR-AMC, and Ac-VRPR-AMC substrates in 75 the presence of different inhibitors such as a broad caspase inhibitor 76 z-VAD-fmk, the cysteine protease inhibitor E64, and the serine pro-77 tease inhibitors PMSF, leupeptin, and aprotinin (Subheading 3.5; 78 Fig. 3). The caspase inhibitor z-VAD-fmk produced a low but sig- 79 nificant inhibition of cd-LmjMCA activity with both Boc-GRR- 80 AMC (p value = 0.0008) and z-GGR-AMC (p value < 0.0001) but 81 not with the Ac-VRPR-AMC substrate. The cysteine protease inhib- 82 itor E64 had no significant effect on cd-LmjMCA activity with the 83 three substrates. The serine protease inhibitors PMSF and aprotinin 84 had no effect on cd-LmjMCA activity with both Boc-GRR-AMC 85

Ricardo Martin et al.

Fig. 3 Effect of protease inhibitors on cd-LmjMCA enzymatic activity. Protein extracts from $\Delta yca1$ yeast cells transformed with the pESC-His vector expressing the catalytic domain of LmjMCA (cd-LmjMCA) were tested for enzymatic activity with the Boc-GRR-AMC, Z-GGR-AMC, and Ac-VRPR-AMC substrates in absence or presence of 100 μ M z-VAD-fmk, 100 μ M E64, 10 mM PMSF, 1 mM leupeptin, and 100 μ M aprotinin. The AMC release was measured every 15 min for 2 h to determine the activity as the slope of the resulting linear regression. Relative activity was calculated as the fold increase relative to the activity of the vector control (with and without protease inhibitors). Data show mean ± standard deviation. **P*<0.05

86	and z-GGR-AMC substrates, however, cd-LmjMCA activity with
87	the Ac-VRPR-AMC substrate was increased when these two latter
88	inhibitors were added. However, this increase was not always
89	observed. The increase of activity of cd-LmjMCA with the Ac-VRPR-
90	AMC substrate in the presence of PMSF and aprotinin could be due
91	to a protective effect over cd-LmjMCA by inhibition of its degrada-
92	tion by other proteases. Since these experiments were done with
93	total protein extracts, the influence of other yeast proteases cannot
94	be excluded. Interestingly, leupeptin, a serine protease inhibitor,
95	which can also inhibit some cysteine proteases such as calpains and
96	cathepsins, completely abrogated cd-LmjMCA activity with all three
97	substrates (Boc-GRR-AMC p-value < 0.0002; z-GGR-AMC p-
98	value < 0.001; and Ac-VRPR-AMC <i>p</i> -value < 0.0001). Although
99	the structural similarity of cd-LmjMCA with caspases could explain
100	the slight inhibition found with z-VAD-fmk for Boc-GRR-AMC
101	and z-GGR-AMC, this inhibitor was not able to affect the activity of
102	cd-LmjMCA towards Ac-VRPR-AMC, the most preferred substrate
103	of this metacaspase (Fig. 3).

104 **2 Materials**

- 105
- 106 107

All chemicals used are of Molecular Biology grade unless specified and solutions are prepared with deionized water. When not specified, incubations are performed at room temperature. 2.1 Leishmania Metacaspase Gene 1. *L. major* metacaspase gene: LmjF.35.1580 (Gene ID: 3684453). 108

2.2 YCA1 Disrupted Yeast Cells Expressing cd-LmjMCA

Yeast Media

and Transformation

2.3

- Metacaspase disrupted yeast cells: Euroscarf YCA1 disrupted 109 strain (*yca1*Δ cells) Accession Number Y02453 (BY4741; MAT 110 a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YOR197w::kanMX4) 111 transformed with the pESC-His vector (Stratagene, La Jolla) or 112 with the pESC-His expressing LmjMCA or its inactive forms 113 cd-LmjMCA H147A and cd-LmjMCA C202A [5]. 114
- 2. Inactive forms of cd-LmjMCA obtained by using the 115 QuikChange[®]multi site-directed mutagenesis kit (Stratagene). 116
- YPD medium: 20 g/l Difco peptone, 10 g/l Yeast extract, 117 H₂O to 950 ml, pH 6.5. Autoclave, let cool down to 55 °C, and add 50 ml of 40 % glucose filtered through a 0.22 μm size filter (Final concentration of glucose: 2 %).
 - 2. YPD plates: same as YPD medium but supplemented with 121 20 g/l agar. 122
 - 3. $10 \times$ Dropout [4] amino acid solution (without histidine when 123 using the pESC-His vector): 200 mg/ml 1-adenine hemisul-124 fate salt, 200 mg/ml 1-arginine HCl, 200 mg/ml 1-histidine, 125 300 mg/ml 1-isoleucine, 1,000 mg/ml 1-leucine, 300 mg/ml 126 1-lysine HCl, 200 mg/ml 1-methionine, 500 mg/ml 1-127 phenylalanine, 2,000 mg/ml 1-threonine, 200 mg/ml 1-128 tryptophan, 300 mg/ml i-tyrosine, 200 mg/ml i-uracil, 129 1,500 mg/ml 1-valine. Pass the solution through a 0.22 µm 130 size filter and aliquot in 50-ml tubes. Store at 4 °C. 131
 - 4. SD/DO/Glucose medium: for 1 L weigh 6.7 g of Yeast nitrogen base without amino acids and add H₂O to 850 ml. Control
 133 the pH (pH 5.8). Autoclave and let cool down to 55 °C. Add
 134 100 ml of the 10× DO solution (without histidine) and then
 50 ml of 40 % glucose or galactose (filtered; final concentration 2 %).
 - 5. SD/DO/Glucose plates: same as SD/DO medium (without 138 histidine) supplemented with 20 g/l agar.
 139
 - 6. $10 \times$ TE: 0.1 M Tris–HCl, 10 mM EDTA, pH 7.5. Pass the solution through a 0.22 μ m filter and store at -20 °C. 141
 - 7. 10× LiAc: 1 M LiAc, pH 7.5. Pass the solution through a 142 0.22 µm filter and store at -20 °C. 143
 - 8. $1 \times TE/1 \times LiAc$ solution: 500 µl $10 \times TE$, 500 µl $10 \times LiAc$, 144 adjust to 4 ml with H₂O. Use freshly prepared solution. 145
 - PEG 1,000/Tris/LiAc solution: 4 ml of 50 % PEG 1,000 146 solution, 500 μl 10× TE, and 500 μl 10× LiAc.
 147
 - 10. 87 % glycerol.

148

149 150 151	2.4 Yeast Lysis (TCA Protocol) and Protein Extraction (Glass	1. Solution B: 3.67 ml H ₂ O, 925 μ l 10 M NaOH, 370 μ l β -Mercaptoethanol, 50 μ l 100 mM PMSF in isopropanol, 50 μ l 0.5 M EDTA/KOH, pH 7.0.
152	Beads) for SDS-PAGE	2. Trichloroacetic acid (TCA).
153	Analysis	3. Acetone.
154 155		4. Lysis buffer: 0.5 % NP40, 20 mM HEPES, pH 8.0, 84 mM KCl, 10 mM MgCl ₂ , 0.2 mM EDTA, 0.2 mM EGTA, 1 mM
156 157		DTT, 5 μ g/ml Aprotinin, 5 μ g/ml Leupeptin, 1 μ g/ml Pepstatin, 1 mM PMSF.
158 159		5. Pierce BCA protein assay kit (Thermo Scientific) with BSA as standard.
160 161 162	2.5 Enzymatic Activity Test in Whole or Purified Cell Lysates	 Lysis buffer for whole cell lysate activity test: 50 mM KH₂PO₄, pH 7.5, 500 mM NaCl, 1 mM EDTA, 5 mM DTT, 1 % CHAPS, 5 μg/ml Aprotinin.
163 164 165		2. Lysis buffer for purified cell lysate activity test: 50 mM NaH ₂ PO ₄ , pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 % Triton X-100.
166 167		3. Washing Buffer for purified cell lysate activity test: 50 mM NaH ₂ PO ₄ , pH 8.0, 300 mM NaCl, 20 mM imidazole.
168 169		4. Elution Buffer for purified cell lysate activity test: 50 mM NaH ₂ PO ₄ , pH 8.0, 300 mM NaCl, 250 mM imidazole).
170		5. Amicon Ultra-4 centrifugal device (Millipore).
171 172		6. Base buffer: 150 mM NaCl, 25 mM HEPES, 10 % glycerol, pH 7.5. Store at 4 °C.
173 174		7. 10 % CHAPS solution: 1 g CHAPS in 10 ml H ₂ O. Store at 4 °C.
175 176		 Activity buffer for whole cell lysate activity test: 3.92 ml Base buffer, 40 μl 10 % CHAPS, 20 μl 2 M DTT.
177 178		 Activity buffer for purified cell lysate activity test: 3.52 ml Base buffer, 40 μl 10 % CHAPS, 20 μl 2 M DTT, 400 μl 1 M CaCl₂.
179		10. Fluorogenic substrates: Boc-Gly-Arg-Arg-7-amino-4-
180		methylcoumarin (Boc-GRR-AMC), Z-Gly-Gly-Arg-7-
182		amino-4-methylcoumarin (Z-GGR-AMC) (both from Recham AG Switzerland) and N acetul Val Arg Pro Arg 7
183		amino-4-methylcoumarin (Ac-VRPR-AMC) (Sigma).
184		11. Protease inhibitors: Benzyloxycarbonyl-Val-Ala-Asp (1010)
185 186		fluoromethylketone (z-VAD-fmk), E64, PMSF, leupeptin, and aprotinin.
187		12. Trypsin powder (Boehringer Manheim GmbH, Germany).
188		13. 96-well black plates (Optiplate-96 F, PerkinElmer).
189		14. Spectrophotometer.

2.6 Sodium Dodecyl	1. The Bio-Rad Power Pac 3000 system or similar.	190
Sulfate– Polyacrylamide Gel Electrophoresis (SDS-PAGE)	2. Separating gel (12 %): mix 1.625 ml H ₂ O, 2 ml 30 % acryl- amide–Bis-acrylamide solution (29.2:0.8 acrylamide–Bis- acrylamide), 1.3 ml 1.5 M Tris/HCl buffer, pH 8.8, 25 μ l 20 % SDS; 50 μ l 10 % ammonium persulfate (APS) and 2 μ l tetramethylethylenediamine (TEMED).	191 192 193 194 195
	3. Stacking gel (3.9 %): mix 2.64 ml H ₂ O, 0.67 ml 30 % acryl- amide–Bis-acrylamide solution, 0.5 ml 1 M Tris/HCl buffer, pH 6.8, 20 μ l 20 % SDS; 40 μ l 10 % APS, 8 μ l TEMED, and 20 μ l bromophenol blue.	196 197 198 199
	4. 4× Tris/HCl/SDS solution: 91 g Tris base, 2 g SDS, 500 ml H ₂ O, pH 8.8.	200 201
	5. $2 \times$ SDS sample loading buffer (100 ml final volume): 25 ml $4 \times$ Tris/HCl/SDS solution, 20 ml glycerol, 4 g SDS, 2 ml β -Mercaptoethanol (or 3.1 g DTT), 1 mg bromophenol blue, adjust to 100 ml with H ₂ O.	202 203 204 205
	 6. 10× SDS electrophoresis running buffer: 250 mM Tris base, 1.92 M glycine, 1 % SDS. Adjust pH to pH 8.3 when diluting to 1×. 	206 207 208
	7. Gel staining solution: 50 % methanol, 0.05 % Coomassie Brilliant Blue R-250, 10 % acetic acid.	209 210
	8. Gel destaining solution: 5 % methanol, 7 % acetic acid.	211
2.7 Western Blotting	1. The Bio-Rad Power Pac 3000 system or similar.	212
	2. $10 \times$ gel transfer buffer: 250 mM Tris base, 1.92 M glycine.	213
	3. $1\times$ gel transfer buffer solution: 10 ml 10× gel transfer buffer, 20 ml methanol, pH 8.3–8.4, adjust to 1 L with H ₂ O.	214 215
	4. Nitrocellulose membrane (Whatman, GE Healthcare Life sciences or similar).	216 217
	5. Filter paper, cut to the size of the gel.	218
	6. Ponceau S Solution: 0.5 g Ponceau S, 1 ml glacial acetic acid, adjust to 100 ml with H_2O .	219 220
	 7. 1× Tris Buffered Saline supplemented with tween 20 (TBST): 25 mM Tris, 150 mM NaCl, 3 mM KCl, pH 7.5, 0.1 % Tween 20. 	221 222 223
	8. Blocking buffer: 1× TBST, 5 % nonfat dry milk (NFDM).	224
	9. Primary antibody: 1/200 anti-Flag antibody or 1/1,000 anti- Histidine antibody in TBST with 1 % NFDM.	225 226
	10. Secondary antibody: 1/2,500 horseradish peroxidase- conjugated antibody in TBST with 1 % NFDM.	227 228
	11. Glass plate.	229
	12. ECL Western Blotting Detection Reagent (GE Healthcare).	230

Ricardo Martin et al.

231	13. Filter papers.
232	14. Plastic wrap.
233	15. Cassette and X-Ray film.

234	3	Methods
-----	---	---------

235 236 237	3.1 Yeast Transformation	1.	Plate $\Delta ycal$ cells (<i>see</i> Note 1) from frozen stock onto YPD plates using a platinum loop, which has been previously sterilized by flaming and then cooled quickly on the plate.
238 239		2.	Incubate at 30 $^{\circ}$ C for 4 days and then inoculate 1 ml of YPD medium with 1 colony and vortex for 2 min.
240 241		3.	Transfer to 49 ml of YPD medium (total volume 50 ml) and place on a shaker at 30 $^{\circ}\mathrm{C}$ overnight.
242 243 244		4.	The next day, dilute the overnight culture to $OD_{600} 0.2-0.3$ in 300 ml (<i>see</i> Note 2) and further incubate at 30 °C with shaking for 2 h or until OD_{600} reaches 0.4–0.6.
245 246 247		5.	Centrifuge at $1,000 \times g$ for 5 min in 50 ml tubes, dilute and pool pellets in 50 ml H ₂ O, centrifuge at $1,000 \times g$ for 5 min at room temperature.
248		6.	Resuspend pellet in 1.5 ml of $1 \times TE/1 \times LiAc$ fresh solution.
249 250		7.	Add 10 μl of 10 mg/ml herring sperm carrier DNA in a 1.5-ml vial, heat at 95 $^{\circ}C$ for 5 min and quick chill on ice.
251		8.	Leave on ice and add 1 µg of cd-LmjMCA plasmid and mix.
252		9.	Add 100 µl of yeast cell suspension and vortex.
253 254		10.	Add 600 μl of PEG1000/Tris/LiAc fresh solution and vortex for 10 s.
255		11.	Incubate at 30 °C with shaking for 30 min.
256 257		12.	Add 70 μ l of DMSO from stock solution and mix by inversion at 42 °C for 15 min (heat shock).
258		13.	Leave on ice for 2 min, then microfuge at $10,000 \times g$ for 5 s.
259		14.	Resuspend the pellet in 500 μ l of 1× TE.
260 261 262		15.	Dilute with $1 \times$ TE and plate 100 µl of dilutions 1:1, 1:10, 1:100, and 1:1,000 on YPD plates and incubate at 30 °C for 3 days to obtain colonies.
263 264		16.	Verify that the transformation was efficient and that your cells have the desired plasmid by using standard minilysate protocol.
265 266 267 268		17.	Grow overnight culture: inoculate one transformed colony into 1 ml of SD/DO/Glucose medium, vortex, transfer to 9 ml of SD/DO/Glucose medium, and incubate at 30 °C with continous shaking overnight.
269 270 271		18.	Prepare frozen stock of transformed yeast cells: mix 700 μl of the overnight culture and 300 μl of 87 % glycerol, mix and store at –70 °C.

3.2 Induction of the cd-LmjMCA	1. Inoculate one transformed colony into 1 ml of SD/DO/ Glucose medium and vortex.	272 273
Expression in Transformed	2. Transfer to 9 ml of SD/DO/Glucose medium and incubate at 30 °C with continous shaking overnight.	274 275
Yeast Cells	3. Dilute overnight culture to OD_{600} 0.05–0.1 in 10 ml (<i>see</i> Note 3) in a 100-ml Erlenmeyer flask (ten times culture volume) and incubate at 30 °C with shaking for 6 h or until OD_{600} reaches 0.4–0.6.	276 277 278 279
	4. Centrifuge 1 ml of culture at $10,000 \times g$ for 1 min and store pellet at -70 °C (non induced control).	280 281
	5. For the galactose induction, centrifuge the culture at $1,000 \times g$ for 5 min and dilute the pellet with 10 ml of SD/DO/Galactose medium and then incubate at 30 °C with shaking overnight.	282 283 284 285
	6. Measure OD_{600} after at least 16 h of induction.	286
	7. Centrifuge the culture at $1,000 \times g$ for 5 min and store pellet at -70 °C (galactose induced culture) until use.	287 288
	8. The pellets are ready for lysis and analysis.	289
3.3 Yeast Lysis (TCA Protocol) for SDS- PAGE Analysis	1. Dilute frozen pellet of the 10 ml cultures (non-induced and galactose induced) with 500 μ l of 1× TE and centrifuge at 10,000×g for 1 min at 4 °C.	290 291 292
	2. Resuspend the pellet with 500 μl of H_2O and add 75 μl of Solution B.	293 294
	3. Shake 10 min at 4 $^{\circ}\mathrm{C}$ and add 280 $\mu\mathrm{l}$ of 72 % TCA.	295
	4. Put on ice for 5 min and then centrifuge at $10,000 \times g$ for 10 min at 4 °C.	296 297
	5. Add 700 µl of acetone to the pellet and centrifuge at $10,000 \times g$ for 10 min at 4 °C.	298 299
	6. Repeat the wash with acetone.	300
	 Let dry the pellet and then resuspend in 50 μl of 1× PBS (see Note 4). 	301 302
	8. Store at –70 °C until use.	303
3.4 Yeast Protein Extraction	 Dilute frozen pellet with 50 μl of lysis buffer, transfer to a 1.5- ml vial with 0.08 g glass beads. 	304 305
(Glass Beads)	2. Vortex ten times, 1 min each, and collect supernatant.	306
	3. Wash beads with 50 μ l of lysis buffer and collect supernatant.	307
	4. Pool supernatants and centrifuge at $10,000 \times g$ for 1 h at 4 °C.	308
	5. Collect and store supernatant at -70 °C in lysis buffer containing protease inhibitors.	309 310
	6. Protein concentration in supernatant can be measured using a BCA protein assay reagent with BSA as standard.	311 312

313 314	3.5 cd-LmjMCA Enzymatic Activity in	1.	Harvest transformed yeast cells from a 50 ml culture following 24 h of induction. The pellet can be kept frozen at -70 °C.
315 316	Whole Yeast Cell Lysate	2.	Resuspend the frozen pellet in 100 μ l of lysis buffer, transfer to a 1.5-ml vial and add 0.08 g of glass beads.
317		3.	Vortex ten times, 1 min each.
318		4.	Collect and save supernatant.
319 320		5.	Wash the beads with 50 μ l of lysis buffer, collect and save supernatant.
321 322 323		6.	Pool supernatants and centrifuge at $10,000 \times g$ for 1 h at 4 °C. Collect and store supernatant at -70 °C in lysis buffer containing protease inhibitors.
324 325		7.	Measure protein concentration in the supernatant using a BCA protein assay reagent with BSA as standard.
326 327 328		8.	For one black-plate well, add 196 μ l of Activity buffer and 4 μ l of 10 μ g/ μ l total protein extract (40 μ g total protein per well). Prepare duplicate or triplicate wells.
329 330 331 332		9.	Dilute 50 mM of substrate-AMC to 5 mM with Activity buffer and add 2 μ l of diluted substrate per well (final concentration 50 μ M). Read fluorescence each 15 min for 2 h at 24 °C with 360 nm excitation and 460 nm emission wavelengths.
333 334 335 336		10.	As a positive control use 10 ng of trypsin per well in the 200 μ l reaction volume. As negative controls, use protein extracts from yeast cells transformed with the pESC-His vector or expressing cd-LmjMCA (H147A) and cd-LmjMCA (C202A).
337 338 339 340 341		11.	Determine enzymatic activity by calculating the slope of the linear regression. Express results in arbitrary milli-fluorescence units per minute per μg of protein (mFU/min/ μg), or as the fold increase relative to the activity of the vector control (<i>see</i> Note 5).
342 343 344 345		12.	To test the effect of different protease inhibitors on the enzymatic activity, supplement activity reactions with the following concentrations of inhibitors: 100 μ M z-VAD-fmk, 100 μ M E64, 10 mM PMSF, 1 mM leupeptin, and 100 μ M aprotinin.
346 347	3.6 Purification of Leishmania	1.	Resuspend frozen pellet from a 500 ml culture after induction with galactose for 18 h in 2.5 ml of lysis buffer.
348 349	Metacaspase Catalytic Domain (cd-LmjMCA)	2.	Add 2.5 g of glass beads (0.25–0.5 mm) and vortex ten times, 1 min each (<i>see</i> Note 6).
350	ITOIN TEAST ON NI-NTA Resin	3.	Collect and save supernatant.
351 352	Nom	4.	Wash the glass beads with 2.5 ml of lysis buffer, collect and save supernatant.
353 354		5.	Pool the supernatants, centrifuge at $10,000 \times g$ for 1 h at 4 °C, and save supernatant (contains soluble proteins).

	6. Wash 1 ml 50 % Ni-NTA resin with 2 ml of lysis buffer and add the supernatant (soluble proteins) to the washed resin.	355 356
	7. Incubate overnight at $4 ^{\circ}$ C on a wheel.	357
	8. Centrifuge at $1,000 \times g$ for 5 min at 4 °C, wash the resin twice with 500 µl of Washing Buffer.	358 359
	 Elute protein by adding three aliquots of 500 μl of Elution Buffer and then pool the eluates. 	360 361
	10. Centrifuge the three pooled elutions at $10,000 \times g$ for 1 min at 4 °C.	362 363
	 Pool the supernatants and concentrate eluted proteins in 1× PBS with an Amicon Ultra-4 centrifugal device prior to pro- tein concentration measurement. 	364 365 366
	12. Store at -80 °C until use for the activity test.	367
3.7 Sodium Dodecyl Sulfate–	1. Wash gel glass plates and mount the electrophoresis system according to manufacturer's protocol.	368 369
Polyacrylamide Gel Electrophoresis (SDS-PAGE)	2. Prepare separating gel, fill to the three quarters the glass plate, add some isopropanol on the gel to obtain a flat surface and wait for the gel to polymerize.	370 371 372
	3. Prepare stacking gel, fill the gel glass plate up to the edge, insert the comb and wait for the gel to polymerize.	373 374
	 4. Mix each sample (20 μg of total protein from yeast lysates) with 2× SDS sample loading buffer in a ratio 1:1 (v/v), boil samples for 5 min at 95 °C, spin in microfuge and load on the gel. 	375 376 377
	5. Run gel for 20 min at 80 V and then for 45 min at 180 V with chamber on ice.	378 379
	6. Stain the gel with Coomassie Blue (<i>see</i> Note 7): Soak the gel in a staining solution and incubate with shaking at room temperature for 1 h to overnight.	380 381 382
	7. Soak the gel in a destaining solution and incubate with shaking at room temperature for 30 min. Repeat until background disappears. Store the gel in water or dry (<i>see</i> Notes 8 and 9).	383 384 385
3.8 Western Blotting	1. Equilibrate the gel, four filter papers, and sponges in $1 \times$ transfer buffer.	386 387
	2. Mount a sandwich in the following way: white sponge, two filter papers, nitrocellulose membrane, gel, two filter papers, green sponge (white sponge oriented to the cathode—red face).	388 389 390
	3. Remove bubbles by rolling a 15-ml tube over the sandwich.	391
	4. Run in $1 \times$ transfer buffer for 1 h at 100 V with chamber on ice.	392
	5. After protein transfer, incubate the nitrocellulose membrane on a shaker at room temperature for 5 min in Ponceau S	393 394
	Solution.	395

396 397		6.	Incubate on the shaker at room temperature for 2 min in water to remove excess of Ponceau S red.
398		7.	Take a picture and mark molecular weights with a pencil.
399 400		8.	Incubate on a shaker at room temperature for 10 min in water to complete destaining.
401 402		9.	Incubate the membrane on the shaker for 1 h at room tem- perature or overnight at 4 °C in the blocking buffer.
403 404		10.	Incubate the membrane on a shaker overnight at 4 $^{\rm o}{\rm C}$ with the first antibody.
405		11.	Wash four times for 15 min each with TBST.
406 407		12.	Incubate the membrane on a shaker for 1 h at room tempera- ture with the secondary antibody.
408		13.	Wash four times for 15 min each with TBST (see Note 10).
409 410		14.	For membrane development, deposit the membrane on a clean glass plate.
411		15.	Dry quickly with a filter paper.
412 413		16.	Overlay 1.5 ml of a developing solution (1:1 of ECL solutions A:B for a 0.125 ml/cm ² membrane) and wait for 2 min.
414 415		17.	Dry with a filter paper and cover the membrane with a plastic wrap.
416 417 418		18.	Insert the membrane in a cassette and expose to an X-Ray film for different times (e.g. 2 s, 10 s, 2 min, 10 min); develop the film (<i>see</i> Note 11).
419 420	3.9 cd-LmjMCA Activity Measurement	1.	Use 1 μ g of purified protein in a total 200 μ l volume per well of a 96-well black plate.
421 422	with the Ac-VRPR- AMC Substrate	2.	Add 196 μ l of activity buffer and 1–4 μ l of Ni-NTA purified cd-LmjMCA per well. Prepare duplicate or triplicate wells.
423 424 425 426 427		3.	Dilute Ac-VRPR-AMC in Activity buffer to the final concentration 5 mM and add 2 μ l of diluted substrate per well (final concentration 50 μ M). Read fluorescence each 15 min for 2 h at 24 °C with 360 nm excitation and 460 nm emission wavelengths.
428 429		4.	As a positive control use 10 ng of trypsin per well in the 200 μl reaction volume.
430 431 432 433 434		5.	Determine enzymatic activity by calculating the slope of the linear regression. Express results in arbitrary milli-fluorescence units per minute per μ g of protein (mFU/min/ μ g), or as the fold increase relative to the activity of the vector control (<i>see</i> Note 5).

4 Notes

	 <i>∆yca1</i> cells can be obtained from Euroscarf Accession Number Y02453. 	436 437
	2. ~10 ml overnight culture in 290 ml of YPD medium.	438
	3. ~400 μl overnight culture in 9.6 ml of SD/DO/Glucose medium	439 440
	4. Protein concentration can be measured using the BCA protein assay reagent (Pierce Biotechnology, Inc., Rockford, IL) with BSA as standard.	441 442 443
	5. Enzymatic activity tests must be performed at least three times and means and standard deviations must be calculated. The Student <i>t</i> test is used in statistical analysis and significance is considered when $p < 0.05$.	444 445 446 447
	6. Use 1 g of beads per 1 ml of lysis buffer.	448
	7. Detection limit is $0.3-1 \mu\text{g/protein}$ band.	449
	8. First dilute Coomassie Blue in methanol.	450
	9. If you want to keep your gel (after staining), we suggest to put a plastic sheet (candy wrap plastic) over a filter paper; Put the gel over the plastic sheet and soak with water; Put another plastic sheet over the gel; Perforate with a needle around the gel border; Put it on the desiccator at 70 °C under vacuum for 1 h.	451 452 453 454 455 455
1	0. For competitive blot, first incubate with the peptide at $10 \mu g/ml$, then add antibody and incubate on wheel 60 for min at room temperature.	457 458 459
1	1. Stripping membranes: 15 min shaking in 0.1 M of glycine– HCl pH 2–3; rinse with 1 M of NaCl in $1 \times$ PBS; wash 2×5 min in $1 \times$ TBS–0.1 % Tween-20; rinse with H ₂ O; expose film for 10 min to detect former signal. If there is no signal the mem- brane is ready to be blocked and exposed to a new primary antibody.	460 461 462 463 464 465

Acknowledgements

466

The authors are grateful to the members of the Fasel's group and to Dr. Frank Madeo who provided the pFM21 construct, which served as a control. This work was funded by the grants FNRS N° 3100A0-116665/1 and IZ70Z0-131421 to NF.

471 References

- 472 1. Uren AG, O'Rourke K, Aravind LA, Pisabarro
 473 MT, Seshagiri S, Koonin EV, Dixit VM (2000)
- 474 Identification of paracaspases and metacaspases:
 475 two ancient families of caspase-like proteins,
 476 one of which plays a key role in MALT lym-

477 phoma. Mol Cell 6(4):961–967

- 478 2. Mottram JC, Helms MJ, Coombs GH, Sajid M
 479 (2003) Clan CD cysteine peptidases of parasitic
 480 protozoa. Trends Parasitol 19(4):182–187
- Jiang Q, Qin S, Wu QY (2010) Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria. BMC Genomics 11:198. doi:10.1186/1471-2164-11-198
- 486
 4. Zalila H, Gonzalez IJ, El-Fadili AK, Delgado
 487
 488
 489
 489
 489
 489
 489
 480
 480
 480
 481
 481
 481
 482
 483
 484
 484
 484
 485
 485
 486
 486
 487
 487
 488
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 480
 480
 480
 480
 481
 481
 481
 482
 483
 484
 485
 485
 486
 486
 487
 487
 488
 488
 489
 488
 489
 488
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 489
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490<
- 492 5. Gonzalez IJ, Desponds C, Schaff C, Mottram
 493 JC, Fasel N (2007) Leishmania major meta494 caspase can replace yeast metacaspase in pro495 grammed cell death and has arginine-specific
 496 cysteine peptidase activity. Int J Parasitol
 497 37(2):161–172. doi:10.1016/j.ijpara.2006.
 498 10.004

- 6. Vercammen D, van de Cotte B, De Jaeger G, 499 Eeckhout D, Casteels P, Vandepoele K, 500 Vandenberghe I, Van Beeumen J, Inze D, Van 501 Breusegem F (2004) Type II metacaspases 502 Atmc4 and Atmc9 of Arabidopsis thaliana 503 cleave substrates after arginine and lysine. J Biol 504 Chem 279(44):45329-45336. doi:10.1074/ 505 jbc.M406329200 506
- 7. Watanabe N, Lam E (2005) Two Arabidopsis 507 metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol 510 Chem 280(15):14691–14699. doi:10.1074/ 511 jbc.M413527200 512
- Lee N, Gannavaram S, Selvapandiyan A, 513 Debrabant A (2007) Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eukaryot Cell 517 6(10):1745–1757. doi:10.1128/EC.00123-07 518
- 9. Vercammen D, Belenghi B, van de Cotte B, 519 Beunens T, Gavigan JA, De Rycke R, 520 Brackenier A, Inze D, Harris JL, Van 521 Breusegem F (2006) Serpin1 of *Arabidopsis* 522 *thaliana* is a suicide inhibitor for metacaspase 523 9. J Mol Biol 364(4):625–636. doi:10.1016/j. 524 jmb.2006.09.010 525