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Prospective validation in epithelial
tumors of a gene expression
predictor of liver metastasis derived
from uveal melanoma
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Predicting the risk of liver metastasis can have important prognostic and therapeutic implications,
given the availability of liver-directed therapy. Uveal melanoma has a striking predisposition for liver
metastasis despite the absence of anatomical proximity. Understanding its biology may uncover factors
promoting liver metastasis in other malignancies. We quantified gene expression by RNAseq in 76
uveal melanomas and combined with public data in a meta-analysis of 196 patients. The meta-analysis
of uveal melanoma gene expression identified 63 genes which remained prognostic after adjustment
for chromosome 3 status. Two genes, PTP4A3 and JPH1, were selected by L1-penalized regression and
combined in a prognostic score. The score predicted liver-specific relapse in a public pan-cancer dataset
and in two public colorectal cancer datasets. The score varied between colorectal consensus molecular
subtypes (CMS), as did the risk of liver relapse, which was lowest in CMS1. Additional prospective
validation was done by real-time PCR in 463 breast cancer patients. The score was significantly
correlated with liver relapse in hormone receptor positive tumors. In conclusion, the expression of
PTP4A3 and JPH1I correlates with risk of liver metastasis in colorectal cancer and breast cancer. The
underlying biological mechanism is an interesting area for further research.

Almost all patients with metastatic uveal melanoma present liver metastases', making this rare disease an ideal
model for the identification of biological features predisposing to liver metastasis. Our objective was to use the
gene expression profile of uveal melanoma to identify genes that would predict the risk of liver metastasis in
epithelial malignancies, especially colorectal cancer. Surgical resection of liver metastases from colorectal can-
cer can be performed with curative intent and is recognized as standard of care under certain conditions*. The
optimal management of oligometastatic liver spread from other tumor types is not as clearly defined but curative
treatment can be contemplated on a case-by-case basis. In addition to surgery, less invasive modalities such as
radiofrequency ablation®, hepatic arterial infusion chemotherapy® or local immunotherapy (trials NCT02509507
and NCT03256344) are being explored for patients with metastases limited to the liver. In conclusion, the identi-
fication of patients at high risk of liver metastasis could justify more aggressive treatment up-front (for example,
adjuvant chemotherapy) and more intensive liver-specific follow-up with the intention to detect and treat liver
metastases as early as possible with an appropriate treatment modality.

Several prognostic features have been identified in uveal melanoma and are associated with the development
of distal metastasis, typically in the liver. Monosomy of chromosome 3 often co-occurs with mutation of the BAPI
gene in 3p21.1, results in bi-allelic inactivation and is a hallmark of uveal melanoma with unfavorable prognosis®.
However, the BAPI mutation is rare in other cancer types (less than 5%), with the exception of kidney cancer’,
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Gene HR 95% CI FDR Location
PTP4A3 2.54 (2.01 to 3.20) <0.001 8q24.3
JPH1 2.34 (1.87 t0 2.94) <0.001 8q21.11
ID2 0.48 (0.39t0 0.6) <0.001 2p25.1
ANG 0.42 (0.33t0 0.55) <0.001 14q11.2
PRKDC 1.97 (1.61 to 2.41) <0.001 8qll.21
POP1 1.91 (1.57 t0 2.33) <0.001 8q22.2
RABIIFIPI 0.52 (0.42t0 0.63) <0.001 8pl11.23
CDC25B 2.06 (1.65t0 2.57) <0.001 20p13
CHACI 1.97 (1.59 to 2.43) <0.001 15q15.1
LPIN1 0.51 (0.42 to 0.64) <0.001 2p25.1
CHD7 1.97 (1.59 to 2.45) <0.001 8ql2.2
VCPIPI 1.99 (1.60 to 2.48) <0.001 8ql13.1
ROPNIB 0.50 (0.40 t0 0.62) <0.001 3q21.2
MTEFRI 1.86 (1.52t0 2.28) <0.001 8ql3.1
MCM4 1.81 (1.49 t0 2.19) <0.001 8qll.21
COL9A3 1.88 (1.53t02.31) <0.001 20q13.33
ASAPI 2.02 (1.61 to 2.55) <0.001 8q24.22
SPIRE1 2.02 (1.60 to 2.55) <0.001 18pl11.21
TLCD1 1.83 (1.50 to 2.24) <0.001 17q11.2
RAB2A 1.80 (1.48 t0 2.18) <0.001 8ql2.1

Table 1. Genes associated with relapse in uveal melanoma. Top 20 genes with lowest FDR shown (full results in
the supplement) in a meta-analysis of univariable survival models against the expression of each individual gene.

mesothelioma® and cholangiocarcinoma®. Gain of chromosome arm 8q is also associated with unfavorable prog-
nosis in uveal melanoma'®'2, as is overexpression of PTP4A3, which resides in this arm, specifically in 8q24.3'.
In contrast with the BAPI mutation, gain of 8q is a frequent event in many cancer types, including colorectal4,
gastric'® and breast cancer!.

A previous gene expression study has subdivided uveal melanoma in two distinct molecular classes with prog-
nostic implications, as class 1 tumors are associated with a favorable prognosis!'’. A recent integrative study of
uveal melanoma has further characterized four distinct classes, primarily based on chromosome 3 and chromo-
some 8 copy number alterations and secondarily based on gene alterations (EIFIAX, SF3B1), gene expression and
methylation patterns'®.

Unfortunately, many gene expression studies of uveal melanoma are small, limited by the rarity of the disease.
Here, in addition to an analysis of 76 primary uveal melanoma samples using RNAseq, we present a meta-analysis
of 196 patients with uveal melanoma which served as a training set for the discovery of gene expression patterns
favoring liver metastasis in other tumor types.

Results

We pooled three gene expression studies into a training dataset with 196 uveal melanoma patients and 13560
genes. For each gene, we fitted a univariable Cox survival model of relapse-free survival against expression sep-
arately in each dataset and computed a meta-analysis summary. This approach identified 656 genes negatively
associated and 810 genes positively associated with relapse (FDR < 0.05). The Q-test for heterogeneity and visual
inspection of forest plots did not show discrepancies between datasets. The top genes, ordered by FDR, are shown
in Table 1 (detailed results in Table S1).

A recent study of uveal melanoma'® identified 12 genes that have prognostic value. Eleven of these genes were
available in the training dataset and for nine of them we confirmed the expected statistically significant positive
(EIF1B, ID2, LMCDI, MTUS1, ROBO1, SATBI) respectively negative (ECM1, HTR2B, RAB31) association with
relapse-free survival (all FDR < 0.05) in our meta-analysis. High expression of BAPI, suggestive of chromosome
3 disomy, was associated with a low risk of relapse (HR =0.64, 95% 0.54-0.78, FDR < 0.001).

Many of the statistically significant genes in our meta-analysis resided either on chromosome 3 (N = 185)
or on chromosome 8 (N =183), together accounting for one fourth of all significant genes (25.1%, 369/1466).
The log hazard ratio (HR) of genes from 3p and 3q was almost always negative, therefore higher expression, pre-
sumably in patients with chromosome 3 disomy, predicted longer relapse-free survival (mean log HR estimate
—0.020, 95% —0.029 to —0.011, t-test P < 0.0001). The same was observed for genes from 6p (log HR —0.018,
95% —0.0305 to —0.006, P =0.0033) and 6q (log HR —0.101, 95% —0.115 to —0.087, P < 0.0001). Finally, high
expression of genes from 8q was associated with shorter relapse-free survival (P < 0.0001) while the inverse was
observed for genes from 8p (P < 0.0001).

The training data were pooled by computing standardized gene expression values (mean-centered and scaled
to a variance of one). In Fig. 1, a heatmap of prognostic genes (FDR < 0.05) delineates four major gene clus-
ters (I-IV). Gene expression within these clusters is roughly associated with molecular class, chromosome 3 sta-
tus and relapse. The heatmap and tumor similarity tree also suggest the presence of three patient groups (a, b
and ¢). All tumors from the top tier of the tree (subtree a) belong to class 1 (72 of 72 =100%), shown in grey,
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Figure 1. Gene expression heatmap. Hierarchical clustering with Pearson’s correlation similarity and average
linkage. Heatmap showing the 1466 genes associated with prognosis in the meta-analysis of Cox models (FDR
< 0.05). We perceive four main clusters (I-IV). In addition to favorable (a) and unfavorable (c) patient groups,
there seems to be an intermediate group (b), characterized by a distinct pattern of low expression in cluster I
and III and high expression in clusters IT and IV. Chromosome 3 loss, class 2 tumors and relapse before 3 years
of follow-up are shown in black.

and demonstrate rare relapses, shown in black. Inversely, the tumors from the high-risk group (subtree c) almost
always belong to class 1 (74 of 80 =92.5%)"7, which is shown in black. In the middle, we see a group (subtree b)
that is associated with intermediate risk of relapse (Fig. S1). This group is probably not adequately captured by the
traditional two classes and appears to be biologically distinct. Tumors from the intermediate and high-risk groups
mostly seem to differ on genes from cluster I and I1I, such as CHD7, JPHI, ASAP1, POPI and PRKD, which are
highly inter-correlated (Pearson’s correlation P < 0.0001 for all pairs). An additional heatmap of all available genes
can be found in the supplement (Fig. S2).

Derivation of a liver metastasis score. Given the propensity of uveal melanoma for metastasis to the
liver, we assumed that gene expression analysis could reveal features that predispose to liver metastasis in other
cancer types. We further reasoned that it would be necessary to adjust for chromosome 3 loss, which is known
to be associated with BAPI biallelic inactivation and metastatic risk in uveal melanoma. BAPI inactivation
(mutation or loss) is a rare event in most cancer types and would be unlikely to be a universal predictor of liver
metastasis. Therefore, we performed an additional meta-analysis. Within each dataset and for each gene we fitted
multivariable Cox model of relapse-free survival that included gene expression and chromosome 3 status. In this
approach, 63 genes were significantly correlated with relapse (FDR < 0.05). Again, the Q-test for heterogeneity
and visual inspection of forest plots did not show discrepancies between datasets. The top 10 genes are shown in
Table 2 (full results in Table S2). After adjustment for chromosome 3 status, the relation of genes residing on chro-
mosome 3 with relapse was attenuated. Indeed, the expression of most chromosome 3 genes (777/782), including
BAPI (HR=0.779, 95% 0.620-0.977, FDR =0.374), was not significantly associated with relapse-free survival
when chromosome 3 status was included in the model. Twenty-eight significant genes (44% of all significant
genes) were located on chromosome 8 and seven thereof in 8q24.3, the distal end of the chromosome 8.

The pooled data of the training dataset were further used to build a prognostic scoring formula with the
L1-penalized likelihood algorithm of the GLMnet package (supplemental methods) limited to the genes that were
prognostic after adjustment for chromosome status 3 at FDR < 0.1 (Table S2). The procedure converged on a lin-
ear score based on the expression of only the two most significant genes, namely JPHI and PTP4A3 (coefficients
0.147 and 0.249 respectively). In the training data, the two-gene prognostic score was significantly associated with
progression-free survival in a multivariable survival model that included tumor class and chromosome 3 status
(P <0.0001). The prognostic score was also correlated with the expression of class genes (R?*=0.66 against the
mean of class 1 minus the mean of class 2 genes, P < 0.0001).

Validation. Uveal melanoma. The prognostic performance of the two-gene score was validated in inde-
pendent public uveal melanoma data (GSE39717, N =30 and the TCGA, N =60). Meta-analysis of univaria-
ble Cox survival regression confirmed a statistically significant association with prognosis (Figs 2A and S3, log
HR=3.63,95% 1.07-6.19, P=0.0055). As expected, the score remained prognostic in a bivariable model includ-
ing chromosome 3 status (Figs 2B and S3, log HR, .. = 3.75, 95% 1.00-6.50, P=0.0075).
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Gene HR 95% CI FDR Location
JPHI 2.00 (1.56 t0 2.57) | <0.001 8q21.11
PTP4A3 2.13 (1.62t02.80) | <0.001 8q24.3
ID2 0.56 (0.44 t0 0.70) 0.002 2p25.1
POP1 1.68 (1.37 t0 2.06) 0.002 8q22.2
CYP4X1 1.62 (1.33t0 1.97) 0.004 1p33
HPN 1.65 (1.33t0 2.05) 0.009 19q13.11
FYN 0.61 (0.50t0 0.75) 0.009 621
LPIN1 0.58 (0.46 t0 0.73) 0.009 2p25.1
ETNPPL 1.69 (1.34t02.12) 0.011 4q25
MARC2 0.63 (0.52t0 0.78) 0.012 1q41
TLCD1 1.68 (1.33 t0 2.10) 0.012 17q11.2
TSC22D1 1.61 (1.30 to 1.99) 0.013 13q14.11
VCPIP1 1.69 (1.33t0 2.15) 0.014 8ql3.1
ANG 0.52 (0.39t0 0.70) 0.014 14q11.2
RABIIFIPI 0.62 (0.50 to 0.77) 0.014 8pl11.23
DNAAF3 0.56 (0.43t00.73) 0.014 19q13.42
GALM 0.67 (0.55 to 0.80) 0.014 2p22.1
ASAPI 1.70 (1.33t02.17) 0.015 8q24.22
CBS 1.48 (1.23t0 1.77) 0.016 21q22.3
MTFRI 1.61 (1.29t0 2.01) 0.018 8ql3.1

Table 2. Genes associated with relapse in uveal melanoma. Top 20 genes by lowest FDR shown (full results in
the supplement) in a meta-analysis of bivariable survival models including chromosome 3 and the expression of
each individual gene.

Pan-cancer.  Our main objective was to examine whether the predisposition of uveal melanoma to liver relapse
can be used to estimate the risk of liver metastasis in other malignancies, especially of epithelial origin. To this
end, we examined the two-gene score values in a pan-cancer dataset (GSE2109) including 1181 primary tumors
(1036 non-metastatic, 57 with liver metastases, 89 with other metastases). Most samples were obtained from
colorectal (N =274), breast (N =248), endometrial (N = 147), ovarian (N =132) and lung (N =98) cancer. The
risk score was significantly higher in tumors that developed liver metastases (t-test P < 0.0001, Fig. S4), a differ-
ence that persisted when we restricted the analysis to tumors that had metastasized (N =146, t-test P < 0.0001,
Fig. S$4). The difference between tumors with and without liver metastasis also remained significant in a bivar-
iable logistic model including the primary origin (logOR = 0.26, 95% 0.005-0.41, P =0.043). A similar result
is obtained when the score values are standardized per primary site (logOR =0.29, 95% 0.03-0.55, P =0.028).
Looking at individual metastatic sites, the risk score was highest in the group with liver metastases and was
statistically significant in pairwise comparisons with non-metastatic tumors but also against tumors harboring
metastases in bone and lung (Fig. 3).

Breast cancer. 'We measured the expression of PTP4A3 and JPH1 in a breast cancer cohort by qPCR and used
it to calculate the risk score in a series of 463 tumors for which the time and site of relapse were known (271 hor-
mone receptor-positive, 86 triple-negative and 106 HER2-positive). The proportion of patients with liver-first
relapses did not differ significantly (Fisher’s test P=0.53) between HER2-positive tumors (10%), hormone
receptor-positive (8%) and triple-negative tumor (6%). In hormone receptor-positive tumors, the two-gene prog-
nostic score was associated with relapse (HR =1.24, 1.04-1.47, P =0.016) and specifically with first relapse to
the liver (Fig. 4, HR=1.50, 1.10-2.05, P =0.0098) but not with relapse to non-liver sites (HR =1.15, 0.94-1.41,
P =0.183). In triple-negative tumors, the two-gene score was not associated with relapse at any site (HR =1.25,
0.77-22.4, P=0.88) or liver-specific relapse (HR =0.78, 0.29-2.08, P = 0.62). Similarly, in Her2 + tumors the
score was not associated with relapse at any site (HR =0.96, 0.70-1.32, P =0.789, 38 events) or liver-specific
relapse (HR=0.99, 0.55-1.78, P=0.981, 11 events).

Colorectal cancer.  Finally, we used colorectal cancer data from the PETACC-3 trial (N =604, 63 liver relapses)
and a public retrospective series (GSE14095, N = 189, 53 liver relapses) to validate the risk score in colorectal can-
cer. In both datasets the risk score was significantly higher in patients with liver relapse (Wilcoxon’s test P =0.047
and P=0.011). In a meta-analysis of logistic regression models, a high-risk score was significantly associated with
liver metastasis (Fig. 5A, logOR =0.54, 95% 0.24-0.85, P =0.0005). Interestingly, in the PETACC data, which also
included non-liver relapses, the score was not associated with relapse in general (logOR =0.00, 95% —0.57 to 0.57,
P =0.98), while relapse to non-liver sites was a negative trend (logOR = —0.65, 95% —1.39 to 0.06, P=0.078).

The distribution of the risk score was visibly bimodal in both colorectal cancer datasets (Fig. S5), suggest-
ing the presence of distinct sub-populations. Indeed, when tumors were separated by the consensus molec-
ular subtype (CMS) classifier, the average risk score was highest in CMS2 and 4, and lowest in CMS1 and 3
(Fig. S5). The association between liver metastasis and the risk score remained significant in a bivariable model
that included the CMS subtype (Fig. 5B, logOR = 0.40, 95% 0.09-0.71, P=0.011). In the prospective PETACC
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Figure 2. Forest plot of univariable (A) and bivariable (B) Cox regression of the continuous risk score in uveal
melanoma. Log hazard ratio estimates with standard error bars are shown horizontally for both datasets (upper
part) and the meta-analysis (RE model, bottom part). The lack of association is at zero (dotted vertical line).
There was a positive association in both the univariable and bivariable model, both statistically significant in the
meta-analysis.
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Figure 3. The two-gene score is highest in tumors with liver metastases. Data from the GSE2109 pan-cancer
dataset. Statistically significant pairwise Wilcoxon’s comparisons are shown in solid lines (all values are FDR).

data, the distribution of the risk score agreed with the proportion of liver relapses, which was lowest in CMS1
(Fig. 5C, logOR = —1.04 vs non-CMS1, 95% —2.11 to —0.19, P =0.03). Liver relapse was only 13% of all relapse
in CMS1, against 34%, 31% and 30% in CMS2-4 respectively. In the pooled colorectal cancer data, prediction of
liver metastasis was improved by including both CMS and the risk score (ANOVA Chi? test P=0.0013 against a
model including CMS only, P < 0.001 against the score only).

Discussion

Different tumors have different patterns of metastatic spread?*?!. Predicting the most likely site of relapse can
help determine the most appropriate treatment and follow-up, such as scintigraphy for bone metastases and liver
MRI for liver metastases. Early work has demonstrated that it is possible to distinguish tumors with metastatic
potential from tumors that do not metastasize from their gene expression profile?2. However, despite advances in
our understanding of the cellular adaptations that occur in every distant site?*, efforts to predict organ-specific
metastasis are limited in size and scope. A small study of 20 colorectal tumors resulted in the identification of 37
genes that differed between tumors with and without liver metastases®®. Another study of 123 colorectal tumors
found 46 genes associated with liver metastasis®. Several of the genes, including MMPI, MMP2, TIMP1 and
HIFI1A, are known cancer genes and facilitate stromal invasion. In a study of over 1000 breast tumors the most
important risk factor for liver metastasis was the HER2-enriched subtype, but without more specific information
at the gene level®.

A predictor of liver metastasis can be derived from any gene expression dataset with adequate follow-up.
The advantage of using uveal melanoma is that its proclivity for liver metastasis is highly specific (~90%), mean-
ing that it rarely metastasizes to other organs, and this proclivity cannot be explained by anatomical or vascu-
lar proximity. In that sense, tumors that behave biologically like uveal melanoma may be better candidates for
liver-specific follow-up and interventions than tumors with a general tendency to colonize multiple organs, which
would be at risk of extrahepatic recurrence.

We derived and validated a prognostic score that predicted relapse in uveal melanoma based on the weighted
expression of only two genes (PTP4A3 and JPH1) and applied it to the prediction of liver relapse in other malig-
nancies. The observation that PTP4A3 expression strongly correlates with metastatic risk in uveal melanoma is
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Figure 4. Kaplan-Meier curve of liver-first relapse in hormone-receptor positive breast cancer. Liver-first
relapse occurred more often in the high-score group (P =0.0098 for the continuous risk score). Data plotted
using the top quintile as cutoff value (P =0.011 at the specified cutoft).

in agreement with previous studies of uveal melanoma'. In colorectal cancer, the PTP4A3 gene regulates cancer
cell adhesion and the expression of key ECM and adhesion genes?”’. PTP4A3 also seems to facilitate metastasis
through accumulation of MMP14? and regulation of integrin 31%. Interestingly, copy number gains of PTP4A3
at 8q are more frequent in colorectal tumors with liver metastases® although this observation also includes
broader alterations such as loss of 8p and gain of centromeric 8q*".

The JPHI gene codes junctophilin-1, a component of the junctional complex that binds the plasma membrane
with the endoplasmic reticulum and regulates intracellular calcium®. Although JPH1I has been found to be dif-
ferentially expressed in metastatic versus non-metastatic uveal melanoma® and thymoma®*, its biological signif-
icance in cancer remains to be elucidated. Even in the absence of a direct causal relation, JPHI upregulation may
reflect other upstream events, such as driver mutations in other genes or copy number gains in 8q21 involving
nearby regulatory regions.

Our hypothesis was that the gene expression of uveal melanoma could identify biological predictors of
liver-specific metastasis. In agreement with our initial hypothesis, the risk score developed in uveal melanoma
was associated specifically with the risk of liver relapse. In the pan-cancer dataset (GSE2109) the score values
were highest in tumors which developed liver metastasis, compared with tumors which metastasized to other
sites. Although the number of events (liver metastases) is not sufficient to characterize individual tumor types,
the relation between the two-gene score and liver metastasis remained significant in a multivariable model after
adjustment for the site of the primary.

Metastasis to the liver is common in breast cancer, but locoregional treatment such as surgical resection is
only beneficial for carefully selected patients®>?, making their early identification essential. In hormone receptor
positive breast cancer, the score was associated with metastatic liver relapse but not with relapse to other sites.
The score was not predictive of liver relapse in triple negative or Her2+ breast cancer, a fact that could result from
profound biological differences, significant heterogeneity in the case of triple negative tumors, or simply a lack
of statistical power due to a small number of liver events in these cohorts. Her2+ breast tumors have a higher
risk of liver metastasis®, but did not have higher score values in our study and may depend on the contribution
of alternative biological pathways. For example, previous studies have shown that the expression of Claudin-2 is
associated with early liver relapse in triple negative and hormone receptor positive breast cancer®.

The score was consistently associated with liver metastasis in a meta-analysis of two different colorectal can-
cer datasets. Other genes, such as EREG, AREG and LCK have also been associated with liver metastasis in a
previous gene expression study of 160 colorectal cancer samples®® although it is unclear whether these genes are
generally related with liver metastasis or are specific to colorectal cancer. CMS was also predictive of liver relapse
in colorectal cancer, with CMS1 having a significantly lower proportion of liver relapses than CMS2-4. Given
that the overwhelming majority of CMS1 tumors are right-sided, the influence of anatomical factors cannot be
excluded, although a causal link between right-sidedness and low risk of liver metastasis is not obvious and can-
not be inferred from our data. A lower incidence of liver metastases in right-sided tumors has also been observed
previously’!. Since both CMS and the risk score were independently predictive of liver metastasis in a bivariable
model, integrating both in a clinically-oriented algorithm should further improve predictive performance.

SCIENTIFIC REPORTS |

(2019) 9:17178 | https://doi.org/10.1038/s41598-019-52841-y


https://doi.org/10.1038/s41598-019-52841-y

www.nature.com/scientificreports/

Univariable model Bivariable with CMS
PETACC H—-—« 0.77 [-0.08, 1.63] PETACC >—‘—-—< 0.69 [-0.19, 1.58]
GSE14095 —— 0.51[0.18, 0.84] GSE14095 + 0.36[0.03, 0.69]
RE Model —— 0.54[0.24, 0.85] RE Model —— 0.40[0.09,0.71]
T i T T T 1 T i T T T 1
05 0 05 1 15 2 -05 0 05 1 15 2

A Log Odds Ratio B Log Odds Ratio

o _

- O no relapse

O non-liver relapse

o | B liver relapse

o

o |
c o
9
T
=
o
o < |

o

o

o

o |

o

CcMs1 CMS2  CMS3  CMS4

C

CMS classification

Figure 5. The risk score was specifically associated with liver relapse in colorectal cancer. Log hazard ratio
estimates with standard error bars are shown horizontally for both datasets (upper part) and the meta-analysis
(RE model, bottom part). The lack of association is at zero (dotted vertical line). In a meta-analysis (RE model)
of (A) univariable and (B) bivariable logistic regression, the risk score was consistently and significantly
associated with liver relapse, even after adjustment for CMS groups. Data from PETACC-3 and GSE14095.

(C) In the prospective PETACC data, the proportion of total relapse was similar in CMS1-3, as expected. Liver
relapse was lower in CMS1.

Judging the reliability and, generally, the clinical performance (precision, accuracy etc) of the score at this
stage is probably premature. First, the practical utility depends on the prior risk of liver metastasis, which varies
considerably between cancer types®. It would be very hard to show a meaningful absolute increase in the prob-
ability of liver metastasis in cancer types which very rarely metastasize to the liver. Second, the overall risk of
metastasis must also be estimated according to the known prognostic variables of each cancer type. For example,
a TINO tumor would be very unlikely to spread to any organ. Finally, a specific cut-oft would have to be chosen
per tumor type but also depending on the clinical consequences. For example, even a modest increase in the
estimated risk of metastasis could justify a liver MRI, while an invasive test or a therapeutic intervention would
require a higher degree of confidence. A more detailed characterization of the score’s performance would be use-
ful in a subsequent work that examines a precisely defined clinical context (disease type, risk factors, threshold
for intervention etc).

Based on the above, our work provides proof-of-concept for predicting the risk of liver metastasis in
hormone-sensitive breast cancer and colorectal cancer, based on a simple two-gene score. The performance could
further be improved with the integration of type-specific information, such as the CMS classification of colorectal
cancer. The results from a pan-cancer analysis indicate that the score could be useful in other tumor types and
that it is highest in tumors with liver metastases, compared with tumors which colonize other sites. This suggests
the existence of a common underlying biological process of liver metastasis that could be exploited for prognostic
or therapeutic purposes. The elucidation of this mechanism presents an opportunity for further study.

Methods

Origin of samples. Untreated human samples from uveal melanoma and breast cancer were collected by the
unit of surgical oncology from patients who provided written informed consent. The samples were stored in the
Biological Resource Center (BRC) of the Institut Curie, France, in accordance with French regulations. The study
was approved by the ethics committee and the institutional review board of the Curie Institute with approval
number A10-024. All research was performed in accordance with relevant guidelines and regulations.
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We searched for gene expression data from human primary samples of uveal melanoma in the Gene
Expression Omnibus® and manually curated datasets with adequate clinical annotation. At the time of retrieval,
18 data sets were screened and three were retained for analysis: GSE44295 (N =57), GSE22138 (N=63) and
GSE39717 (N =39, 30 with follow-up). The two largest datasets were used in conjunction with our own RNAseq
data for model development (training dataset). We also downloaded publicly available RNAseq data from the
TCGA (accessed on November 2017) for 80 patients, of which 60 had follow-up information and were retained
for analysis. GSE39717 and TCGA data were used for validation (see Supplement Sections 1-3 and Fig. S6).

Gene expression data for colorectal cancer were obtained from the PETACC-3 study of adjuvant chemother-
apy in colon cancer®, available in ArrayExpress (E-MTAB-990) and from a series of colorectal patients*! that
were followed for the occurrence of liver metastases (GSE14095, N = 187). Finally, we also obtained a pan-cancer
dataset which contained information on the site of relapse (GSE2109, N =2158, 1181 of which with metastatic
relapse).

We considered the use of the PanCancer TCGA data, based on the recent publication of curated clinical
annotation*? (see Supplementary Table 1 in that article, columns T and U). Unfortunately, despite the inclusion of
over 10,000 patients, the occurrence of liver events was recorded for only 262 patients, raising concerns about the
quality of the follow-up with respect to that specific outcome. For example, none were documented for patients
with colorectal cancer (N = 618), a fact that limited the usefulness of this resource for our purposes.

Inactivation of BAPI is common in uveal melanoma but can also occur in kidney cancer’, mesothelioma®
and cholangiocarcinoma’. However, mesothelioma and cholangiocarcinoma are rare and we could not find gene
expression datasets documenting liver metastasis, not just overall survival or relapse-free survival, which could
be used our purposes. In addition, cholangiocarcinoma is in immediate proximity to the liver and would not be
a useful model of liver metastasis, more likely reflective of local invasion instead. Out of 33 patients with renal
cancer in the pan-cancer GSE2109 dataset only 10 had distant metastases and none had liver metastases, making
any kind of statistical analysis impossible.

Total RNA extraction. Total RNA was extracted from fresh frozen uveal melanoma and breast cancer sam-
ples with the acid-phenol guanidium method. The quantity of RNA was assessed by using an ND-1000 NanoDrop
Spectrophotometer with corresponding software (Thermo Fisher Scientific Inc., Wilmington, DE). RNA quality
was determined by agarose gel electrophoresis.

RNAseq. Library preparation was done using the Illumina TruSeq kit according to manufacturer’s instruc-
tions. Libraries were sequenced to produce paired-end reads. We used STAR v2.5% to align against the GRCh37
DNA primary assembly and the Ensembl annotation r75 (available from ftp://ftp.ensembl.org/pub/release-75/).
Quality control was done with RNA-SeQC (v1.1.8)* and custom scripts.

The raw counts were estimated with the Rsubread package (v1.2) and then imported by edgeR (v3.12)*. Raw
counts were filtered by only keeping genes with at least 1 count-per-million in at least 5 samples, normalized with
the trimmed mean of M-values (TMM) and log-transformed, according to the edgeR recommendations.

Real-time PCR. The RT-qPCR method, including cDNA synthesis and PCR conditions, has been previously
described in detail*s. We quantified transcripts of an endogenous RNA control gene involved in cellular metabolic
pathway, namely TBP (Genbank NM_003194), which encodes the TATA box-binding protein (a component of
the DNA-binding protein complex TFIID)*. Each sample was normalized on the basis of its TBP content and
against a median of 10 normal breast tissue samples, with the ACt method.

Data analysis and statistics. Statistical analyses were done in R version 3.5. All statistical tests were
two-sided and considered significant if P < 0.05. P-value adjustment for multiple comparisons was used to con-
trol the false discovery rate*. Survival models were built with the survival R package® and the coxph() function.
By default, this function fits a Cox proportional hazards regression model with the Efron approximation for tied
event times.

We used the metafor package with the random effects model and the default restricted maximum-likelihood
estimator of residual heterogeneity (7?) to perform meta-analyses™. Specifically, for each dataset and each gene
the log-transformed hazard ratio estimate (yi) and its associated standard error (sei) were extracted from a uni-
variable and bivariable (with chromosome 3 status) model. The rma() function from the metafor package was
then called with rma(yi, sei). The Q-test was used to test for significant heterogeneity.

The nearest-neighbor chain algorithm was used for hierarchical clustering (reviewed in°!). Pearson’s correla-
tion was used as a similarity metric with average linkage. We used the nclust package (v2.0.1) for this purpose,
available from https://bcf.isb-sib.ch/nclust/.

The coxnet method* in the GLMnet package was used to derive a linear prognostic score. The development of
the prognostic score was in accordance with the REMARK recommendations.

Gene expression estimate of chromosome 3 status. Over all uveal melanoma datasets, the chromo-
some 3 status had been estimated by dedicated methods (aCGH or FISH) for 119 patients. For the remaining
patients, we inferred the chromosome 3 status from gene expression data. Using patients with known chromo-
some 3 status, we trained a binomial (loss/no loss) GLMnet model on 95 patients and validated it on the remain-
ing 24 patients. Data from the 24 patients were not considered during the derivation of the model. Only the
expression of genes residing on chromosome 3 was used, as these genes would be directly affected by a loss of
chromosome 3.
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Validation on the remaining 24 patients demonstrated a very high concordance (23/24 =96%) of gene expres-

sion estimates with other methods (FISH, aCGH). The same model was subsequently applied to 77 patients for
whom the chromosome 3 status was missing. The gene expression prediction of chromosome 3 status was sig-
nificantly associated with relapse-free survival (HRmonosomy 4.30, 95% 2.34-7.88, P < 0.0001). The proportion
of samples with monosomy did not differ significantly by estimation method (FISH, aCGH or gene expression,
Fisher’s test P=0.519).

Data availability
The RNAseq data produced by the study can be found in the European Genome-phenome Archive (accession
EGAS00001002932).

Public data used in this work:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44295
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22138
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39717
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-990/
https://portal.gdc.cancer.gov/projects/TCGA-UVM
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