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Abstract
A central issue in claims reserving is the modelling of appropriate dependence structures. Most

classical models cannot cope with this task. We define a multivariate log-normal model that allows

to model both, dependence between different sub-portfolios and dependence within sub-portfolios

such as claims inflation. In this model we derive closed form solutions for claims reserves and the

corresponding prediction uncertainty.
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1 Introduction and motivation

Modelling dependence structures in stochastic processes is a rather difficult task. Therefore, most

stochastic models start under the restrictive assumption having independence between different risk

factors, different risk modules, different portfolios, different accident years, etc. This is a common

situation in general insurance claims run-off modelling where one usually assumes that claims

payments of different accident years are independent (see, for instance, Mack (1993) and Hertig

(1985)). Under these independence assumptions, predictors and corresponding confidence bounds

are derived. Of course, one is aware of the fact that positive correlation widens these confidence

bounds due to less diversification benefits. Therefore, as a next (and final) step practitioners do a

‘‘top level’’ correlation correction by simply multiplying the confidence bounds (obtained from the

independent case) with a deterministic factor.

In the present paper we derive a comprehensive bottom-up approach for dependence modelling in

general insurance claims run-offs. We choose a particular multivariate log-normal chain-ladder model

and in this model we derive predictors and confidence bounds in closed form. These analytical
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solutions are such that they allow for any correlation structure. From this we can then analyze the

quality of the top level correlation corrections done by practitioners. Moreover, we can calibrate

correlation for risk management models which is still an open issue in Solvency 2, see European

Commission (2010) and Swiss Solvency Test (2006).

There are only a few related results in the literature. Basically, there are three streams of literature

on dependence modelling in general insurance claims run-offs:

(1) Claims inflation and accounting year dependence within a claims run-off triangle. The first

source of dependence that has been identified by practitioners is claims inflation within a run-

off triangle which acts on all accident years simultaneously. The classical distribution-free

chain-ladder model of Mack (1993) cannot cope with this form of dependence. First papers that

study this form of dependence are Barnett & Zehnwirth (2000), Brehm (2002), de Jong (2006),

Kirschner et al. (2008), Kuang et al. (2008), Shi et al. (2012) and Wüthrich (2010). The first five

papers mainly study this form of dependence using either maximum-likelihood methods or

bootstrap simulation methods. The last two papers study accounting year dependence in a

Bayesian inference framework using Markov chain Monte Carlo simulation methods. The

present paper extends and combines the model and the ideas of de Jong (2006) (which goes

back to Hertig (1985)) and the Bayesian inference framework studied in Shi et al. (2012) and

Wüthrich (2010). This combination is done such that we are able to derive analytical results

which allow to analyze prediction uncertainty for solvency purposes.

(2) Cell-wise dependence between run-off triangles. A second stream of literature studies the

aggregation of different claims reserving triangles (sub-portfolios), see Braun (2004), Merz &

Wüthrich (2007, 2008a), Shi & Frees (2011) and Zhang et al. (2012). These papers study a cell-

wise dependence between different run-off triangles (sub-portfolios). Our model will also allow

to model this form of dependence. It will turn out that this form of cell-wise dependence is a

rather weak one compared to accounting year dependence.

(3) Combination of cell-wise dependence between and accounting year dependence within run-off

triangles. The third stream of literature combines (1) and (2). Probably the first two papers that

look at both forms of dependence in a rigorous mathematical way are Shi et al. (2012) and

Zhang et al. (2012). The former develops the modelling framework using a Bayesian metho-

dology, whereas the latter describes inflation modelling in the concluding discussion. The

present paper is in the spirit of Shi et al. (2012). Shi et al. (2012) use an additive model for

incremental payments where dependence is modelled in two directions (accident year and

accounting year). The accounting year dependence modelling in Shi et al. (2012) can be

interpreted as a hierarchical structure which leads to a new interesting family of models related

to hierarchical generalized linear models (HGLM), see Gigante et al. (2012).

The starting point of our model is Hertig’s log-normal chain-ladder model. We embed this

multiplicative claims reserving model into a multivariate log-normal framework. This multivariate

framework is chosen such that we can simultaneously model several claims run-off triangles (sub-

portfolios). In this model we can choose any correlation structure between the sub-portfolios and also

within the sub-portfolios. Parameter uncertainty is modelled with a multivariate Gaussian prior

distribution (which is a conjugate prior to the multivariate log-normal distribution, see Bühlmann &

Gisler (2005)). This combination then allows to give a closed form solution for the claims reserving

problem. Moreover, it allows to derive closed form confidence bounds which, at the same time, study

process uncertainty and parameter uncertainty. These results are then used to study sensitivities and,

moreover, they can be used to calibrate correlation estimates for solvency purposes.
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The nature of our multiplicative model and of the additive model of Shi et al. (2012) is such that

they allow to utilize mathematical properties of multivariate Gaussian structures (leading to closed

form solutions). The main weakness of these models is that they use a multivariate Gaussian copula

as dependence structure. This dependence structure does not enjoy tail dependence (see McNeil

et al. (2005)) and therefore joint extremes are probably under-estimated, this is also stated in Shi &

Frees (2011). Moreover, often the log-normal distribution is not sufficiently heavy-tailed for

modelling the tails of extremes. However, analytical formulas can only be found under these

assumptions and their generalization will require simulations. Therefore, our model can serve as a

benchmark for more evolved simulation-based methods. Moreover, we would like to highlight that

we get fundamental findings from our model (see Conclusions 1–5 below) which explain that the

state-of-the-art handling of correlation in practice should be changed, because correlation is often

under-estimated (and mis-specified).

Organization of the paper. In the next section we define the multivariate Bayesian claims reserving

model. In Section 3 we describe the prediction problem from a general point of view in our

modelling framework. The surprisingly simple Theorem 3.1 is the key result that paves the way for

closed form solutions. In Section 4 we adapt the notion from the previous section to claims reserving

triangles. In Section 5 we describe the claims development result which is a crucial risk factor in

Solvency 2 and we analyze prediction uncertainty in this balance sheet position. Finally, in Section 6

we present an extended case study which results in several conclusions summarized in Section 7. All

proofs are provided in the appendix.

2 Model assumptions

Accident years are denoted by iA{1,y,I} and development years by jA{0,y, J}. We assume that

IZ J 1 1 and that all claims are settled after development year J. Cumulative claims are denoted by

Ci,j,n . 0, where the last index nA{1,y,N} corresponds to the n-th sub-portfolio (or line of

business). We define the individual log-link ratios xi,j,n by (set Ci;�1;n � 1 for all i and n)

xi;j;n ¼ log Ci;j;n=Ci;j�1;n

� �
3 Ci;j;n ¼ Ci;j�1;nexp xi;j;n

� �
: ð2:1Þ

We stack the random variables xi,j,n into random vectors which will provide a handy notation. For

iA{1,y,I} and jA{0,y,J} we define the vectors

xi;j ¼ ðxi;j;1; . . . ; xi;j;NÞ
0
2 RN ; ni ¼ ðx

0
i;0; . . . ; x0i;JÞ

0
2 Ra and n ¼ ðn1

0; . . . ; nI
0Þ
0
2 Rd,

with a 5 N(J 1 1) and d 5 aI.

Remarks.

> The multiplicative structure (2.1) in the development period j will imply that we have a chain-

ladder type model, see Mack (1993).

> The parameter nA{1,y,N} denotes the sub-portfolios (or different lines of business). If we have

only one sub-portfolio, i.e. N 5 1, then we set xi,j,n 5 xi,j and we are in the classical one-dimensional

claims reserving problem.

> Under the assumptions that N 5 1 and that the ni,j ’s are independent Gaussian distributed with

mean yj we are in the framework of Hertig’s log-normal claims reserving model, see Hertig (1985).

Our aim is to relax these independence assumptions and to extend the model to N . 1.
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Model Assumptions 2.1 (multivariate log-normal claims reserving model)

> Conditionally, given parameter H 2 Ra, the random vector n has a multivariate Gaussian distri-

bution with fixed positive-definite covariance matrix S 2 Rd� d and conditional expected values

E ni

��H� �
¼ H; for all i 2 f1; . . . ;Ig.

> The parameter Q has a multivariate Gaussian distribution with prior mean l 2 Ra and positive-

definite prior covariance matrix T 2 Ra� a.

&

Often it is easier to describe the model assumptions by simply writing down the density function.

Under Model Assumptions 2.1, the joint density of n and Q at position (n,h) is given by

f ðn; hÞ ¼
1

ð2pÞd=2detðSÞ1=2
exp �

1

2
n�Ahð Þ

0S�1 n�Ahð Þ

	 

�

1

ð2pÞa=2detðTÞ1=2
exp �

1

2
h�lð Þ

0T�1 h�lð Þ

	 

;

ð2:2Þ

with matrix A ¼ ð1; . . . ; 1Þ0 2 Rd� a consisting of I 5 d/a identity matrices denoted by 1 2 Ra�a and

describing the conditional mean E njH½ � ¼ AH ¼ ðH0; . . . ;H0Þ0 2 Rd.

Remarks 2.2

> We choose a multivariate Gaussian model for the individual log-link ratios xi,j,n which gives

log-normal distributions for cumulative claims Ci,j,n. For risk management and solvency purposes

one might argue that this is not a sufficiently heavy-tailed model and, moreover, this model does

not have tail dependence. Nevertheless, we believe that the results from this model are interesting

and important also on their own and that our model may serve as a benchmark for the ad-hoc

methods used in practice and for more complex multivariate extreme value models (which still

need to be developed in this field and which, in general, can only be solved numerically, for

instance, using Markov chain Monte Carlo simulation methods).

> The covariance matrix S will allow for any correlation structure between the individual log-link

ratios xi,j,n such as accounting year dependence or dependence between different sub-portfolios n.

We provide explicit choices in Section 6 below.

> Parameter uncertainty is modelled through the choice of a prior distribution for Q. Thus, a

Bayesian inference analysis will include parameter estimation uncertainty in a natural way

through posterior distributions.

> The model assumptions imply that conditionally, given Q,

C1;0;n ¼ expfx1;0;ng; . . . ;CI;0;n ¼ expfxI;0;ng are identically distributed: ð2:3Þ

That is, there is no specific accident year iA{1,y,I} parameter under Model Assumptions 2.1.

This model assumption can easily be relaxed if it is not appropriate in a particular situation.

There are several different possibilities to do so, for instance

(1) if there are known prior differences, choose suitable constants for Ci;�1;n ¼ ni;n 2 Rþ which

give multiplicative prior adjustments, i.e. Ci;0;n ¼ ni;nexpfxi;0;ng;

(2) a second way extends xi;0;n ¼ xð1Þi;0;n þ xð2Þi;0;n to a bivariate term with xð1Þi;0;n similar to (2.3) and

independent Gaussian random variables xð2Þi;0;n reflecting differences between accident years i;
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(3) or define the model conditional on the first columns, i.e. given Ci,0,n for all i and n.

All these proposals lead to closed form solutions.

In our analysis we will calculate posterior distributions given observations in the upper claims

reserving triangle Dt, tZ I, see (4.1) and (4.2) below. This will imply that the exposure of

accident year i is always proportional to the last observation of accident year i at time t,

i.e. proportional to Ci,t2i,n, see Theorem 4.1. This is rather close to option (3) from above and the

restrictive assumption (2.3) only influences parameter estimation. Therefore, we refrain from

increasing the complexity of our model.

> Crucial for the closed form solution is the multivariate Gaussian structure (2.2) which is the key

property to all results in the next section. This is similar to the results in the additive model of Shi

et al. (2012), formulas (1)–(4). Relaxation of this assumption may lead to hierarchical generalized

linear models (HGLM) as they are used, for instance, in Gigante et al. (2012). However, many of

the analytical properties get lost in these more complex models and either simulations or

approximations need to be used.

> The model can be generalized to sub-portfolios n all having different dimensions I and J. The

analysis will be the same but the notation will become more cumbersome, therefore we refrain

from doing so.

3 Unconditional and predictive distributions

The Bayesian Model Assumptions 2.1 describe the distribution of n, given the parameter Q. Since, in

general, this parameter is not known experts specify a prior distribution for it. In classical credibility

theory one then collects observations xi,j,n and calculates the posterior distribution of Q, given these

observations, see e.g. Bühlmann & Gisler (2005). In the present situation it is simpler to directly work

with the unconditional distribution of n. That is, though we have a classical Bayesian model including

parameter uncertainty, we do not describe the posterior distribution of the parameter Q explicitly, but

we directly work on the data having the parameter distribution of Q as a latent factor (this can be

done because the parameter Q acts in a simple way as a location parameter as the third proof of

Theorem 3.1 will show). Thus, in a first step we calculate the unconditional distribution of n, and in a

second step we calculate the predictive distribution of n if we observe some of its components ni,j,n.

Theorem 3.1 (unconditional distribution) Under Model Assumptions 2.1 the random vector n has

a multivariate Gaussian distribution with the first two moments given by

E n½ � ¼ Al and S ¼ Cov nð Þ ¼ Sþ ATA0:

In the proof of Theorem 3.1 we derive the following (side-)result for the covariance matrix S.

Corollary 3.2 Under Model Assumptions 2.1 we have for the covariance matrix S 5S1 ATA0

S�1
¼ S�1�S�1AðA0S�1Aþ T�1

Þ
�1

A0S�1:

Next our aim is to describe the distribution of n if we have observed some of its components ni,j,n.

We choose a non-empty, real subset

D � fði; j; nÞ; i ¼ 1; . . . ; I; j ¼ 0; . . . ; J; n ¼ 1; . . . ;Ng ¼
def:J ;
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i.e. D =2 fJ ;+g. Let jDj denote the cardinality of D. Define PD to be the projection Rd ! RjDj onto

the components ði; j; nÞ 2 D, that is,

n 7! nD ¼ PDn;

such that nD exactly contains the components of n which are in D. Analogously, PDc denotes the

projection onto the components in the complement Dc ¼ J nD of D and nD
c

denotes the

corresponding components. Thus, we consider the (bijective) decomposition

n 7! ðnD; nD
c

Þ ð3:1Þ

which separates Rd into two disjoint (non-empty) subspaces RjDj and RjD
cj. Our aim is to predict nD

c

when we have observed nD.

Lemma 3.3 Under Model Assumptions 2.1 the random vector ðnD; nD
c

Þ has a multivariate

Gaussian distribution with the first two moments given by

lD ¼E nD
� �
¼ PD Al and SD ¼ Cov nD

� �
¼ PDSP0D;

lDc ¼E nD
c� �
¼ PDc Al and SDc ¼ Cov nD

c� �
¼ PDc SP0Dc :

The covariance matrix between the components nD and nD
c

is given by

S0Dc ;D ¼ SD;Dc ¼ Cov nD; nD
c� �
¼ PDSP0Dc :

Note that Cov(n) (with one argument) denotes the covariance matrix of the random vector n, and,

by a slight abuse of notation, we denote by Cov(n,g) (with two arguments) the covariance matrix

between the two random vectors n and g. We are now ready to give the crucial statement providing

the predictive distribution of nD
c

, conditionally given observations nD.

Theorem 3.4 (predictive distribution) Under Model Assumptions 2.1 we have the following

statement: the conditional distribution of nD
c

, given nD, is a multivariate Gaussian distribution with

conditional mean given by

l
post
Dc ¼ E nD

c ��nD� �
¼ lDc þ SDc ;D SDð Þ

�1 nD�lD
� �

;

and conditional covariance matrix given by

Spost
Dc ¼ Cov nD

c ��nD� �
¼ SDc�SDc ;D SDÞ

�1SD;Dc :
�

4 Ultimate claim prediction and prediction uncertainty

We apply Theorem 3.4 to the claims reserving problem. Assume that we are at time tZ I (with

t , I 1 J). Then, we have observed the cumulative claims Ci,j,n with i 1 jr t. Note that we choose

tZ I to ensure that the first column {(i,j,n); 1rir I, j 5 0} of each claims development triangle

nA{0,y,N} has been observed. Thus, the data is determined by the indices

Dt ¼ ði; j; nÞ 2 J ; iþ j � t
� �

; ð4:1Þ

and the resulting s-field at time t is given by

F t ¼
def:s Ci;j;n; ði; j; nÞ 2 Dt

� �
¼ s ni;j;n; ði; j; nÞ 2 Dt

n o
¼ s nDt

� �
:

Michael Merz, Mario V. Wüthrich, Enkelejd Hashorva

8

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1748499512000140
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:01:45, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1748499512000140
https:/www.cambridge.org/core


The Bayesian predictor for the ultimate claim Ci,J,n, iZ t2J 1 1, at time tZ I is given by

bCðtÞi;J;n ¼ E Ci;J;n

��F t

� �
¼ Ci;t�i;nE exp

XJ

j¼t�iþ1

ni;j;n

( )�����nDt

" #
: ð4:2Þ

Assume that 1rt2i 1 1rJ. Then we can define the set of indices

Dc
tji;n ¼ Dc

t \ ðl; j;mÞ 2 J ; l ¼ i; m ¼ n
� �

;

which provides the projection PDc
tji;n
: Rd
! RJ�ðt�iÞ. Thus, we have

e0tji;n nD
c
t ¼

def:
ð1; . . . ; 1Þ0PDc

tji;n
n ¼

XJ

j¼t�iþ1

ni;j;n:

Note that this sum exactly considers all un-observed components of nD
c
t for a given accident year i

and a given sub-portfolio n.

Theorem 4.1 (ultimate claim prediction) Under Model Assumptions 2.1 the ultimate claim

predictor bCðtÞi;J;n of sub-portfolio nA{0,y,N} and accident year iA{t2J 1 1,y,I} is at accounting year

tA{I,y,I 1 J21} given by

bCðtÞi;J;n ¼ Ci;t�i;n exp e0tji;n l
post
Dc

t
þ

1

2
e0tji;n Spost

Dc
t

etji;n

	 

:

If we have incomplete data, i.e. if we have less information than Ft at time t, we obtain a similar

result as long as the cumulative claims Ci,t2i,n are observable at time t. For more on methods on

incomplete triangles we refer to Dahms (2008).

Corollary 4.2 (claims reserves) Under Model Assumptions 2.1 the claims reserves defined bybRðtÞi;n ¼ E Ci;J;n�Ci;t�i;n

��F t

� �
of sub-portfolio nA{0,y,N} and accident year iA{t2J 1 1,y,I} are at

accounting year tA{I,y,I 1 J21} given by

bRðtÞi;n ¼ Ci;t�i;n exp e0tji;n l
post
Dc

t
þ

1

2
e0tji;n Spost

Dc
t

etji;n

	 

�1

� �
:

In order to analyze prediction uncertainty one typically studies the volatility of the differences

bCðtÞi;J;n�Ci;J;n ¼ bRðtÞi;n� Ci;J;n�Ci;t�i;n

� �
; ð4:3Þ

i.e. how much the true ultimate claim Ci,J,n may deviate from its prediction bCðtÞi;J;n at time t.

Theorem 4.1 allows for a closed form calculation of the ultimate claim predictor bCðtÞi;J;n and Theorem 3.4

allows for a simulation based analysis of any risk measure on the difference (4.3). Since we do not want

to rely on simulations we choose a particular risk measure which can be calculated in closed form. The

conditional mean square error of prediction (MSEP) is defined by

msepP
i;n

Ci;J;njF t

X
i;n

bCðtÞi;J;n

 !
¼ E

X
i;n

Ci;J;n�
X
i;n

bCðtÞi;J;n

 !2
������F t

24 35:
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In view of the Bayesian predictor (4.2), i.e. taking conditional expectations, we have

msepP
i;n

Ci;J;njF t

X
i;n

bCðtÞi;J;n

 !
¼ Var

X
i;n

Ci;J;n

�����F t

 !
¼
X

i;l;n;m

Cov Ci;J;n;Cl;J;m

��F t

� �
: ð4:4Þ

Thus, for the conditional MSEP we need to calculate these conditional covariances.

Theorem 4.3 (ultimate claim prediction uncertainty) Under Model Assumptions 2.1 we obtain for

accounting year tA{I,y,I 1 J21}

msepP
i;n

Ci;J;njF t

X
i;n

bCðtÞi;J;n

 !
¼
X

i;l;n;m

bCðtÞi;J;n
bCðtÞl;J;m exp e0tji;n Spost

Dc
t

etjl;m

n o
�1

 �
;

where the summation runs over i,lA{t2J 1 1,y,I} and n,mA{1,y,N}.

Theorems 4.1 and 4.3 give closed form solutions for the ultimate claim prediction and the condi-

tional MSEP analysis. The key to these results is Theorem 3.4. Moreover, Theorem 3.4 provides the

full predictive distribution of the inexperienced part of the claims development which would allow

to analyze any other risk measure using Monte Carlo simulations.

5 Claims development result

An important quantity in solvency considerations is the so-called claims development result (CDR).

The CDR describes the changes in the predictors bCðtÞi;J;n if we update the information from time t to

t 1 1, i.e. F t ! F tþ1. The CDR at time t 1 1 for accident year i and sub-portfolio n is defined by

CDRðtþ1Þ
i;n ¼ bCðtÞi;J;n�

bCðtþ1Þ

i;J;n :

Because our successive Bayesian predictions (4.2) are (Ft)t-martingales we obtain the identity

E CDRðtþ 1Þ
i;n

���F t

h i
¼ 0:

This explains that CDRðtþ1Þ
i;n is typically predicted by 0 at time t, see also Merz & Wüthrich (2008b).

For the conditional MSEP of this prediction we obtain the identity

msepP
i;n

CDRðtþ1Þ
i;n jF t

0ð Þ ¼ E
X
i;n

CDRðtþ1Þ
i;n �0

 !2
������F t

24 35 ¼ Var
X
i;n

CDRðtþ1Þ
i;n

�����F t

 !

¼ Var
X
i;n

bCðtþ1Þ

i;J;n

�����F t

 !
¼
X

i;l;n;m

Cov bCðtþ1Þ

i;J;n ;
bCðtþ1Þ

l;J;m

���F t

 �
:

ð5:1Þ

Our aim is to analyze the covariances on the right-hand side of this identity. Therefore, we need to

rewrite the Bayesian ultimate claim predictors (4.2). Theorem 4.1 implies in a first step

bCðtþ1Þ

i;J;n ¼ Ci;tþ1�i;n exp e0tþ1ji;nl
post
Dc

tþ1
þ

1

2
e0tþ1ji;nSpost

Dc
tþ1

etþ1ji;n

� �
1fiþJ4tþ1g

	 

¼ Ci;t�i;n exp ni;tþ1�i;n þ e0tþ1ji;nl

post
Dc

tþ1
þ

1

2
e0tþ1ji;nSpost

Dc
tþ1

etþ1ji;n

� �
1fiþJ4tþ1g

	 

;

ð5:2Þ
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where 1{ � } denotes the indicator function. Observe that only the first two terms in the above exponent

depend on the observations nDtþ1 at time t 1 1, and this dependence is linearly as we will just show. In

analogy to (3.1) we decouple (bijectively) these observations in Dt11 as follows:

nDtþ1 7!ðnDt ; nDtþ1nDt Þ:

The first term describes the components that are observable at time t and the second term the

components that are observed in accounting year t 1 1, which also means Dtþ1nDt � Dc
t . Thus, for

the latter components we also need to apply Theorem 3.4, conditionally given Ft.

The first random term on the right-hand side of (5.2), given Ft, is ni,t 1 12i,n. We define a linear map

by choosing btji;n 2 RjD
c
t j such that b0tji;nn

Dc
t ¼ ni;tþ1�i;n. The second random term on the right-hand

side of (5.2) is given by

l
post
Dc

tþ1
¼ lDc

tþ1
þ SDc

tþ1 ;Dtþ1
SDtþ1

� ��1
nDtþ1�lDtþ1

 �
:

We decouple nDtþ 1 . We define the linear function Btþ1 : RjDtþ1j ! RjDtþ1j with

Btþ1n
Dtþ1 ¼ xi;j;n1fiþj¼tþ1g

� �0
ði;j;nÞ2Dtþ1

;

that is, all components of nDtþ1 are set equal to 0 if they are Ft-measurable. This implies

nDtþ1 ¼ 1�Btþ1ð ÞnDtþ1 þ Btþ1n
Dtþ1 ;

where the first term is Ft-measurable and the second term exactly corresponds to observations in

accounting year t 1 1, i.e. to components in Dtþ1nDt � Dc
t .

To simplify notation we define a linear map by choosing ptji;n 2 RjD
c
t j such that

p0tji;nn
Dc

t ¼ b0tji;nn
Dc

t þ 1fiþJ4 tþ1ge
0
tþ1ji;nSDc

tþ1 ;Dtþ1
SDtþ1

� ��1
Btþ1n

Dtþ1 :

This then allows to rewrite (5.2) as follows

bCðtþ1Þ

i;J;n ¼ gtji;nðF tÞ exp p0tji;nn
Dc

t
� �

;

for an appropriate Ft-measurable (constant) gtji;nðF tÞ.

Lemma 5.1 Under Model Assumptions 2.1 we have

gtji;nðF tÞ ¼ Ci;t�t;n exp ðe0tji;n�p0tji;nÞl
post
Dc

t
þ

1

2
e0tji;nSpost

Dc
t

etji;n�
1

2
p0tji;nSpost

Dc
t

ptji;n

	 

:

We are now ready to state the main theorem for the conditional MSEP of the CDR. Its single terms

in (5.1) are given by the following result.

Theorem 5.2 (CDR prediction uncertainty) Under Model Assumptions 2.1 we have for

tA{I,y,I 1 J21}, i,lA{t2J 1 1,y,I} and n,mA{1,y,N}

Cov bCðtþ 1Þ

i;J;n ; bCðtþ 1Þ

l;J;m

���F t

 �
¼ bCðtÞi;J;n

bCðtÞl;J;m exp p0tji;nSpost
Dc

t
ptjl;m

n o
�1

 �
:

Before we are going to describe examples we need to slightly modify the vectors ptji;n in order to get

handy formulas in the implementation.
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Lemma 5.3 Under the above assumptions we have

Btþ1n
Dtþ1 ¼ ðPDtþ1

P0Dc
t
Þ nD

c
t and b0tji;nn

Dc
t ¼ e0tji;n ðPDc

t
P0Dtþ 1

PDtþ1
P0Dc

t
Þ nDc

t :

This lemma has the nice consequence that we can express p0tji;n in terms that have already been

introduced in Section 4, namely

p0tji;n ¼ e0tji;nðPDc
t
P0Dtþ1

Þ þ 1fiþJ4tþ1ge
0
tþ1ji;nSDc

tþ1 ;Dtþ1
SDtþ1

� ��1
 �

ðPDtþ1
P0Dc

t
Þ:

6 Examples and sensitivities

In this section we study the influence of different choices of the covariance structure S 2 Rd� d on

the resulting claims reserves bRðtÞi;n (Theorem 4.1) and the corresponding conditional MSEP’s for the

ultimate claim prediction (Theorem 4.3) and for the CDR prediction (Theorem 5.2). Therefore, we

revisit the multivariate data studied in Braun (2004). It consists of N 5 2 claims reserving triangles.

The first triangle (n 5 1) describes a general liability (GL) insurance run-off (see Table 5 in the

Appendix), the second triangle (n 5 2) describes a motor third party liability (MTPL) insurance run-

off (see Table 6 in the Appendix).

We make different choices for the covariance matrix S. First we rewrite this covariance matrix S in

order to get a better understanding. Similar to the prior mean l we assume that the conditional

standard deviation of xi,j,n does not depend on the accident year iA{1,y,I}, thus

Var xi;j;n

��H� �1=2
¼ sj;n for all ði; j; nÞ 2 J :

We define the standard deviation vectors r	 ¼ ðs0;1; . . . ; s0;N; . . . ; sJ;1; . . . ; sJ;NÞ
0
2 Ra for ni and

r ¼ Ar	 2 Rd for n. With this notation at hand we can rewrite the covariance matrix S as

Cov n
��H� �
¼ S ¼ diagðrÞL diagðrÞ;

where L 2 Rd� d denotes the conditional correlation matrix of n. The numerical values of the

chosen standard deviation parameter s are given in Tables 5 and 6 below. Our aim in the next

sections is to examine different (positive-definite) choices of the correlation matrix L. For the prior

uncertainty in Q we choose T 5 t21 with t 5 1 (this is a rather non-informative choice and the

diagonal structure of T implies that prior uncertainty on the two portfolios is mutually independent).

6.1 Uncorrelated choice for L

As a benchmark model we consider L 5 1, i.e. all components of n are conditionally independent,

given Q. This is a Bayesian version of Hertig’s log-normal claims reserving model, see Hertig (1985).

It corresponds to the model typically analyzed in practice where one assumes that payments in

different accident years i are independent, conditionally given the model parameters (see also Mack

(1993)). Under these model assumptions we obtain the results provided in Table 1. In this table we

give the claims reserves and the corresponding conditional MSEP’s, based on the information F I,

for single accident years iA{1,y,14} and on the line ‘‘total’’ for aggregated accident years
P14

i¼1. We

observe that the calculated total claims reserves
P

i;n RðIÞi;n (aggregated over all accident years

iA{1,y,14} and all sub-portfolios nA{1,2}) result in the value 8097,585.
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Our first aim is to study the conditional MSEP’s in this benchmark model. We have, in view of

formula (4.4),

msepP
i;n

Ci;J;n jF I

X
i;n

bCðIÞi;J;n

 !
¼
X

i

msepP
n

Ci;J;njF I

X
n

bCðIÞi;J;n

 !

þ
X
i 6¼ l

Cov
X

n

Ci;J;n;
X

m

Cl;J;m

�����F I

 !
:

ð6:1Þ

The first term on the right-hand side (rhs) of (6.1) is the conditional MSEP for single accident

years (which is given on lines i 5 1,y,14 in Table 1). The second term on the rhs of (6.1)

corresponds to the implied covariance from the simultaneous parameter uncertainty in Q over all

accident years, that is,

X
i 6¼ l

Cov
X

n

Ci;J;n;
X

m

Cl;J;m

�����F I

 !
¼
X
i 6¼ l

E Cov
X

n

Ci;J;n;
X

m

Cl;J;m

�����F I;H

 !�����F I

" #

þ
X
i 6¼ l

Cov
X

n

E Ci;J;n

��F I;H
� �

;
X

m

E Cl;J;m

��F I;H
� ������F I

 !
:

The first term on the rhs is equal to zero (due to the uncorrelated choice given by L 5 1). The

square-root of the second term is given by 217,693 (and for the CDR uncertainty by 151,274, see

Table 1). This allows to define the implied average correlation between accident years �ca:y:ð0Þ by

�ca:y:ð0Þ ¼
def:

P
i 6¼ l Cov

P
n Ci;J;n;

P
m Cl;J;m

��F I

� �
P

i 6¼ l Var
P

n Ci;J;n

��F I

� �1=2
Var

P
m Cl;J;m

��F I

� �1=2
¼ 5:2%: ð6:2Þ

Table 1. Uncorrelated case L 5 1 for the aggregated GL and MTPL portfolio
P

n¼1;2 Ci;J;n.

accident year claims reserves
msep

1=2P
n

Ci;J;n jF I

P
n
bCðIÞi;J;n

 �
msep

1=2P
n

CDRðIþ1Þ
i;n
jF I

0ð Þ

i
P

n
bRðIÞi;n absolute in % reserves absolute in % reserves

1 0 0 0

2 1,814 1,848 101.9% 1,848 101.9%

3 4,828 4,445 92.1% 4,094 84.8%

4 12,039 8,704 72.3% 6,969 57.9%

5 16,414 11,335 69.1% 7,831 47.7%

6 29,449 15,500 52.6% 10,186 34.6%

7 45,993 20,588 44.8% 11,684 25.4%

8 86,108 27,119 31.5% 13,962 16.2%

9 157,373 34,672 22.0% 20,528 13.0%

10 342,159 54,127 15.8% 33,799 9.9%

11 679,585 87,232 12.8% 58,747 8.6%

12 1280,707 152,922 11.9% 112,847 8.8%

13 2419,572 284,581 11.8% 207,872 8.6%

14 3021,544 379,975 12.6% 290,658 9.6%

Cov1/2 217,693 151,274

total 8097,585 556,337 6.9% 410,964 5.1%
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Thus, the implied average correlation between accident years of the joint parameter uncertainty in

Q is 5.2% in our example. Completely analogously we obtain for the implied average correlation

between accident years for the CDR uncertainty �cCDR
a:y: ð0Þ ¼ 4:9%. These implied correlations play

an important role in practice because typically they are specified/adjusted by experts. However, we

will see that this notion can be quite controversial and even misleading.

6.2 Accounting year correlation and portfolio independence for L

In the spirit of Wüthrich (2010) we introduce accounting year dependence, but for the time-being

we assume that the different portfolios nA{1,y, N} are still independent. Thus, the correlation

matrix L is chosen such that for a fixed rA[0,1) we have

Cov xi;j;n; xl;k;n

��H� �
¼ sj;nsk;nr1fiþ j¼ lþ kg for ði; jÞ 6¼ ðl; kÞ; ð6:3Þ

Cov xi;j;n; xl;k;m

��H� �
¼ 0 for n 6¼ m: ð6:4Þ

The results for these choices (6.3)–(6.4) are given in Table 2. The first observation is that the claims

reserves are a decreasing function in r. Though very important, this observation should not be

over-stated because depending on the numerical example we may also obtain an increasing function

in r for the claims reserves. This decrease of the claims reserves is related to the fact that the data

does not satisfy assumption (2.3) and we should adjust for this using prior differences as described

in Remarks 2.2. To fully understand this adjustment more analysis on the micro-level of the data

needs to be done. We refrain from doing so here because we would like to concentrate on the

uncertainties given by the conditional MSEP’s.

A very important observation is that the conditional MSEP’s are an increasing function in r. For

example, a correlation parameter of r 5 20% leads to a substantial increase of the square-rooted

CDR uncertainty of

533; 055

410; 964
�1 
 30%!

Table 2. Accounting year correlation r and portfolio independence according to (6.3)–(6.4).

accounting year

claims reserves
msep

1=2P
i;n

Ci;J;n jF I

P
i;n
bCðIÞi;J;n

 �
msep

1=2P
i;n

CDRðIþ1Þ
i;n
jF I

0ð Þ

correlation r
P

i;n
bRðIÞi;n absolute in % reserves absolute in % reserves

0% 8097,585 556,337 6.9% 410,964 5.1%

10% 7842,470 650,963 8.3% 477,437 6.1%

20% 7688,058 728,723 9.5% 533,055 6.9%

30% 7572,026 796,104 10.5% 581,649 7.7%

40% 7477,039 856,212 11.5% 625,190 8.4%

50% 7395,570 910,834 12.3% 664,860 9.0%

60% 7323,574 961,113 13.1% 701,435 9.6%

70% 7258,587 1007,835 13.9% 735,455 10.1%

80% 7198,991 1051,565 14.6% 767,314 10.7%

90% 7143,657 1092,728 15.3% 797,313 11.2%
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The full curve is given in Figure 1(a) (lhs) where we see that this increase is a non-linear function

that needs to be analyzed in a careful bottom-up approach.

Conclusion 1 The introduction of accounting year dependence may substantially increase the

prediction uncertainty. This relative increase is non-linear in the correlation parameter rA[0,1)

(Figure 1(a), lhs).

Next we calculate the average implied correlations between accident years �ca:y:ðrÞ and �cCDR
a:y: ðrÞ as a

function of the accounting year correlation rA[0,1) (see also (6.2)). We define these average implied

correlations between accident years by

�ca:y:ðrÞ ¼
def:

P
i 6¼ l CovðrÞ

P
n Ci;J;n;

P
m Cl;J;m

��F I

� �
P

i 6¼ l Varð0Þ
P

n Ci;J;n

��F I

� �1=2
Varð0Þ

P
m Cl;J;m

��F I

� �1=2
; ð6:5Þ

where Cov(r)( � , � jFI) corresponds to the choice rA[0,1) and Var(0)( � jFI) to the choice r 5 0. The

results are presented in Figure 1(b) (rhs). We see that �ca:y:ðrÞ and �cCDR
a:y: ðrÞ are non-linearly increasing

functions in r. More surprisingly, we see that �ca:y:ðrÞ4 1 for r . 85% which seems to be an error at

first sight. However, these figures are correct and there results a counter-intuitive correlation bigger

than 1! The reason for this value bigger than 1 is that (6.5) does not give a well-specified correlation

measure because enumerator and denominator belong to different models (specifications of r). For

different r’s also the conditional MSEP’s for single accident years i (given in Table 1 for r 5 0) will

change; and thus Table 1 does not allow to reconstruct the results for r . 0 using an average implied

correlation factor (bounded by 1). We conclude again that only a bottom-up calculation can provide

the full flavour of the results, because if we need to reconstruct Table 1 for r . 0 then we directly

obtain the full picture of the overall uncertainties.

Conclusion 2 The introduction of an average implied correlation between accident years given by (6.5)

does not allow to construct the conditional MSEP’s for r . 0 from the conditional MSEP’s with r 5 0

in an intuitive way, because �ca:y:ðrÞ can take arbitrary and counter-intuitive values (Figure 1(b), rhs).

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

total uncertainty CDR uncertainty

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

total uncertainty CDR uncertainty

Figure 1. Accounting year correlation r and portfolio independence according to (6.3)–(6.4):
(a) lhs: relative increase of square-rooted uncertainties as a function of the accounting year

correlation rA[0,1) for msep
1=2P

i;n
Ci;J;njF I

P
i;n
bCðIÞi;J;n

 �
and msep

1=2P
i;n

CDRðIþ 1Þ
i;n
jF I

0ð Þ; (b) rhs: average

implied correlations between accident years �ca:y:ðrÞ and �cCDR
a:y: ðrÞ as a function of the accounting

year correlation rA[0,1).
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The next observation on the average implied correlation between accident years came as a surprise to

us (and at first glance it seemed very counter-intuitive). To see this next phenomenon we need to choose

a different data set. We choose the MTPL data from Saluz et al. (2011), Table 7 (and we set N 5 1).

Figure 2 shows that the square-rooted conditional MSEP msep
1=2P

i
Ci;J;1jF I

P
i
bCðIÞi;J;1

 �
of the total ultimate

claim prediction and the corresponding implied average correlation �ca:y:ðrÞ are increasing functions in

the accounting year correlation r. The picture for the CDR is very different: in this example the

conditional MSEP msepP
i
CDRðIþ 1Þ

i;1
jF I

0ð Þ is not an increasing function of the accounting year correlation

parameter r! There are two arguments for this non-monotonicity property: (1) the ultimate claim

predictor bCðIÞi;J;1 is in this example a decreasing function in r (similar to Table 2) and this decrease cannot

be compensated by an increase of the covariance term ðexpfp0Iji;1 Spost
Dc

I
pIjl;1g�1Þ, see Theorem 5.2; (2)

the CDR uncertainty measures possible changes over the next accounting year whereas the ultimate

claim prediction uncertainty measures the total uncertainty until all claims are settled. An increasing

accounting year correlation r may also imply that more parameter uncertainty is shifted from the next

year to latter periods, and hence the one-year CDR uncertainty (for the next accounting year) is

relatively decreasing compared to the total uncertainty.

Conclusion 3 The average implied correlation between accident years is not necessarily an

increasing function in the accounting year correlation parameter r (Figure 2(b), rhs).

6.3 Accounting year independence and portfolio correlation for L

In this section we study portfolio correlation in the spirit of Braun (2004) and Merz & Wüthrich

(2007, 2008a), but we assume that there is no accounting year correlation. Thus, the correlation

matrix L is chosen such that for a fixed rA[0,1) we have

Cov xi;j;n; xl;k;m

��H� �
¼ sj;nsk;mr1fði;jÞ¼ ðl;kÞg for ði; j; nÞ 6¼ ðl; k;mÞ; ð6:6Þ

i.e. this is a point-wise cell dependence between ni,j,n and ni,j,m. The results for these choices (6.6) are

given in Table 3. We observe that the increase in prediction uncertainty is comparably small under

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

total uncertainty CDR uncertainty

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

total uncertainty CDR uncertainty

Figure 2. Example Saluz et al. (2011), Table 7: Accounting year correlation r according to (6.3): (a) lhs:
relative increase of square-rooted uncertainties as a function of the accounting year correlation rA[0,1)

for msep
1=2P

i
Ci;J;1 jF I

P
i
bCðIÞi;J;1

 �
and msep

1=2P
i
CDRðIþ 1Þ

i;1
jF I

0ð Þ; (b) rhs: average implied correlations between

accident years �ca:y:ðrÞ and �cCDR
a:y: ðrÞ as a function of the accounting year correlation rA[0,1).
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assumption (6.6) (compare Tables 2 and 3). Under assumption (6.6) the relative increase in the

square-rooted conditional MSEP can be at most
ffiffiffi
2
p
�1¼41:4%, whereas under assumptions

(6.3)–(6.6) we can get relative increases of 100% (see Figure 1(a), lhs). Thus, if we only apply this

type of point-wise cell correlation, then prediction uncertainty is typically under-estimated because

data show more dependence structure.

Conclusion 4 Point-wise cell dependence only allows for a moderate increase in the uncertainty estimates.

Conclusions 1 and 4 are in line with the findings in Shi et al. (2012), Table 2.

6.4 Accounting year and portfolio correlation for L

Finally, we combine the two previous forms of dependence. We choose S such that for rA[0,1)

Cov xi;j;n; xl;k;m

��H� �
¼ sj;nsk;m r1fiþj¼lþkg for ði; j;nÞ 6¼ ðl; k;mÞ: ð6:7Þ

The results for these choices (6.7) are given in Table 4. We see a substantial increase in the

uncertainty if we combine these two different types of dependence. E.g., if we choose r 5 20% we

obtain the following relative increases in the CDR uncertainty:

model (6.3)–(6.4): 533,055/410,964–1 E 30%, see Table 2,

model (6.6): 440,384/410,964–1 E 7%, see Table 3,

model (6.7): 620,545/410,964–1 E 51%, see Table 4.

That is, already a ‘‘comparably moderate’’ correlation parameter of r 5 20% implies in model (6.7)

an increase of CDR uncertainty of 51% (measured in the square-rooted conditional MSEP). If we

start from the uncorrelated model r 5 0 we obtain portfolio uncertainties

msep
1=2P

i

CDRðIþ 1Þ
i;n
jF I

0ð Þ ¼
372; 690 for n ¼ 1;

172;613 for n ¼ 2:

	

A ‘‘correlation’’ factor of 1 between these two latter figures implies a total uncertainty of

Table 3. Point-wise cell correlation r and accounting year independence according to (6.6).

point-wise cell

claims reserves
msep

1=2P
i;n

Ci;J;n jF I

P
i;n
bCðIÞi;J;n

 �
msep

1=2P
i;n

CDRðIþ1Þ
i;n
jF I

0ð Þ

correlation r
P

i;n
bRðIÞi;n absolute in % reserves absolute in % reserves

0% 8097,585 556,337 6.9% 410,964 5.1%

10% 8097,585 575,262 7.1% 425,923 5.3%

20% 8097,585 593,605 7.3% 440,384 5.4%

30% 8097,584 611,417 7.6% 454,396 5.6%

40% 8097,584 628,743 7.8% 467,998 5.8%

50% 8097,584 645,624 8.0% 481,225 5.9%

60% 8097,584 662,092 8.2% 494,108 6.1%

70% 8097,583 678,178 8.4% 506,673 6.3%

80% 8097,583 693,909 8.6% 518,942 6.4%

90% 8097,583 709,308 8.8% 530,937 6.6%
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372,690 1 172,613 5 545,569 which is by far less than the 620,545 from model (6.7) with

r 5 20%. Thus, we get the following conclusion.

Conclusion 5 An overall top correlation as specified in Solvency 2 (see European

Commission (2010), SCR.9.34) or in the Swiss Solvency Test (see Swiss Solvency Test (2006),

Section 8.4) typically under-estimates the prediction uncertainty if one starts with the benchmark

model r 5 0.

Finally, in Figure 3(a) (lhs) we compare the square-rooted conditional MSEPs for the CDR

uncertainties as a function of r for the three models considered above. We observe the non-linear

increase which can only be calculated in a bottom-up approach (as suggested above). Figure 3(b)

Table 4. Accounting year and portfolio correlation according to (6.7).

claims reserves
msep

1=2P
i;n

Ci;J;njF I

P
i;n
bCðIÞi;J;n

 �
msep

1=2P
i;n

CDRðIþ1Þ
i;n
jF I

0ð Þ

correlation r
P

i;n
bRðIÞi;n absolute in % reserves absolute in % reserves

0% 8097,585 556,337 6.9% 410,964 5.1%

10% 7707,647 718,021 9.3% 528,494 6.9%

20% 7533,921 843,029 11.2% 620,545 8.2%

30% 7421,690 948,802 12.8% 698,663 9.4%

40% 7340,040 1042,186 14.2% 767,687 10.5%

50% 7276,834 1126,728 15.5% 830,183 11.4%

60% 7225,968 1204,555 16.7% 887,706 12.3%

70% 7183,917 1277,057 17.8% 941,278 13.1%

80% 7148,458 1345,205 18.8% 991,616 13.9%

90% 7118,096 1409,706 19.8% 1039,243 14.6%

400,000

500,000

600,000

700,000

800,000

900,000

1000,000

1100,000

0% 20% 40% 60% 80% 100%

cells correlation accounting year correlation

combined correlation

5000,000

6000,000

7000,000

8000,000

9000,000

10000,000

0% 20% 40% 60% 80% 100%

reserves confidence total 

confidence CDR

Figure 3. (a) lhs: comparison of models (6.3)–(6.4) (accounting year correlation), (6.6) (point-wise
cells correlation) and (6.7) (combined correlation), we display the square-rooted conditional MSEPs
of the CDR uncertainty as a function of rA[0,1); (b) rhs: combined correlation model (6.7), claims
reserves and 1-standard deviation confidence interval for the total uncertainty and the CDR
uncertainty as a function of rA[0,1).

Michael Merz, Mario V. Wüthrich, Enkelejd Hashorva

18

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1748499512000140
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:01:45, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1748499512000140
https:/www.cambridge.org/core


(rhs) gives the claims reserves from Corollary 4.2 together with a confidence interval of 1-standard

deviation, both for the total uncertainty (Theorem 4.3) and the CDR uncertainty (Theorem 5.2) as a

function of the correlation parameter r.

7 Conclusions

We summarize the findings and give a brief outlook:

> There is no reasonable way (short-cut) to choose correlation on a top level because often intuition

fails as Conclusions 1–5 show. Overall correlations can only be determined in a bottom-up approach.

> We provide the whole tool kit (Theorems 4.3 and 5.2) for this bottom-up approach in the

multivariate log-normal model. Other distributional models can often only be solved numerically

and then the sensitivity analysis becomes much intransparent.

> Other risk measures than the conditional MSEP (such as Value-at-Risk or Tail-Value-at-Risk) can

only be calculated numerically. In addition, it would be interesting to analyze the behaviour of

these risk measures under dependence structures with tail dependence, see McNeil et al. (2005).

> The choice of the (positive-definite) covariance matrix S needs a thorough discussion. Sometimes

data is helpful but we believe that expert opinion is as important as data in order to get reasonable

choices for S. Often accounting year dependence is correlated with inflation that depends on

financial market developments. Similar to König et al. (2011) and Donnelly & Wüthrich (2012)

these dependence structures between insurance claims and financial market movements should be

studied in order to enhance the quality of the prediction.

> Sensitivities for different lines of business with different development patterns (and uncertainty)

should be investigated in a comprehensive case study.
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Merz, M. & Wüthrich, M.V. (2008b). Modelling the claims development result for solvency pur-

poses. CAS E-Forum, Fall 2008, 542–568.

Pestman, W.R. (1998). Mathematical Statistics. de Gruyter.

Saluz, A., Gisler, A. & Wüthrich, M.V. (2011). Development pattern and prediction error for the

stochastic Bornhuetter-Ferguson claims reserving method. ASTIN Bulletin, 41/2, 279–313.

Shi, P., Basu, S. & Meyers, G.G. (2012). A Bayesian log-normal model for multivariate loss

reserving. North American Actuarial Journal, 16/1, 29–51.

Shi, P. & Frees, E.W. (2011). Dependent loss reserving using copulas. ASTIN Bulletin, 41/2, 449–486.

Swiss Solvency Test (2006). FINMA SST Technisches Dokument, Version 2. October 2006.

Wüthrich, M.V. (2010). Accounting year effects modelling in the stochastic chain ladder reserving

method. North American Actuarial Journal, 14/2, 235–255.

Zhang, Y., Dukic, V. & Guszcza, J. (2012). A Bayesian non-linear model for forecasting insurance

loss payments. Journal Royal Statistical Society A, 175/2, 637–656.

Appendix A Proofs of the statements

Proof of Theorem 3.1. We give three different proofs for Theorem 3.1 because all of them are

interesting on their own.

Proof (1). The first proof goes by ‘‘brute force’’. It uses classical Bayesian thinking that tries to

determine the form of the posterior density explicitly. This proof is important because it shows how

the model can be generalized to non-Gaussian model assumptions and how Markov chain Monte

Carlo simulation methods need to be applied. We rewrite the joint density (2.2) of n and Q as

follows (hiding all normalizing constants in the symbol /)

�2logf ðn; hÞ / n�Ahð Þ
0S�1 n�Ahð Þ þ h�lð Þ0T�1 h�lð Þ

/ n0S�1n�2h0A0S�1n þ h0A0S�1Ah þ h0T�1h�2h0T�1l

¼ n0S�1n�2h0 A0S�1n þ T�1l
� �

þ h0 A0S�1A þ T�1
� �

h:

We define the matrices B�1 ¼ A0S�1A þ T�1
2 Ra�a and C ¼ A0S�1A 2 Ra� a. These matrices

are positive-definite: choose h 6¼ ð0; . . . ; 0Þ0 2 Ra. The choice of A implies Ah 6¼ ð0; . . . ; 0Þ0 2 Rd.

Since S is positive-definite we obtain for all these vectors h

Michael Merz, Mario V. Wüthrich, Enkelejd Hashorva
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h0Ch ¼ h0 A0S�1A
� �

h ¼ ðAhÞ0S�1Ah4 0;

thus the matrix C is positive-definite. Moreover, T is positive-definite and hence B21 5 C 1 T21 is

positive-definite (and invertible).

We add and subtract the same term so that we obtain a density as a function of h.

�2logf ðn; hÞ / n0S�1n�2h0B�1B A0S�1n þ T�1l
� �

þ h0B�1h

¼ n0S�1n� A0S�1n þ T�1l
� �0

B0B�1B A0S�1n þ T�1l
� �

þ h�B A0S�1n þ T�1l
� �� �0

B�1 h�B A0S�1n þ T�1l
� �� �

/ n0S�1n�n0S�1AB0A0S�1n�2n0S�1AB0T�1l

þ h�B A0S�1n þ T�1l
� �� �0

B�1 h�B A0S�1n þ T�1l
� �� �

:

The last line provides a multivariate Gaussian density for h. This implies, note that B05 B,

f ðnÞ ¼

Z
Ra

f ðn; hÞdh / exp �
1

2
n0S�1n�n0S�1ABA0S�1n�2n0S�1ABT�1l
� �	 


: ðA:1Þ

Thus, we obtain a multivariate Gaussian distribution for n and there remains to calculate its mean

and variance. The unconditional mean of n is given by

E n½ � ¼ E E n
��H� �� �

¼ E AH½ � ¼ Al:

For the unconditional covariance matrix of n we have

Cov nð Þ ¼ E Cov n
��H� �� �

þ Cov E n
��H� �� �

¼ Sþ Cov AHð Þ ¼ Sþ ATA0:

This finishes the first proof of Theorem 3.1.

Proof (2). An elegant proof goes via the moment generating function. Choose y 2 Rd.

We have

E exp y0n
� �� �

¼ E E exp y0n
� ���H� �� �

¼ E exp y0AHþ y0Sy=2
� �� �

¼ exp y0Alþ y0ATA0y=2þ y0Sy=2
� �

¼ exp y0Alþ y0ðSþ ATA0Þy=2
� �

:

This is the moment generating function of a multivariate Gaussian distribution with the required

first two moments. This finishes the second proof of Theorem 3.1.

Proof (3). This proof uses that the parameter Q acts as a location parameter. Assume that Y is

independent of Q having a centered multivariate Gaussian distribution with covariance matrix S.

Then we have the distributional identity

n ¼ n�AH þ AH¼
ðdÞ

Y þ AH:

The rhs now describes a multivariate Gaussian distribution with the required first two moments.

Note that the matrix ATA0 is positive-semi-definite and hence S is positive-definite. This finishes the

third proof of Theorem 3.1.

&
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Proof of Corollary 3.2. From (A.1) we immediately see that the inverse covariance matrix S is given

by

S�1
¼ S�1�S�1ABA0S�1 ¼ S�1�S�1AðC þ T�1

Þ
�1

A0S�1

¼ S�1�S�1AðA0S�1A þ T�1
Þ
�1

A0S�1:

For completeness we also transform the last term in (A.1). Applying A from the right to the equality

above we obtain, using the positive-definiteness of C,

S�1A ¼ S�1A 1� C þ T�1
� ��1

C
 �

¼ S�1A 1� C þ T�1
� ��1

ðC�1
Þ
�1

 �
¼ S�1A 1� 1 þ C�1T�1

� ��1
 �

¼ S�1A 1� ðT þ C�1
ÞT�1

� ��1
 �

¼ S�1A 1�T T þ C�1
� ��1

 �
:

Let us calculate the last bracket, it provides

1�T T þ C�1
� ��1

¼ T þ C�1
� �

T þ C�1
� ��1

�T T þ C�1
� ��1

¼ T þ C�1
� �

�T
� �

T þ C�1
� ��1

¼ C�1 T þ C�1
� ��1

¼ TC þ 1ð Þ
�1
¼ C þ T�1
� ��1

T�1
¼ BT�1:

We have just proved that S�1A ¼ S�1ABT�1. Thus, (A.1) becomes

f ðnÞ / exp �
1

2
n0S�1n�2n0S�1Al
� �	 


/ exp �
1

2
n�Alð ÞS�1 n�Alð Þ

	 

:

This completes the proof.
&

Proof of Lemma 3.3. The lemma is an immediate consequence of Theorem 3.1. Note that the linear,

bijective map (3.1) only describes a relabeling of the components (permutation) and this does not

change the type of the underlying distribution. The first two moments are then also a consequence of

Theorem 3.1 using the linearity of the projections, see also Result 4.4 in Johnson & Wichern (1988).

&

Proof of Theorem 3.4. In view of Lemma 3.3 this is a well-known statement for multivariate

Gaussian distributions, see Pestman (1998), pages 427–428, or Result 4.6 in Johnson & Wichern

(1988). The matrix CovðnD
c

jnDÞ describes the Schur complement of SD in S, we also refer to Section

A.5.5 in Boyd & Vandenberghe (2004).

&

Proofs of Theorems 4.1 and 4.3. Note that e0tji;nn
Dc

t is a sum over components in nD
c
t . From Theorem

3.4 we obtain that e0tji;nn
Dc

t jnDt has a Gaussian distribution with posterior mean e0tji;nl
post
Dc

t
and

posterior variance e0tji;nSpost
Dc

t
etji;n. Then the claims immediately follow from the properties of

log-normal distributions.
&
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Proof of Lemma 5.1. Because successive predictions are (Ft)t-martingales and in view of Theorem

3.4 we have

bCðtÞi;J;n ¼ E bCðtþ 1Þ

i;J;n

���F t

h i
¼ gtji;nðF tÞexp p0tji;nl

post
Dc

t
þ

1

2
p0tji;nSpost

Dc
t

ptji;n

	 

:

The rhs now needs to be equal to the term given in Theorem 4.1 which proves the claim.

&

Proof of Theorem 5.2. A straightforward calculation shows

Cov bCðtþ 1Þ

i;J;n ; bCðtþ 1Þ

l;J;m

���F t

 �
¼ E bCðtþ 1Þ

i;J;n
bCðtþ1Þ

l;J;m

���F t

h i
�E bCðtþ 1Þ

i;J;n

���F t

h i
E bCðtþ 1Þ

l;J;m

���F t

h i
¼ gtji;nðF tÞgtjl;mðF tÞ

�
E exp ðp0tji;n þ p0tjl;mÞn

Dc
t

� ���F t

� �
�E exp p0tji;nn

Dc
t

� ���F t

� �
E exp p0tjl;mnD

c
t

� ���F t

� ��
¼ bCðtÞi;J;n

bCðtÞl;J;m exp p0tji;nSpost
Dc

t
ptjl;m

n o
�1

 �
:

This proves the theorem.

&

Proof of Lemma 5.3. For the first claim we note that nD
c
t ¼ PDc

t
n. Thus, the linear map PDc

t
:

Rd ! RjD
c
t j selects all components of n which are in Dc

t . Next, we observe that the linear map

P0Dc
t
: RjD

c
t j ! Rd maps the vector nD

c
t to the vector

~n ¼ xi;j;n1fði;j;nÞ2Dc
t g

� �
0
ði;j;nÞ2J 2 Rd;

i.e. all components ði; j; nÞ =2Dc
t are set equal to 0. This implies that the linear map ðP0Dc

t
PDc

t
Þ : Rd

!

Rd exactly selects all the components that are in Dc
t , i.e.

ðP0Dc
t
PDc

t
Þn ¼ ~n ¼ xi;j;n1fði;j;nÞ2Dc

t g

� �0
ði;j;nÞ2J 2 Rd:

If we finally apply the linear map PDtþ 1
: Rd

! RjDtþ 1j we see that

ðPDtþ 1
P0Dc

t
PDc

t
Þn ¼ PDtþ 1

~n ¼ ni;j;n1fði;j;nÞ2Dc
t g

 �0
ði;j;nÞ2Dtþ 1

2 RjDtþ 1 j;

thus, we keep the values of the components ði; j; nÞ 2 Dtþ1 \ Dc
t and all components in Dtþ 1nDc

t

are set equal to 0 which exactly is equal to Btþ 1n
Dtþ 1 .

For the second claim we observe (using the first statement) that

ðP0Dtþ1
PDtþ 1

P0Dc
t
ÞnD

c
t ¼ P0Dtþ 1

Btþ 1x
Dtþ 1 ¼ ni;j;n1fði;j;nÞ 2Dc

t\Dtþ 1g

 �0
ði;j;nÞ 2J

2 Rd:

This implies

ðPDc
t
P0Dtþ 1

PDtþ 1
P0Dc

t
ÞnD

c
t ¼ PDc

t
ni;j;n1fði;j;nÞ2Dtþ 1g

 �0
ði;j;nÞ2Dc

t

2 RjD
c
t j:

Thus, ðPDc
t
P0Dtþ 1

PDtþ 1
P0Dc

t
ÞnD

c
t considers all components of nD

c
t which become observable at time
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Table 5. Observed general liability (GL) data Ci,j,n with i 1 jr I 5 14 and n 5 1. The vector ln ¼ ðm0;n; . . . ; mJ;nÞ
0 denotes the prior mean of parameter vector Q

that corresponds to sub-portfolio n 5 1, rn ¼ ðs0;n; . . . ; sJ; nÞ
0 denotes the standard deviation parameters implied from S for sub-portfolio n 5 1, and for the prior

covariance matrix we choose T 5 t21 with t 5 1.

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 59,966 163,152 254,512 349,524 433,265 475,778 513,660 520,309 527,978 539,039 537,301 540,873 547,696 549,589

2 49,685 153,344 272,936 383,349 458,791 503,358 532,615 551,437 555,792 556,671 560,844 563,571 562,795

3 51,914 170,048 319,204 425,029 503,999 544,769 559,475 577,425 588,342 590,985 601,296 602,710

4 84,937 273,183 407,318 547,288 621,738 687,139 736,304 757,440 758,036 782,084 784,632

5 98,921 278,329 448,530 561,691 641,332 721,696 742,110 752,434 768,638 768,373

6 71,708 245,587 416,882 560,958 654,652 726,813 768,358 793,603 811,100

7 92,350 285,507 466,214 620,030 741,226 827,979 873,526 896,728

8 95,731 313,144 553,702 755,978 857,859 962,825 1022,241

9 97,518 343,218 575,441 769,017 934,103 1019,303

10 173,686 459,416 722,336 955,335 1141,750

11 139,821 436,958 809,926 1174,196

12 154,965 528,080 1032,684

13 196,124 772,971

14 204,325

ln 11.5266 1.1562 0.5312 0.2998 0.1657 0.1000 0.0532 0.0257 0.0142 0.0115 0.0062 0.0046 0.0056 0.0035

rn 0.4721 0.1094 0.0700 0.0500 0.0298 0.0200 0.0150 0.0100 0.0100 0.0100 0.0080 0.0070 0.0050 0.0021
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Table 6. Observed motor third party liability (MTPL) data Ci,j,n with i 1 jr I 5 14 and n 5 2. The vector ln ¼ ðm0;n; . . . ; mJ;nÞ
0 denotes the prior mean of parameter

vector Q that corresponds to sub-portfolio n 5 2, rn ¼ ðs0;n; . . . ;sJ;nÞ
0 denotes the standard deviation parameters implied from S for sub-portfolio n 5 2, and for the

prior covariance matrix we choose T 5 t21 with t 5 1.

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 114,423 247,961 312,982 344,340 371,479 371,102 380,991 385,468 385,152 392,260 391,225 391,328 391,537 391,428

2 152,296 305,175 376,613 418,299 440,308 465,623 473,584 478,427 478,314 479,907 480,755 485,138 483,974

3 144,325 307,244 413,609 464,041 519,265 527,216 535,450 536,859 538,920 539,589 539,765 540,742

4 145,904 307,636 387,094 433,736 463,120 478,931 482,529 488,056 485,572 486,034 485,016

5 170,333 341,501 434,102 470,329 482,201 500,961 504,141 507,679 508,627 507,752

6 189,643 361,123 446,857 508,083 526,562 540,118 547,641 549,605 549,693

7 179,022 396,224 497,304 553,487 581,849 611,640 622,884 635,452

8 205,908 416,047 520,444 565,721 600,609 630,802 648,365

9 210,951 426,429 525,047 587,893 640,328 663,152

10 213,426 509,222 649,433 731,692 790,901

11 249,508 580,010 722,136 844,159

12 258,425 686,012 915,109

13 368,762 909,066

14 394,997

ln 12.2147 0.7772 0.2361 0.1106 0.0639 0.0335 0.0165 0.0095 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

rn 0.3499 0.0966 0.0500 0.0250 0.0200 0.0150 0.0100 0.0080 0.0060 0.0050 0.0040 0.0030 0.0021 0.0010
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