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Abstract In games, the goals and interests of players are
key factors in their behavior. However, techniques used by
networked games to cope with infrequent updates and mes-
sage loss, such as dead reckoning, estimate a player’s move-
ments based mainly on previous observations. The estima-
tions are typically made by using dynamics of motion, tak-
ing only inertia and some external factors (e.g., gravity,
wind) into account while completely ignoring the player’s
goals (e.g., chasing other players or collecting objects).

This paper proposes AntReckoning: a dead reckoning al-
gorithm, inspired from ant colonies, which models the play-
ers’ interests to predict their movements. AntReckoning in-
corporates a player’s interest in specific locations, objects,
and avatars in the equations of motion in the form of at-
traction forces. In practice, these points of interest generate
pheromones, which spread and fade in the game world, and
are a source of attraction.

To motivate and validate our approach we collected
traces from Quake III. We conducted specific experiments
that demonstrate the effect of game-related goals, map fea-
tures, objects, and other players on the mobility of avatars.
Our simulations using traces from Quake III and World of
Warcraft show that AntReckoning improves the accuracy by
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up to 44% over traditional dead reckoning techniques and
can decrease the upload bandwidth by up to 32%.
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1 Introduction

Interactive games have become very popular over the last
decades reaching an unprecedented scale, and therefore,
forcing major on-line multi-player gaming platforms to de-
velop a range of techniques to increase their scalability.
In interactive games, position update messages account for
the largest portion of the network traffic [21] raising band-
width issues. This calls for techniques that accurately predict
player movements in order to reduce the update rate, while
keeping the error on player position low.

Traditionally, the current position of an avatar is es-
timated from previous positions. Only when the error is
higher than a threshold a new position update is sent, thus
reducing the update rate [1, 13]. Upon reception of a new up-
date, a convergence step is performed to hide the estimation
errors from the player in rendering the motion [26]. Such
techniques also help cope with message loss by extrapolat-
ing the new position when the new update is not received.

Dead reckoning estimates the position of an object from
the equations of motion, based on previous observations. It
has been successfully used in a number of areas including
distributed simulations [13, 24], games [1, 26] and aviation.
Although the performance of dead reckoning, in its current
form, is good enough for vehicles moving smoothly [5],
it may degrade to an unacceptable degree in games where
players, driven by their short-term environment-related
goals, make frequent and sudden changes to their move-
ments. A typical example of this is a wounded player, mov-
ing in a given direction, with both an attacker shooting at
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him and a health pack in his vision field: he tends to maintain
the same motion (because of inertia), while trying to move
towards the health pack and evade from the attacker. As
games generally have relaxed physical rules, sudden dras-
tic changes in movements (e.g., U-turn) can occur. These
unpredictable changes dramatically reduce the performance
of dead reckoning as it only takes mechanics into account.

Inspired by this example, we argue that key factors in
an avatar’s motion are not only inertia but also the player’s
interests, specifically the objectives of the game, as well as
entities in his vicinity that we call points of interest. Follow-
ing this line of reasoning, we propose AntReckoning. To the
best of our knowledge it is the first approach to use interest
modeling for dead reckoning. The main concepts involved
in AntReckoning are as follows:

• Each entity is assigned a given attractiveness leading to
the generation of pheromones that spread in the game
world and fade over time;

• Pheromones in the vicinity of an avatar exert attraction
on it. Attraction is integrated in the equations of motion,
under the form of forces, to estimate the avatar’s future
position.

The main contributions of AntReckoning are (1) to incor-
porate player interest into the equation of motion used for
dead reckoning, and (2) to provide a framework for interest
modeling and to use pheromones which take temporal and
spatial aspects of players’ interest into account. In addition,
pheromones offer a practical solution to the decentralized
implementation of interest based dead reckoning. We moti-
vate by showing the usefulness of our interest based dead
reckoning by using traces from Quake III. We demonstrate
that game objects and map features have a measurable im-
pact on the player mobility patterns and, not surprisingly, so
do player interactions.

In addition, we evaluate our AntReckoning algorithm by
using traces of World of Warcraft and Quake III, providing a
basis to fine tune AntReckoning’s game and player-specific
parameters. Our simulation results show that AntReckon-
ing, if properly configured for the game, consistently outper-
forms dead reckoning, and improves the average accuracy of
the estimation by up to 44% over traditional dead reckoning.
As AntReckoning involves several parameters, we identify
the key ones and perform a thorough sensitivity analysis to
evaluate their respective effect on the accuracy. We also dis-
cuss solutions to set game-related parameters, such as the
attractiveness of objects, and practical implementation as-
pects.

The rest of the paper is organized as follows. Section 2
briefly introduces the reader to multi-player online games
and to the basics of mechanics underlying dead reckoning
techniques. Section 3 reports on preliminary experiments
demonstrating the effect of game-related goals, map fea-

tures, objects, and other players on the mobility of avatars.
Section 4 presents AntReckoning and introduces the key
mechanisms and parameters involved. Section 5 discusses
the technical implementation details of AntReckoning and
gives insight on the fine tuning of its parameter through
experimentation. Section 6 reports on the sensitivity anal-
ysis and performance evaluation of AntReckoning, based on
Quake III and World of Warcraft mobility traces. Section 8
surveys related work and Section 9 concludes the paper.

2 Background

In multi-player games, players control their avatars which
inhabit in a virtual space called the game world. The so-
called game world contains a number of features, includ-
ing hills and buildings, and is populated by objects (e.g.,
weapons and health packs) and avatars (see Figure 1).
Clients regularly exchange the states of their avatars, includ-
ing their position. The update dissemination to clients can be
done directly among players or via game servers. The objec-
tive of the game is to accomplish missions such as going to
a given location, collecting objects, or killing other entities.

In networked games, dead reckoning exploits informa-
tion contained in the last state updates to extrapolate the
time-dependent future state of entities. The applications of
dead reckoning can typically be divided into two categories:
(1) enabling less frequent exchange of state updates by issu-
ing an update only when the prediction error is higher than
an acceptable threshold (this is called threshold-based dead
reckoning); (2) helping cope with loss or jitter when fre-
quent update messages are sent at a fixed rate. Therefore, a
typical dead reckoning problem is the estimation of the po-
sition of a moving entity, which is required for rendering the
virtual world at the clients, between two successive updates.
In this situation, the key variables are the kinematic vari-
ables: the entity’s last position xt, its velocity vt = ẋt, and
possibly its acceleration at = ẍt (as defined by the IEEE
Standard for Distributed Interactive Simulation [18]), where
t represents time. Extra information, that helps estimate the
forces the entity is subjected to, can also be included. For ob-
jects extended in three-dimensional space, the kinetic state
includes orientation and angular velocity as well (and possi-
bly the angular acceleration).

The study of the trajectory of objects relies on the dy-
namic equations of motion, and more specifically, on New-
ton’s second law, which links the acceleration at of an ob-
ject, its mass m and the forces f it is subject to:

at =
1

m

∑
f . (1)

When a closed form expression of the (sum of the) forces is
known, the ordinary differential equation characterizing the
trajectory of the object can be obtained from this relation,
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and formally or numerically solved. When the mass is con-
stant and in the case where the forces are determined by the
entity’s position and external factors such as wind and grav-
ity, the future position of the object is fully determined by
its initial position and velocity

In practice, a polynomial approximation derived from
the Taylor series expansion of the position, as a function of
time, is used to predict the position in a near future. For in-
stance, the second-order polynomial predictor is given by

xt+δt = xt + vt δt+
1

2
at δt

2 (2)

Note that such predictors are accurate only for small val-
ues of δt (compared to the speed at which players move and
change their direction). It has been shown that using deriva-
tives of orders higher than two usually results in a negligible
improvement in the prediction [27, 29]. As a result, the use
of first and second order derivatives is usually preferred, and
estimating the velocity and acceleration and sending them
with the current position is sufficient for short-term dead
reckoning.

Estimating velocity and acceleration is commonly done
from previous observations using an exponential moving av-
erage (EMA). In short, EMA estimates the velocity by a
weighted sum of its current instantaneous value, specifically
the difference between the current position xt and the last
position xt−δt divided by the time interval δt, and the last
estimation:

vt = αv
xt − xt−δt

δt
+ (1− αv) vt−δt (3)

at = αa
vt − vt−δt

δt
+ (1− αa) at−δt (4)

In other terms, the estimate of the velocity is a weighted
sum of the current and previous values of the instantaneous
velocity. The weights of the previous values decrease expo-
nentially with time. Such an approach has proved to have a
beneficial smoothing effect [7].

3 Motivation and Design Rationale

When using a first order predictor, the velocity of the avatars
is usually estimated from the short-term history of their
states, thus, taking into account only their inertia in the pre-
diction. To increase the accuracy of dead reckoning, one
needs to estimate the forces the avatar is and will be sub-
ject to and incorporate them in the second derivative (i.e.,
the acceleration in the equations of motion).

Estimating the forces an avatar is subject to is a difficult
task since it depends on the player’s decisions: For instance,
a player can suddenly accelerate to have his avatar in the
game world chase another avatar. The intuition behind this
reasoning is that a player is more likely to follow another
player or to go to pick up a game item (e.g., a weapon) rather

other avatar

health pack

strategic spot

weapon

ammunitions
health

Fig. 1 Screenshots of a Quake III game in the q3dm01 map. Objects,
avatars and map features in the vicinity of an avatar play an important
role in the decision made by the player and thus affect the way he
moves.

than just continuing on its current path. The key here is the
fact that players’ moves are usually driven by specific goals
and interests that are themselves related to features of the
virtual world. Indeed, in games such as World of Warcraft,
players are interested in specific locations, certain objects,
and other avatars, namely points of interest (POI).

To support this claim a number of experiments were
done using Quake III traces in q3dm01 map. The q3dm01
map is spread over a single level and it is composed of two
main rooms connected by two crossing corridors. A third
corridor on the south of the southernmost room leads to
a cave (dead-end). Objects are disseminated on the map,
including a powerful weapon in the center of each room
and a body armor in the cave. All objects disappear when
picked up and reappear at the same location a few seconds
later. When killed, players respawn at one of the so-called
respawn spots. Figure 2 depicts the map with the different
objects it contains and the respawn spots.

Fig. 2 The q3dm01 map from Quake III. The map is spread over a
single level and it is composed of two main rooms connected by two
crossing corridors. A third corridor leads to a cave (dead-end).

We conducted two sets of experiments. The first set of
experiments examines the effect of game items (weapons,
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ammunitions, etc.) and map features (walls, corridors, cor-
ners, etc.) on the players’ behavior, whereas the latter exam-
ines the effects of interactions between players on their be-
havior. Both are crucial to model player’s interest and should
be taken into account in a behavior prediction algorithm.

Fig. 3 Presence of players in the q3dm01 map from Quake III with
different entity positions (logarithmic grayscale colormap). The pres-
ence data was extracted from a 16-player game trace of 10 minutes.

Game Items and Map Features: In order to demonstrate
the effect of players’ interest in game items, two experi-
ments were conducted in which the locations of interest-
ing items (e.g., weapons, health packs, ammunitions) was
changed. Figure 3 depicts the concentration of player move-
ments in the game world, where darker regions are regions
more populated by the players during the gaming session.
Based on Figure 3, a number of observations can be made:

• Some places and paths on the map are popular due to their
strategic advantage in the game, regardless of the location
of the game items. These spots are advantageous because
they provide a better cover, vantage points, or shortcuts in
the game due to the map design.

• Changing the location of popular game items results in
dramatic changes in the popularity of different regions in
the game world. In Figure 3, players’ presence in lower
map parts (i.e., two lower corners of the southernmost
room and the corridor leading to the cave) is almost di-
minished after removing interesting items (i.e., ammuni-
tions, health packs and the body armor). This shows that
player’s interest, and by extension their behavior and their
mobility, is affected by game items: when game items’ lo-
cations are changed, new hotspots emerge and some re-
gions become less populated.

• Popular player paths change as the game item locations
are changed. This is due to the fact that players tend to
choose the shortest and safest paths to items of interest.
As a result, when item locations change, players’ move-
ment patterns also change. Examples of such path changes

can be observed in different regions in Figure 3: The lower
right and left corridors are equally attractive when the left
corner of the southernmost room contains ammunitions;
However when all the items in the second room are gath-
ered in the centers, the right corridor is preferred.
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Fig. 4 Effect of player interactions on their behavior. When engaged
in a fight, players tend to get away from each other (escaping or shoot-
ing while moving backward). However, when not being shot at back,
players moves towards their target more often.

Player Interactions: Player interactions also affect play-
ers in the game world. In order to evaluate their effect, the
following measurements were performed: When an interac-
tion, in which player P shoots player Q, occurs at time t,
we record the position of both players, as well as the time
elapsed since Q last shot P , referred to interaction recency.
We then look at the difference between the distance between
P and Q’s positions at time t and the distance between P ’s
position at time t+δt andQ’s position at time t. If this differ-
ence is positive, it means that P tried to get closer toQwhile
shooting at him. We aggregate these points by time bins of
one second and compute, for each bin, the probability that P
tries to get closer to Q. Results are depicted in Figure 4 as a
function of time elapsed since the interaction happened. We
observe that players in a firefight usually get away from each
other as they want to get out of each others line of fire. How-
ever, they are less likely to do so when the player they are
shooting at is not shooting back at them. The rationale is that
by getting close to a target that is not responding they are
able to better target them. However, when being shot back
by the other player, players tend to move to a more defen-
sive stance. This is typical of most first-person shooter death
match games. In other types of games, however, player in-
teractions might have different effects. For example, friends
playing in teams completing a mission together will not run
away from each other and may move together to carry on
different game tasks.

To sum up, a successful interest-modeling algorithm
should handle the following situations: (1) Game items at-
tract players. This is especially true if they are valuable or
when the player is in urgent need of them. For example, if a
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player comes across a powerful weapon, he will most likely
move towards it and pick it up. Similarly, players running
out of ammunitions or who are wounded would pick up am-
munitions or health packs. Attraction therefore depends on
both the objects of interest and the state of the moving avatar.
(2) Players are attracted by the avatars they are chasing or
they want to trade with, and repulsed by the avatars that are
chasing them. These can be determined using interaction
history between players, their teams, their social network
(i.e. friendship relations) and the nature of the game they are
playing. (3) Interesting and popular locations (e.g., top of a
hill, corners, etc.) in the game, namely hotspots, are sources
of attraction. Such attraction points can be inferred from the
history of the movements of all players and/or the map de-
sign. (4) Players are repulsed by some game locations and
map items, e.g. locations where players are endangered, or
become under attack by map items such as automatic game-
controlled towers.

In order to use the traditional framework of dynamics
while considering game strategy for predicting avatar move-
ment, we incorporate player interest in the second order pre-
dictor in the form of attraction/repulsion forces. The inten-
sity of the forces exerted by POIs on the avatars depends on
their attractiveness and can be determined or learned.

4 The AntReckoning Algorithm

AntReckoning implements a scalable algorithm based on
pheromones to model players’ interests in a lightweight and
efficient way. This model is used to improve the accuracy of
position predictions made by the dead reckoning algorithm.

In AntReckoning, points of interest are treated as ants
that generate pheromones modeling their relative attractive-
ness. Pheromones are chemicals (which concentration is
coded by a floating point number) that exert attraction forces
on players, integrated in the second order predictor. They
spread in the game world, and fade over time, therefore
capturing the geometrical and temporal aspects of interest.
Throughout this section, we use the example depicted in
Figure 5 to illustrate the different mechanisms involved in
AntReckoning. Table 1 (located on page 7 at the end of this
section) summarizes AntReckoning’s parameters together
with a brief description and the values used in the evalua-
tion. We discuss how to tune these parameters in Section 5.

Model Consider a game evolving in discrete event loops
called frames. In each frame each player needs to know the
positions of other avatars, which he receives through posi-
tion updates. Consider player Q who seeks to estimate the
position xt+δt of the avatar of player P in frame t+δtwhile
the last update received contains the position xt (and possi-
bly the estimated velocity vt and acceleration at) of P in
frame t.

P
v

1

2m
Σf

dead reckoned avatar (P )
other avatar
object of interest
predicted position
past trajectory

attraction forces

Fig. 5 Overview of AntReckoning: the game world is divided into cells
by using a regular square grid. Each cell contains a certain amount of
pheromone, represented here in grayscale. To estimate the current posi-
tion of P , one adds (1) his velocity, estimated from his past trajectory,
and (2) the sum of the attraction/repulsion forces (divided by his mass)
generated by cells inside a square region around him (called attraction
region), to the position of P in the last frame. Attraction forces are di-
rected towards the attracting cells and their intensity is proportional to
the amount of pheromone they contain.

Dead Reckoning AntReckoning makes use of a second or-
der predictor where the second order term is a weighted sum
of the acceleration of the avatar and the attraction forces.
The estimated position therefore writes:

xt+δt = xt+vt δt+
1

2

(
α

1

m
Ft + (1− α) at

)
δt2 , (5)

where δt is the number of frames elapsed since the last po-
sition update, Ft is the sum of the attraction forces exerted
by pheromones on P and other forces (e.g., gravity), and
vt (resp. at) is the estimated velocity (resp. acceleration)
of P . In AntReckoning, the estimation of velocity and ac-
celeration is performed from previous observations by using
EMA, as described in Section 2, with parameters αv and αa.

Figure 5 illustrates the estimation of the position of P
for the next frame using the current instantaneous velocity
alone (i.e., αv = 1 in Equation 3) and attraction forces alone
(i.e., α = 1 in Equation 5). For a player P and for each cell
in its attraction region with non-zero pheromone values, at-
traction forces on the player are computed. Each attraction
force (i.e., dashed vectors), corresponds to the direction of
the cell, the amount of pheromone in that cell, and the dis-
tance to the cell. These attraction vectors are then summed
up and added to other physical forces the player is subject to.
The final force vector then creates acceleration that is added
to the current speed of the player: v.

Pheromones As common to most games, AntReckoning as-
sumes a game world divided into non-overlapping cells, e.g.,
Delaunay triangulation, Voronoi tessellation, binary space
partitioning, or regular grids (e.g., square grid in Figure 5)
typically used for tasks such as path finding, collision de-
tection, or graphical rendering. We denote by C the size of
a cell in game world unit. The management of pheromones
and the computation of attraction forces exerted by them is
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performed at the granularity of a cell: for each avatar P for
which Q performs dead reckoning (P = Q is also possible
as will be described later), Q computes the concentration of
pheromone (represented in grayscale in Figure 5) in each
cell and computes and sums the corresponding attraction
forces. For the sake of scalability, only the cells in a limited
region around P , called the attraction region and denoted by
R, are considered, e.g., a fixed-size square represented with
dashed lines in Figure 5 (Note, however, that other shapes
may be considered for the attraction region, such as a cone
reflecting the player’s vision field as discussed in Section 5.)
As pheromones spread, even points of interest outsideR are
taken into account.

For each P for which playerQ has to perform dead reck-
oning, the concentration of pheromone inside a cell that is
part of the attraction regionR of P is calculated as follows:

• Generation: In each frame, each point of interest within a
cell, be it an avatar or an object, generates a given amount
of pheromone related to its attractiveness to P . Attractive-
ness is a function of the characteristics of the object and
possibly the current state of the considered avatar (as in
the wounded player example). This amount is added to
the concentration of the cell. The maximum concentration
of a cell can be capped (phmax) to limit the attractiveness
of any single cell at a given frame.

• Evaporation: In order to limit in time the attraction of
previous positions of points of interest, pheromones fade
in time, meaning that their concentration is decreased at
the beginning of each frame. Exponential decays, i.e., re-
moving a fixed percentage of the old pheromones at the
beginning of each frame, have been successfully used
in previous work on ant colonies (e.g., Max-Min ant
colonies [31]). Beyond its simplicity and its effectiveness,
such an evaporation model ensures that the total amount
of pheromones in the game world does not grow to in-
finity over time. Using an evaporation factor of 1 (i.e.,
pheromones do not fade) gives a pheromone map similar
to the presence map depicted in Figure 3, which captures
popular locations and paths but disregards the dynamic en-
vironment of the game. In case objects always respawn
on the same location, such a map would also capture ob-
ject attraction. However, it would do so even if the object
has not respawn yet. Using an evaporation factor of 0 (i.e.,
pheromones entirely fade in one frame), on the other hand,
captures only the interest in surrounding objects and play-
ers at time t.

• Dissemination: As pheromones spread, the concentration
of pheromone in neighboring cells are mutually depen-
dent. At the beginning of each frame (after the evapo-
ration step), a given amount of pheromone is simultane-
ously removed from each cell and evenly dispatched to
its neighboring cells. The size and shape of this neighbor-

hood depend respectively on the predetermined speed of
pheromones dissemination and the game world topology
(e.g., wall, hills, etc.). For example, obstacles may block
the dissemination of pheromones to avoid attraction to un-
reachable areas.

These phenomena are captured by the following recursive
expression of the concentration of pheromone in a cell, for
a given player P , at frame t:

pht(cell)=

evaporation︷ ︸︸ ︷
ε pht−δt(cell)+

generation︷ ︸︸ ︷∑
entity∈cell

attractiveness(entity, P )+

∑
c∈N (cell)

ε · γ
|N (c)|pht−δt(c)︸ ︷︷ ︸

incoming dissemination

− ε · γ pht−δt(cell)︸ ︷︷ ︸
outgoing dissemination

, (6)

where ε is the evaporation factor (percentage of pheromones
that remain after evaporation), γ is the dissemination factor
(percentage of pheromones that spread in the neighboring
cells), and N (·) is the set of a cell’s neighboring cells. The
attractiveness of a player to itself is set to zero. These phe-
nomena can be observed in Figure 5 around the trajectory of
a moving avatar: some pheromones remain and some spread
around its previous positions; all pheromones fade.

To better understand the evolution of the concentration
of pheromone described by Equation (6), consider the cen-
tral cell c in the simplified example depicted in Figure 6. Cell
c contains an object (depicted with a triangle), its neighbor-
hood N is composed of the four adjacent cells, and its cur-
rent concentration of pheromone is 32. Assuming an evap-
oration factor ε of 0.5 the concentration is first reduced to
16. Considering a dissemination factor γ of 0.5, another 8
pheromones are then removed and evenly dispatched to the
four neighboring cells (i.e., 2 pheromones each). As a re-
sult of pheromone dissemination from the neighboring cells,
cell c receives a total of 1 + 4 + 2 + 4 = 11 incoming
pheromones. Finally the pheromones generated by the ob-
ject in c, say 5, are added to its concentration yielding a total
of 16 − 8 + 11 + 5 = 24 pheromones in cell c at the next
frame.

16

64 32 64

32

4

2
object of interest

dissemination of pheromones

dissemination neighborhood

Fig. 6 Illustrative example of the evolution of the concentration of
pheromone inside a cell with an evaporation factor of ε = 0.5 and
a dissemination factor of γ = 0.5: half of the pheromones are re-
moved due to evaporation and half of the remaining pheromones are
evenly dispatched to the four neighboring cells. In addition, the ob-
ject of interest lying in the cell generates pheromones and incoming
pheromones disseminate from the neighboring cells.
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To further improve AntReckoning’s performance, con-
centrations of pheromone lower than a given threshold are
ignored, as their attraction power is negligible.

The recursive equation 6 is linear. One can compute the
equation separately and then sum up the pheromone maps
corresponding to each static point of interest. More specif-
ically, for static objects, the dissemination/evaporation pat-
tern converges in time. Its limit depends only on ε and γ and
can be determined formally or estimated by simulations. The
results can be incorporated into the game or the map to sim-
plify pheromone generation. Interestingly enough, the limit
has a spatially limited support: Dissemination remains local-
ized, which limits the complexity of the computation. The
pheromone map corresponding to a set of static points of
interest is the sum of the respective dissemination patterns
centered on the points of interest and multiplied by their at-
tractiveness.

Attraction In physics, attraction forces between two bodies
are generally directed along the line connecting them, and
their intensity is a decreasing function of the distance be-
tween them. In the case of spring attraction the intensity of
the force is inversely proportional to the distance between
the two bodies. However, in gravitational and electromag-
netic attractions the force is inversely proportional to the
square of the distance. In AntReckoning, the attraction force
exerted by a cell on an avatar is directed along the line that
connects the position of the avatar, i.e., xt, to the center of
the cell. The intensity of the attraction force is proportional
to the concentration of pheromone in the cell divided by the
distance raised to a certain power:

‖f t(cell,xt)‖ =
pht(cell)
d(cell,xt)k

, (7)

where k is a parameter of the system. Attraction forces of
various intensities originating from P and directed towards
cells containing pheromones can be observed in Figure 5.

Throughout this section, we considered solely players
attracted by objects and other players. However, repulsion
of players by one another, as described in the motivation
section (Section 3, Figure 4), can easily be incorporated
into the force model of AntReckoning: making repulsive ob-
jects (e.g., time bomb) or avatars (e.g., an attacker) generate
pheromones with negative values would result in repulsive
forces moving P away from them in the predictions.

Post-Processing In order to improve the predictions and
make them consistent with the game physiques, a number
of post-processing checks are performed. In these checks
the predicted position is corrected to take into account the
game physics and the game map as well as other limiting
factors: As the speed of avatars is bounded, the predicted
position should remain within a distance vmax · δt of the
last known position. The current speed of the player can
also be taken into account to ensure that the attraction forces

vmax ·δt
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v
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Σf
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past trajectory

dead reckoned avatar (P )

predicted position

predicted position (corrected)

path finding

Fig. 7 Prediction correction: The predicted position of player P , based
on his position and on external forces, violates the game physics, here
(a) the speed limitation and (b) the map reachability. It is corrected as
follows: for (a), the predicted direction is preserved but the distance
is adjusted to the maximum possible value vmax · δt. For (b), a path-
finding algorithm is used to determine the path from the current po-
sition of the avatar to the predicted position. If the predicted path is
longer than vmax · δt, the predicted position is placed at a distance
vmax · δt to the current position of the avatar, along the path.

do not cause a fast change in a player movement when the
player is standing still. Similarly, a reachability map is used
to correct the final prediction for the player’s position to take
into account the topology of the map (i.e., a player cannot
move beyond a wall but may be attracted to a player that
has just moved there). Figure 7a illustrates a basic correc-
tion technique to ensure that the predicted position is con-
sistent with the speed limitations (we used this technique in
our experiments): the circle represents the acceptable range
of a player’s movement. If the predicted position falls out-
side the area of possible movement or if the predicted path
crosses an obstacle, then the predicted direction is preserved
but the predicted position is changed to be the intersection
between the path and the boundaries or the obstacle, if any.
Another possible approach is to use a path finding algorithm
to move around the obstacles towards the destination as il-
lustrated in Figure 7b. In case a player is standing still we
ignore attraction forces completely or greatly reduce their
influence. If the attraction forces produce a very large vector
while the speed vector is relatively small, we limit the size
of the final vector to a factor of the speed vector size.

Table 1 Important parameters in AntReckoning.

Parameter Description Value
δ # of frames since last position update variable
α weight coef. acceleration v.s. forces 0.5
αv weight coef. in EMA of velocity 0.8
αa weight coef. in EMA of acceleration 0.8
R region for attraction variable
ε evaporation fact. (% remaining) variable
γ dissemination fact. (% disseminating) variable
k decreasing power of attraction forces 2

attractiveness(·) attractiveness of avatars and objects variable
ρ base amount pheromone generated 40

phmax maximum pheromone in a cell 100
C cell size variable
η prediction threshold variable
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5 Parametrization and Implementation

We discuss practical considerations about AntReckoning,
more specifically the tuning of its parameters and its imple-
mentation in a decentralized setting with partial knowledge.

5.1 Parametrization

The defining parameters of AntReckoning are as follows:

Attractiveness of points of interest can be divided into three
categories: (1) game objects (2) players and (3) locations.
• Game objects: Most games are able to define the attrac-

tiveness of the objects based on their value or power. In
addition, the attractiveness of objects can be defined as a
function of key factors in the player’s current state, esti-
mated from the analysis of game play traces. The amount
of pheromones generated by an item then depends on its
attractiveness. For instance, in our experiments we defined
the attractiveness of health packs in Quake III as a func-
tion of the avatar’s health. We did so in our implemen-
tation by experimentally estimating the probability that a
player with a given health level, having a health pack in
his sight, picks it up within the next δt seconds.

• Players: Attractiveness of players for one another can be
based on their recent interactions, e.g., trading or fight-
ing, and built into the equations as follows: The attrac-
tiveness of a player Q to a player P is a function of the
time tP,P ′ elapsed since their last interaction. In Quake III,
given the results from Figure 4 a linearly decreasing factor
takes the time of the interaction and the pace of the game
into account. This means the player generates less negative
pheromone for their targets if they have not shot back. The
type of interaction (e.g., shooting or being shot at, trading,
chatting, etc.) as well as their team can determine the sign
of attractiveness, i.e., attraction or repulsion. Other factors
such as the items a player is carrying, e.g., flag, can be in-
corporated into the attraction as well. In our experiments,
we consider the interaction history between players to de-
termine the sign and the amount of pheromone generated
by players.

• Locations: Some locations in the game offer an advanta-
geous position for players. These regions are not only pop-
ular because of the game items that exist in them but are
attractive themselves. Examples of such locations are the
top of a hill, which provides a good vantage point, or be-
hind a wall that provides good cover. In order to improve
the accuracy of predictions, these locations are assigned a
pheromone generator that attracts, or in case of unpopu-
lar locations, repulses players by generating pheromones.
Hotspots can be determined by either the game designers
or through a trace analysis and heat maps, for example by
looking at the number of players passing through a given

location (as in Figure 3) or the number of kills/deaths that
occurred at a given location to determine popular and un-
popular regions. These measurements can be limited to the
past few minutes of the games to capture the dynamic na-
ture of hotspots.

Mass modulates the effect of attraction forces on avatars.
Avatars with higher masses are less subject to attraction
than others. Different mass levels can be used to capture
the relative attraction of avatars by objects: For instance,
heroes may move only to achieve important goals—and
should therefore be assigned a high mass—, whereas regular
units that move to achieve secondary goals (e.g., collect re-
sources) should be assigned small masses. In addition, slow
characters are assigned a higher mass whereas faster char-
acters receive a lower mass to take into account their move-
ment capabilities in the way attraction and repulsion forces
affect their speed. Note that the scale of mass is proportional
to that of attractiveness: doubling the mass of all avatars is
equivalent to halving the attractiveness of all objects. Given
that in Quake (and other similar games) most players are
equal in their capabilities, we assign the same mass to all
players in our implementation. However, in games like War-
craft players are assigned levels and experience points and
different units have different moving and fighting capabili-
ties, thus helping to assign different masses to them.

Region Sizes: The size of the attraction region, in game
world distance units, and the size of each cell affects the
accuracy of predictions. Larger attraction regions take into
account farther objects, and smaller cells compute the direc-
tion of attraction forces at a finer granularity, thus providing
better accuracy. This, however, comes at the cost of compu-
tational and memory overheads. Note that as attraction de-
creases rapidly with the distance, increasing the size of the
attraction region beyond a certain point may bring only a
negligible improvement. Therefore, in case of a large area
of interest, the size of the attraction region can be limited
based on the phmax that can be left on a single cell, and how
pheromones force is reduced as a function distance which is
modeled by the parameter k. We experiment with different
region sizes in our evaluation and k is set to 2 (see Table 1).

Vision field: In games where players see the world through
the eyes of their avatars, the players’ vision field should be
taken into account in the attraction region. The rationale is
that players would be more attracted by objects they can ac-
tually see, which depends on their vision field and on the
world map (e.g., walls). The vision field of players’ depends
on the viewing vector (i.e., a spherical cone with angle 45o

around the player’s viewing vector in Quake III) and on the
visibility information typically stored in the game map files
(bsp files in Quake III). The region of attraction can be ex-
tended beyond the vision field to cope with players or ob-
jects suddenly entering a player’s vision field. Our imple-
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mentation of AntReckoning takes the players’ vision fields
into account and we experiment with this parameter.

Finally, taking into account the game map for dissemi-
nation and attraction prevents avatars from being attracted
by objects they cannot reach, e.g., behind an obstacle.

5.2 Discussion & Implementation

In order to produce pheromone maps, a player needs to be
aware of the players and objects in its vicinity. This is ad-
dressed by interest management.

Interest management handles which game objects (and
their corresponding updates) should be received by the
player, based on his location in the game world. This in-
formation is necessary to render the game world and are re-
ceived from the server, other players, or extracted from the
map. In some games (e.g., Quake III) the game world is rel-
atively small and the area of interest can be the whole or all
the visible portions of the game world. The player receives
updates about all (potentially) visible players and objects in
the game. In such a case, AntReckoning can easily calculate
the necessary pheromone maps for the game. In games like
World of Warcraft where the player receives new game ob-
jects as he explores the game world, a pheromone map for
the player’s area of interest is created. Items are taken into
account and start generating pheromones as soon as they en-
ter the area of interest. Over time, evaporation and dissemi-
nation remove the effect of the items no longer present in the
area of interest. As a result, maintaining pheromone maps in
both types of games comes at no additional network cost and
is possible with the locally stored information.

Distributed implementation As discussed in Section 2, we
divide the use of dead reckoning into two categories and dis-
cuss the implementation details of each form: (1) akin to
normal dead reckoning, all players perform dead reckoning
for all other players in their area of interest. In this case,
all players, including the owner of the avatar, run the ex-
act same algorithm for calculating pheromones with the ex-
act same information. Through this, every player can detect
when other players’ prediction errors become higher than
the acceptable threshold and send an update. (2) players per-
form dead reckoning only for themselves and include their
prediction (a prediction vector) in the update sent to other
players. In this case, other players do not have to perform
dead reckoning and the player sends an update when he de-
tects that the prediction he sent now has an error above the
threshold. Note that AntReckoning can work both in central-
ized and distributed (Peer-to-Peer such as Donnybrook [6])
settings. In a centralized architecture, the server is a primary
copy holder for all players’ avatars and performs all the re-
quired task. The rest of algorithm is the same as in a dis-
tributed architecture.

There exist three possible implementations of AntReck-
oning. Two implementations are for the first type of
AntReckoning in which players all perform dead reckoning.
One of the two uses a higher number of pheromone maps
and yields better accuracy than the other. The second type
of AntReckoning has an implementation which yields better
accuracy than both implementations of the first type.

1. Two possible implementations exist for the first type of
dead reckoning: (1) maintain a different pheromone map
for each player in the game world taking their interac-
tion history, vision field, status, etc. into account. This
scheme provides accurate predictions. However, it re-
quires access to the interaction history of other players
and information about their area of interest typical of
games where updates are sent to everyone or area of in-
terest is large enough (e.g., AOI is at least twice the size
of attraction region). It also has a high overhead as a
different pheromone map has to be maintained for each
player. (2) maintain a single pheromone map for the area
of interest. In this case, interaction history and similar
information are ignored: only general information about
points of interest is used to generate pheromone maps.
Thus, the cost of generating pheromone maps is greatly
reduced as only one map is maintained. But this comes
at the price of lower accuracy in the predictions.

2. The second type of dead reckoning yields better accu-
racy and lower overhead in comparison to both imple-
mentations of the first type. In this scheme the player
only maintains one pheromone map for itself, taking the
interaction history, vision field, mass, and its status into
account. Since the player has access to much more infor-
mation about himself than other players, the pheromone
map can be more accurately calculated. In addition, as
only one pheromone map is maintained, the computa-
tional and memory overheads are minimal. The player
will include his prediction vector in the updates sent to
others.

Memory Overhead: The only memory overhead of
AntReckoning is the maintenance of the pheromone maps.
However, it can effectively be reduced to maintaining a sin-
gle pheromone map and only for the player’s area of interest,
meaning the size of the pheromone map would be small. In
addition, it is possible to use the built in tessellation mech-
anisms in games to maintain the pheromone map. In this
case, the only overhead is for maintaining a single floating
point number for each already existing cell. As the size of
the pheromone map is a function of the size of area of in-
terest and the size of each individual cell (|R|/C), it does
not grow as the size of the game world becomes larger, and
only requires a fixed amount of memory independent from
the number of players and from time.
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Computational Overhead: The computational overhead
of AntReckoning is limited to pheromone processing and
computing the attraction forces. During the generation of
pheromones one needs to go through all the points of in-
terest inside the area of interest. However, most games al-
ready perform such a loop of the items in each frame and
execute the think function for each item. The think function
is used for updating an item’s status in the game [6]. There-
fore, the only overhead is the generation of the correspond-
ing pheromone amount for the item during the execution of
its think function. Calculating the attraction forces is a func-
tion of number of cells inside the attraction region and does
not grow with the number of items inside the area of interest
or the size of the map.

Note that an alternative interest-based dead reckoning al-
gorithm in which the precise current and past positions of all
items are stored and taken into account for calculating the at-
traction forces, is also possible. However, such an approach
would result in substantial memory and computational over-
head. One of the main benefits of using pheromone-based
interest modeling is that it enables us to keep a history of
movements and interactions inside the game world in a low
overhead manner.

6 Evaluation

The goal of the evaluation is two-fold: (1) Compare
AntReckoning to traditional dead reckoning in order to val-
idate our approach and estimate the gains it conveys. We
compare with respect to the accuracy of the extrapolation
when updates are sent at a fixed rate and with respect to the
bandwidth usage when position updates are sent only when
the prediction error grows above a given threshold; (2) Con-
duct a sensitivity analysis of AntReckoning to identify its
key parameters and evaluate their individual effects on the
performance.

6.1 Experimental setup

We evaluated AntReckoning by using traces collected from
Quake III and World of Warcraft. The first consists of 16
players involved in a 10-minute death match in the q3dm01
map. All the 16 players remained connected during the en-
tire time of the game. The trace includes players’ positions,
items in their possession (e.g., weapons and ammunitions),
their state (e.g., health, armor, speed, viewing angle), and
their interactions (e.g., shooting, killing) in each frame. In
addition, it contains information about items available in the
game world, in each frame, and the players’ item pickups.
Map information (e.g., walls) is extracted from the map file
(i.e., the bsp file). The second trace, from World of War-
craft, contains sparse position information about more than

200 players in the Wintergrasp region, and was obtained
from [25]. The methodology used for the evaluation is as

xDR

xt−δt

xt

xt+δt

xAR past trajectory

actual positions

predicted positions

Fig. 8 Illustration of the metric used in the evaluation of AntReckon-
ing: the relative improvement over traditional dead reckoning is defined
as the ratio of the prediction errors d(xAR,xt+δt)/d(xDR,xt+δt),
where d denotes the Euclidean distance.

follows. We divide time in frames and set the players’ posi-
tions for each frame as their last position update in the corre-
sponding time interval. We predict the position of players δt
frames ahead, with both traditional second-order dead reck-
oning, i.e., based on both the estimated velocity and accel-
eration, and AntReckoning. First, we compare their perfor-
mance with respect to the relative error, knowing the actual
position of the players at this frame. More specifically, we
compute the Euclidean distance between the prediction and
the actual position, i.e., the error, and look at the ratio be-
tween the prediction error of AntReckoning and that of tra-
ditional dead reckoning (as illustrated in Figure 8). A value
of 0.8 for this metric means that AntReckoning decreases
the prediction error by 20% over traditional dead reckon-
ing. That is, values smaller than 1 denote an improvement in
accuracy. Next, we implement a threshold-based dead reck-
oning algorithm, where players send position updates only
when the prediction error (i.e., the Euclidean distance be-
tween the predicted position and the actual position) grows
beyond a given threshold. We compute and compare the re-
spective upload bandwidth consumptions of dead reckoning
and AntReckoning.

The implementation of AntReckoning for Quake III is
as follows. We focus on predicting the movements of a sin-
gle player inside the game. The pheromone map is generated
based on the game world as observed by this player. Players
generate the same initial amount (ρ) of negative pheromones
for other players inside the game and game items generate
the same initial amount of positive pheromones for other
players. The amounts of pheromone generated is then modu-
lated by the players interaction recency as discussed in Sec-
tion 3.

For World of Warcraft, we use a basic version of
AntReckoning since no information about the objects and
interactions were available in the trace: only players gener-
ate pheromones and all players generate the same amount ρ
of positive pheromone regardless of the state of the avatar
for which dead reckoning is performed. Consequently a sin-
gle pheromone map can be used for all avatars. We use pos-
itive pheromones because players in World of Warcraft tend
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Fig. 9 Experimental sensitivity analysis of AntReckoning using a 16-player trace from Quake III in the q3dm01 map and a movement trace from
World of Warcraft in the Wintergrasp region. A frame corresponds to 50 ms in Quake III and 300 ms in World of Warcraft. The analysis was
performed around the point |R| = 500, λ = 0.9, ε = 0.5, δ = 80, γ = 0.7, C = 50 in Quake III and |R| = 500, λ = 0.9, ε = 0.8, δ = 70,
γ = 0.1, C = 50 in World of Warcraft.

to get closer to each other in most cases, be they fighting or
trading. We assign the same mass value to all players in both
games: In Quake III we do so because each player controls
a single avatar and all avatars have roughly the same charac-
teristics; In World of Warcraft we do so because of the lack
of information on the avatars’ characteristics.

6.2 Sensitivity analysis

We conduct our sensitivity analysis along the following pa-
rameters: (1) the diameter of the region of attraction, de-
noted by |R|; (2) the reference attractiveness of players and
objects, denoted by λ; (3) the evaporation factor, denoted
by ε, note that this is the percentage of pheromone left after
evaporation in each frame; (4) the duration of the prediction
step, denoted by δt. (5) the pheromone dissemination factor,
denoted by γ, which captures the percentage of pheromone
that spread to neighboring cells; (6) size of the cells, denoted
by C (For comparison, in Quake III, the entire q3dm1 map
is of size ∼1400×2700 game units and an avatar occupies a
floor area of 30×30 game units. Translated into real-world
length units, assuming that a person occupies a floor area
of 0.5×0.5 square meters, a cell of size 50×50 corresponds
to∼0.8×0.8 square meters). Other parameters were fixed to
the values specified in Table 1 (page 7). The experimental
results for the evaluation of Quake III and World of War-
craft are compiled in Figure 9, with respect to the prediction
accuracy, when position updates are sent at a fixed rate. The
results in this figure are with post processing and visibility
turned off to better highlight the effects of different parame-
ters. The graphs show only the relative error: AntReckoning
v.s. traditional dead reckoning. Another interesting number
is the absolute error of traditional dead reckoning normal-
ized by the distance covered by the avatar between times t
and t+ δt, i.e., d(xDR,xt+δt)/d(xt,xt+δt), using the nota-
tions from Figure 8. This number only depends on the pre-
diction steps δ: it increases with δ and is generally around
46-110% in our experiments, where an error above 100%

means worse prediction than standing still. Therefore, it is
both significant and relevant to improve the performance by
up to 44% over traditional dead reckoning.

Before studying the graphs, the differences between
these two games should be highlighted. In Quake III player
movements and interactions happen at a very fast pace. Play-
ers’ are mostly interested in and affected by other players in
their close vicinity. The game world is relatively small and
players mostly have short time goals and their interactions
are mostly repulsive (e.g., shooting at each other). In World
of Warcraft, players have more attractive interactions (e.g.,
trade, chat, etc.), the game world is very large, and can be
very sparse. Players are interested in a larger region and have
long term goals. The pace of the game is relatively slow.

The effect of the size of the attraction region is shown in
Figure 9a. In World of Warcraft, by increasing the size of the
attraction region, a larger number of attraction forces from
farther regions are taken into account, therefore, improving
the quality of predictions. However, increasing the size be-
yond a certain point results in negligible performance gains,
confirming our intuition. In Quake III however, players are
interested only in POIs in their close vicinity and taking dis-
tant cells into account slightly decreases the performance.
The limited effect of distant cells enables efficient interest-
based dead reckoning: by limiting the attraction region to
the area of interest (or a part of it), pheromone maps can be
computed at no network cost (i.e., with limited information
available locally at each player) and with limited computa-
tional and memory overhead.

Figure 9b demonstrates the effect of attractiveness: al-
though taking attraction forces into account improves the
accuracy, over-estimating their influence and disregarding
inertia decreases the accuracy. This demonstrates that the
current speed and movement of the player should indeed
be taken into account along with the attraction forces. This
is specially acute for short-term predictions as players are
mostly influenced by their inertia, as explained below.

Figure 9c shows the effect of evaporation: given the fast
pace of Quake III and short term goals of players, leaving a
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higher percentage of pheromone at each frame decreases the
quality of predictions. The evaporation factor controls how
much history of the game is taken into account and should
reflect the pace of the game: lower percentage of pheromone
should be kept for fast paced games. As expected, in World
of Warcraft, where the pace of the game is slower and play-
ers are more motivated by long term goals, evaporation has
a different impact: larger values of ε, which characterize a
slower evaporation, increase the performance.

Human interactions are an order of magnitude slower
than game events. Therefore, in very short periods of time
(e.g., 50 ms), an avatar’s movements are mostly a function
of his inertia. However, in longer periods (e.g., one sec-
ond) they follow players’ interests. This fact is illustrated
in Figure 9d where AntReckoning performs better when
prediction is done further into the future. Given that many
protocols (e.g., Donnybrook) rely on dead reckoning to in-
crease the delay between sending updates to up to seconds,
AntReckoning will be of use. In fast paced games, these im-
provements might slightly decrease for very long prediction
periods as players movements become more affected by in-
teractions, given the rate of interactions, in the future that
are not taken into account in the current attraction forces.
In slower games (i.e., World of Warcraft) predicting further
into the future is possible.

Figure 9e demonstrates the effect of the dissemination
factor on the quality of predictions. In World of Warcraft
given the size of the game world, cells and sparsity of the
players, using larger dissemination factors result in less ac-
curate attraction forces being calculated (i.e., attraction vec-
tors not directly pointing towards the point of interest) and
lower quality of predictions. In Quake III given the large
choice of attraction region and cell size, and the length of the
prediction, higher dissemination factors can slightly help in
predicting further into the future.

The effect of the cell size is demonstrated in Figure 9f.
In general, smaller grid cells improve the accuracy of the
predictions since they provide a higher accuracy in calculat-
ing the direction of the attraction forces. In Quake III, where
players interact in smaller game worlds, and are interested in
a small region around them, small cells can greatly improve
the quality of predictions. In World of Warcraft, however,
where the game world is large and players are sparse, the
use of smaller cells conveys only small improvements. Note
that using smaller cells comes at the price of higher com-
putational overheads (i.e., |R|C ). The performance gain must
therefore be balanced with the overheads.

It should be noted that the optimal sets of parameter val-
ues were quite different for Quake III and World of War-
craft showing the importance of fine tuning AntReckoning
parameters based on the game characteristics. In World of
Warcraft, players are motivated by longer term objectives
and interactions happen at a lower pace, highlighting the ef-
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Fig. 10 Effect of visibility and post-processing on AntReckoning’s
performance. The tag V (resp. P) in the legend of the graph means
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it is ignored. The analysis was performed around the non-optimal point
|R| = 500, λ = 1.1, ε = 0.6, γ = 0.6, C = 50 in Quake III to better
show the effects of post-processing and visibility.

fects of the evaporation, and dissemination factors, and the
length of the prediction step. The game world is large, there-
fore, highlighting the effects of the attraction region while
undermining the effects of the cell size. In Quake III, on
the other hand, due to the smaller size of the world, cell
size can play an important role while a larger attraction re-
gion provides negligible gains. Evaporation and dissemina-
tion factors should also be fine tuned according to the fast
pace of the game and the size of game world. In both cases
the attraction factor should be fine tuned to take the predic-
tion length into account: shorter prediction lengths require
smaller attraction factors. In addition, we suspect in games
such as world of Warcraft, use of different mass values based
on the character type can further help improve the accuracy
of predictions.

Post processing can further improve quality of predic-
tion in some cases by up to 15-20% and help stabilize
the performance of AntReckoning. Similarly, vision filter-
ing can increase the quality by 10-15%. This is shown in
Figure 10 where the effect of taking visibility and post-
processing into account is shown as a function of the pre-
diction duration (δ). We chose a non-optimal set of parame-
ters to show that post-processing can correct the prediction
errors, for example, when the attraction forces are too large
due to bad parameter selection. It also improves the perfor-
mance further for longer periods of prediction as error cor-
rection becomes more important for longer periods of time.
Similarly, taking visibility into account is more important
for capturing longer term goals.

6.3 Performance evaluation

We now look at the bandwidth savings provided by
AntReckoning in a threshold-based approach. In short, the
threshold-based approach operates as follows (see Algo-
rithm 1 for a pseudo-code version): each player predicts the
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Input:
prediction error threshold: η
last time a position was sent: t0
actual position (at time t): xt

t0 ← −∞;
at each frame (time t) do

x̂t ← prediction(xt0 , t);
if ‖xt − x̂t‖ > η then

send(xt);
t0 ← t;

end
end

Algorithm 1: Threshold-based dead reckoning: a player
predicts the position of his avatar for the current frame,
based on the last sent position update, sending an update
only if the prediction error is larger than a threshold η.

position of his avatar and that of the other avatars. Since
players run the same algorithm, they can detect when the
distance between their predicted position and the actual po-
sition of their avatar is higher than the threshold, and there-
fore, send a position update message. The bandwidth sav-
ings are calculated based on the number of updates sent,
for a given threshold, by traditional dead reckoning and
by AntReckoning, in several sample Quake III gaming ses-
sions. Results are depicted in Figure 11 (the prediction error
threshold η is given in game world distance units). It can
be observed that higher thresholds are typically considered
when a higher prediction length is chosen, and in this situa-
tion, AntReckoning conveys significant bandwidth savings;
up to 32%.
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Fig. 11 Performance evaluation of AntReckoning with respect to up-
load bandwidth consumption in a threshold-based approach. Units are
in game world distance.

Note that while for lower thresholds the percentage of im-
provements is smaller, each percentage improvement trans-
lates into a higher number of updates not being sent given
the fact that at lower thresholds (and prediction lengths) up-
dates are sent at a much higher rate.

While we do not provide a user study of how better pre-
dictions improve the quality of game play for players, the
effects of these prediction errors, as the inconsistencies per-

ceived by players, have been well studied [8, 10, 27, 28].
Therefore, AntReckoning can be used to both improve the
network requirements of games as well as the quality of
game play. In addition, it is demonstrated that different types
of games can benefit from AntReckoning: even in games
such as Quake III where sudden changes in movements
are common, large improvements can be gained. While we
achieved improvements up to 20% for World of Warcraft
with information currently available, showing that even a
simple implementation with a single pheromone map for
all players can provide improvements over dead reckoning,
we suspect that given enough information about the game
world, games similar to World of Warcraft can benefit more
from AntReckoning in comparison to fast paced games due
to their characteristics and higher predictability of players
actions.

7 Discussion

Choosing the threshold: The threshold is a parameter of
the algorithm and is used as follows: as soon as the error
grows beyond the threshold, an update is sent. In practice,
the prediction error threshold is chosen as a trade-off be-
tween bandwidth and accuracy of prediction: it should be
small enough so that the motion of avatars remains smooth
and that the games-play remains fair (e.g., missing the tar-
get because the avatar is not displayed at its actual position).
Such subjective aspects can only be evaluated through ex-
periments coupled with user studies.

A number of techniques improving the performance of
dead reckoning by choosing better thresholds have been pro-
posed. In [8] the threshold above which a new update is
sent is adapted to the precision requirements, determined by
the relative position of the entities. In [28], the metric used
to evaluate the prediction error takes temporal aspects into
account in order to optimize the perceived inconsistency.
Chen and Zarki [10] provide an objective evaluation frame-
work for Quality of Experience (QoE) in Games. QoE takes
not only the precision but three basic perceptions into ac-
count: responsiveness, precision, and fairness. These tech-
niques are orthogonal to our approach and could be used
together with AntReckoning to increase the performance of
dead reckoning with respect to the quality of experience.

Cheating: Multi-player online games are vulnerable to
cheating. Specific techniques, including dead reckoning,
have been successfully exploited for cheating. In particular,
with dead reckoning a player can (1) actively drop position
updates or predictions and send incorrect predictions to con-
fuse/blind other players and (2) passively exploit the predic-
tion to gain an unfair advantage.

With suppress-correct cheat a player purposefully drops
a number of consecutive updates and then sends an in-
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valid update before being considered a dead peer. Simi-
larly, players can implement a consistency cheat where they
send different predictions to different players. Many meth-
ods have been proposed to address these general types of
cheats [19, 33]. For instance, one can verify updates based
on the maximum speed of players and the game world
physics [14], make all players send hash codes of their up-
dates, namely commitments, before sending their actual up-
dates [4], and compare a posteriori predictions against the
actual positions using (trusted) servers [14], referees [32],
or dynamic proxies-players [17]. Detected misbehavior can
then feed reputation systems [20].

Position predictions can also be used to unduly assist
the players in the game. For instance, aim bots can automat-
ically adjust the players’ aiming directions, based on other
avatars predicted positions, to increase the chances of hitting
the target. Similarly, predictions can be used to implement
a map hack attack, i.e., displaying objects/avatars the player
is not supposed to see (e.g., behind walls). Such aids can be
detected using player behavior analysis tools [22]. Note that
such cheats apply to normal dead reckoning as well. In fact,
in most cases AntReckoning does not create new opportuni-
ties to cheat. However, in AntReckoning, the fact that pre-
dictions implicitly give an insight on the players’ interests
provides an additional opportunity to cheat. For example, a
prediction which indicates that an avatar will move towards
a health pack in the next few seconds can possibly show
that this avatar has a low health. This opportunity is how-
ever relatively difficult to exploit as the final prediction is the
summation of many interest-based attractions forces, e.g., a
weapon behind the health pack or another player shooting at
the player.

Finally, the calculations involved in AntReckoning can
be secured by tools such as PunkBuster [12] and Valve Anti
Cheat (VAC) [30], which prevent the players from tampering
with the game code, and accountable systems [15].

8 Related Work

A number of techniques improving the performance of dead
reckoning have been proposed. In [8] the threshold above
which a new update is sent is adapted to the precision re-
quirements, determined by the relative position of the enti-
ties. In [28], the metric used to evaluate the prediction error
takes temporal aspects into account in order to optimize the
perceived inconsistency. These techniques are orthogonal to
our approach and could be used together with AntReckoning
to increase the performance of dead reckoning.

In [24] neural networks are trained and used, instead of
instantaneous estimates, to predict changes of the entity ve-
locity. ARIVU [2] predicts the next player actions in mobile
games, using historical data, to determine if the wireless in-
terface can be put into sleep mode, thus saving energy. These

techniques could be incorporated in AntReckoning to help
us estimate velocity and acceleration, and player actions re-
spectively.

Ant colony optimization has been successfully used to
solve a wide range of problems, e.g., the traveling sales-
man problem [11, 31]. AntReckoning is inspired from these
techniques, e.g., the concepts of evaporation, spreading, etc.
However, to the best of our knowledge, this is the first appli-
cation of pheromones to interest modeling and dead reckon-
ing.

Beyond predicting avatar position, the interest model
of AntReckoning, e.g., attractive pheromones, can be used
to make convergence, path-finding (e.g., A*), and artificial
intelligence [3, 26] algorithms exhibit human-like behav-
ior. The information contained in pheromone maps can be
used to choose between popular and unpopular paths in the
path-finding algorithm for players. The AI players can use
pheromone maps to direct them towards popular parts of the
map and to choose paths typically used by players.

While most dead reckoning algorithms rely on linear
movements between predicted positions, pheromone maps
in AntReckoning can be used to generate non linear and
hence more realistic movements between positions. In [6]
guidable AIs are used to move between position, hence pro-
viding non linear movements. This approach can further
benefit from AntReckoning by guiding the AI to follow
pheromone paths in order to move between two consecutive
position updates.

Close to our work, a significant body of work has been
devoted to the analysis of human mobility (e.g., [16, 23])
in real life, with numerous applications to urban planning
and delay tolerant networking. In this context, several stud-
ies have demonstrated a strong influence of the locations of
points of interest (e.g., specific businesses) on human mo-
bility [35]. These results have been further leveraged for
pedestrian mobility predictions [9]. A similar approach to
AntReckoning can be exploited to predict pedestrian move-
ments, where other people, buildings, and shops are treated
as points of interest that generate pheromone.

9 Conclusion

This paper proposed AntReckoning, an interest-based algo-
rithm to improve dead reckoning. AntReckoning models a
player’s interest in other players and game objects in the
form of attraction forces exerted by pheromones at a low
computational and memory overhead. Our results on Quake
III and World of Warcraft have shown improvements over
traditional dead reckoning: up to 44% in accuracy for a fixed
update rate and up to 32% with respect to bandwidth for a
bounded prediction error, even in basic settings, demonstrat-
ing a great potential. In addition, while the focus of this pa-
per was on its applications in dead-reckoning in multi-player
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games, the proposed algorithm can be applied to many other
areas such as convergence algorithms. Future work includes
developing techniques to parametrize AntReckoning with
offline trace-driven analysis and online learning as well as
applying it to convergence algorithms. We also plan to ex-
tend our work to pedestrian mobility prediction.
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