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a b s t r a c t

Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations
in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to
alterations in sensory pathways normally dedicated to the processing of non-nociceptive information.
Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to
changes in the astrocytic capacity to scavenge extracellular glutamate and �-aminobutyric acid (GABA),
through changes in their respective transporters (EAAT and GAT). In the present study, we investigated
the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory
information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with
racile
ABA
ransporter

a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1
is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [3H] GABA reuptake on
crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in
SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with
astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus.
Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic

enso
target against abnormal s

hronic neuropathic pain (arising from damages to the nervous
ystem) is prevalent, highly debilitating as well as frequently
ntractable and therefore represents a major socio-economic issue

orldwide. It is characterized by prominent features including
pontaneous pain, allodynia (painful sensation in response to nor-
ally innocuous stimuli) and dysesthesia/paresthesia (unpleasant

bnormal sense of touch or sensory experiences such as feel-
ng of numbness, tingling/picking). Remarkably, over the past few
ears, a large body of evidence has accumulated showing that cen-
ral glial cells (chiefly astrocytes and microglia) are involved in
europathic pain [9,12]. Indeed, many studies have recurrently

ndicated that peripheral nerve insults result in profound mor-
hological changes in spinal glial cells as well as upregulations of
anonical markers such as Glial Fibrilary Acidic Protein (GFAP) in

strocytes or Ionized calcium Binding Adaptor molecule 1 (Iba-1)
n microglia. In addition, many lines of pharmacological evidence
oint to this so-called spinal “glial reaction” as a key driving force

n the persistence of allodynia. Yet, despite significant advances in
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ry perceptions related to neuropathic pain.
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our understanding of the molecular cascades occurring in spinal
glia that could drive allodynic behaviors, the exact chain of events
remains largely incompletely understood. One hypothesis that has
arisen lately points to alterations in the capacity of astrocytes to
scavenge synaptically released neurotransmitters (glutamate and
GABA) [18]. This may occur through changes in related Excita-
tory Amino-Acid (EAAT) and GABA (GAT) Transporters, especially
a decrease in EAAT-1 and EAAT-2 as well as an increase in GAT-1
and 3 subtypes, known to be expressed in glia, thus impairing the
maintenance of a proper excitation over inhibition balance in the
somatosensory neuronal network.

Interestingly, it is classically considered that the main first
synaptic relay of sensory neurons that code for normally innocu-
ous information (light touch, pressure, vibration) is not located in
the dorsal spinal cord (as opposed to the nociceptive neurons).
Such information is instead conveyed via the dorsal column path-
way toward the gracile and cuneate nuclei, located in the medulla
oblongata. Strikingly, some scarce evidence has been provided indi-
cating that the gracile nucleus is also involved in the transmission

of nociceptive information or may contribute to mechanical allody-
nia, especially in neuropathic conditions [10,11,14]. Furthermore,
consistent, albeit rare, reports have highlighted the existence of a
microglial and an astrocytic reaction in the gracile nucleus follow-
ing neuropathy [6,8,19]. However, nothing is known regarding the
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xpression of glutamate and GABA transporters in this brain region
n neuropathic pain.

In the present study, we induced peripheral neuropathy using
he spared nerve injury (SNI) model in rats in order to study the
lial reaction and the expression of EAAT and GAT transporters
n the gracile nucleus. The results indicate that, together with a

icroglial and astrocytic activation, a significant increase in GAT-1
xpression occurs in the entirety of the ipsilateral gracile nucleus,
ith no detectable change in GAT-3, EAAT-1 or EAAT-2 expression.

Adult Sprague–Dawley rats, weighing 200–250 g (Charler River,
rance) were submitted to SNI surgery as previously described
3]. Briefly, under isoflurane anesthesia, the left sciatic nerve was
xposed at the level of its trifurcation into sural, common peroneal
nd tibial branches. The common peroneal and tibial nerves were
igated and cut leaving the sural nerve intact. Wounds were sutured
nd the animals were left to recover and watched daily for any sign
f stress, distress or autotomy. Sham surgery consisted in the same
rocedure except that all nerves were left untouched before the
uturing step. Tissues were collected seven days post surgery under
eep lethal pentobarbital injection. All procedures were approved
y the Committee on Animal Experimentation for the canton of
aud, Switzerland, in line with Swiss Federal Law on Animal Wel-

are and the recommendations of the International Association for
he Study of Pain.

For immunofluorescence, rats under terminal anesthesia were
erfused with phosphate buffered saline for 1 min and then with

ce-cold paraformaldehyde (4% w/v in PBS) for 10 min. The brains
ere carefully dissected and post fixed in the same fixative

vernight at 4 ◦C. Free floating coronal sections (30 �m thick) of the
edulla oblongata were cut from the caudal to the rostral extrem-

ty using a vibratome (Leica), collected in cold PBS, and stored at
◦C until use. For mapping experiments, each slice was stored

eparately starting at the first one were gracile nuclei were visi-
le under a binocular lens (around −14.6 mm from Bregma, noted

evel 0 �m) until the last one (around −13.7 mm from Bregma,
oted level 990 �m). For immunolabeling, all incubation solutions
ere prepared from the same solution as for blocking, consisting in

BS supplemented with 10% normal goat serum and 0.05% Triton
-100. The same antibodies as for Western-blot were used as fol-

ows: EAAT-1 (1/500), EAAT-2 (1/50; Abcam, USA), GAT-1 (1/500;
bcam, USA), GAT-3 (1/500; Abcam, USA), GFAP (1/1000; Millipore,
SA). In addition, the following antibodies were used: rabbit anti-

ba1 (1/200; Wako, Japan), mouse anti-cd11b (1/500; Setotec, UK).
econdary antibodies were Goat anti-rabbit Alexa-488 and Goat
nti-mouse Cy3 (1/1000) and were used together with DAPI nuclear
abeling. Blocking, primary and secondary incubations were 30 min
t room temperature, over night at 4 ◦C and 1 h at room temperature
espectively. Microphotographs were taken using an epifluorescent
icroscope (AxioPlan, Zeiss, Switzerland) and the Axiovision soft-
are (Zeiss). High magnification images (×40 objective) were taken
sing z-stack option (stacks of 10 images). This allowed the stack-

ng and deconvoluated acquisition of photographs along the whole
hickness of the slice. For each section, digital images were all pro-
essed using the same settings to improve the contrasts with no
eparated part of any pictures modified independently. For signal
uantification, the images were analyzed by an experimenter blind
o both animal group and body side of the sample using ImageJ free-
are (National Institute of Health, http://rsb.info.nih.gov/ij/). Mean
ixel intensity (grey value) of GFAP or GAT-1 immunoreactivities
as calculated by selecting a 0.04 mm2 area in the center portion of

he gracile or cuneate nucleus. Statistics were made using Graph-

adPrism software (GraphPad, USA). Student’s t test was performed
o compare sham and SNI samples, significance threshold was set
p at p < 0.05 in all analyses.

For Western-blot analysis, rats under terminal anesthesia were
ecapitated and the brains were rapidly dissected to expose
Letters 480 (2010) 132–137 133

the medulla oblongata. Isolated samples consisted in roughly
2 mm long pieces of dorso-medial medullar tissue underneath
the caudal limit of the cerebellum. Ipsilateral and contralateral
samples were collected separately. Following protein extraction,
Western-blots were performed using the following antibodies:
rabbit against EAAT-1 (1/5000; Abcam, USA), rabbit against EAAT-
2 (1/500; Abcam, USA), rabbit against GAT-1 (1/5000; Abcam,
USA), rabbit against GAT-3 (1/5000; Abcam, USA), mouse anti-
GFAP (1/2000; Millipore, USA), rabbit against Iba1 (1/1000; Wako,
Japan) and mouse anti-GAPDH (1/50,000; Abcam, USA). Horse
radish peroxidase-conjugated secondary antibodies were used for
detection (1/8000, Dako, Denmark). Blocking (30 min at room tem-
perature) and probing (1 h at room temperature) incubations were
made in 5% (w/v) non-fat milk in phosphate buffered saline (PBS)
with 0.1% Tween 20. Washings were made in PBS–Tween. After
washings, the membranes were incubated with ECL reagent (Pierce,
USA) and exposed to a luminescent image analyzer (LAS-4000,
Fujifilm, Bucher, Switzerland). For subsequent GAPDH detection,
the membranes were subsequently directly processed for anti-
body incubation. For quantification, the bands were quantified
using ImageJ software, signals were first normalized over GAPDH
intensity and then over the mean of sham intensity. Statistics
were made using GraphPadPrism software (GraphPad, USA). Stu-
dent’s t test was used and threshold was set up at p < 0.05 in all
analyses.

For preparation of crude synaptosomes, about 5 mm of ipsi-
lateral and contralateral brainstem dorsal portion (straddling the
caudal extremity of the fourth ventricle) were collected in ice-cold
homogenization buffer (0.32 M sucrose in 10 mM HEPES). Sam-
ples were homogenized by a 10 s stroke with a rotator Miccra D1
homogenizer (Milian, Switzerland) and centrifuged (1000 g, 10 min
at 4 ◦C) to pellet cell debris and nuclei. Supernatants were then cen-
trifuged (15,000 g, 10 min at 4 ◦C) and the pellets were resuspended
in incubation buffer consisting in (mM): KCl: 5.33; NaHCO3: 26.2;
NaCl: 117.2; NaH2PO4: 1; d-glucose: 5.5; CaCl2: 1.2; HEPES: 1; pH
7.4. Crude synaptosomes were exposed 5 min (room temperature)
to either GAT inhibitor NNC711 (Tocris, 1 �M) or the same vol-
ume of incubation buffer (vehicle). Subsequently, all samples were
incubated with [3H] GABA (PerkinElmer, 50 nM, 89.5 Ci/mmol) for
5 min. Reuptake was stopped by centrifugation (15,000 g, 1 min at
4 ◦C) followed by 3 cycles washings/resuspensions/centrifugation
in ice-cold incubation buffer. Synaptosomes were lysed in 300 �l of
NaOH 0.25 M, SDS 0.1%. The incorporated radioactivity was quan-
tified by liquid scintillation and protein content was evaluated by
Bradford reaction.

In SNI animals, an augmentation in the density of Iba1 express-
ing microglia is noticeable ipsilaterally to the injury (Fig. 1A panels
a, b). Furthermore, an astrocytic reaction is also evident as assessed
by the intensification in GFAP immunoreactivity (Fig. 1A panels c,
d). Additionally, a rise in cell density is also visible, as shown by
the increased nuclei packing observed using DAPI labeling (Fig. 1A
panels e, f). This increase in cell density might be attributable to
processes of cell proliferation or division, both phenomena being
known to occur in the spinal cord following neuropathy. In this
regard, paralleling what has been described in the spinal cord, the
cell type accountable for this augmentation is likely to be microglia
and, to a lesser extent, astrocytes [4,16]. When considering sin-
gle coronal plans, the glial reaction seems to be evenly distributed
throughout the gracile parenchyma. No difference in glial markers
was detected between the gracile nuclei from sham animals and the
contralateral one from SNI rats (not shown). Western-blot analysis

confirmed the increase in GFAP in the ipsilateral tissue from neuro-
pathic rats in comparison to sham animals (p = 0.05, n = 7 Student’s
t test, Fig. 1B). Additionally, the study of GAT-1 protein showed
a significant increase in GAT-1 in the ipsilateral side of SNI ani-
mals compared to the sham condition (p < 0.0001, Student’s t test,

http://rsb.info.nih.gov/ij/
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Fig. 1. The spared nerve injury (SNI) results in a glial reaction in the ipsilateral gracile nucleus. A: Immunofluorescence analysis showing microglial Iba1 (a, b), astrocytic
G immu
s ng the
r ed ov

n
r
a
F

FAP (c, d) and DAPI nuclear labeling (e, f) in SNI rats. An increased Iba1 and GFAP
ide is visible. Scale bar: 200 �m. B: representative images of Western-blot reveali
ats. Bar histograms show GFAP band intensity, as a ratio over GAPDH and normaliz
= 7 in each group, Fig. 2A, B). No significant difference was found
egarding EAAT-1, EAAT-2 or GAT-3 between samples from sham
nd SNI animals, either ipsilaterally or contralaterally (Fig. 2A).
urthermore, functional experiments on synaptosomes show that
noreactivity as well as an increased cell density in comparison to the contralateral
increased Iba1 and GFAP expression in the ipsilateral dorsal column nuclei of SNI

er sham. *, p < 0.05 in Student’s t test, n = 7 in each group.
in SNI animals, the ipsilateral dorsal brainstem (containing the
gracile nucleus) incorporates more [3H] GABA than contralateral
tissue (2.49 × 106 ± 274,000 vs. 1.43 × 106 ± 327,000 cpm/mg pro-
teins, p < 0.01 ANOVA followed by Dunnett’s test, n = 6 in each
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Fig. 2. Peripheral neuropathy induces an increase in GAT-1 expression in the ipsilateral gracile nucleus. A: Western-blot analysis showing representative bands from SNI
and sham rats, from either ipsilateral or contralateral dorsal column nuclei. An increase in GAT-1 signal in ipsilateral SNI sample is observed. B: Bar histogram showing
the band quantification (same legend as in Fig. 1). ***, p < 0.0001, Student’s t test for sham vs. SNI, n = 7 in each group. C: [3H] GABA reuptake on brainstem synaptosomes.
A significant increase in GABA incorporation is observed ipsilaterally in SNI animals in comparison to the contralateral side. No difference was detected between sham
i d on t
D er pa
( GFAP

g
(
t
l
t

psilateral and contralateral samples. Preincubation with 1 �M NNC711 is indicate
: Dual immunofluorescence showing the overlap (yellow) between GFAP (red, upp

green, lower panels) signals. Inserts show higher magnification of a representative
roup, Fig. 2C). Preincubation of synaptosomes with 1 �M NNC711
a GAT blocker that selectively blocks GAT-1 at this concentra-
ion) inhibits both ipsi- and contralateral transport up to similar
evels (510,600 ± 87,000 vs. 7,683,000 ± 173,800), suggesting that
he increased ipsilateral GABA reuptake in SNI animals was due to
he four last bars. **, p < 0.001, Student’s t test for sham vs. SNI, n = 6 in each group.
nels) and GAT-1 (green, upper panels) but not cd11b (red, lower panels) and GAT-1
labeled astrocytes. Scale bar: 100 �m.
GAT-1 upregulation. Importantly, dual fluorescence immunolabel-
ing reveal that GAT-1 colocalizes with GFAP signal but not with the
microglial marker cd11b (Fig. 2D).

Furthermore, we asked whether the astroglial reaction and the
GAT-1 increase were present uniformly throughout the rostro-
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Fig. 3. Distribution of GFAP and GAT-1 immunoreactivities over the rostro-caudal axis of the gracile nucleus (A, C) and cuneate nucleus (B, D) in SNI animals. Astrocytic
a ile nuc
s GAT-
a 0 �m.

c
t
d
i
n
i
h

i
s
a
w
a
n

w
p
H

ctivation as well as GAT-1 increase is present in the entirety of the ipsilateral grac
ide; C, contralateral side). **, p < 0.01, Student’s t test, n = 4. No change in GFAP or
ugmented GAT-1 immunoreactivity in the ipsilateral gracile nucleus. Scale bar: 20

audal axis of the gracile nucleus. Mapping analysis shows that
he augmentation in both GFAP and GAT-1 immunoreactivity are
etectable all along the nucleus (Fig. 3). Interestingly, no change

n GFAP or GAT-1 immunosignals could be detected in the caudate
ucleus, in line with the targeted glial reaction in regions receiving

nputs from the lower limb. As shown in Fig. 3E, this increase is also
ighlighted using immunofluorescence.

In the present study we report that a glial reaction takes place
n the gracile nucleus in the SNI model of neuropathic pain, and
how that it is associated with an increase in GAT-1 expression and
n augmented GABA transport capacity. The GAT-1 upregulation
as observed throughout the entire gracile nucleus, and was not

ccompanied with detectable changes in the neighboring caudate

ucleus.

These advances are in accordance with previously published
orks showing that animal models of neuropathy were accom-
anied with a glial reaction in the gracile nucleus [6,8,19].
owever, we report here the first study aiming at evaluating the
leus (A and C). Inserts show calculation of the area under curve (AUC; I, ipsilateral
1 was observed in the cuneate nucleus. E: Representative photomicrograph of the

consequences of peripheral nerve injury on the expression of trans-
porters for neurotransmitters in the gracile nucleus. The increase
in GAT-1 reported herein is of importance considering the key role
played by the GABA reuptake machinery in the maintenance of nor-
mal neurotransmission, especially in the somatosensory pathway
[5]. Indeed, an increased expression in GAT-1 was reported in the
spinal cord of neuropathic pain models, and the associated pain
hypersensitivity was reversible upon GAT-1 inhibitor administra-
tion [2]. Moreover, engineered mice devoid of the GAT-1 gene show
a significant hypoalgesia [23]. It is therefore likely that the GAT-
1 upregulation contributes to an augmented GABA clearance and
favors disinhibition and at least partially results in a perturbation
in the normally non-nociceptive signals converging to the gracile

nucleus, and then in turn may account for the allodynic behaviors.
Furthermore, as it has been previously highlighted that the dorsal
column pathway conveys allodynic information as well [14], the
observed changes might also account for the increased response to
normally painful stimuli (hyperalgesia). Pharmacological antago-
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in the dorsal column of the spinal cord, Proc. Natl. Acad. Sci. U.S.A. 96 (1999)
7675–7679.

[22] W.D. Willis Jr., K.N. Westlund, The role of the dorsal column pathway in visceral
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ism of GAT-1 functioning at the gracile level in SNI rats, as well
s GAT-1 activation in naive animals would clarify this point in the
uture.

Interestingly, no changes in any analyzed glutamate trans-
orters were found in the present study. This could represent a
triking difference from the spinal cord glial regulation in neu-
opathic pain as a drop in EAAT expression has been recurrently
eported in the spinal cord in various models of chronic pain
ncluding neuropathy [1,15,17,20]. It is conceivable that the sig-
als triggering the glial activation and transporters regulation differ
etween the spinal cord and the dorsal column pathway. Such sig-
aling remains to be elucidated. Nevertheless, we cannot rule out
he possibility that EAAT regulation might take place at another
ime point during the course of neuropathy.

The possibility that glial perturbation may take place in the dor-
al column nuclei in chronic pain offers new perspective for future
herapeutics aiming at selectively reducing allodynia or pares-
hesia/dysesthesia. Interestingly, the dorsal column pathway has
merged as a target in refractory forms of chronic pain through the
evelopment of spinal stimulation [7]. Such electrical stimulation
as been shown to provide pain relief, although its precise mech-
nisms of action remain unknown. One possibility would be the
nterference with the normal physiology of the dorsal column path-

ay. It would be of primary importance to assess the effect of such
timulation on the glial phenotype in the gracile nucleus. Further-
ore, as in the specific context of visceral hyperalgesia the dorsal

olumn pathway has been shown to play a key role [13,21,22], fur-
her investigations studying the gracile glial reaction in models of
isceral pain would be highly significant.

In conclusion, the present study provides direct evidence of a
trong glial reaction together with a marked increase in the GABA
ransporter GAT-1 in the gracile nucleus in response to peripheral
erve injury. This may have important consequences in our under-
tanding of neuropathy-associated allodynia and paresthesia, and
ighlight the GABA-mediated inhibition in the dorsal column nuclei
s a possible future target to alleviate these symptoms.
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