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“Financial analysts in pin-striped suits do not like being compared with

bare-assed apes. They retort that academics are so immersed in equations

and Greek symbols (to say nothing of stuffy prose) that they couldn’t tell a

bull from a bear, even in a China shop.”

Burton G. Malkiel
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Preface

I must apologize for any disappointment, but this dissertation is not about animals,

regrettably. It is about stock markets and statistics, mostly. It tells about chance and its

dual role as both protagonist and antagonist. It is a testament to the interdisciplinary

nature of modern finance, where insights from economics, mathematics, statistics, and

computer science converge to illuminate the workings of global markets. To spice up what

might be a dry topic for some, we will be sprinkling in a pinch of geometry for good

measure.

I hold hope that the discoveries uncovered within these pages will enrich the ongoing

dialogue between academia and industry, fostering innovation and resilience. This, in light

of statements such as those articulated by Mr. Malkiel, to whom I respectfully offer an

alternative perspective.
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Chapter 1

Introduction

The advent of computer simulation methods, such as sampling-based techniques like

Markov Chain Monte Carlo (MCMC), has marked a milestone in scientific exploration.

These methods have substantially enhanced our ability to investigate complex systems,

make accurate predictions, and conduct rigorous statistical analyses. Their applications

span various fields, from physics and climate science to biology and economics, empowering

researchers to confront once-insurmountable challenges.

As scientific challenges grow in complexity, demanding precise modelling of real-world

intricacies characterized by non-linear behaviour, high-dimensionality, temporal variations,

and constraints, it becomes imperative for our computational tools to evolve accordingly.

This dissertation seeks to address this need. It comprises four self-contained chapters

focused on computational tools, particularly sampling-based methods. These methods are

examined both as tools for addressing inquiries in finance, economics, or statistics, and as

subjects of study in their own right.

Specifically, the work examines geometric random walk algorithms, a powerful class

of MCMC procedures designed for high-dimensional constrained scenarios. Originating

from computational geometry and previously untapped in finance, these methods are

thoroughly surveyed, encompassing novel complexity results, and expanded to address

specific inquiries in empirical asset pricing and performance evaluation.

The overarching theme across all chapters is a geometric perspective, which is relevant

to both the modeling of economic questions and the analysis of algorithmic sampling

procedures. This perspective yields analytical insights into one of the most renowned

sampling-based methods for statistical inference - the bootstrap.
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The core of this work lies in the practical applications, particularly in the area of

financial economics, to better understand the characteristics of certain investment strate-

gies and ultimately to refine them. Despite this practical emphasis, a thorough grasp of

the underlying theoretical concepts forms an integral part of this study. This involves

delving into complexity results of sampling algorithms, rooted in profound mathematical

principles, as well as exploring economic relationships that demand a sound interpretation

of the underlying economic theory. In the realm of implementing quantitative trading

strategies, empirical observations are backed by theoretical arguments to enhance confi-

dence in the proposed system’s ability to generalize. However, practical considerations

sometimes take precedence, guided by real-world experience. This fusion of theoretical and

applied interdisciplinary dimensions leads to a comprehensive exploration of computational

methodologies within the ambit of empirical finance.

Considerable efforts have been invested to implement the computational tools dis-

cussed in this work, in particular the sampling routines, within the open-source platform

GeomScale1, to which the author of this thesis contributes. GeomScale is associated

with NumFOCUS, a nonprofit organization dedicated to promoting open source and

reproducible scientific projects, alongside notable initiatives like NumPy, Julia, Jupyter,

and Stan. Additionally, GeomScale is recognized as an open-source organization on the

Google Summer of Code (GSoC)2 project site.

GeomScale is a research and development project that provides open source code for

state-of-the-art algorithms for geometric statistics, i.e., the intersection of data science, op-

timization, geometric and statistical computing. Its current focus in on scalable algorithms

for sampling from high-dimensional distributions, integration, convex optimization and

their applications. The core library, volesti, is written in C++, supported by interfaces for

R and Python. Notably, GeomScale’s current implementation excels in handling problems

spanning thousands of dimensions, making it a leading software package. Its applications

span diverse fields including systems biology, finance, and artificial intelligence, where it

has already made significant contributions.

The motivation for the thesis, which now encompasses various themes, arose from a

practical challenge encountered while working in the financial industry as a quantitative

1https://geomscale.github.io/about/
2GSoC is an online program aimed at engaging new contributors in open source software development,

where the author of this thesis has served as a mentor for the past four years.

2
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research analyst. The task was to demonstrate that the success of a particular investment

fund could be attributed to the manager’s skill rather than mere chance (without using

classical regression-based factor models). Initially, it seemed logical to formalize this

inquiry as a statistical hypothesis test. To do so, one needed to define the null distribution

representing the absence of skill, i.e., the set of all possible performance results that can

be obtained without ability along with the corresponding probability measure. This could

be achieved through a randomized control, i.e., a group of portfolios that by construction

incorporate no strategy, bias or skill.

Indeed, the suggested experimental design outlined in the financial literature involves

defining a random portfolio and deriving its performance distribution, either analytically

or through sampling and simulation (see the literature review in Section 3.1.2 of Chapter

3). This distribution then serves as the null distribution against which to evaluate the

performance of the investment strategy under scrutiny. Importantly, for the randomized

control to constitute a fair representation, it should adhere to the investment guidelines of

the investigated strategy. These guidelines, often stemming from regulatory requirements,

are typically designed to restrict (risk) exposure to individual security issuers or groups of

issuers. Moreover, the literature suggests that the random portfolio weights should follow

a uniform distribution to ensure that any one portfolio configuration is just as likely to

appear as any other.

In technical terms, let ω denote a random portfolio, characterized by a real-valued

random vector with a probability density function (pdf) π and bounded support K ⊂ Rn.

K is determined by investor-imposed constraints, forming a convex body geometrically.

As the weights are random, performance measures of the random portfolio are also

(scalar) random variables. For instance, let θ = (µ, σ) denote the vector of performance

parameters, with mean µ = ⟨ω, r⟩, r representing the mean vector of asset returns, and

variance σ = ω⊤Σω, where Σ is the covariance matrix of securities’ returns.

The challenge arises in finding the distribution of θ from the random weights with

bounded support (assuming that r and Σ are known). While analytically intractable

in general, the problem lends itself well to approximative numerical procedures such

as MCMC. However, despite the common practice of using Monte Carlo methods in

performance evaluation and the prevalence of MCMC in finance, there is no literature that

uses MCMC to sample from a random portfolio. One of the main objectives of the current

3



work was originally to adapt geometric random walk-based sampling to close the existing

gap.

The highly efficient implementation of geometrically inspired sampling methods within

the GeomScale project has provided a solution to sampling from a constrained random

portfolio, thereby addressing the performance evaluation problem. However, while the

sampling issue has been resolved, a fundamental flaw has emerged regarding the very

concept of formulating performance analysis as a statistical test using random portfolios.

It has become apparent that such a formulation is ill-posed due to i) the lack of an

unambiguous solution to the problem and ii) the high sensitivity of the solution to the

initial conditions of the experimental design. This flaw is associated with the non-intuitive

properties of high-dimensional spaces and is discussed in Chapter 3.

Coming to terms with this realization was a journey, not due to ego but because

random sampling for performance evaluation, including the widely used bootstrap method,

is prevalent in both the financial literature and practice (see the literature review in

Section 3.1.2 of Chapter 3). Peer-reviewed articles such as Lisi (2011), which advocate

for “A statistically correct procedure for evaluating management skill in the mutual fund

industry” based on random portfolios, must be challenged and refuted.

In essence, the inappropriate use of a random portfolio’s performance distribution as

the null distribution of no skill stems from a misconception that “The uniformly distributed

random portfolio is analogous to an enumeration of all feasible portfolios without any prior

on the market.” (Kim and Lee, 2016). The crux of the matter lies in the fact that in high

dimensional spaces, the uniform measure heavily concentrates in the high-volume region

of the distribution support. While the uniform measure guarantees that each portfolio has

an equal probability of being sampled, the concentration phenomenon means that sets of

portfolios with specific characteristics appear much more likely than others. For example,

with overwhelming probability, a sampled portfolio would have weights whose entropy

and Lp norm are close to constants in a given dimension. Consequently, a uniformly

random portfolio resembles an enumeration of typical3 portfolios, all closely resembling

the portfolio represented by the centroid of the sampling space defined by investment

constraints. In the basic scenario where random portfolio weights must be non-negative

3Chapter 4 briefly touches upon a connection to the formal notion of typicality from information
theory.
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and sum to one, the centroid corresponds to the equally-weighted portfolio (also known as

the naive or 1/N portfolio). Hence, the performance distribution of a random portfolio acts

as a sampling distribution of the sample mean of the naive portfolio’s performance measure

(or as the posterior distribution of the mean of the naive portfolio’s performance measure

in Bayesian terms). Allocations such as those of capitalization-weighted indices or the

elaborate investment strategy under evaluation, typically resulting from an optimization

and located at the boundary of K, are highly improbable to be sampled. As a result,

statistical testing tends to exhibit a strong bias towards rejecting the null hypothesis of no

skill.

What initially began as an effort to advance sampling-based performance evaluation

morphed into a critique of such practices, as detailed in Chapter 3. Nonetheless, amidst

empirical analyses, a somewhat related application for random portfolios emerged: factor

analysis and anomaly detection.

Chapters 2 and 3 are devoted to these topics. Chapter 2 addresses the low-volatility

anomaly and proposes novel randomized geometric tools to detect and analyze the empirical

phenomenon. The low-volatility anomaly, which goes back to at least ?, refers to the

empirical observation that stocks or portfolios with lower volatility (or more generally, risk)

tend to provide higher returns than would be expected according to traditional economic

theory like the Capital Asset Pricing Model (CAPM). This phenomenon challenges the

basic tenets of modern finance, which suggest that higher risk should be compensated with

higher returns. The anomaly suggests that investors can achieve superior risk-adjusted

returns by investing in low-volatility assets.

The usual procedure to investigate the (existence of the) low-volatility anomaly is

to form a small number of portfolios by first sorting stocks according to their historical

volatility and grouping them into percentile portfolios with increasing volatility levels.

Stocks within these portfolios are weighted equally or in proportion to their market

capitalization. In the empirical asset pricing literature, a factor series is commonly

generated from the percentile portfolios as a dollar-neutral portfolio which takes a long

position in the first percentile portfolio and a short position in the last percentile portfolio.

If this factor exhibits a positive return, meaning that the low-volatility portfolio outperforms

the high-volatility portfolio, it is termed an anomaly.

The issue with this approach is its disregard for correlations and its reliance on the
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chosen weighting scheme within the percentile portfolios. Chapter 2 proposes to replace

the point estimates for the percentile portfolios with sets comprising all possible portfolios

having a predefined volatility. This is done by defining multiple random portfolios, each

having a pre-specified volatility, and then taking samples from those random portfolios

and measuring their risk-return characteristics over time. Empirical results confirm the

presence of the low-volatility effect in two regional universes and sub-markets discriminating

for sector belongingness and company size. However, it is also shown that the effect is

overestimated by sorting-based methods. In particular, it is demonstrated that the spread in

realized volatility levels increases with higher volatility targets, indicating larger estimation

errors for such portfolios. Overall, it is found that the classical sorting-based approach

badly represents the set of possible portfolios having a certain volatility. Therefore, one

should exercise caution when basing inference on them.

The article marks the first geometric formulation and MCMC-based analysis of the

volatility puzzle in stock markets. The modeling of the (detection) problem results in

sampling and estimating the (relative) volume of geodesically non-convex and nonconnected

spherical patches that arise by intersecting a non-standard simplex with a sphere. To

accomplish the task, two novel MCMC algorithms are introduced that exploit the geometry

of the problem and employ state-of-the-art continuous geometric random walks adapted on

spherical patches. Chapter 3 takes a step back and discusses the use of a random portfolio

for performance evaluation. It explains in more detail that commonly employed random

portfolios do not offer a statistically acceptable experimental design for performance

comparisons and cautions the reader against such a use case with the aid of an illustrative

example.

The article then moves on to suggest an alternative use case involving the investigation

of the relationship between portfolio factor scores and performance in a constrained setup,

which allows to empirically test for the presence of factor anomalies under stringent

investment guidelines. Experiments on real-world datasets using the GeomScale software

are conducted, replicating the investment guidelines of the MSCI Diversified Multi-Factor

index4. The chosen index, representing a framework commonly encountered by institutional

investors, aims to optimize factor exposures towards momentum, value, size, and quality,

while adhering to risk, weight, and factor exposure constraints relative to the parent index.

4https://www.msci.com/msci-diversified-multi-factor-indexes
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The study uncovers diverse impacts of the constraints imposed by the index on

factor-exposure-performance relations compared to an otherwise unconstrained long-only

framework. In summary, tilts towards value and momentum are found to offer higher

returns with increased volatility, while quality tilts reduce risk without affecting returns,

and size tilts lead to lower returns and higher risk. The findings suggest that factor

patterns persist even within stringent constraints, justifying an active investment approach

to capitalize on the positive ones.

Chapter 3 is rather demanding since it covers various facets. On the one hand, economic

concepts of performance measurement and factor analysis are presented, while on the

other hand, all existing geometric random walks are surveyed to sample random portfolio

weights adhering to linear and quadratic constraints under various models, explaining their

strengths, limitations, and computational complexities. For publication in an academic

journal, the survey on geometric random walks and related novel results on computational

complexity have been separated from the rest of the article. This has resulted in two

papers targeting distinct audiences: one in finance and one in computational geometry.

In the process of categorising random portfolios on the basis of geometric properties,

the well-known bootstrap method (Efron, 1979) is discussed. The adopted geometric

perspective leads to insights into analytical solutions, to which a separate chapter is devoted.

Chapter 4 examines nonparametric bootstrap techniques from a geometric perspective,

based on a unified representation of classical and Bayesian frameworks using random

weights. It establishes the connection between resampling plans and the weight distribution,

and presents a direct computational method for the exact Bayesian bootstrap distribution

of Rubin (1981) without the need for sampling. The study links exact moments of bootstrap

distributions to the Lp norm of random weights and proposes ways to incorporate prior

information into bootstrap procedures by adjusting the parametrization of the weight

distribution. Eventually, it discusses applications where it is common to use bootstrap

standard errors and shows how these can be given without resampling by leveraging the

geometric perspective.

The last chapter of this thesis shifts focus from high-dimensional sampling methods to

the development of a dynamic hedging strategy. While the previous chapters deal with

sampling points, representing portfolios or probability vectors, Chapter 5 addresses the

processing of a risk signal indicating moments for hedging investments in a stock index
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over time.

Despite this shift, a thematic connection remains with the preceding chapters through

the geometric approach. Risk management decisions are tied to a distance metric, namely

the Mahalanobis distance, building upon the work of Kritzman and Li (2010). The authors

introduced the squared Mahalanobis distance as a measure of financial turbulence and

advocated for its use as a robust indicator for market instability, thereby assisting in

portfolio decision-making and risk management.

Chapter 5 empirically and theoretically evaluates the predictive capability of the

Mahalanobis-based indicator proposed by Kritzman and Li (2010). A set of jointly

sufficient conditions regarding the data generating process of asset returns are defined to

validate its suitability for dynamic hedging. The Mahalanobis-based indicator is framed

as a tool for multivariate outlier detection, and methods for determining a threshold to

distinguish periods of market turbulence from calmer times are discussed. The empirically

observed property of the turbulence measure, which exhibits temporal clusters and generally

coincides with negative market developments when experiencing spikes, is examined. These

properties are traced back to two well-known stylized facts of asset returns, volatility

clustering, and asymmetric volatility-return dependence, which are expected to persist in

the future, providing a theoretical justification for a Mahalanobis-based hedging approach.

However, through the help of a simulation study, it is found that these two properties alone

are insufficient to support a Mahalanobis-based hedging strategy when the objective is not

only to reduce risk (in terms of volatility and drawdowns) but also to maintain competitive

returns. A third criterion, termed synchronous volatility, is identified as crucial.

As the main contribution of Chapter 5, a method is proposed to distinguish turbulence

into positive and negative market developments, labeled as good and bad, utilizing a basic

generative model, quadratic discriminant analysis. The approach entails computing the

difference between two Mahalanobis distances under distinct market regimes, marking the

second notable statistical application of the Mahalanobis distance beyond outlier detection

in cluster analysis. The adaptation of a pattern recognition technique, initially designed for

identifying economic cycles, facilitates the labeling of bear and bull markets, a prerequisite

for learning class-specific parameters.

Various turbulence-based hedging rules are formulated and subjected to empirical

examination. The assessment includes both a statistical framework, utilizing classification
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metrics, and an economic framework, conducted through backtesting and the analysis

of multiple performance measures. It becomes apparent that statistical significance does

not seamlessly translate into commensurate economic reward, a phenomenon attributed

to transaction costs. In this context, a data-driven smoothing approach, based on an

orthogonal stochastic volatility model, is proposed to reduce trading activity while achieving

a balanced trade-off between errors of type I (missed signals) and type II (false alarms).
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Abstract

We propose novel randomized geometric tools to detect low-volatility anomalies in stock
markets; a principal problem in financial economics. Our modeling of the (detection)
problem results in sampling and estimating the (relative) volume of geodesically non-convex
and non-connected spherical patches that arise by intersecting a non-standard simplex
with a sphere. To sample, we introduce two novel Markov Chain Monte Carlo (MCMC)
algorithms that exploit the geometry of the problem and employ state-of-the-art continuous
geometric random walks (such as Billiard walk and Hit-and-Run) adapted on spherical
patches. To our knowledge, this is the first geometric formulation and MCMC-based
analysis of the volatility puzzle in stock markets. We have implemented our algorithms
in C++ (along with an R interface) and we illustrate the power of our approach by
performing extensive experiments on real data. Our analyses provide accurate detection
and new insights into the distribution of portfolios’ performance characteristics. Moreover,
we use our tools to show that classical methods for low-volatility anomaly detection in
finance form bad proxies that could lead to misleading or inaccurate results.

JEL classification: C15, C63, C88, C58, G12.

Keywords: Low-volatility anomaly, MCMC, geometric random walks.
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2.1 Introduction

We consider two fundamental problems from two arguably distant disciplines: Com-

putational Geometry and Financial Economics. The geometrical problem involves the

computation of volume of and sampling from non-convex and possibly disconnected spher-

ical patches arising by the intersection of a non-standard simplex with a sphere. The

absence of convexity and the presence of many connected components make the problem

very challenging from an algorithmic and implementation point of view. The geometric

representation has a financial interpretation, which is the set of portfolios, i.e., investments

in a collection of stocks, having a certain risk level. Thus, our motivation to solve this

geometrically hard problem, aside from having an interest in its own right, stems from

a concrete financial question about the feasible space of investable portfolios obeying

certain regulatory and risk related constraints. The fundamental economic question that

we eventually address is that of the relation between risk and return: do assets with

higher risk levels provide higher returns, as suggested by economic theory, or is there

an empirically observable anomaly? The question is a long-standing one and we give a

glimpse into its history in the next section.

Our analysis and contribution to the topic consist of a differentiated perspective from

the existing literature. The usual procedure is to form a small number of portfolios by first

sorting stocks according to their historical volatility and grouping them into portfolios

(typically equally weighted) with increasing riskiness in order to then assess their relative

empirical performance. Instead of the simple heuristic approach to group stocks into risk

buckets, we consider all possible combinations of stocks from a given investable universe,

i.e., the entire space of feasible portfolios having a certain risk level (defined in terms of

volatility). To achieve this goal we use sampling based on geometric random walks, i.e.,

Markov Chain Monte Carlo (MCMC) procedures, and compare their resulting empirical

risk-return characteristic to those of portfolios sampled from other risk level sets. Hence,

instead of comparing the descriptive performance statistics of a single portfolio to represent

a risk level, we investigate the joint distribution of risk and return of the parameters of

the average portfolio having a certain risk level. Analyzing two different stock markets

(the USA and Europe) and subsets of the two markets distinguishing between company

size (small versus large) and sector belongingness (cyclical versus defensive) we find that
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the risk-return profiles of commonly employed equally weighted quintile portfolios formed

by sorting stocks according to their historical volatility range anywhere in the bivariate

distribution of realized risk and return. As such, we argue that one should be careful to

draw conclusions drawn from the sorting-based point estimates. However, the analysis

of sets of portfolios with given risk level, thus abstracting from the problem of a specific

weighting scheme and the missing consideration of correlation structures among stocks,

shows that the resulting risk-return cluster does indeed support the hypothesis of an

anomaly, albeit less pronounced than when using the quintile approach. The sampling-

based approach allows us to visualize how the distribution of risk and return widens with

increasing ex-ante volatility. Having knowledge about the distribution of performance

statistics is then valuable for statistical inference and significance testing, particularly in

the context of financial data which display time-series structures and are non-Gaussian.

2.1.1 Financial background

It has long been recognized that the capital asset pricing model (CAPM), a cornerstone

of financial economic theory and the workhorse model of classical capital market theory,

independently developed by Sharpe (1964) and Lintner (1965) and Mossin (1966), does

not do justice in explaining the complexity of real world market dynamics. Contrary to

the equilibrium model’s predicted simple positive linear relation between risk and expected

return, higher risk is not generally rewarded with higher return in global stock markets.

According to the CAPM, the return one should expect from an investment depends solely

on the riskiness of the investment relative to a single factor which is the overall market.

Investments which bear higher risk than the market portfolio should pay out a higher

return in expectation, i.e., a risk premia. However, Haugen and Heins (1975) were the

first to recognize that risk does not generate a special reward following the early warning

signs coming from Black et al. (1972), Miller and Scholes (1972) and Fama and MacBeth

(1973). Their finding has subsequently been confirmed by Fama and French (1992) and

Black (1973).

Further studies have found a wealth of anomalies, i.e., systematic and persistent

deviations of empirical observations from model prediction. Prominent examples include

firm size (Banz (1981), stocks with lower market capitalization tend to outperform stocks
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with a higher market capitalization in the future), value (Rosenberg et al. (1985), stocks

that have a low price relative to their fundamental value, commonly tracked via accounting

ratios like price to book or price to earnings outperform high-value stocks), momentum

(Jegadeesh and Titman (1993), stocks that have outperformed in the past tend to exhibit

strong returns going forward) or quality (Asness et al. (2019), stocks which have low

debt, stable earnings, consistent asset growth, and strong corporate governance, commonly

identified using metrics like return to equity, debt to equity, and earnings variability).

Building upon the anomalous findings, the original single-factor CAPM has then

been augmented with other factors besides the market, namely size and value Fama

and French (1992), size value and momentum Carhart (1997) and size, value, and two

quality factors Fama and French (2015). Nevertheless, despite the wealth of documented

anomalies and cited extensions, the CAPM has shown great resilience vis-à-vis a transition

to an alternative paradigm. This is particularly surprising in the light of a large body

of literature subsumed under the term low-risk anomaly or low-volatility anomaly which

directly attacks the very core of the CAPM by showing that, even after controlling for

other factors as done by the latest CAPM extensions, (i) low-risk companies outperform

high-risk companies and that (ii) low-risk portfolios produce higher risk-adjusted returns

than capitalization weighted benchmarks.

In particular, Falkenstein (1994) found that, when controlling for size, the relation

between risk and return gets reversed. Further, the outperformance of low-volatility stocks

compared to high-volatility stocks has been shown to be robust among different markets,

industries and sub-periods (see e.g., Blitz and van Vliet (2007), Blitz et al. (2013), Baker

and Haugen (2012), van Vliet and de Koning (2017), Blitz et al. (2019)). Walkshäusl

(2014)).

Note that in the CAPM, the risk is defined in terms of market beta, i.e., the ratio

between an asset’s volatility (standard deviation of returns) and the volatility of a market

portfolio times their correlation (or the ratio of the asset’s co-variation with the market

portfolio over the variance of the market portfolio). The low-risk anomaly was found to

be present irrespective of the employed measure of risk, be it beta or volatility (see e.g.,

Blitz and van Vliet (2007), Baker et al. (2011), Frazzini and Pedersen (2014), Liu et al.

(2018), Asness et al. (2020)).

The typical approach pursued by the studies on the low-volatility anomaly is to sort
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Figure 2.1: Risk-return profile of volatility quintile portfolios and the overall market
portfolio for the U.S. stock market over nearly a century.

stocks according to their historical volatility and to form portfolios, either weighted equally

or proportional to market capitalization, within quantiles of volatility levels. The process

is then repeated on a monthly or quarterly basis, thus giving rise to, say, five (quintile)

or ten (decile) backtested portfolios of increasing ex-ante volatility. Figure 2.1 illustrates

the advantageous risk-return profile of the low-volatility portfolio compared to the other

volatility quintiles and the overall market computed on nearly a century of U.S. stock

market data1.

The performance difference between the lowest and highest volatility stocks is called

the low-volatility premia. It can be exploited, in principle, by forming long-short portfolios

having positive weights (i.e., a long position) in the low-volatility stocks and negative

weights (i.e., a short position meaning that one sells stocks) in the high-volatility stocks. In

practice, however, many investors and investment vehicles like mutual funds are prohibited

by regulation to short sell assets. Thus, their potential benefit from the anomalous risk-

return relation is not to bet on the underperformance of high-volatility stocks, but to

overweight low-volatility stocks while avoiding exposure to high-volatility titles.

Alternatively to sorting, the minimum variance portfolio provides another solution for

a low-risk portfolio by means of optimization. A parallel stream of literature investigating

the empirical performance of minimum variance portfolios aligns with the findings on

1The investment universe consists of the 1000 largest stocks listed on the three major U.S. exchanges
(NYSE, AMEX, and NASDAQ) from 1929 to 2020. Five quintile portfolios, each consisting of 200 stocks,
were formed by sorting the investment universe by 36-month historical volatility. The portfolios are
rebalanced quarterly and the positions within each quintile are equally weighted (weighting of 0.5%
per share). The data set is provided by Pim van Vliet and Jan de Koning on their private website
https://www.paradoxinvesting.com/data/.
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low-risk portfolios based on sorts of single-stock risk measures thus further strengthening

the existence of a low-risk anomaly (see e.g., Haugen and Baker (1991), Clarke et al.

(2006), Clarke et al. (2011)).

Contrary to the pure volatility sorting-based portfolio construction method, the mini-

mum variance procedure includes information about correlations in the portfolio selection

process. As a result, the minimum variance portfolio is, although related, different from

the sorting-based low-volatility portfolio for it might very well include medium- or even

high-volatility stocks as long as they contribute to an overall decrease in portfolio volatility

through low correlations.

Vice-versa, the ex-ante variances of portfolios formed from volatility-sorted subsets of

the entire investable universe do not have to be monotonically increasing even though the

average ex-ante volatilities of the assets within the groups are. This is, again, because of

correlations.

Hence, the ignorance of correlations in the formation of volatility-ranked portfolios

poses a drawback in the existing literature analyzing the volatility puzzle. Instead of

clustering stocks according to volatility and representing the subgroups by a single portfolio,

an alternative would be to pre-define certain volatility targets and to sample portfolios

with exactly those ex-ante volatilities from the entire collection of investable firms. Using

sampling, one not only considers correlations but further overcomes the somewhat arbitrary

choice of the weighting scheme for the quantile-portfolios (equally or relative to firm size),

which is known to have a large impact on performance and inference (Plyakha et al., 2014).

2.1.2 Connection to geometry, methodology, and computational

challenges

Finance and economic textbooks usually represent the set of feasible portfolios in a risk-

return space as in the left plot of Figure 2.2. The blue parabolic curve, whose concave part

is termed the efficient frontier, highlights the boundary of the feasible set (grey area), and

the vertical lines correspond to iso-variance portfolios (color-coded by increasing volatility

from green to red). Despite the fact that we adopt this economic representation to analyze

the results of our empirical study of the low-volatility anomaly, our approach consists

of representing the set of volatility constrained portfolios with geometrical objects. In

16



particular, we represent the set of long-only portfolios, i.e., portfolios with positive or

zero weights, with the canonical simplex. Then, given the covariance matrix of assets’

returns, the set of portfolios with a fixed level of volatility is the intersection between

the canonical simplex and the boundary of an ellipsoid centered at the origin and whose

shape and orientation are determined by the eigenvectors and eigenvalues of that matrix.

The right plot of Figure 2.2 illustrates the situation for three hypothetical assets and five

variance levels (corresponding to the y−coordinates of the colored vertical lines in the left

plot of Figure 2.2), giving rise to five iso-variance ellipsoids intersecting the simplex (grey

dotted surface). The parabolic efficient frontier in the left plot of Figure 2.2 transforms to

a piecewise-linear line in blue in the right plot of Figure 2.2. In either representations,

it highlights the set of mean-variance Pareto-efficient portfolios. Harry Markowitz, the

father of modern portfolio theory, called it the critical line2 in his seminal paper Markowitz

(1992).

In the forthcoming empirical analysis, we estimate the covariance matrix from historical

data and set several volatility levels that define a sequence of concentric ellipsoids inter-

secting the simplex. By sampling independently and uniformly from each intersection, we

obtain sets of volatility-constrained portfolios. By computing the future returns for each

sample we then capture the dependency between portfolio volatility and future portfolio

return using several statistical tools from quantitative analysis. Note that one could

directly extend this approach to capture the dependency between volatility and other

portfolio scores.

From a geometric point of view, the intersection between the canonical simplex and

the boundary of an ellipsoid in Rd is a (d − 1)-dimensional (geodesically) non-convex

and nonconnected body (see Figure 2.3), thus, forming a very challenging problem. An

additional challenge, in our case, comparing to existing work on manifold sampling, comes

from non-connected-ness i.e. we have to estimate the volume of each connected part to

achieve uniform sampling. Our approach relies on MCMC sampling and efficient practical

Multiphase Monte Carlo (MMC) schemes for volume approximation.

Considering previous approaches, quantile or minimum variance portfolios correspond

to points that belong to the boundary of the set of constrained volatility portfolios. In

particular, they lie on the intersection between several facets of the simplex and the

2Note that Markowitz chose a geometric exposition of his ideas.
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Figure 2.2: Left plot: Feasible set and iso-volatility lines in risk-return space. The grey
area represents the set of feasible portfolios. Iso-volatility level sets form vertical lines and
are color-coded by increasing variance from green to red. The blue curve highlights the
set of Pareto-efficient portfolios in the trade-off between risk and return. The part above
the minimum variance portfolio (light blue dot) is called the efficient frontier.
Right plot: Feasible set and iso-volatility curves in asset weights space. The grey area
depicts the simplex of feasible portfolios. Iso-volatility level sets form ellipsoidal curves,
again color-coded by increasing variance from green to red. The blue line, called the
critical line, highlights the set of Pareto-efficient portfolios in the trade-off between risk
and return. Note that the minimum variance portfolio, again illustrated with a light blue
dot, forms the centroid of the 2-dimensional iso-volatility ellipses and indicates the point
where the 3-dimensional ellipsoid centred at the origin touches the simplex.

boundary of the ellipsoid. Consequently, the region around those portfolios is very unlikely

to be sampled, i.e., be visited by the random walk. Thus, it is likely that the analysis of

the volatility puzzle with those portfolios results in outliers compared to the results from

a sampling-based approach.

High-dimensional sampling from multivariate distributions with MCMC algorithms is a

fundamental problem with many applications in science and engineering (see e.g., Iyengar

(1988), Somerville (1998), Genz and Bretz (2009), Schellenberger and Palsson (2009),

Venzke et al. (2021)). In particular, multivariate integration over a convex set and volume

approximation of such sets – a special case of integration – have accumulated a broad

amount of effort over the last decades. Nevertheless, these problems are computationally

hard if we want to solve them exactly in general dimension (Dyer and Frieze, 1988).

MCMC sampling algorithms have made remarkable progress in solving efficiently the

problems of sampling and volume approximation of full-dimensional convex bodies in Rd

18



while enjoying great theoretical guarantees (Chen et al., 2018; Lee and Vempala, 2018;

Mangoubi and Vishnoi, 2019). Sampling from the boundary of a convex body has also

been studied (Dieker and Vempala, 2015). However, these algorithms could not be used in

our setting since they are focused either on full-dimensional convex bodies or on sampling

from the entire boundary of a convex body instead of a part of it (as in our case).

Manifold sampling is a well-studied problem (Narayanan and Niyogi, 2006; Diaconis

et al., 2013) with various applications, e.g., in machine learning (Byrne and Girolami,

2013). Of special interest is the case where the manifold is a hyperpshere (Davidson

et al., 2018; Grattarola et al., 2019; Reisinger et al., 2010). Moreover, sampling efficiently

on constraint manifolds is a core problem in robotics (Ortiz-Haro et al., 2021). Finally,

in Cong et al. (2017) they propose a method for sampling multivariate normal distributions

truncated on the intersection of a set of hyperplanes.

From a practical perspective, theoretical sampling algorithms cannot be applied effi-

ciently for real-life computations. For example, the asymptotic analysis by Lovász and

Vempala (2006) hides some large constants in the complexity, and in Lee and Vempala

(2018) the step of the random walk used for sampling is too small to be an efficient choice

in practice.

Recently, practical volume algorithms have been designed by relaxing the theoretical

guarantees and applying new algorithmic and statistical techniques; they are very efficient

in practice and they also guarantee high accuracy results (Emiris and Fisikopoulos, 2014;

Cousins and Vempala, 2016; Chalkis et al., 2019). Volume computation and uniform

sampling have been shown to have useful applications in finance for crises detection

(Calès et al., 2018) and efficient portfolio allocation and analysis (Pouchkarev et al., 2004;

Hallerbach et al., 2002). In Chandrasekaran et al. (2010) they propose a polynomial-time

algorithm for the more general problem of sampling and volume computation of star-shaped

bodies, an important non-convex generalization of convex bodies.

In Abbasi-Yadkori et al. (2017) they prove that Hit-and-Run mixes fast in a more general

setting that includes star-shaped bodies and spiral bodies appearing in motion planning.

For the more general problem of approximating the volume of basic semi-algebraic sets

(that is a set defined by a disjunction of polynomial equalities and inequalities) based on

the so-called Moment-SOS hierarchy we refer the reader to Tacchi et al. (2020, 2022).
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2.1.3 Contributions

We contribute to the literature on the low-volatility anomaly via a novel methodology

to generate risk-sorted portfolios in high dimensions. Our approach directly samples

uniformly distributed long-only portfolios having a certain level of volatility, which considers

correlations and provides insights into the distribution of portfolios’ performance statistics.

Our empirical application of the geometric approach shows how the distributions of

portfolios’ performance statistics vary with the ex-ante volatility level and where the

performance statistics of the standard sorting-based approach reside: are they close to

the modes or outlying? Given that we find sorting-based results which are strong outliers

with respect to (w.r.t.) the distribution of sampling-based statistics, we conclude that

the classical sorting-based portfolios form bad proxies and one should be careful to base

inference on them.

On the technical side, our contributions consist of the geometric modeling of the

financial problem and the construction of efficient randomized geometric tools. First,

we apply proper linear transformations to end up operating on the intersection of the

unit ball with an arbitrary full-dimensional simplex. Then, we sample at the intersection

and apply the inverse transformation to obtain volatility-constrained portfolios. We

develop two new geometric random walks to sample from such spherical, non-convex, and

nonconnected patches according to any given probability distribution. We also design

a new MMC scheme to estimate the volume of a spherical patch. That is a practical

randomized method based on simulated annealing and sampling from the Von-Mises

Fischer distribution. Our MMC scheme generalizes and extends existing randomized

volume approximation schemes (Cousins and Vempala (2015)). Last but not least, we

offer an efficient open-source implementation in C++ with interface in R (see Section 2.3

for details).

Structure of the paper. The next section describes the geometric modeling of the

financial problem in detail as well as the randomized geometric methods that we build,

such as MCMC sampling and volume approximation. Section 2.3 contains details of our

implementation and details about the algorithmic pipeline we introduce to analyze the

volatility puzzle. Section 2.4 presents the results and the analysis of the volatility anomaly
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in European and U.S. stock markets using our methods. Last, in Section 2.5 we discuss

possible future work to improve the efficiency of our methods as well as other financial

problems that our framework could be used to address.

2.2 Geometric modeling and algorithms

Our approach consists of the geometric modeling of long-only volatility-constrained portfo-

lios. Within this framework, we develop two sampling algorithms and an MMC scheme for

volume approximation. We first present the geometric framework and certain mathematical

tools before presenting our algorithms.

Notations We denote a full dimensional (convex) body with a capital letter and if

applicable with an index we denote its dimension; for example, the unit ball in Rd is

Bd. We denote the lower dimensional, usually (geodesically) non-convex, bodies with a

calligraphic letter; for example Sd−1 is the (d − 1) dimensional sphere in Rd. They are

usually parts of the surface of a full-dimensional convex body.

2.2.1 Geometric modeling

In finance, a portfolio is a collection of assets. Each portfolio allocates a percentage of a

given budget to every asset. The set of long-only portfolios is geometrically defined by the

canonical d-dimensional simplex

∆d := {x ∈ Rd+1 | xi ≥ 0,
d+1∑
i=1

xi = 1} ⊂ Rd+1, (2.1)

where each point represents a portfolio and d+ 1 is the number of assets. The vertices

represent portfolios composed entirely of a single asset. The portfolio weights, i.e., the

fractions of investment for each asset, are non-negative and sum up to 1. Notice that ∆d

is a d-dimensional body that lies in Rd+1; that is, it is a lower dimensional body.

Given a vector of assets’ returns R ∈ Rd+1, and a portfolio x ∈ ∆d, we say that the

return of x is fret(x,R) = RTx. Similarly, given the positive definite covariance matrix

Σ ∈ R(d+1)×(d+1) of the distribution of the assets’ returns, we define the portfolio volatility

as fvol(x,Σ) = xTΣx. Thus, to model portfolios’ volatility we employ ellipsoids intersecting
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Figure 2.3: Six examples in R3 of the body K = S2 ∩∆ (the unit sphere intersected by
the interior of a simplex) that we sample from. In general, K is a non-connected and
geodesically non-convex body in Rd.

∆d. The set,

Ecd ∩∆d = {x ∈ ∆d | xTΣx = c, c ∈ R+} ⊆ Rd+1, (2.2)

corresponds to the portfolios with volatility c. Notice that portfolios (i.e., points) that

belong to the ellipsoid (centered at the origin), Ecd := {x ∈ Rd+1 | xTΣx = c, c ∈ R+} ⊆

Rd+1, achieve volatility equal to c. The portfolios in the interior of Ecd achieve lower

volatility, while those in the complement of Ecd achieve higher volatility than c.

Geodesics on ellipsoids (as distinct from spheres) are not, in general, closed. That is,

while we can compute geodesics on a sphere by exploiting spherical trigonometry, this is

not the case for ellipsoids where one has instead to solve differential equations (Karney,

2012). Thus, for efficiency, we map the ellipsoid Ecd onto the unit hypersphere Sd−1 ⊂ Rd

and we apply the same transformation to the simplex ∆d to obtain a full-dimensional

simplex ∆ ∈ Rd. In particular, first, we use an orthonormal basis that spans the linear

subspace that ∆d lies on to obtain both an ellipsoid and a simplex in Rd. Then, we

transform the latter ellipsoid into Sd−1 and use this transformation to obtain a simplex

∆ ∈ Rd. Therefore, instead of sampling from Ecd ∩∆d, we sample from

K := Sd−1 ∩∆. (2.3)
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We can use the inverse transformations to obtain uniformly distributed portfolios with

volatility c since the transformation is isometric (Chalkis et al., 2021).

In general, K is a set of geodesically non-convex3 spherical surface patches (see Figure 2.3

for a few examples). We call these patches the (connected) components of K; we denote

them by Ki, i ∈ [M ], where M is their cardinality. To sample uniformly from K, we

sample uniformly from each component according to its relative volume. In particular,

first we sample u ∼ U(0, 1). Afterwards, if u ∈ [
∑m

i=1wi,
∑m+1

i=1 wi], for some m < M , then

we sample a uniformly distributed point from Km, where wi = vol(Ki)/vol(K), i ∈ [M ] is

the relative volume of the i-th component.

To identify and represent the components of K we use the vertices and the edges of ∆.

In particular, we consider the 1-skeleton of ∆ i.e. the graph whose vertices are the vertices

of ∆, with two vertices adjacent if they form the endpoints of an edge of ∆. Note that in

the case of ∆ the 1-skeleton is a clique.

We identify the edges of ∆ that Sd−1 intersects and remove them from the 1-skeleton.

We also identify the vertices of ∆ that lie in the interior of Sd−1 and remove them as well

as their adjacent edges. We denote the resulting graph by G. There is a bijection between

the connected components of G and the connected components of K. Thus, we represent

each connected component of K using the set of vertices of the corresponding connected

component of G. To decide if a given point p ∈ Sd−1 belongs to a certain component of K

we develop a membership oracle. One call costs O(d2) operations (see Appendix 2A).

2.2.2 Sampling from a connected component of K

We introduce two geometric random walks, namely the Great Cycle Walk (GCW) and the

Reflective Great Cycle Walk (ReGCW), to sample from a (connected) component of K.

To design these algorithms we employ the geodesics of Sd−1. Note that the great circles

on Sd−1 are the intersection of Sd−1 with 2-dimensional hyperplanes that pass through the

origin in Rd. These great circles are the geodesics of Sd−1 (Byrne and Girolami, 2013).

3A subset C of a surface is said to be a geodesically convex set if, given any two points in C, there
is a unique minimizing geodesic contained within C that joins those two points. A geodesic is a curve
representing in some sense the shortest path or arc between two points on a surface.
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ALGORITHM 1: GCW(∆, p, π)

Input : Simplex ∆; point p; probability density function π.
Require :Sd−1 ∩∆ ̸= ∅; point p ∈ K = Sd−1 ∩∆
Output :Next Markov point in K
Pick a uniform vector v from Sd−1 ∩ {x ∈ Rd | pTx = 0};
Let the great cycle ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, 2π]};
Let (θ−, θ+) be the values such that ℓp(θ) := {p cos θ + v sin θ, θ ∈ [θ−, θ+]} is the
part of ℓ(θ) ∩∆ that contains p;

Pick θ̃ from ℓp(θ) according to πℓ;

return p cos θ̃ + v sin θ̃;

Great Cycle Walk (GCW)

Great Cycle Walk (GCW) is a random walk to sample from any probability density

function π(x) supported on a connected component of K. GCW generalizes the Hit-and-

Run sampler (Bélisle et al., 1993) on a spherical patch. At each step, GCW starts from

a point p ∈ K and picks uniformly a great cycle ℓ of Sd−1 passing through p. Then, it

computes the part of the great cycle that lies in K and contains p. It samples a point from

that part of ℓ according to πℓ to set the next Markov point, where πℓ is the restriction of

π on ℓ. We prove (Theorem 1) that the (unique) stationary distribution of this algorithm

is π and moreover, that GCW converges to π from any starting point in K.

Some details of the computations are in order. GCW (at each step) chooses uniformly

a great cycle passing from a point p by sampling uniformly at random a unit vector v

from the hypersphere Sd−1 restricted to the hyperplane Hp := {x ∈ Rd | pTx = 0}. The

parametric equation of the great cycle is

ℓ(θ) := {p cos θ + v sin θ, θ ∈ [−π, π]}. (2.4)

We compute v by sampling uniformly at random a point u in Sd−1 ∩Hp as

v =
(Id − ppT )u
∥(Id − ppT )u∥2

, (2.5)

where Id is the d× d identity matrix. In this way, v is the normalized projection of u on

the hyperplane Hp and it is uniformly distributed in Sd−1.

GCW computes the connected part of ℓ(θ) that lies in ∆ and contains p by computing
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the intersection of ℓ(θ) with each facet of ∆. For this, it computes the smallest positive

and the largest negative solution of the following equations,

aTj ℓ(θ) = bj ⇐⇒ aTj xi cos θ + aTj vi sin θ = bi, θ ∈ [−π, π], j ∈ [d+ 1], (2.6)

where aj ∈ Rd are normal vectors of the facets of ∆. Let zj = bj/
√

(aTj xi)
2 + (aTj vi)

2. If

zj ∈ [−1, 1], then the values of θ that correspond to the intersections are

θ−j , θ
+
j = ± cos−1(zj) + tan−1

(
aTj vi

aTj p

)
. (2.7)

Otherwise, the great cycle does not intersect with the j-th facet. Thus, GCW keeps

θ+ = min
j≤m
{θ+j } and θ− = max

j≤m
{θ−j } and the intersection points are ℓ(θ+) and ℓ(θ−),

respectively.

Theorem 1. The stationary distribution of Alg. 1, CGW(∆, p, π), where the starting point

p belongs to K, is π for any starting point p in K.

Finally, ∆ has d facets while the computations of the intersection of ℓ(θ) with a facet

of ∆ takes O(d) arithmetic operations, which lead to the following remark.

Remark 2. The cost per step of GCW is O(d2) arithmetic operations.

GCW can also be used to sample uniformly from a component of K (see Appendix 2B).

However, the second geometric random that we introduce, namely Reflective Great Cycle

Walk, has superior practical performance compared to GCW for uniform sampling.

Reflective Great Cycle Walk (ReGCW)

We introduce the Reflective Great Cycle Walk (ReGCW), a geometric random walk

that operates on a connected component of K and converges to the uniform distribution.

ReGCW is a generalization of Billiard Walk (Gryazina and Polyak, 2014) on a spherical

patch. Similar to GCW, it starts from a point p in a connected component Ki. At each

step, it generates uniformly a great cycle passing through p and computes a trajectory

length L = −τ ln η, where η is a uniform number in [0, 1], i.e., η ∼ U [0, 1], and τ is a

predefined constant. When the generated great cycle hits ∂∆, it reflects, and the reflected

curve also forms part of a great cycle of Sd−1. ReGCW returns the next Markov point
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Figure 2.4: An illustration of the reflection of the ReGCW. The orange trajectory, starting
from the black point, hits the boundary of the component defined by the intersection of
the sphere with the green hyperplane (red point). The blue hyperplane is the tangent
space at the intersection point. The resulted trajectory is in magenta.

after traveling a distance L. If the number of reflections exceeds a given upper bound

ρ ∈ N+, then the next point is p itself. It is useful to set a bound on the number of

reflections to avoid computationally hard cases where the trajectory may stick in corners.

We explain our choices for τ and ρ in Section 2.3.

Some details of the computations are in order. At each step of ReGCW, when we are

at a point p, we denote by ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, L]} the part of the great cycle

emanating from p and having length L. Since we are on the unit sphere, geodesic length is

numerically equal to the radian measure of the angles that the great circle arcs subtend at

the center. We compute the smallest angle θ̃ as in Equation (2.6), hence, q := ℓ(θ̃) ∈ ∂∆

is the point on the components boundary hit by the ReGCW trajectory. If θ̃ < L, then

we compute the reflection of ℓ(θ) at θ̃ as follows: Let a ∈ Rd be the normal vector of the

facet of P that ℓ(θ) hits. We compute the normalized projection of a onto the hyperplane

Hq := {x ∈ Rd | qTx = 0}, say a′, using Equation (2.5). Then, the reflection of ℓ(θ) at q

is,

ℓr(θ) = {q cos θ + vr sin θ, θ ∈ [0, L− θ̃]}, (2.8)

where vr = v−2(vTα′)α′. We also update the length travelled so far, i.e., L← L− θ̃. When
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ALGORITHM 2: Reflective Great Cycle Walk(∆, p, ρ, τ)

Input : Simplex ∆ ∈ Rd; current Markov point p; upper bound on the number
of reflections ρ; length of trajectory parameter τ ;

Require :Sd−1 ∩∆ ̸= ∅; point p ∈ Sd−1 ∩∆
Output :Next Markov point in the same component of Sd−1 ∩∆ as p

L← −τ ln η, η ∼ U(0, 1) // length of the trajectory

i← 0 // current number of reflections

p0 ← p // initial point of the step

Let the hyperplane Hp := {x ∈ Rd | pTx = 0};
Pick a uniform vector v from Sd−1 ∩Hp;
do

Let the curve ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, L]};
θ̃ ← argmin

θ∈[0,L]
{ℓ(θ) ∈ ∂∆} ; // intersection angle

if L < θ̃ or ∂∆ ∩ ℓ(θ) = ∅ then return p cosL+ v sinL ;

p← ℓ(θ̃) and v ← ℓ′(θ̃) ; // point and direction update

Let s the normalized projection of inner vector of the facet of ∆ at p on Hp;
v ← v − 2(vT s)s // reflected direction

L← L− θ̃;
i← i+ 1;

while i ≤ ρ;
if i = ρ then return p0 else return p ;

L < θ̃ we set ℓ(L) as the next Markov point. The defined reflection operator guarantees

that vr ∈ Hq which implies that ℓr(θ) is a part of a great cycle. A single reflection of the

ReGCW is depicted in Figure 2.4.

Theorem 3. The Reflective Great Cycle Walk of Alg. (2) has a unique stationary distri-

bution, which is the uniform distribution. It converges from any starting point.

Finally, ReGCW performs at most ρ reflections per step, while the computation of

the intersection of ℓ(θ) with ∂∆ costs O(d2) arithmetic operations, which leads to the

following remark.

Remark 4. The cost per step of ReGCW is O(ρd2) arithmetic operations.

2.2.3 Practical volume approximation

At a high level, our method is based on that of Lovász and Vempala (2006) and Cousins

and Vempala (2015), as well as the practical variant presented in Cousins and Vempala

(2016). However, those algorithms are designed for full dimensional bodies in Rd. Thus, we
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have to make the necessary practical adjustments to develop a practical volume estimation

method. Since in our case we estimate the volume of geodesically non-convex spherical

patches we do not have most of the theoretical guarantees found in previous work.

In particular, given a connected component Ki, i ∈ [M ], for any sequence of k functions

fj : Sd−1 → R+, j ∈ [k] we consider the following representation of vol(Ki),

vol(Ki) =

∫
Ki

fkdx

∫
Ki
fk−1dx∫

Ki
fkdx

∫
Ki
fk−2dx∫

Ki
fk−1dx

· · ·
∫
Ki
dx∫

Ki
f1dx

(2.9)

=

(
1∫

Ki
fkdx

∫
Ki
fkdx∫

Ki
fk−1dx

· · ·
∫
Ki
f1dx∫

Ki
dx

)−1

, for i ∈ [M ], (2.10)

while we prefer the right hand of the Equation (2.9) for reasons we explain in the sequel.

We set each fj to be proportional to the von-Mises Fischer (vMF) distribution, i.e.,

fj(x) = eaj(µ
T x), x, µ ∈ Sd−1, aj > 0, (2.11)

where µ is the mean and aj is the inverse of the variance. The vMF distribution is the

restriction of the spherical Gaussian distribution on the hypersphere Sd−1 (Mardia, 1975).

Lovász and Vempala (2006) and Cousins and Vempala (2015) used exponential or

Gaussian functions in Equation (2.9). They first compute the smallest variance αk such

that (s.t.) the mass of fK is almost inside the convex body. Then, they compute the

sequence of functions by cooling the variance until they reach the uniform distribution.

In our case, we can not have a guarantee for αk, and thus, we start from the uniform

distribution and then we decrease the variance until we reach a distribution with sufficiently

small variance. To stop decreasing the variance, in each step of our schedule, we sample

from fj and we probabilistically bound the proportion of the mass outside Ki exploiting

Bernoulli trials.

By standard error analysis (Jeter, 2005), to estimate vol(Ki) within relative error ϵ it

suffices to estimate each integral ratio in Equation (2.9) within error ϵk = O(ϵ/
√
k) while

the
∫
Ki
fkdx is computed within an error ϵ0 < ϵ.

To estimate each integral ratio within ϵk, we rewrite it as

Yj =

∫
Ki
fjdx∫

Ki
fj−1dx

=

∫
Ki

fj
fj−1

fj−1∫
Ki
fj−1dx

. (2.12)
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Then, we use GCW to generate N random samples from a distribution proportional to

fj−1 and restricted to Ki and we estimate each integral ratio using the following estimator

Rj =
1

N

N∑
l=1

fj(xl)

fj−1(xl)
, (2.13)

while E[Yj] = lim
N→∞

Rj. Using Chebyshev’s inequality, when V ar[Yj]/E[Yj]
2 ≤ 1 we

guarantee that N = Õ(1) points suffice to approximate (2.12) within relative error

ϵk (Cousins and Vempala, 2015).

Fixing the sequence. In Cousins and Vempala (2015) they prove that when fj are

Gaussian functions in Rd, if αj = αj−1

(
1 + 1

d

)
, then V ar[Yj]/E[Yj]

2 ≤ 1. To the best

of our knowledge it is unclear whether Lemma 3.2 in Cousins and Vempala (2015) can

be extended in our framework. To fix the sequence of variances we define the following

practical annealing schedule based on the practical techniques in Cousins and Vempala

(2016). We set

αj = αj−1

(
1 +

1

d

)r

, r ∈ R+. (2.14)

Then, we sample N ′ points with GCW from fj−1 and we search for the maximum r s.t.

the ratio of the variance over the square of the average value of fj/fj−1 evaluated on this

sample lie in an interval [1− δ, 1] for a predefined small value of δ. To estimate the desired

value of r we binary search in an interval rmin, rmax, where rmin = 0 and rmax is found by

setting rmax = 2n and n the smallest integer s.t. the average value of the ratio fj/fj−1 with

αj = αj−1

(
1 + 1

d

)rmax

is larger than 1. We follow Cousins and Vempala (2016) to set N ′

for practical computations, and thus, we choose the value 1200 + d2.

First variance. To compute α1 we set α0 = 0 and we use N ′ uniformly distributed points

in Ki generated by ReGCW. Then, we binary search for α1 from a proper interval s.t. the

average ratio between f1 and the uniform distribution is smaller than 1.

Last variance. To stop we compute a large enough αk s.t. almost the entire mass of the

distribution proportional to fk and restricted to Ki is inside Ki, i.e., for a predefined ϵ0 we

have, ∫
Ki

fkdx = (1− ϵ0)
∫
Sd−1

fkdx (2.15)

with high probability. To achieve this objective, when we compute a new fj, we sample
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ν points from the corresponding exact vMF distribution supported on Sd−1 using the

algorithm in Kurz and Hanebeck (2015) and we stop when less than ϵ0ν points are

outside Ki. Clearly, from Hoeffding’s inequality ν = O

(
log

(
1

1−ζ

)/
ϵ20

)
points suffices

to guarantee that
∫
Ki
fkdx ≥ (1 − ϵ0)

∫
Sd−1

fkdx with probability 1 − ζ. For practical

computations we set ϵ0 = 0.05.

Ratio convergence. If the points generated by GCW were independent, then we would

use the theoretical bound on N , derived from Chebyshev’s inequality in Cousins and

Vempala (2015) to estimate each integral ratio. However, these samples are correlated

and thus, we use the same convergence criterion as in Cousins and Vempala (2016). In

particular, for each point, we update the value of the integral ratio and we store the last

values on a sliding window W . We declare convergence when

(max(W )−min(W ))/min(W ) ≤ ϵk/2, (2.16)

where max(W ) and min(W ) correspond to the maximum and minimum values of the

sliding window respectively. As in Cousins and Vempala (2016) it is unclear how to obtain

a good bound on the probability of failure with relation to the window size. To set the

length of the sliding window we follow Cousins and Vempala (2016) and we set it equal to

4d2 + 500.

Sampling from a segment. To sample from the mVF distribution π(x) ∝ eα(µ
T x)

restricted to a connected component Ki we use the GCW algorithm. In each step of the

random walk we have to sample from mVF restricted to a curve ℓ(θ) = {p cos θ+v sin θ, θ ∈

[θ1, θ2]}, i.e.,

πℓ(θ) ∝ eα(µ
T p cos θ+µT v sin θ), θ ∈ [θ1, θ2]. (2.17)

To sample from the latter univariate distribution we use the Metropolis-Hastings algo-

rithm (Chib and Greenberg, 1995) (see Section 2.3).

2.3 Implementation and experiments

We perform an empirical study using previously introduced randomized geometric tools

for the detection and analysis of the low-volatility anomaly on real data from global stock

markets and comment on the performance of our implementation.
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2.3.1 Implementation

We present the implementation of our algorithms and the tuning of various parameters.

We provide a complete open-source software framework to address low-volatility detection

in stock markets with hundreds of assets. Our code lies on a public domain4. The

core of our implementation is in C++ to optimize performance while the user interface

is implemented in R. The package employs eigen (Guennebaud et al., 2010) for linear

algebra, boost (Maurer and Watanabe, 2017) for random number generation, and expands

volesti (Chalkis and Fisikopoulos, 2021), an open-source library for high dimensional

MCMC sampling and volume approximation. In our software we also use the package

LogConcDEAD (Cule et al., 2009) to fit logconcave distributions for the analysis of the

samples generated by our random walks (see Section 2.4).

Parameter tuning for practical performance

To achieve an efficient implementation for our methods, we introduce the following

parameterizations.

Computing a starting point on Ki. We first compute the maximum inscribed ball

in the intersection ∆ ∩ Bd, where Bd is the unit ball. Since this is the intersection of a

convex polytope with a ball, the maximum inscribed ball with center xc and radius r is

given by the optimal solution of the following conic program,

max r, subject to : aTi xc + r||ai|| ≤ bi, ||xc|| ≤ 1− r, (2.18)

where ∆ is defined as the intersection of the half-spaces aTi x ≤ bi, i = 1, . . . , d+ 1. Then,

any vertex v of ∆ that also belongs to the connected component of graph G (defined in

Section 2.2.1) corresponds to a component Ki and thus we can use it to obtain a point in

Ki. For this, we consider the segment defined by v and xc, then, the intersection of the

segment with Sd−1 lies in Ki.

Convergence to the target distribution. We assess the quality of our results by

employing a widely used MCMC diagnostic, namely the potential scale reduction factor

(PSRF) (Gelman and Rubin, 1992). In particular, we compute the PSRF for each univariate

4https://github.com/TolisChal/volume_approximation/tree/low_volatility
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marginal of the sample that both GCW and ReGCW output. Following e.g., Gelman and

Rubin (1992), a convergence is satisfying according to PSRF when all the marginals have

PSRF smaller than 1.1.

mVF restricted on a segment. To sample from mVF using GCW, in each step of

the random walk, we have to sample from mVF constrained on a part of a great cycle.

The goal is to sample from the univariate distribution πℓ(θ) ∝ eα(µ
T p cos θ+µT v sin θ), for

θ ∈ [θ1, θ2]. To perform this operation, we use Metropolis-Hastings (Chib and Greenberg,

1995). The proposal probability density we use is the uniform distribution on a segment

of length (θ2 − θ1)/3, with the median being the current Markov point of GCW. We set

the walk length (the number of Markov points to burn until storing a point) equal to a

fixed value, i.e., 10, which we found to be an efficient choice empirically.

Parameters of ReGCW. To employ ReGCW (see Section 2.2.2), we have to select

efficient values for the parameter τ that controls the length of the trajectory in each step,

and for ρ, the maximum number of reflections per step. To set τ for a component Ki we

sample 20d points with GCW with uniform target distribution. Then, we set τ equal to

the length of the maximum geodesic chord in Equation 2.7 computing from those 20d steps

of GCW. For the maximum number of reflections, we experimentally found that ρ = 100d

is a reasonable choice, leading to less than 0.1% of violations among all ReGCW steps.

2.3.2 Construction of volatility-constrained random portfolios

and backtesting framework

We apply ReGCW sampling to construct sets of portfolios having a predefined variance

and investigate whether the out-of-sample performance of so constructed portfolios varies

in a systematic way with the variance level (do portfolios with higher variance deliver

higher, lower, or equal returns?). Out-of-sample means that we analyze the future (ex-post)

performance of portfolios formed with volatility targets derived from past (ex-ante) stock

price information and that, at every point of the back-testing procedure, we only use

information that was effectively available at that point in time. Starting in March 2002,

the earliest possible date for our data set described below, the implementation consists of

a three-step process that is applied initially and repeated every three months in order to

account for new information about stock risks and index composition. The three steps
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are data cleaning, covariance estimation, and sampling. In total, the quarterly reviews

amount to 80 time points where portfolios are rebuilt by first, cutting out a historical data

sample of five years of cleaned weekly returns to estimate the covariance matrix which

defines the ellipsoidal portfolio-variance level sets. Our choice of covariance estimator

is the non-linear shrinkage estimator of Ledoit and Wolf (2020) which has been shown

to possess desirable properties in large-dimensional setups and is guaranteed to produce

non-singular matrices and thus non-degenerate ellipsoids. Given the covariance matrix,

five variance targets are computed from volatility-sorted quintile portfolios with equal

weighting of within-quintile assets. From each of the five volatility level sets, 1000 portfolios

are sampled.5 The investments are held over the following three months until the process is

repeated. Ultimately, we arrive at a total of 5000 backtested portfolio price paths capturing

the profits and losses endured over a period spanning from March 2002 to Dezember 2021

by randomly concatenating time series within each volatility cluster at the 80 rebalancing

dates.

The entire procedure is repeated several times in order to control for size and sector

effects by distinguishing between the 50% smallest and largest companies and by further

labeling companies as either defensive or cyclical according to the sector classification

methodology employed by MSCI6 building on the Global Industry Classification Standards

(GICS)7.

2.3.3 Data

The data basis for our empirical study consists of two large universes of stock price series

of companies covered by the MSCI USA and the MSCI Europe indices8 which encompass

large and mid-cap equities traded in the U.S. and across 15 developed countries in Europe.

Our estimations are based on discrete weekly total9 returns using Wednesday closing

5Increasing the number of samples is not a bottleneck computationally (the complexity is linear).
However, we found no additional economic value by adding more samples since qualitatively, our results
did not change.

6Defensive sectors: Staples, Utilities, Energy and Health Care. Cyclical sectors: Financials, Real
Estate, Information Technology, Discretionary, Industrials, Materials, Communication. For more
detailed information see: https://www.msci.com/eqb/methodology/meth_docs/MSCI_Cyclical_and_
Defensive_Sectors_Indexes_Methodology_Nov18.pdf

7https://www.msci.com/our-solutions/indexes/gics
8https://www.msci.com/our-solutions/indexes/developed-markets
9Returns, i.e., the percentage changes in prices from time t− 1 to t, are termed total when adjusted

for dividends (i.e., dividends are re-invested).
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prices denoted in local currencies. We use local currencies since we do not want to model

any foreign exchange rates which would add another layer of volatility to the return

series when expressed in a particular base currency (except for stocks that are already

denominated in that currency). The currency effect is only relevant for the European

market. Out-of-sample simulations are based on discrete daily total returns denoted in U.S.

Dollars. Finally, we calculate all descriptive statistics and significance tests on discrete

monthly returns as is customary in the financial industry.

The data cleaning process starts with adjustments for past corporate actions such

as dividends, mergers and acquisitions, name changes, and other corporate actions. In

addition, stocks that do not have enough history are excluded from the sample. To be

included in the study, stocks need a consistent price history of five years, the equivalent of

260 weekly returns, without any gaps larger than two weeks. Further, otherwise, illiquid

stocks are removed from the investable universe. As a threshold, we require a median

trading volume over the previous 365 days to be above USD 1.5 million. We do this because,

on the one hand, such illiquid stocks are not easily tradable and therefore would lead

to a large implementation shortfall (i.e., the difference between a simulated performance

and one obtained from real investments) and on the other hand, such companies display

artificially low volatility due to a lack of trading and not because they are not risky. The

cleaning process is necessary to ensure that, at every point in time, the investable universe

only contains information that was effectively available at that point in time and to avoid

any positive survivorship bias. Reference index membership over the full sample period is

therefor not a requirement.

2.4 Results

Our experimental investigation of the low-volatility effect over the past nearly twenty

years using introduced geometric tools allows for a series of interesting conclusions. In

particular, the sampling-based method provides insights into the distribution of risk and

return statistics as visualized in Figure 2.5. The charts show the risk-return profiles

of the five clusters of backtested sampling-based portfolios for the U.S. (left plot) and

European (right plot) markets where clusters are color-coded by increasing variance from

green to red. Each point indicates the annualized performance statistics of a backtested
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Figure 2.5: Risk-return profiles of the five clusters of backtested sampling-based portfolios
for the U.S. (left) and European (right) market where clusters are color-coded by increasing
variance from green to red. The black dots represent the cluster averages whereas blue
dots depict the performance of the classical sorting-based quintile portfolios. The light
blue dot further shows the performance of a minimum-variance portfolio backtest and the
black square tells the performance of the capitalization-weighted market index.

strategy using the procedure described in section 2.3.2. The points per volatility group

are overlaid by bivariate (nonparametric kernel) density contours lines. The black dots

represent the cluster averages whereas blue dots depict the performance of the classical

sorting-based quintile portfolios. The light blue dot further shows the performance of a

minimum-variance portfolio backtest and the black square tells the performance of the

capitalization-weighted market index. Inspection of Figure 2.5, as well as Figure 2.6 and 2.7

which display the same insights for the four sub-markets filtering for large defensive, small

defensive, large cyclical, and small cyclical companies, reveals the following results.

First, we can confirm the presence of the low-volatility effect in both universes and

corresponding sub-markets. Low-volatility portfolios historically delivered higher risk-

adjusted returns than high-volatility portfolios, on average. However, the anomalous

pattern is much more pronounced in Europe where we find a monotone decrease in return

with increasing variance, i.e., very much the opposite of what would be predicted by the

CAPM. In the U.S. market, the negative relation only holds for risk-adjusted performance

measures like the Sharpe ratio10. The risk-return pattern is essentially flat with a slight

increase in returns for the highest volatility level, an effect that could not be seen in

the introductory example (see Figure 2.1) using the long-term U.S. dataset. In fact, the

10It is calculated by dividing the excess return of the investment (the return over the risk-free rate) by
its standard deviation. For simplicity, we omit the risk-free rate.
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Figure 2.6: Risk-return profiles of the five clusters of backtested sampling-based portfolios
for the U.S. market, grouped into four sub-markets according to company size and sector
belongingness.

effect is to a large extent attributable to the stellar performance of mega-cap tech firms

following the crash of March 2020 induced by the outbreak of the Covid-19 pandemic. If

we omit the last two years in the analysis, i.e., stopping backtests at the end of 2019, the

effect weakens and one finds a picture close to the one in the introductory example where

the average of the highest volatility portfolios has the lowest cumulative returns while

the largest cumulative returns are obtained by portfolios with moderately large variance

(quintiles 2 and 3) and not by the low-volatility portfolio (quintile 1).

Detailed performance statistics are reported in Tables 2D.3 to 2D.8. They give the

annualized returns, standard deviations, and Sharpe ratios per (sub-) universe for the five

sorting-based quintile portfolio backtests and the average of the corresponding sampling-

based portfolio backtests together with performance measures of the minimum variance

36



Figure 2.7: Risk-return profiles of the five clusters of backtested sampling-based portfolios
for the European market, grouped into four sub-markets according to company size and
sector belongingness.

portfolio and the capitalization-weighted index. Figure 2.8 further visualizes the decrease

in Sharpe ratio with increasing variance, which is present in all (sub-) markets for both,

sampling- and sorting-based backtests.

Second, Figures 2.5, 2.6 and 2.7 show that the variation in portfolio returns increases

with the increasing ex-ante variance target and is largest for the highest variance group

which contains both, the worst and the best performing portfolios. This shows that the

construction method, i.e., the choice of weighting to form the volatility-targeting portfolios

can heavily impact the final outcome. Further, also the spread in realized volatility levels

increases with higher volatility targets, meaning that there is a larger estimation error for

such portfolios.

Third, we observe that inference from the classical sorting-based method can be
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Figure 2.8: Sharpe ratios for the average sampling-based backtests and sorting-based
backtests (quintile portfolios) in the U.S. and Europe, for the overall markets and the four
sub-universes.

rather misleading in that resulting risk-return statistics can deviate substantially from the

average sampling-based portfolio characteristics. Moreover, cross-checking the different sub-

universes, the deviation seems to be non-systematic. In order to evaluate the likelihood of

finding the sorting-based risk-return vector within the cloud of sampling-based performance

vectors we parameterize the risk-return distribution by fitting a log-concave model. We use

the non-parametric model in Cule et al. (2010) and its implementation in the R package

LogConcDEAD (Cule et al., 2009). The function fits a log-concave density function to the

data, where the logarithm of the density function is a tent function, and its support is the

convex hull of the cluster. The fitted density gives the mode of the risk-return distribution

(i.e. the most likely risk-return vector). Then, we compute the measures of a small rectangle

centered on i) the mode, ii) the empirical cluster average and iii) the risk-return vecotors

of the sorting based quintile portfolios. In all ten (sub-) universes, we take the volume of

the small rectangle to be 1% of the volume of the support of the distribution. The plot

in Figures 2E.14 and 2E.13 illustrate the probability density function (pdf) computed

with the LogConcDEAD package and the quintile portfolios for each volatility level that

corresponds to the plots in Figure 2.5. Moreover, Table 2D.9 reports the measures of the
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rectangles. We notice that the measure of the area around the average is almost equal

to that of the area around the mode, which is strong empirical evidence that the model

in Cule et al. (2010) is a reasonable choice to evaluate the likelihood of finding a the

performance vector of a particular backtest within each volatility cluster. Next, there

is only one case – Europe, 4th volatility level – where the rectangular area around the

sorting-based quintile portfolio statistics achieves almost the same probability as the one

around the average or the mode. In four cases the performance vector of the quintile

portfolio is even outside the convex hull of the cluster, i.e., the measure is zero. In another

four cases, the probability of the area around the quintile portfolio statistics is more than

ten times smaller than that of the average or the mode and in one case it is four times

smaller. Consequently, according to the employed log-concave model, in most of the cases

it is unlikely to find the performance results obtained from the sorting-based quintile

portfolio backtests among the results of the sampling-based backtests within a volatility

cluster. Moreover, there is not any pattern with respect to the volatility levels that would

indicate when it is likely or not for the quintile portfolio performance to be found.

By design, the sorting-based portfolio is a particular solution to the sampling-based

set. Hence, our finding that the sorting-based backtest statistics can vary strongly from

the cluster averages may be surprising. However, the reason as to why the sorting-based

quintile portfolio statistics are sometimes far outlying the distributions of sampling-based

portfolio statistics has a geometric explanation. Sorting-based quintile portfolios with

equal weighting form centroidal points on faces of the simplex, i.e., boundary points of both

the simplex and the ellipsoid component of a volatility level (see Section 2.2). Typically,

the areas around these points are highly unlikely to be sampled as they usually lie in a

low-volume area of the sampling space, e.g., a corner. Hence, quintile portfolios should

not be used to represent the group of portfolios with a specific volatility level.

Looking at the backtests on the different (sub-) universes we find that, overall, the

low-volatility effect in terms of return gap between high-volatility and low-volatility is

overestimated by the sorting-based approach, and particularly so in the European markets.

Moreover, the variation in return among the five volatility clusters is more erratic for the

sorting-based method than for the mode of the sampling-based portfolio return distributions.

Not surprising is the observation that stocks from small and cyclical companies are more

volatile than those of large and defensive companies (irrespective of whether we consider
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sorting- or sampling-based portfolios).

A fourth insight, which however is not apparent visually, is that the risk-return relation

of portfolios within volatility cluster are mostly negative. I.e., even for portfolios that,

by construction, have the same ex-ante volatility, one observes that ex-post, those with

lower volatility generally lead to a higher risk-adjusted return. This shows in terms of

negative coefficients of the correlation between annualized returns and standard deviations

of backtests within a volatility cluster, i.e., a sort of within-cluster low-volatility anomaly.

In the next step, we analyze the statistical significance in the difference of Sharpe

ratios between the lowest and highest volatility portfolios. We employ a Sharpe ratio test

Ledoit and Wolf (2008) which accounts for time series structures in the data by employing

heteroscedasticity and autocorrelation consistent (HAC) estimates of standard error. In the

U.S., the null of equal Sharpe ratios among the sorting-based portfolios can not be rejected

at the 5% significance level. This also holds for any of the analyzed sub-markets except for

the group of small defensives stocks. In Europe, the results are more mixed. The overall

market as well as the sub-markets small defensives and small cyclicals show a significant

Sharpe ratio difference, while large companies on the two-sector groups do not. Using the

sampling-based simulations, we then run the test on all pairwise combinations of high

minus low volatility simulations and count the number of significant t-statistics. We get

less than 10% significant test results in the U.S. and about 15% in Europe, which, at first

glance, does not exactly speak for the existence of an anomaly. However, if we discriminate

the pairwise differences at a level of zero, i.e., we divide the sample between positive

and negative Sharpe ratio differences, we observe that 98% and 99% of the Sharpe ratio

differences are positive in the U.S. and European markets respectively and all significant

test results come from the subset with positive Sharpe ratio differences. I.e., we only find

significant positive differences and no significant negative differences. Figure 2.9 further

shows the distribution of p-values of the pairwise test statistics for series with positive

Sharpe ratio difference in green and negative Sharpe ratio difference in red for the U.S.

(left plot) and European (right plot) markets. Details of the test statistics for the two

universes and sub-markets are contained in Tables 2.1 and 2.2.
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Figure 2.9: Distributions of p-values of the Ledoit-Wolf Sharpe ratio test between low-
volatility and high-volatility portfolios, grouped by positive (green) and negative (red)
Sharpe ratio differences of low minus high volatility portfolio backtest in the U.S. (left)
and European (right) market. The grey vertical lines mark the 5% significance level.

The picture on the more granular analysis of the sub-markets discriminating among

sectors and company size shows a rather consistent (relative) pattern among the two

universes. In both cases, the highest proportion of positive Sharpe ratios is found among

small defensives with a proportion of significant p-values of almost 60% in the U.S. (while

the p-value obtained on the sorting-based backtests is barely significant) and almost 70%

in Europe. Further, both universes display the smallest proportion of positive Sharpe

ratios among the group of large cyclicals.

USA
overall
market

large
defensives

small
defensives

large
cyclicals

small
cyclicals

Sorting-based p-values 0.073 0.084 0.049 0.626 0.069

Sampling-based

Proportion of
significant p-values

0.114 0.254 0.567 0.004 0.119

Proportion of
positive SR

0.981 0.993 0.998 0.772 0.995

Proportion of significant
p-values on positive SR subset

0.116 0.256 0.569 0.006 0.120

Proportion of significant
p-values on negative SR subset

0 0 0 0 0

Table 2.1: Sharpe ratio test results for the U.S. market.
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Europe
overall
market

large
defensives

small
defensives

large
cyclicals

small
cyclicals

Sorting-based p-values 0.010 0.084 0.000 0.060 0.044

Sampling-based

Proportion of
significant p-values

0.152 0.140 0.678 0.019 0.028

Proportion of
positive SR

0.990 0.972 1 0.901 0.822

Proportion of significant
p-values on positive SR subset

0.153 0.144 0.678 0.021 0.033

Proportion of significant
p-values on negative SR subset

0 0 0 0 0.002

Table 2.2: Sharpe ratio test results for the European market.

We conclude that, while test statistics based on the sorting-based quintile portfolios

do not provide an unambiguous picture, it is overwhelmingly clear from the descriptive

analysis of sampling-based portfolios that low-volatility portfolios have delivered higher

Sharpe ratios than high-volatility portfolios, irrespective of the weighting scheme used to

form the portfolios.

As a final step, we repeat our analysis in a slightly modified version. Instead of randomly

concatenating the sampling-based portfolio simulations at the rebalancing dates, we now

order sampled portfolios within a volatility level by their last period return such that the

currently best performing allocation matches with the previously best-performing portfolio,

the currently second best with the previous second best, and so forth up to the current worst

with the previous worst. The idea is that a concatenation based on a systematic ordering

of the simulations according to a cross-sectional (in-sample) momentum criteria might

produce a distinctive pattern out-of-sample. And indeed it does. Doing the concatenation

over time as described, each of the 1000 backtests per volatility level describes a dynamic

strategy in the sense that the allocation changes every three months and the backtests

are ranked by their quarterly performances. The first backtest concatenates all portfolios

which ranked first in terms of quarterly returns. The pattern that emerges is a positive

relation between in-sample rank and out-of-sample volatility. The backtest composed of

the best performing portfolios has one of the lowest volatility over the entire nearly twenty

years period while the backtest composed of the worst quarterly performers shows one of

the highest volatility (always within a volatility-cluster). The pattern is very strong and

shows up in all (sub-) markets. Portfolios with the same ex-ante volatility, when sorted

by ex-ante momentum and concatenated over time, display a strong negative relation
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Figure 2.10: Ex-post volatility of sampling-based backtests on the U.S. market where
concatenation of random portfolios at the rebalancing dates is made according to a
momentum sort. Points with the same color have the same in-sample volatility. Points per
volatility cluster are overlayed by a polynomial regression curve. The curves are increasingly
upward sloping with increasing volatility level meaning that backtests combined of the best
past performers display (much) lower volatility than backtests composed of past losers.

between the sorting-rank and ex-post volatility. The effect clearly shows in the increasingly

upward sloping scatterplots in Figure 2.10 for the five color-coded volatility clusters in

the U.S. market. In each volatility cluster, the backtests are ordered by rank (from best

to worst) from left to right. Points are overlayed with a polynomial regression line to

highlight the upward trend. Results for Europe are equivalent qualitatively, as can be seen

in Figure 2.11 which shows the behavior for the four European sub-markets.

The altered perspective provides further evidence in favor of the low-volatility anomaly.

However, the economic rational and the causal nature of the very pronounced return-risk

(rather than risk-return) relation is not clear to us at this stage. We leave the investigation

to future research.
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Figure 2.11: Ex-post volatility of sampling-based backtests on the four subsets of the
European market where concatenation of random portfolios at the rebalancing dates is
made according to a momentum sort. Points with the same color have the same in-sample
volatility. Points per volatility cluster are overlayed by a polynomial regression curve.
The curves are increasingly upward sloping with increasing volatility level meaning that
backtests combined of the best past performers display (much) lower volatility than
backtests composed of past loser portfolios.

2.5 Discussion

We proposed novel randomized geometric methods that can be used to analyze stock

markets for anomalies. The tools have allowed us to sample portfolios with a fixed variance

and to investigate their performance characteristic over time, leading us to conclude that

the low-volatility anomaly is very much present in the U.S. and Europe as well as in

sub-markets discriminating for sector belongingness and company size. Additionally, we

discovered that the classical sorting-based approach, which constructs quantile portfolios,

poorly represents the range of possible portfolios with a specific volatility. Therefore, it is

essential to exercise caution when drawing inferences based on these portfolios.

The main limitation of our method lies in the ”bottlenecks” that appear in the non-

convex components (i.e. higher-dimensional analogs of the ones depicted in Figure 2.3)

which prevents us to perform computations with more complex data.

Performance-wise, our method can be enhanced with more efficient samplers such as
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Hamiltonian Monte-Carlo (HMC) (Byrne and Girolami, 2013) as well as by exploiting

properties of the spherical patches. Furthermore, instead of using the simplex, general

polytopes could be employed to incorporate additional constraints such as upper bounds

on individual stocks or groups of stocks.
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Appendix

2A Membership oracle for a connected component

Lemma 5. Given a body K = Sd−1 ∩∆ and a point p ∈ Sd−1 to decide if p ∈ K costs

O(d2) operations.

Proof. Figure 2A.12 describes the steps of the algorithm in 2D. This procedure can be

generalized for any dimension d. In particular, we consider the half-line lop which starts

from the origin and passes through p. Let lop to intersect ∂∆ at point q. Let also u one

vertex of ∆ that q has visual contact with, i.e., the segment defined by q and u does not

intersect Sd−1. Then, due to convexity, p belongs to the component of K that corresponds

to the component of graph G that contains u.

The computation of q takes O(d2) operations and the detection of the vertex u takes

O(d2) operations too.

v1

v2

v3

O

p

q

f12
f23

f13

Figure 2A.12: Illustration of how the membership oracle works. In this example, there are
two connected subsets of S1. We would like to answer in which component the point p
belongs. The half-line lop intersects ∂P on q which lies in the facet f23. The point q has
visible contact with the vertex v2, and thus, belongs to the connected component of S1
that corresponds to the connected component {v1, v2} of graph G.

2B Sampling uniformly with Great Cycle Walk

To sample uniformly a connected component of K, GCW samples uniformly a point from

ℓ(θ) in each step. In general, to sample uniformly from a parametric curve, we have to
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sample from the univariate probability density induced by the norm of the derivative of

the curve. In our case, the curve is a (part of a) great circle and so GCW samples from

ϕ(θ) ∝ ∥ℓ′(θ)∥2 = ∥ − p sin θ + v cos θ ∥2 = 1, θ ∈ [θ−, θ+], (2.19)

which is the uniform distribution over the segment [θ−, θ+]. Consequently, starting from p

the next Markov point is p cos θ̃ + v sin θ̃, for θ̃ sampled uniformly from [θ−, θ+].

2C Proofs

Theorem 1

Proof. We build upon the results and the methodology in Bélisle et al. (1993). Let D be a

set of subsets of K and P (p,A), with p ∈ K and A ∈ D, denotes the one step transition

probabilities (Markov kernel) of CGW algorithm. We will prove that P is reversible with

respect to π, that is

∫
A

P (p,B)π(dp) =

∫
B

P (r, A)π(dr), for all A,B ∈ D (2.20)

Then, the stationarity of π follows at once since we set B = K in Equation (2.20) and we

get,

π(A) =

∫
K

P (r, A)π(dr), for all A ∈ D, (2.21)

which implies stationarity of π (Vempala, 2005).

For p, q ∈ K with pT q = 0 let,

Φ(p, q) = {θ ∈ [−π, π] | p cos θ + q sin θ ∈ K}. (2.22)

Let f be the pdf of the constrained π on a great cycle, then, let f(p,q) be the pdf on [θ−, θ+]

defined by

f(p,q)(θ) =


f(p cos θ+q sin θ)∫

Φ(p,q) f(p cos t+q sin t) dt
if θ ∈ Φ(p, q),

0, otherwise.
(2.23)

Consider the random variables Q and U , where Q follows the uniform distribution over

Sd−1 ∩Hp, where Hp := {x ∈ Rd | pTx = 0}, U follows the uniform distribution over (0, 1),

and F(p,q) is the cumulative distribution function (cdf) of f(p,q). Then, the Markov kernel
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P (p,A) is

P (p,A) = Pr[F−1
(p,Q)(U) ∈ A]

=

∫
Sd−1∩Hp

1

vol(Sd−1 ∩Hp)
Pr[F−1

(p,q)(U) ∈ A]dq

=

∫
Sd−1∩Hp

1

vol(Sd−1 ∩Hp)

∫
Φ(p,q)

1A(p cos θ + q sin θ)f(p,q)(θ)dθ dq,

(2.24)

where 1A(·) is the indicator function of the set A and F−1
(p,q) is the left-continuous inverse

of cdf F(p,q). Let W the conic bundle on Hp centered at p with small spatial angle dϕ

that defines the geodesic trajectories starting from p and have non-empty intersection

with an infinitesimally small neighborhood dr in K. Then, the Markov kernel becomes

P (p,A) =
∫
A
g(p, r)π(dr), where

g(p, r) =
vol(W ∩ Sd−1 ∩Hp)

vol(Sd−1 ∩Hp)
∫
Φpr

p cos t+ q sin t dt
, (2.25)

where Φpr = {θ ∈ [−π, π] | p cos θ + q sin θ ∈ C(pr)}, for well-chosen q ∈ Sd−1 ∩ Hp and

C(pr) being the part of the great cycle defined by p, r ∈ Sd−1 inside K. Notice that g(p, r)

is symmetric.

Then, the left side in Equation (2.20) becomes
∫
A

∫
B
g(p, r)π(dr) π(dp) while the left

side becomes
∫
B

∫
A
g(r, p)π(dp) π(dr). Reversibility then follows from Fubini’s theorem

and from the fact that g(p, r) is symmetric.

Theorem 3

Proof. We build upon the results and the methodology in Gryazina and Polyak (2014).

Let Ki a connected component of K = ∆ ∩ Sd−1. Theorem 2 in Smith (1984) proves

that if the transition density r(q|p) exists and is symmetric as well as it is positive for

all p, q ∈ Ki then, the uniform distribution over Ki is a unique stationary distribution,

and it is achieved for any starting point p ∈ Ki. To prove convergence to the uniform

distribution we consider two cases: when Ki is geodesically convex set and when Ki is

geodesically non-convex set. In both cases, being at a Markov point pj, the next Markov

point pj+1 is obtained with positive probability with less than ρ+ 1 reflections.

For the first case, the existence of the probability density r(q, p) for any q, p ∈ Ki is
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implied when the transition probability from p to an infinitesimally small neighborhood dq

is proportional to the volume of dq. Considering all possible piece-wise geodesic trajectories

—defined as pieces of great cycles— that go from p to dq, take those that perform 0 ≤ k ≤ ρ

reflections. With this set of trajectories there is a conic bundle on the plane Hp centered

at p with with small spatial angle dθ that define these trajectories. The area of reflection

can be approximated as plain region, and thus, a reflection does not change the geometry

of the bundle. Then,

Pr[δq|p] ∝ Pr[δθ] Pr[δL], (2.26)

where Pr[dθ] is the probability of choosing the spatial angle (proportional to the volume

of the base of the cone) and Pr[dL] is the probability of choosing a certain trajectory

length L ∈ dL. Thus, Pr[dq|p] ∝ vol(dq). For a geodesically convex Ki the density r(q|p)

as all the points are reachable from any p ∈ Ki with a trajectory with no reflections. The

symmetry of the probability density function r(q|p) follows from the uniformity of the

distribution of the directions and reversibility of a billiard trajectory due to the reflection

law: the angle of incidence equals the angle of reflection.

For the case of a geodesically non-convex Ki, the connectedness guarantees that starting

from any point, we can reach a measurable neighborhood of any other point of Ki. Thus,

there exists a piece-wise geodesic trajectory that connects any two points in Ki. Therefore,

the transition probability density function r(q|p) > 0 for any q, p ∈ Ki. The symmetry of

r(q, p) holds using the same arguments as in the geodesically convex case.
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2D Tables

USA
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.099
CapW-BM 0.085

A
n
n
u
a
li
ze
d
R
et
u
rn
s

S
a
m
p
li
n
g-

b
as
ed

1st volatility level 0.097 0.087 0.109 0.067 0.101
2nd volatility level 0.098 0.088 0.108 0.087 0.105
3rd volatility level 0.095 0.089 0.108 0.089 0.104
4th volatility level 0.095 0.079 0.105 0.085 0.096
5th volatility level 0.105 0.066 0.048 0.084 0.080

S
or
ti
n
g-

b
as
ed

1st volatility level 0.094 0.079 0.113 0.074 0.099
2nd volatility level 0.098 0.072 0.124 0.088 0.095
3rd volatility level 0.109 0.096 0.126 0.091 0.104
4th volatility level 0.072 0.080 0.031 0.064 0.084
5th volatility level 0.064 0.027 0.049 0.085 0.049

Table 2D.3

USA
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.138
CapW-BM 0.191

A
n
n
u
al
iz
ed

st
.d
.

S
am

p
li
n
g-

b
as
ed

1st volatility level 0.154 0.147 0.163 0.176 0.184
2nd volatility level 0.186 0.160 0.183 0.198 0.220
3rd volatility level 0.210 0.173 0.215 0.221 0.251
4th volatility level 0.230 0.202 0.269 0.240 0.291
5th volatility leve 0.268 0.259 0.363 0.294 0.375

S
or
ti
n
g-

b
as
ed

1st volatility level 0.157 0.147 0.163 0.177 0.195
2nd volatility level 0.176 0.160 0.179 0.201 0.225
3rd volatility level 0.195 0.169 0.216 0.221 0.254
4th volatility leve 0.242 0.220 0.297 0.247 0.305
5th volatility leve 0.282 0.266 0.353 0.290 0.360

Table 2D.4

USA
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.716
CapW-BM 0.445

A
n
n
u
al
iz
ed

S
h
ar
p
e
R
at
io
s

S
am

p
li
n
g-

b
as
ed

1st volatility level 0.630 0.595 0.673 0.380 0.548
2nd volatility level 0.525 0.549 0.590 0.441 0.479
3rd volatility level 0.455 0.514 0.504 0.405 0.415
4th volatility level 0.413 0.390 0.390 0.356 0.328
5th volatility level 0.391 0.256 0.133 0.287 0.214

S
or
ti
n
g-

b
as
ed

1st volatility level 0.598 0.540 0.690 0.418 0.507
2nd volatility level 0.557 0.453 0.692 0.438 0.424
3rd volatility level 0.559 0.569 0.583 0.412 0.411
4th volatility level 0.299 0.364 0.106 0.260 0.275
5th volatility level 0.228 0.103 0.138 0.293 0.135

Table 2D.5
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Europe
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.087
CapW-BM 0.059

A
n
n
u
a
li
ze
d
R
et
u
rn
s

S
a
m
p
li
n
g
-

b
a
se
d

1st volatility level 0.081 0.092 0.115 0.062 0.060
2nd volatility level 0.079 0.079 0.097 0.073 0.078
3rd volatility level 0.074 0.073 0.087 0.063 0.072
4th volatility level 0.067 0.075 0.063 0.059 0.078
5th volatility level 0.065 0.070 0.033 0.053 0.060

S
o
rt
in
g
-

b
as
ed

1st volatility level 0.098 0.094 0.135 0.064 0.087
2nd volatility level 0.092 0.081 0.109 0.088 0.074
3rd volatility level 0.075 0.073 0.089 0.059 0.060
4th volatility leve 0.076 0.050 0.109 0.060 0.063
5th volatility leve 0.018 0.046 -0.042 0.005 0.025

Table 2D.6

Europe
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.159
CapW-BM 0.219

A
n
n
u
al
iz
ed

st
.d
.

S
am

p
li
n
g-

b
as
ed

1st volatility level 0.170 0.183 0.177 0.200 0.189
2nd volatility level 0.197 0.190 0.192 0.224 0.222
3rd volatility level 0.222 0.199 0.212 0.250 0.238
4th volatility level 0.242 0.219 0.244 0.274 0.281
5th volatility level 0.278 0.248 0.347 0.326 0.344

S
or
ti
n
g-

b
as
ed

1st volatility level 0.172 0.188 0.179 0.197 0.192
2nd volatility level 0.186 0.183 0.192 0.226 0.222
3rd volatility level 0.205 0.197 0.211 0.253 0.240
4th volatility level 0.235 0.219 0.252 0.284 0.270
5th volatility level 0.281 0.246 0.347 0.330 0.328

Table 2D.7

Europe
overall
market

small
defensives

small
cyclicals

large
defensives

large
cyclicals

Min Variance 0.543
CapW-BM 0.268

A
n
n
u
al
iz
ed

S
h
ar
p
e
R
at
io
s

S
am

p
li
n
g-

b
as
ed

1st volatility level 0.473 0.503 0.651 0.308 0.316
2nd volatility level 0.398 0.417 0.505 0.326 0.351
3rd volatility level 0.333 0.367 0.410 0.253 0.302
4th volatility level 0.279 0.344 0.258 0.217 0.275
5th volatility level 0.233 0.284 0.096 0.163 0.174

S
or
ti
n
g-

b
as
ed

1st volatility level 0.573 0.503 0.755 0.327 0.456
2nd volatility level 0.496 0.442 0.568 0.389 0.335
3rd volatility level 0.368 0.371 0.422 0.234 0.249
4th volatility level 0.325 0.229 0.430 0.213 0.234
5th volatility level 0.065 0.187 -0.122 0.016 0.075

Table 2D.8
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USA
Volatility level 1st 2nd 3rd 4th 5th
Model-based

mode
0.051 0.042 0.071 0.057 0.061

Sampling-based
average

0.051 0.041 0.071 0.056 0.060

Sorting-based
(quintile portfolios)

0.002 0.010 0.004 0 0.001

Europe
Volatility level 1st 2nd 3rd 4th 5th
Model-based

mode
0.049 0.045 0.054 0.061 0.074

Sampling-based
average

0.048 0.044 0.053 0.056 0.073

Sorting-based
(quintile portfolios)

0 0 0 0.051 0.007

Table 2D.9: For each volatility cluster in Figure 2.5 we fit a log-concave distribution using
the non-parametric model in Cule et al. (2010). We report the probability – w.r.t. the
log-concave measure obtain from LogConcDEAD package (Cule et al., 2009) – of a small
rectangle centered on the model-based mode, the sampling-based average and the sorting-
based quintile portfolio. In all cases, the volume of the rectangle is 1% of the volume of
the support of the distribution obtained by the log-concave model. See Fig. 2E.13, 2E.14
(Appendix) for a visualization.
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2E Figures

Figure 2E.13: For each volatility cluster in the left plot in Figure 2.5 —U.S. companies—
we fit a log-concave distribution using the non-parametric model in Cule et al. (2010).
With a red dot we report the sorting-based quintile portfolio.
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Figure 2E.14: For each volatility cluster in the right plot in Figure 2.5 —European
companies— we fit a log-concave distribution using the non-parametric model in Cule
et al. (2010). With a red dot we report the sorting-based quintile portfolio.
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Chapter 3

Randomized Control in Performance Analysis and Em-

pirical Asset Pricing

Cyril Bachelard, Apostolos Chalkis1, Vissarion Fisikopoulos1 and Elias Tsigaridas2

1 National & Kapodistrian University of Athens, Greece
2 Inria Paris and IMJ-PRG, Sorbonne Université and Paris Université

A version of the chapter, excluding the survey on geometric random walks (Section 4),
will be submitted to Quantitative Finance. A version of the survey will be submitted to
SIAM Review.

Abstract

The present article explores the application of randomized control techniques in empirical
asset pricing and performance evaluation. It introduces geometric random walks, a class
of Markov chain Monte Carlo methods, to construct flexible control groups in the form
of random portfolios adhering to investor constraints. The sampling-based methods en-
able an exploration of the relationship between academically studied factor premia and
performance in a practical setting. In an empirical application, the study assesses the
potential to capture premias associated with size, value, quality, and momentum within a
strongly constrained setup, exemplified by the investor guidelines of the MSCI Diversified
Multifactor index. Additionally, the article highlights issues with the more traditional use
case of random portfolios for drawing inferences in performance evaluation, showcasing
challenges related to the intricacies of high-dimensional geometry.

JEL classification: C15, C63, C88, C58, G12.

Keywords: Empirical asset pricing, random portfolios, MCMC, geometric random walks.
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3.1 Introduction

This paper examines the use of randomized control techniques in empirical asset pricing

and performance evaluation from various perspectives, including economic, mathematical,

and computational considerations. The investigation addresses the role of controlled

chance as a tool for performance evaluation and emphasizes the substantial influence of

design on inference. A novel approach to both, the design and application of randomized

controls is presented. This new methodology serves to evaluate the performance and risk

drivers of systematic investment strategies, i.e., portfolios that exhibit certain quantifiable

characteristics by construction. Examples of such inherent characteristics include exposures

towards classical factors such as size1 (Banz, 1981), value2 (Rosenberg et al., 1985),

momentum3 (Jegadeesh and Titman, 1993) or quality4 (Asness et al., 2019).

We introduce a way to construct random controls that account for investor constraints,

including but not limited to upper bounds, short-selling restrictions, risk limits, and

tolerances on factor exposures, which allows to analyze the relationship between portfolio

characteristic and portfolio performance within stringent investment guidelines. The

suggested approach roots in geometric random walks, a special class of (continuous)

Markov Chain Monte Carlo (MCMC) methods. Further, a geometric perspective will help

to categorize random controls into one of three groups based on the type of constraints

that are to be mapped and on the notion of randomness. Given the portfolio context, a

randomized control group is hereafter referred to as a random portfolio (RP).

RPs are commonly utilized within the domain of performance evaluation, an area

closely aligned with the intended application scope we are proposing. In the ensuing

discourse, we shall integrate this domain. However, it will become apparent that employing

RPs for purposes of performance comparisons is fraught with complexities. From our

perspective, insufficient attention has been directed toward these challenges in the past.

Conversely, RPs prove valuable for examining the relation between systematic portfolio

features and performance within real-world scenarios. In particular, the suggested RP

1Stocks with lower market capitalization tend to outperform stocks with a higher market capitalization
in the future.

2Stocks that have a low price relative to their fundamental value, commonly tracked via accounting
ratios like price to book or price to earnings outperform high-value stocks.

3Stocks that have outperformed in the past tend to exhibit strong returns going forward.
4Stocks which have low debt, stable earnings, consistent asset growth, and strong corporate governance,

commonly identified using metrics like return to equity, debt to equity, and earnings variability.
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framework based on geometric random walk enables an examination of factor effects within

a constrained setup and has the capacity to unveil non-linear and asymmetric relations, if

such exist, not only between characteristics and returns but also between characteristics

and risks. As such, RPs constitute a novel technique for exploring asset pricing puzzles

that is more versatile than classical sorting-based approaches going back to (at least) Fama

and French (1993). Further, RPs can be designed to closely resemble a strategy of interest

in all aspects, except for one particular characteristic in question, which enables an isolated

analysis of the implication of that specific characteristic.

Formally, a RP is a real-valued random vector, denoted ω, having a probability density

function (pdf) π with bounded support K ⊂ Rn. K is shaped by investor-imposed

constraints and geometrically forms a convex body (which we will explore in detail later

on). The components of ω represent the proportions of potential monetary allocations to

n investable assets, i.e., the random portfolio weights.

Our primary interest is on statistics derived from the random weights, i.e., the RP’s

risk, return and characteristic, where the latter typically comes in the form of a factor

score. Performance statistics and characteristics are functions of the random weights and

of the coefficients obtained from market observations.

Consider the following example. Let θ = (µ, σ) be the vector of performance parameters,

the mean µ and standard deviation σ of a RP; both are (scalar) random variables. At any

point in time t, we may estimate the parameters as µt = ⟨ω, rt⟩, where rt is the vector

of sample mean returns and σt = ω⊤Σtω, where Σt is the sample covariance matrix of

securities’ returns measured at t over a specific period of stock market history.

The distribution of θt, estimated at a given point in time t, serves as a representation

of the potential outcomes in terms of the specified performance measures, that could have

been achieved over a preceding period, considering a pre-defined universe of investable

assets and constraints imposed by investors. This set of counterfactual results and the

corresponding probability measure provides a basis for two kinds of inferences.

An option is to employ the performance distribution of the RP as a benchmark for

comparing and statistically testing performance. It has been put forward as the null

distribution of performance outcomes under the assumption of no skill, thereby framing

performance evaluation as a hypothesis testing problem. This is the typical use case

endorsed in the literature, see e.g., Surz (2006), Lisi (2011), Kim and Lee (2016). In the
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sequel, we demonstrate that this case subsumes the bootstrap approach of Efron (1979),

which appears frequently in the context of performance analysis, as a particular instance

of a RP. The advantage of a general RP-based analysis over simple resampling procedures

is that the former offers the possibility to incorporate investor constraints. This addresses

limitations associated with classical benchmark or peer group comparisons which have

faced criticism for their susceptibility to biases, such as the inclusion of investment styles

that do not align with the strategy of interest or for constituting portfolios that fall outside

the investor’s specified constraints (Surz, 2006).

The narrative supporting the RP-based performance evaluation approach primarily

relies on the following two conjectures: (i) A RP forms an obvious choice of control

for performance analysis as, by design, it incorporates no penchant to any investment

strategy; any portfolio structure is just as likely to occur as any other, and (ii) For (i) to

hold, random weights need to follow a uniform distribution over the domain of feasible

allocations. Both claims are flawed; even though they are intuitively appealing and despite

their many appearances in the literature (we refer the reader to the literature review in

Section 3.1.2). First, the idea that a RP is ”analogous to an enumeration of all feasible

portfolios” (Kim and Lee, 2016) is misleading. Although the domain is defined such

as to enclose all feasible portfolios, the probability measure over the domain strongly

concentrates over a thin shell of typical allocations (the high-volume area of the domain)

under a uniform distribution. This concentration phenomenon arises from the intricacies

of high-dimensional geometry, which we will discuss in more details in the sequel. Second,

the idea that a RP “by construction incorporates no investment strategy, bias or skill”

(Dawson and Young, 2003) is subject to interpretation and depends on whether one views

the capitalization-weighted or the equal-weighted portfolio as the unbiased and unskilled

reference (see the discussion in Section 3.2.1).

These two drawbacks, which are elaborated further in Section 3.2.2, lead us to conclude

that the use of RP-based statistical significance tests to evaluate the (over- or under-)

performance of a particular investment strategy is not appropriate. As a purely descrip-

tive tool, however, we consider RP-based analysis to be valuable, as exemplified in the

subsequent Section.

The second use case, a novel concept in our understanding, pertains to exploit a RP

for detecting and assessing asset pricing anomalies within real-world scenarios. Specifically,
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this entails exploring the interplay between factor exposure and the performance of

portfolios that adhere to investor guidelines. At a time t, the factor exposure of the RP is

given by γt,h = ⟨ω, βt,h⟩, where βt,h represents a cross-sectional vector of factor exposures

of the firms in the investment universe. These asset-level exposures are (standardized)

regression coefficients obtained by regressing the firm’s return series on the series of a

factor fh where the factor is a long-short portfolio formed by sorting stocks according to

attribute h. Alternative to regression coefficients, company-specific characteristics could be

used, e.g., fundamentals like a firm’s market capitalization or it’s balance sheet ratios. In

accordance with the procedure of the index provider MSCI5, which serves as the basis for

our practical application presented in the empirical part (Section 3.5), we will sometimes

employ the term (factor) score to be generic. Ultimately, we are interested in estimating

the conditional distribution of θt|γt,h, which elucidates the interrelation between portfolio

score and performance.

Factor scores can also form part of the constraints which define the RP, especially those

not integral to the investigated investment style of interest. This grants the researcher

complete control over the management and assessment of potentially confounding variables.

In Section 3.5, we will employ this approach to examine the persistence of well-studied

factor premia in a practical setting.

We would like to stress that our suggested use of RPs is not intended to establish causal

relationships. Instead, it aims to identify statistical associations between variables and to

evaluate the performance of different investment strategies under various conditions. We

therefore pay attention not to confuse between causation and association. The latter is a

statistical relationship between two variables, a conditional probability P(Y |X), while the

former means that the exposure produces the effect. Our approach thus distinguishes from

the typical application of randomized control in experimental designs like, for instance,

pharmaceutical studies, which aim to isolate causal effects by splitting subjects into

treatment and control groups.6 In Section 3.5, we emphasize that our use of a randomized

control is not to compare treated and non-treated groups, but rather to differentiate

portfolios with and without a specific characteristic.

5https://www.msci.com/
6As stressed in de Prado (2022), illuminating the causal nature of things requires more than just an

experimental setup for testing but begins with a theory that outlines the causal mechanism(s) which are
experimentally falsifiable.

67

https://www.msci.com/


Also, it is not our intention to advocate RPs as a panacea to solve asset pricing

puzzles. Rather, we view them as a valuable addition to the arsenal of statistical tools

for performance related questions in financial economics. However, it is important to

acknowledge the complexities involved in generating RPs that accurately reflect real-world

constraints. In a first instance, RPs are theoretical constructs, and the key question is

whether one can effectively determine the distribution of performance measures or portfolio

characteristics for inferential purposes. In most cases of practical relevance, analytical

solutions are not feasible, and we must resort to numerical techniques to obtain the desired

results.

3.1.1 Contributions

Our contributions within this article are fourfold. First, we clarify the inherent challenges

associated with the conventional practice of utilizing RPs for performance assessment (Sec-

tion 3.2). Second, we introduce an alternative use case focused on examining asset pricing

anomalies within constrained scenarios. This use case is demonstrated in Sections 3.2 and

3.4. Third, we provide an extensive exposition of technical methodologies for generating

RPs, covering both exact and approximate sampling-based solutions within a common

geometric framework (Sections 3.3 and 3.5). Specifically, we introduce geometric random

walks, a class of continuous MCMC methods tailored for high-dimensional constrained

scenarios from computational geometry, as an instrument to create a randomized control

which is useful to evaluate asset pricing anomalies within constrained setups. We survey

all existing random walks, examining the algorithms from both theoretical and practical

perspectives, and include complexity results. Lastly, we present an efficient open-source

implementation in C++ with an interface in R (Sections 3.5 and 3.5.2), facilitating perfor-

mance analysis via RPs with ease. With this software, assuming the reader has access to

the Wharton Research Data Services (WRDS), our empirical research is fully reproducible.

3.1.2 Previous work

Ever since the claim of the economist Burton Malkiel (Malkiel, 1973) that “a blindfolded

monkey throwing darts at a newspaper’s financial pages could select a portfolio that

would do just as well as one carefully selected by experts” the concept of a RP has been
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used to probe investment skill. Most prominently, the Wall Street Journal’s Dartboard

Contest, a monthly column published by the business newspaper between 1988 and 2002,

put Malkiel’s claim to the test by letting their staffers (acting as the allegoric monkeys)

literally throw darts at a stock table, while investment experts picked their own stocks,

always for a holding period of six months7. If nothing else, the game added another animal

symbolism to the jargon at Wall Street, emblematic in the ongoing debate on active versus

passive management and the underlying hypothesis on market efficiency. While the results

of the game are not informative, the experimental design, or rather, its deficiencies contain

meaningful learnings about the use of a randomized control for research in finance. Several

academic studies have examined the game pointing out biases like expert’s tilt towards

high risk stocks (Metcalf and Malkiel, 1994), low dividend8 yield stocks (Liang, 1999) and

high momentum stocks (Pettengill and Clark, 2001).

From a procedural aspect, the dartboard game forms an educative example of what we

call a naive RP (a formal definition follows in Section 3.3.1) and sampling from it boils

down to a bootstrap exercise in the spirit of Efron (1979). Such bootstrap-like use of RPs

is very common in the financial literature. One of the earliest reports we could find is

Cohen and Pogue (1967) who used a bootstrap-type of RP in the analysis of mutual fund

performances.

Dedicated articles to the topic of RP-based performance analysis are Surz (1994),

Surz (2006), Dawson and Young (2003), Burns (2007), Lisi (2011), Billio et al. (2011),

Stein (2014), Kim and Lee (2016) and Lee et al. (2018). All articles advocate the

benefits of RP-based performance evaluations over traditional approaches and implicitely

or explicitely promote the idea to view performance evaluation as a hypothesis test. In Surz

(2006) they argue that traditional performance evaluation methods used by the finance

community, namely peer group and benchmark comparisons, suffer from inevitable biases

and should be replaced by Monte Carlo approaches. In Kim and Lee (2016) they point

towards inefficiencies of simulation-based methods and propose a closed-form expression

for the probability distribution of the Sharpe ratio of a uniformly distributed RP. Another

analytical procedure based on a geometric algorithm was suggested in Cales et al. (2018)

7Prior to January 1990, the holding period was for one month. The extension to six months was made
to alleviate a possible bias from the price pressure resulting from the announcement effect.

8Performances were computed on price series rather than on total return series, thus ignoring the effect
of dividends and arguably incentivizing professionals to pick stocks with high growth opportunities.
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and applied in Cales et al. (2021) and Chalkis et al. (2021a), again imposing a uniform

distribution for a otherwise unconstrained long-only RP. To our knowledge, there is

currently no prior literature offering guidance on the creation of a RP with a well-defined

distribution within a constrained domain.

Concerning geometric random walk methods, which we posit fill the identified gap,

their origin traces to a substantial body of literature which has explored sampling methods

for generating randomized approximations to the volumes of polytopes and other convex

bodies (Dyer et al., 1991; Lovász and Simonovits, 1990, 1993; Cousins and Vempala,

2016). Geometric random walk methods possess a distinct lineage compared to the more

conventional MCMC methods widely employed in finance, particularly within Bayesian

frameworks for approximating posterior distributions. The uniqueness of geometric random

walk methods lies in their specialization for approximating distributions characterized by

a bounded support.

Geometric random walks have numerous application, including computational biology

and medical statistics, where they play an important role in metabolic network studies

(Tian et al., 2009; Nielsen, 2016; Haraldsdóttir et al., 2017). Additionally, geometric

random walks prove useful in solving convex programs (Bertsimas and Vempala, 2004;

Kalai and Vempala, 2006) and mixed integer convex programs (Huang and Mehrotra, 2013).

Financial texts that use geometric random walk routines are sparse. In Chiarawongse

et al. (2012) they use a geometric random walk algorithm to optimize portfolios under

qualitative input. To the best of our knowledge, the only text to use geometric random

walk for performance analysis is Bachelard et al. (2023).

The progress towards algorithms for volume computation, random sampling, and

integration has developed deep connections between high-dimensional geometry and the

efficiency of algorithms and shaped our understanding of convex geometry. Literature on

those aspects include Vempala (2005), Cousins and Vempala (2016), Yuansi et al. (2018),

and Mangoubi and Vishnoi (2019). Further important work on geometric random walk

sampling include Smith (1984), Lovász and Simonovits (1990), Lovász and Simonovits

(1993), Kannan et al. (1997) and Lovász and Vempala (2006a). References to the source

literature of existing geometric random walk routines are given in Section 3.4.

The remainder of this article is structured as follows. Section 3.2 contextualizes random
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portfolios within the realm of performance analysis and factor analysis. In Section 3.3,

we delve into the problem of RP generation from a geometric perspective. Following

that, Section 3.4 explores geometric random walk methods for constructing RPs tailored

to address complex real-world scenarios. This Section provides an overview of possible

algorithms, accompanied by descriptions of their properties and complexity, with a focus

on their programmatic implementation. Subsequently, Section 3.5 presents empirical

experiments using a geometric random walk-based RP to investigate the relationship

between factor tilts and performance within the framework of the MSCI Diversified

Multifactor index, which we consider representative of a typical setup. Finally, Section 5.5

concludes.

3.2 Use and Abuse of Random Portfolios

3.2.1 A (brief) review of performance analysis

To characterize RP’s in a performance evaluation and asset pricing context, we briefly

review some classical performance analysis methods.

Performance evaluation is inherently relative. The capitalization-weighted benchmark-

relative perspective, arguably predominant in both industry and academia, has deep roots

in economic theory (Sharpe, 1964; Lintner, 1965; Mossin, 1966), and forms the blueprint for

classical performance analysis. In this context, the available tools try to identify sources of

excess returns and to attribute them to active bets undertaken by the portfolio manager.

Holdings-based or transaction-based performance attribution tools in the line of Brinsan

and Fachler (1985) (but applied to equity-only portfolios), building upon the work of Dietz

(1966) and BAI (1968), are widely employed in the industry. This is so because of their

explanatory power to simultaneously outline the difference in the allocation structure

between a portfolio and a benchmark by grouping stocks into easily interpretable categories

like countries, sectors or currencies, and to quantify the individual contributions to overall

performance coming from the allocation differences among and within the pre-defined

categories. The determinants of portfolio performance (Brinsan et al., 1986) are however

not to be understood in an etiological sense. Unless the categories, according to which the

attribution is done, effectively correspond to deliberate bets undertaken by the portfolio

manager which characterize the strategy, allocation and selection effects do not cause
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over- or underperformance. They can be seen as residuals, meaning that the strategy may

generate these effects while pursuing other objectives. They can only identify what we

may refer to as the ”causa proxima”, the immediate cause, while the ”causa remota”, the

remote and perhaps indirect cause, which is encoded in the strategy and ultimately leads

to the performance delta, remains unexplored. For instance, the underperformance of a

minimum variance strategy following the 2022 energy crisis might be attributed to the

strategy’s underweighting of the energy sector. However, it is not an inherent characteristic

of minimum variance strategies to avoid investments in the energy sector. Rather, the

strategy may not have selected energy-related firms due to the high volatility of stocks

in that industry in response to the external shock. Thus, the cause of the performance

difference is only superficially due to the sector performance but roots in the underlying

variance minimizing mechanism that leads to the tendency of avoiding high-volatility

assets regardless of their origin or sector.

Another school of performance evaluation, initiated by Fama and MacBeth (1973),

subsumed under the term return- or factor-based models, uses regressions to break down

observed portfolio returns into a part resulting from a manager’s ability to pick the best

securities at a given level of risk and a part which is attributable to the dynamics of the

overall market as well as to that of further risk factors which are recognized to explain

security returns and are associated with a positive premium. This allows for an assessment

as to whether the active performance is attributable to a particular investment style.

While the Brinson-type of performance attribution is purely descriptive, the regression

setup goes beyond simple performance measurement as it allows for statistical inference

in terms of significance testing of the out- or underperformance (alpha) and the loadings

on other return drivers (betas) and therefore provides a basis for normative conclusions

(assuming that the usual assumptions for linear regression are met). A skilled manager

should be able to beat the market (factor) in a statistically significant manner after

controlling for alternative betas. In this sense, skill is reserved to the active manager who is

able to harvest a positive return premium not explained by known factors. Any benchmark

replicating strategy, since it involves no active deviation from the capitalization-weighted

allocation structure in a market, is therefore called passive and comes with performance

expectations which should match the performance of a market index rather than trying to

outperform it.
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This view, that the average investor possesses no skill, conflicts (at least semantically)

with the concept of a naive RP as the null of no skill. This is because a naive RP averages

on the equal-weighted portfolio which forms a natural alternative benchmark. From a

portfolio selection perspective the equal-weighted portfolio is rightly called the naive

benchmark since the strategy implies no views on market developments. It results as

the optimal solution in a Markowitz framework when expectations on returns, variances

and correlations are considered constant cross-sectionally. Yet, from an asset pricing

perspective, equal weighting provides exposure to systematic investment styles, foremost

to the low-size factor, and is thus not so naive after all. The lack of consideration of the

different points of view has led to unnecessary misinterpretations in the past. Unnecessary

because, as we will show, RPs can easily be constructed to reflect either reference points

in expectation, the naive investor who bets on all companies in a universe equally, or the

average investor who accounts for the the number of shares a company has issued9 and

the price they are traded for, i.e., firm capitalization (or actually any other reference point

that could be relevant to an investor). In the forthcoming, we use the terms naive RP

and basic RP to refer to either cases. A formal definition of the two concepts is given in

Section 3.3 and a first educative example follows shortly.

A third and more direct approach of performance analysis comes in the form of

hypothesis tests for the difference in performance measures of two strategies; typically, the

portfolio in question and a benchmark. For instance, Sharpe ratio tests building upon the

work of Jobson and Korkie (1981), the correction of Memmel (2003) and the extension of

Ledoit and Wolf (2008) accounting for stylized facts of asset returns. However, at least

since Kasak and Pohlmeier (2019) it is known that these tests suffer from low power, that

is, they are unlikely to identify superior performance in the data even if there is one.

A randomized procedure for performance analysis replaces the reference point with a

reference set (equipped with the empirical probability measure). Using a RP is intuitively

appealing as it is a model-free method. In principle, it eliminates the need for parameter

estimation, thereby avoiding dependencies on extensive time series data and assumptions

about the data generating process. Moreover, it offers flexibility in evaluating different

9For the computation of total market value one may want to restrict calculations to shares that are
free-floating, i.e., available to public trading, giving rise to a free-float adjusted market capitalization
versus a non-adjusted capitalization considering all shares outstanding, i.e., also those that are held by
company insiders and which are restricted to trade.
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performance measures while considering transaction costs and investment constraints.

However, it relies on the assumption that the distribution of no-skill performance, crucial

for hypothesis system evaluation, can be objectively approximated through sampling. We

contend that such is not unequivocally feasible.

3.2.2 RP-based performance evaluation - An example

Let us illustrate the challenges of performance evaluation and the use as well as the

potential for misuse of RP-based inference through a somewhat absurd, yet genuine,

example. Imagine a portfolio manager who constructs a portfolio based on the number

of times the letter ’Z’ appears in the company names of constituents within the S&P

500 index. Intuitively, this approach appears dubious and common sense would advise

against entrusting this manager with our savings. However, when comparing a backtest

of the manager’s strategy over a 22-year period (from 2000-01-01 to 2022-12-31) to the

capitalization-weighted parent index (i.e., the S&P 500), the results show an annualized

outperformance of 6.2% (based on daily geometric returns) and the Sharpe ratio test of

Ledoit and Wolf (2008)10 rejects the null hypothesis of equal Sharpe ratios at the 5%

tolerance level. What is going on? Is there anything special about the letter Z? Of course

not. In fact, it happens to be the case that we could have chosen any letter of the alphabet

and the simulated out-of-sample11 backtest would have shown an outperformance. We

could even take the nonsense to the extreme and invert the strategies by investing in all

assets except those with a particular letter in the company name. Again, all backtests

outperform the benchmark. How should we make sense of this?

Our absurd example is similar to the seemingly paradoxical results presented in Arnott

et al. (2013) who find that the arguably nonsensical inverses of sensible investment

strategies, i.e., strategies built from well-founded investment beliefs, which outperform the

capitalization weighted benchmark, outperform even more. The cause is readily identified

by the authors by a tilt towards the size and value factors meaning that both, sensible

and senseless strategies outperform for the same (unintended) reasons. In particular, even

10The test accounts for time series structures in the data by employing heteroscedasticity and autocor-
relation consistent (HAC) estimates of standard error.

11Our backtesting procedure ensures that at every point in time, only stocks that have been in the
index at that point in time enter the portfolio selection (i.e., there is no look-ahead bias). The allocation
is then held for three months, letting the weights float with total return (i.e., dividends are assumed to be
reinvested) developments of the underlying stocks, until the portfolios are rebalanced.
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randomly generated strategies, i.e., strategies generated from a Monte Carlo simulation

(i.e., a RP approach), lead to outperformances for the same causes. All these findings

enforce the authors to conclude that “value and size arise naturally in non-price-weighted

strategies and constitute the main source of their return advantage” and that, therefore,

“a simple performance measure becomes an unreliable gauge of skill”.

Also our inane letter strategies can be rationalized by their exposures to priced factors.

For instance, when analyzed through the lens of the Fama-French-Carhart (FFC) 6-Factor

model (Fama and French, 2015; Carhart, 1997) one finds that the majority of factor

loadings are statistically significant. Coefficients are predominantely positive for size

and value as well as for the two quality-related factors –profitability and investment–

while all coefficients for momentum are negative. Market betas are, for the most part,

below one and as low as 0.82 for strategy Z (and 0.78 when not controlling for other

factors). However, alphas remain positive and significant for all strategies (at the 5%

level) except for strategy Q. This finding appears robust to the choice of factors, as

evidenced by the qualitative consistency of alphas obtained from a regression on the

13 factor themes suggested by Jensen, Kelly, and Pedersen (JKP) (Jensen et al., 2023).

Conversely, betas can differ substantially between the two models. Such discrepancies

are to be expected, given the methodological disparities between the FFC and JKP

models in constructing factors, utilizing underlying data, and selecting control factors.12

Nevertheless, the observed inferential disparity can be confusing, as in various instances,

one model attributes outperformance to a positive exposure to a specific factor, while the

other attributes the opposite, both with compelling statistical significance13 (especially

for profitability, investment, and momentum). To arrive at a conclusive understanding, it

might be necessary to forsake the convenience of the regression approach and engage in

a more intricate analysis of the fundamental data related to the stocks within the letter

portfolios14.

12We found it interesting to study the (cross-sectional) correlation between FFC loadings and JKP
loadings as they turn out to be surprisingly low. Over the analyzed period and for constituents of the
S&P 500, the average correlation among exposures under the two models are 0.72 for SMB and size,
0.36 for WML and momentum, merely 0.16 for HML and value and are even negative −0.08 RMW and
profitability and −0.02 for CMA and investment (the correlations are computed cross-sectionally and the
average is taken over time).

13Naturally, the regression setups should undergo thorough statistical analysis beyond a simplistic
reliance on p-values, but unfortunately, such rigor is seldom practiced in reality.

14For example, strategy J shows a clearly negative portfolio size score when calculated directly on
the basis of company characteristics (we used the logarithm of market captitalization, standardized

75



Instead, let us explore whether an RP-based approach can provide clarity. The top left

chart in Figure 3.1 shows the bivariate risk-return distribution of a RP (red to yellow level

sets) together with the corresponding statistics for the 26 letter strategies (grey dots),

realizations of the RP (yellow small dots), the capitalization-weighted benchmark given by

the S&P 500 index (black dot) and the equal-weighted portfolio of the index constituents,

rebalanced monthly (blue dot).

Two immediate observations arise: Firstly, the performances of the letter strategies fall

within the high-mass area of the RPs pdf, with Z and Q being outliers. Secondly, most of

the mass of the RP return distribution is at levels above the return of the capitalization-

weighted benchmark. The first observation suggests that any apparent performance or skill

is consistent with chance and that the letter strategies could very well be instances of the

RP. Analyzing the factor composition of the RP samples further reinforces this intuition.

Figure 3.2 shows the distributions of factor scores of RP samples under the FFC and the

JKP models. The marks above the x-axis display the corresponding exposures of the letter

strategies. While the divergence of the two models poses some concern, the consistency of

the letter strategy scores with the RP distribution under either model individually paints

a rather clear picture, which is that the outperformance of the letter strategies may be

attributed to factor exposures that happen to be prevalent in the market. By contrast,

the factor structure of the capitalization-weighted benchmark can be far-off the bulk of

the RP’s exposure distributions (this is evident for size where the benchmark must have a

negative exposure by construction).

Unlike the letter-based performances, which mostly align with the outcomes of the RP,

the capitalization-weighted benchmark exhibits a notable deviation. Here is where one has

to be cautious not to jump to conclusions. If we were to statistically test the benchmark

return based on the RP return distribution we would conclude that the average investor is

rather unskilled since most investment decisions based on chance outperformed the market.

This result would be in line with the findings of Arnott et al. (2013) as well as Clare et al.

(2013) who locate the return of the capitalization-weighted benchmark far out in the left

tail of a RP return distribution over a 49 years (1964 - 2012) and 44 years (1968 - 2011)

cross-sectionally to have mean zero), while the size exposure is positive under both FFC and JKP. For
a long-only portfolio to have an exposure to a long-short factor does not necessarily mean that this
translates to the portfolio having the corresponding characteristic (a portfolio with strong size exposure
may nevertheless contain very large companies).
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Figure 3.1: Risk-return distribution of different RPs (red to yellow level sets) together
with the corresponding statistics for the 26 letter strategies (grey dots), realizations of the
RPs (yellow small dots), the capitalization-weighted benchmark given by the S&P 500
index (black dot) and the equal-weighted portfolio of the index constituents. In the top
charts, RPs are constructed to center on the equal-weighted (left chart) and capitalization-
weighted benchmark (right chart). The bottom chart displays the distributions of three
RPs created through the dartboard game approach, selecting 4, 30, and all stocks from
the investable universe from right to left.

period respectively. However, one should recall Sharpe’s arithmetic of active management

Sharpe (1991) that for every outperforming strategy there needs to be an underperforming

one (relative to the capitalization-weighted benchmark). The fact that the RP outperforms

the benchmark does not imply that any strategy, or even most strategies, outperform the

benchmark. The outcome depends on the way the RP is constructed, circling back to the

two previously mentioned issues in the RP narrative regarding the no-skill reference point

and the misunderstanding that an RP covers the entirety of outcomes.

77



Figure 3.2: Factor exposures

Without delving too deeply into the subject of RP construction (a concise description

follows in Sections 3.3 and 3.4), some qualitative aspects need addressing here. The

RP depicted in the top left chart of Figure 3.1 is not constructed as having a uniform

distribution over the set of feasible assets. Such an approach would yield an inadequate

representation of attainable performance, as it would consist solely of homogeneous and
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biased portfolios. Instead, it is crafted by convolving 26 individual RPs, each centered on

an equally-weighted portfolio while considering the number of assets in the specific letter

portfolio at a given rebalancing date.

As the number of assets considered decreases, the risk-return distribution of the RP

widens, and the distribution’s center shifts right, as depicted in the bottom chart of

Figure 3.1. The chart displays three RP densities, constructed using a method commonly

found in the literature. The procedure involves repeatedly sampling m stocks uniformly

from the set of investable stocks (here, with a set cardinality of n = 500) and forming

equally-weighted portfolios. This process essentially constitutes an m-out-of-n bootstrap.

In the chart, we have used m = {500, 30, 4} from left to right.

In the first case where all assets in the index are used, the density merely provides a

measure of the uncertainty in the performance of the equal-weighted strategy15. This is

because sampled portfolios are all very close to the equally weighed portfolio (in terms of

the weights).

While the uniform measure guarantees that each portfolio has an equal probability

of being sampled, the concentration phenomena occurring in higher dimension have the

effect that sets of portfolios with specific characteristics appear much more likely than

others. With overwhelming probability, samples will be drawn from the high-volume

area of the sampling space, which forms a thin shell (the region between two concentric

higher dimensional spheres of differing radii)16. Portfolios within this set show weights

whose entropy and Lp norm are close to constants in a given dimension. Sparse or highly

concentrated portfolios (such as the capitalization-weighted benchmark) are thus extremely

unlikely to be sampled.

In cases where m < n, as exemplified by m = 30 and m = 4, chosen to align with

the selections made by Arnott et al. (2013) and in the dartboard game, respectively, the

imposed sparsity leads to a broader dispersion of portfolio weights. This translates to a more

extensive distribution of performance statistics. However, the resulting distributions remain

relatively compact, covering only a small area of the space of feasible solutions, refecting

15It can be understood as an estimate of the sampling distribution of the equal-weighted portfolio’s
performance statistics, or, if one would sample the asset space uniformly, as the posterior density of the
risk-return parameters of the equal-weighted portfolio.

16It can be shown that E(||ω||22) = 2n−1
n2 and that therefore, with ω̄ denoting the equal-weighted portfolio,

E(||ω − ω̄||22) = n2−n
n3 , which tends to zero with increasing n.
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the homogeneity of sampled portfolios. Therefore, such RPs do not form acceptable control

groups. Utilizing these distributions for significance testing would likely result in overly

optimistic rejections of the Null hypothesis.

Adapting the RP mechanism to center on the capitalization-weighted allocation leads

to the risk-return distribution in the top right chart of Figure 3.1. This distribution is more

consistent with Sharpe’s arithmetic, having mode close to the performance of the market

index. In contrast, the profile of the naive index significantly deviates from the center

of mass. We could have further expanded or contracted the risk-return distribution by

adjusting the variance in the weights, essentially reverse-engineering the random control to

achieve a desired statistical test result. A dangerous game. We therefore conclude that a

RP, as we have presented it so far, does not provide a statistically acceptable experimental

design to probe skill (or lack thereof). Nevertheless, we would argue that, with some care

in the construction of the RP, it can serve as a visual aid to characterize the dispersion

of performance for non-elaborate strategies (such as letter-based investing). Hopefully,

the geometric perspective which we advocate in the subsequent discussion offers some

transparency in this context.

The utility of employing an RP lies in the ability to analyze the relationship between

portfolio performance and portfolio characteristics. Let’s consider the frequency of a letter

in a company’s name as a stock characteristic and examine whether there is a correlation

between the returns of portfolios drawn from the RP and the characteristics of those

portfolios17. If exposure to a particular letter, let’s say ’Z’, were a rewarded characteristic,

this relationship should be reflected in the cross-section of RP samples as a correlation

(or more broadly, a relation) between the loading on ’Z’ and performance. This (cor-)

relation should be present in both RPs used above, the one centered on the equal-weighted

and the one centered on the capitalization-weighted benchmark. While there are simpler

ways to dismiss letter-based weighting as a viable method for portfolio construction, our

point with current example is that the RP approach lends itself to an analysis of the

performance impact of any systematic portfolio formation approach. In Section 3.5, we

build on this approach to investigate recognized factors and their impact on performance.

The analysis aims to detect genuine anomalies and reveal whether certain characteristics

17For each occurrence of a specific letter in the company name, a score of one is assigned (i.e., a company
having letter ’A’ appearing three times in it’s name gets a score of three). The portfolio characteristics
are computed as the weighted sum of stock-level characteristic-scores times the portfolio weights.
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are still rewarded in the market when accounting for constraints that many investors need

to adhere to.

To finalize our example, Figure 3.3 shows the scatter plot of performance versus char-

acteristics of samples from the RP visualized in the left plot of 3.1. Unsurprisingly, there

is no observable correlation for characteristic ’Z’, neither between return and characteristic

nor between risk and characteristic. In contrast, the right panel of Figure 3.3 illustrates

the existence of a fairly strong relationship between momentum18 and performance at

the portfolio level. The chart shows a non-linear (almost quadratic) pattern between risk

and momentum. This implies that both, portfolios with the lowest and portfolios with

the highest momentum scores exhibit high ex-post volatility, while volatility is low for

intermediate-scoring portfolios. The correlation between portfolio’s returns and momen-

tum scores is positive (0.31) overall, with steeper segments at the low- and high-exposure

endpoints, while the middle part appears to be relatively flat. The graph prompts us

to contemplate whether the momentum anomaly would endure in a constrained setting

where extreme exposures are no longer feasible due to constraints on asset weights and/or

on additional factor exposures. This question is the focus of Section 3.5. Additionally,

the Section will provide a detailed description of the backtesting methodology, which we

have also applied here. For completeness, the two charts in the third row of Figure 3.3

shows the risk-return patter for the RP samples. The color-coding from red (low exposure)

to green (high exposure) helps to identify the unstructured and the partially structured

nature of the Z-characteristic versus the momentum characteristic, respectively.

18we measure momentum by the cumulative return of the portfolio over the last 12 months, omitting
the last month.
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Figure 3.3: The relation between portfolio performance and exposure towards towards the letter

’Z’ in the company names of the portfolio constituents (first row) or towards the momentum

factor (second row).

3.3 Random Portfolio Generation

In this Section, we explore the design and construction of a RP. We propose a categorization

of RPs into three groups of increasing complexity: naive, basic, and regularized. Among

the regularized RPs, we distinguish between simply regularized (where sampling is easy)

and generally regularized (where sampling is difficult). The primary objective is to gain

insights into the distribution of function values of a RP, such as its return. In certain cases,

these distributions have an analytic expression. However, in general, analytic solutions do

not exist and sampling-based approximations are necessary.

3.3.1 Naive Random Portfolios

The arguably most intuitive case is to consider non-negative portfolio weights that sum

up to one; these are the two defining properties of long-only portfolios. The geometric

object which characterizes the space of long-only portfolios is the canonical simplex

S := {x ∈ Rn | xi ≥ 0,
∑n

i=1
xi = 1, i = 1, ..., n}. (3.1)
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In practice, mutual funds frequently encounter legal constraints mandating full invest-

ment while prohibiting short selling. Consequently, the simplex constraint embodies a

legal requirement to which they must adhere. Given its prevalence within the industry, our

analysis will concentrate on this typical scenario, presuming the asset space to be defined

by the standard simplex or a subset thereof, which arises when additional constraints are

imposed. However, the geometric random walk routines which we propose in the sequel

are by no means limited to the simplex case but readily extend to accommodate long-short

applications.

As for the definition of randomness, we begin with the (arguably) most intuitive case

of a uniformly distributed RP, i.e., we focus on the uniform measure over the simplex.

Hence, a naive RP may be given by ω ∼ U(S), which we parametrize it through a flat19

Dirichlet model; i.e., ω ∼ D(α = 1), where 1 is a vector of ones. The Dirichlet pdf is given

by

D(ω;α1, . . . , αn) ∝
∏
i

ωαi−1
i , where ωi > 0,

∑
i

ωi = 1. (3.2)

This particular setup allows for an exact characterization of the distribution of linear

statistics associated with a RP. For instance, the cumulative distribution function (cdf) of

the return of a RP, denoted by µ, has an expression as a ratio of volumes. I.e.,

P(µ ≤ γ) =
V (S ∩H(rt, γ))

V (S)
, (3.3)

for some scalar γ, where V denotes the volume operator and H(rt, γ) = {h ∈ Rn|r⊤t h ≤ γ}

is the half-space induced by a hyperplane with normal rt that is the empirical mean vector

of the asset return distribution (Bachelard, 2024).

The volume in the numerator of Eq. (8) has a closed form expression (Lasserre, 2015).

However, it has been observed in Cales et al. (2018, 2021) that the evaluation of this

expression is numerically unstable when the dimension is not small, n ≥ 20. To overcome

this obstacle Chalkis et al Cales et al. (2018, 2021) suggest the use of an efficient and

exact geometric algorithm, due to Varsi (1973) and Ali (1973), for the evaluation of the

volume(s). This is the preferable implementation strategy of naive RP applications. Details

on Varsi’s algorithm, including pseudocode, are given in Section 4.2.1 of Chapter 4.

19Flat means that the elements of the parameter vector of the Dirichlet distribution, α, are all equal to
one.
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Another form of a naive RP is given by the mechanism underlying the dartboard game.

Dart throwing monkeys are easily digitalized by drawing counts c = (c1, ..., cn) from a

Multinomial distribution Mult(n, p1, ..., pn) with n trials where, with uniform probabilities

pi = 1/n, i = 1, ..., n, which is exactly the setup underlying the classical bootstrap of Efron

(1979). Normalizing each count produces (RP) weights ωi = ci/n. Unlike the Dirichlet

model, the weight space is no longer given by the canonical simplex but consists of a

discrete grid over the canonical simplex. As a result, the bootstrap distribution of any

derived RP statistic is discrete. The grid node at the centroid of the simplex represents the

equal-weighted portfolio and vertices represent single-asset portfolios. Grid nodes located

on the boundary of the simplex form sparse portfolios, i.e., allocations where one or more

position is exactly zero.

The definition of randomness of the weights depends on the type of resampling plan one

chooses in the bootstrap procedure. For instance, the specifications of the dartboard game,

i.e., how many darts, m, are thrown at a list of how many company names, n, and whether

a name can be hit multiple times or not (i.e., sampling with or without replacement), define

the structure of the corresponding grid. In practical applications, resampling plans often

involve drawing fewer than n samples (m < n), corresponding to an m out of n bootstrap

(Bickel et al., 1997). In this case, the induced grid is biased toward the boundaries of

the simplex, resulting in a wider dispersion of the bootstrap distribution of the statistic

in question compared to the classical bootstrap RP version. The continuous analogue

of this approach involves using a concentration parameter in the Dirichlet distribution

such that
∑n

i αi < n. By introducing a mapping λ(n,m) = m−1
n

, the standard errors of

the linear statistic of interest become equivalent under both ω ∼ 1
n
Mult(m, p1, ..., pn) and

ω ∼ Dir(αλ(n,m)) (Bachelard, 2024). Notice that the flat Dirichlet model also describes

a form of bootstrap version, namely the Bayesian bootstrap of Rubin (1981).

To summarize, a naive RP conforms to a classical or a Bayesian bootstrap scheme

encompassing the m-out-of-n bootstrap, where m can be smaller, larger, or equal to n,

and the case D(α = 1λ), λ > 0 in the Bayesian paradigm20. We call it naive because,

in expectation, it recovers the naive benchmark, i.e., E(ω) = ω̄, where ω̄ denotes the

equally-weighted portfolio.

20Notice that λ > 1 leads to a more concentrated distribution around the centroid of the simplex. On
the other hand, λ < 0 pushes weights outwards towards the faces, edges and vertices of the simplex (that
is compared to uniform density implied by the flat base case λ = 1).
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3.3.2 Basic Random Portfolios

We call a RP basic if, like a naive RP, the geometric representation corresponds to a

standard simplex. However, we also impose the condition that E(ω) is not equal to the

centroid, i.e., one cannot recover the (naive) equally-weighted portfolio in expectation.

This occurs whenever some form of asymmetry is introduced in the parametrization of

the Dirichlet or the Multinomial model which breaks the symmetry in the distribution

of the weights. By that we mean that paremeter elements cannot all be equal. For

instance, setting α ∝ ωbm, where ωbm is the capitilization-weighted allocation, generates a

distribution of weights which has center of mass at ωbm.

3.3.3 Regularized Random Portfolios

The simplex condition is typically not the only constraint that asset managers need

to adhere to. When there are additional constraint, it becomes quite challenging to

obtain analytical results. These additional constraints often originate from regulatory

requirements and are designed to limit the risk exposure to individual security issuers or

groups of issuers21. As a result, upper bounds are imposed on the asset weights, either

individually or collectively. Geometrically, these linear restrictions correspond to halfspaces

that intersect the simplex, resulting in a polytope

P := {x ∈ Rn | Ax ≤ b}, for some A ∈ Rm×n and b ∈ Rm. (3.4)

Furthermore, managers may impose additional constraints to prevent concentration, or

to align with the benchmark allocations, e.g., by setting lower and upper bounds on country

or sector exposures relative to the benchmark or in terms of variation of the return difference

(tracking-error), to limit transaction costs, to control portfolio characteristics (e.g., factor

exposure, sustainability criteria, risk metrics), or to satisfy other specific requirements.

From a sampling perspective, the mathematical characterization of constraints plays a

crucial role, distinguishing between linear, quadratic, convex, non-linear, and other types.

Certain risk measures like Value-at-Risk (VaR) are non-convex, meaning that, if a RP

21A common example is the UCITS 5/10/40 rule, which restricts single asset representation to no more
than 10% of the fund’s assets and limits holdings exceeding 5% to aggregate below 40% of the fund’s
assets.
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is subject to a maximum VaR constraint, it’s domain can no longer be represented by a

common convex geometric body, which makes sampling extremely hard. Other measures

of risk like variance or tracking error are quadratic and geometrically form ellipsoids

E := {x ∈ Rn | xTEx ≤ c}, for some E ∈ Rn×n, with E ⪰ 0, and c ∈ R+. (3.5)

Sampling from (the surface) of an ellipsoid is relatively straightforward. However, when

the simplex condition must also be satisfied, sampling from the intersection of the simplex

with an ellipsoidal surface becomes a non-trivial task (albeit possible, as demonstrated in

Bachelard et al. (2023)).

Under general constraints, the cdf of a RP statistic is not tractable analytically and

one has to turn to numerical methods (see Section 3.4). The following special case forms

an exception. Recently, Bachelard (2024) demonstrated that Varsi’s algorithm can also

be applied in the context of a shadow Dirichlet distribution (Frigyik et al., 2010), which

is defined on a linearly constrained simplex. The shadow Dirichlet model allows for the

consideration of linear regularizations of the weights, making it highly relevant in practical

applications. If ω ∼ D(α) and M an n× n left-stochastic matrix (i.e., each column sums

to one) of full rank, then Mω =: ω̃ ∼ SD(M,α), where SD denotes the shadow Dirichlet

model with pdf

SD(ω̃, α) = 1

| det(M)|B(α)

n∏
i=1

(M−1ω̃)αi−1
i .

The normalizing constant is the determinant of matrix M times the normalizing

constant of the standard Dirichlet distribution, i.e., the multinomial beta function B(α) =∫
Sn−1

∏n
i=1 ω

αi−1
i dω =

∏n
i=1 Γ(αi)

Γ(α0)
, where Γ(x) =

∫∞
0
tx−1e−tdt is the gamma function.

Therefore, in cases where linear constraints can be expressed using the mapping M , the

distribution of linear functions of a random portfolio can be precisely obtained using Varsi’s

algorithm under the uniform measure. These cases are referred to as simply regularized.

For all other cases where linear constraints cannot be directly accommodated, sampling

methods need to be employed.

Figure 3.4 visualizes the different types of RPs for the case of n = 3 assets. Subplot a)

shows the uniform density of a naive RP defined over the unit simplex, i.e., ω ∼ D(1).
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Subplot b) also shows another naive RP since, like a), it also centers on the naive 1/n

portfolio. However, the distribution of the weights is not uniform but follows a concentrated

Dirichlet model with ω ∼ D(1λ); λ = 4, giving the distribution more mass around the

center. If we would have chosen the concentration parameter λ < 1, the density colors

would be reverted (i.e., distributing more mass towards the boundaries of the simplex).

Subplot c) shows a simple RP with ω ∼ D(α); α = (0.5, 0.3, 0.2). d) visualizes the shadow

of the Dirichlet distribution in c), i.e., ω ∼ SD(M,α), restricted by a mononotic M which

has k−th column [0 ... 0 1/(n − k + 1)...1/(n − k + 1)]⊤. The so constrained weights

satisfy the ordering ω1 > ω2 > ... > ωn. Subplots e) and f) show instances of generally

regularized RPs defined by the intersection of the simplex with a polytope in the former

case, and by the intersection of the simplex with the boundary of an ellipsoid in the latter

case. In both cases, the distribution of the weights is a truncated version of the basic RP

in c).

3.3.4 Sampling

The task of generating RP variates, i.e., the activity of obtaining realizations of a ran-

dom composition having a specified distribution over a bounded domain, requires the

implementation of a sampling engine. Ideally, the sampler is exact (results in random

samples with exactly the desired distribution), efficient (in terms of storage space and

execution22 time), robust (the algorithm is efficient for all parameter values), and not

too complex (conceptually and also with respect to practical implementation). Whether

these expectations can be met depends on the concrete problem specification, i.e., on the

distributional assumption and the investment constraints which define the sampling space.

To sample from a naive, a basic or a simply regularized RP one just has to sample

a Dirichlet distribution with parameter vector α. To do so, it is enough to sample the

marginals from a Gamma distribution with shape parameter a = ai and fixed rate parameter

b = 1 and then standardizing by the sum: ωi =
xi∑n
i=1 xi

, xi ∼ Gamma(a = αi, b = 1).

Recall that under the uniform measure, the naive as well as the simply regularized RP

allow for an exact solution of the distribution function for linear statistics via Varsi’s

22Execution time has two components: Set-up time and marginal execution time. Set-up time is the
time required to do some initial computing depending on the particular problem and marginal execution
time is the incremental time required to generate each observation.
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Figure 3.4: a) naive RP with a uniform density defined over the unit simplex, ω ∼ D(1).
b) naive RP with a concentrated Dirichlet model, centered on the naive 1/n portfolio,
ω ∼ D(1λ), where λ = 4 (or λ < 1 for more mass towards the boundaries). c) Basic RP
with weights following a Dirichlet distribution, ω ∼ D(α), where α = (0.5, 0.3, 0.2). d)
Shadow of the Dirichlet distribution in c), denoted as ω ∼ SD(M,α), where the weights
are restricted by a monotonic matrix M with a specific column structure. The constrained
weights satisfy the ordering ω1 > ω2 > ... > ωn. e) Generally regularized RP defined by
the intersection of the simplex with a polytope, resulting in a truncated distribution of
the weights. f) Generally regularized RP defined by the intersection of the simplex with
the boundary of an ellipsoid, also leading to a truncated distribution of the weights.

algorithm. Therefore, sampling is actually not needed.

For a generally regularized RP, sampling is the only option. Under the uniform measure,

the sampling problem forms an instance of the fundamental problem addressed in the

seminal paper of Smith (1984): Given a bounded k-dimensional body K ⊂ Rn, where

k ≤ n, find a way to efficiently sample pseudo-random points (X1, X2, ..., Xd) ∈ K such

that P(X ∈ A ⊂ K) = V (A)/V (K) with V denoting the k-dimensional content of K.

While Smith (1984) considered the general case of sampling from a generic surface, here,

we restrict analysis to sampling from a K which is either a polytope P, the interior of

an ellipsoid E or their intersection. Exact uniformity can only be obtained under specific

circumstances which require either the applicability of transformation, composition or
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acceptance-rejection methods.

The transformation technique maps uniformly distributed points from a hypercube

C with a smooth deterministic function T onto K where T (x) has to preserve uniformity.

A necessary and sufficient condition for this is that the Jacobian of T is constant over

all x ∈ C (Smith, 1984). In principle, this is a highly efficient method since there exist

very efficient pseudo-random number generator to sample from C. The problem is just

that T is known only for a very limited class of regions S like spheres or simplices, not so

though for general polytopes. Theoretically, one could partition any bounded polytope

into a finite union of simplices, and then apply the transformation from the hypercube

to each simplex yielding the composite technique. Although conceptually sound, the

complexity of identifying the simplices is generally such that the approach is not tractable

computationally.

The idea behind the acceptance-rejection technique is to first find an enclosing set

K ⊃ K for which efficient sampling algorithms exist, take samples from K and either

accept them if they lie within K or reject them, otherwise. Accepted points will be

uniformly distributed in K because if a point is uniformly distributed within K, then it

is conditionally uniformly distributed in K given it lies in K. The problem here is that

even when K is chosen based on certain optimality conditions, like the smallest enclosing

sphere, the number of trial points in K needed to get a point in K grows, as Smith calls it

’explosively’23.

As the dimension grows, the (only viable) solution is to sample with geometric random

walks. The next Section provides a survey of existing walks that we can use to sample

from a RP and, ultimately, to address the finance problems of performance and factor

analysis.

3.4 Geometric Random Walks

Geometric random walk algorithms are a specific type of Markov chains that initiate

from an interior point within a convex body K. At each step, they transition to a

neighboring point selected from a distribution dependent solely on the current position.

23As an example, Smith (1984) shows that when K is a hypercube and K is a circumscribed sphere the
expected number of points generated in K needed to find one in K grows from 1.5 for k = 2 to 1030 for
k = 100.
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The fundamental concept behind all geometric random walks is to generate a lengthy

sequence of points, randomizing their order to render the sequence independent and

identically distributed (i.i.d.) over K. The complexity of the algorithms depends on its

mixing time, i.e., the number of steps required to bound the distance between the current

and the stationary distribution, and on the complexity of the basic geometric operations

performed at each step of the walk; the latter is termed per-step complexity.

The problem of sampling from a bounded convex body K is closely related to the

problem of approximating the volume of K. The first celebrated result is given in Dyer

et al. (1991) where they sample approximately from the uniform distribution using a grid

walk in K. Since then a great effort has been devoted to geometric random walks; to

mention a few seminal papers, in Smith (1984) they introduced the Hit-and-Run (HaR)

algorithm, in Kannan et al. (1997) they crucially improve rounding and sampling results

using Ball walk (BaW) and in Lovász and Vempala (2006b) they show fast mixing for

HaR even when the random walk starts from a corner point in K. Over the last 35 years

various walks have been presented, each possessing distinct advantages and drawbacks.

Some routines confine the sampling space to a polytope, while others are more generic,

though often, there is a trade-off between flexibility and efficiency. Further, some walks

are restricted to uniform sampling while others accommodate more general distributions,

although they may need some pre-processing steps where uniform samples are required.

The discriminating aspect among the various routines lies in their approach to take the

next Markov step, i.e., in the choice of the direction, the step-length, the curvature of the

trajectory and behavior when a boundary is hit.

Figure 3.5 illustrates the mechanisms of four geometric random walks which are at

the basis of various descendent methods. For HaR, the logic is as follows: Start with

an arbitrary point x0 inside the convex body. Then, generate a random direction vector

v with each component sampled independently from a standard normal distribution.

Compute the intersections between the line defined by the point x0 and the direction

vector v and the boundary of K. Finally, choose a random point on the segment defined

by the two computed boundary points and repeat the process. The choice of the random

distribution on the segment needs to be chosen with respect to the target distribution (for

instance, uniformly, if the target is to sample uniformly distributed points). Billiard Walk

(BiW) (Gryazina and Polyak, 2014) operates similarly to HaR, but it exclusively moves
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Figure 3.5: Illustration of HaR, BiW, Dikin walk, HMC (from left to right)

in the direction of v and reflects the ray upon encountering the boundary whereby the

exit angle matches the entry angle. Both methods work on general K, but BiW is limited

to sampling from the uniform distribution. Dikin walk (Narayanan, 2016) (and other

ellipsoidal procedures like Vaidya and John walk) choose their steps by sampling uniformly

from an ellipsoid centered at the current point whose shape and size are determined by

the shape of K and the proximity of the current point to the boundary. Those algorithms

are very efficient even in high-dimensional cases but only allow for uniform sampling from

polytopes. Hamiltonian Monte Carlo (HMC) (Neal, 2011) is a sophisticated technique

that employs Hamiltonian dynamics to enhance sampling efficiency. It picks a random

velocity according to a local distribution and then walks on a Hamiltonian trajectory,

i.e., a trajectory which is given by the Hamiltonian dynamics, to obtain the next Markov

point. So generated proposals exhibit less of a random-walk behavior, resulting in more

effective and less correlated samples. Various versions of HMC exist, all allowing sampling

from general log-concave distributions, though some versions like Riemannian HMC (Kook

et al., 2022) are limited to polytopes.

In the following we discuss important aspects that are common to all routines before

moving to a detailed description of the individual procedures. We provide a survey of all

existing routines. Readers seeking more in-depth understanding of the technicalities are

encouraged to consult the source literature for a more comprehensive exploration.

Distribution support. We assume that the support of the target distribution is either

a full dimensional convex polytope given by a set of linear inequalities as Eq. (3.4) or the

intersection between a polytope and an ellipsoid (see Eq. (3.5)). In either case we may

refer to the support as a convex body. In the case where the portfolio domain is given
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also by an additional set of equalities –which is always the case in our examples since

we require portfolios to be fully invested (simplex condition)– we transform it using an

isometric transformation to obtain a full dimensional polytope and ellipsoid. In particular,

let, for example, the set {x ∈ Rn | Bx = 0} be defined by the corresponding additional

equality constraints. Then, we compute an orthonormal basis of the null space of the

matrix B and we project the polytope and the ellipsoid onto the null space to obtain

a full dimensional polytope and ellipsoid in the form of P and E respectively. Let us

demonstrate an example using the Dirichlet model in Eq. 3.2 truncated in the intersection

between a convex polytope and an ellipsoid, i.e.,

D(x;α1, . . . , αn) ∝
∏
i

xαi−1
i , where xi > 0,

∑
i

xi = 1, Ax ≤ b, xTEx ≤ c,

A ∈ Rm×n, b ∈ Rm, E ∈ Rn×n pos. def., c ∈ R+.

(3.6)

Notice that in this case B = [1, . . . , 1]. Consider the transformation T (x) := N(x− x0),

where N ∈ R(n−1)×n is the matrix that generates the null space of B and x0 a feasible point

in the support of D. When we apply the transformation T on both D and its support we

obtain the density,

[T ◦ D](y;α1, . . . , αn) ∝
∏
i

(NT
(i,:)y + x0i)

αi−1, (3.7)

since x = NTy + x0. By replacing x in the constraint equations one could also obtain the

support of the transformed density [T ◦ D]. Finally, we sample from the full dimensional

body in the null space and we apply the inverse transformation to obtain the sampled

portfolios in the initial space.

In the sequel, we consider the case of sampling from a full dimensional convex set given

by the intersection between a convex polytope and an ellipsoid,

K = P ∩ E . (3.8)

Computational oracles. Each geometric random walk uses certain sub-routines called

oracles. An oracle is an algorithm that answers a certain question that is needed for the

implementation of a random walk. The oracle that every geometric random walk needs is
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the membership oracle that answers if a given point belongs or not in K. The simplest

implementation of this oracle is to check the validity of the Eq. (3.4, 3.5).

Another useful sub-routine is the boundary oracle that computes the intersection

between the boundary of K, denoted ∂K, and a ray that starts from a point in the interior

of K, let ℓ(t) := {x+ tv | x ∈ K, v ∈ Rn, t ∈ R+}. To compute the intersection with ∂P

we have to solve one linear equations per facet and keep the smallest positive root. We

have,

aTj (x+ tv) = bj ⇒ t =
bj − aTj x
aTj v

, j = [m], (3.9)

where m is the number of facets and aj ∈ Rn are the normal vectors defining the support

hyperplane of each facet. The computations in Eq. (3.9) costs O(mn) operations24. To

compute the intersection with ∂E we have to solve the following equation and keep the

smallest positive root,

(x+ tv)TE(x+ tv) = c⇒ ∥v∥22t2 + (2xTEv)t+ (xTEx− c) = 0. (3.10)

That is a second order polynomial equation for which we have a closed form to compute

its roots. The computations in Eq. (3.10) costs O(n2) operations. Clearly, in the case of

the body K we solve both Eq. (3.9, 3.10) and keep the smallest positive root t+. Then,

ℓ(t+) ∈ ∂K is the intersection point.

Some random walks, like e.g., BiW, use a sub-routine called reflection oracle. This

oracle computes the reflection of a ray ℓ(t) when the later hits the boundary of K so that

the reflected ray continues in K. Typically, this oracle is called after the boundary oracle

which computes the boundary point y of ray intersecting ∂K. Let s ∈ Rn, ∥s∥2 = 1 the

normal vector defining the tangent hyperplane at y and v ∈ Rn the direction vector of

the ray ℓ(t) until it hits ∂K. Then, the update rule to obtain the direction vector of the

reflected ray is the following,

v ← v − 2⟨v, s⟩s. (3.11)

Thus, the reflected direction can be computed after O(n) operations, given the normal

vector s. When ℓ(t) hits a facet of P the vector s is equal to the normal vector of that

24Here and in the remainder of the text we use Bachmann-Landau symbols to express computational
complexity (in terms of oracle evaluations and arithmetic operations) as a function of the dimension of

the geometric object. Additionally, the Õ(·) notation means that we are ignoring polylogarithmic factors.
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facet, i.e., equal to the normalized row of the matrix A that corresponds to that facet.

When ℓ(t) hits ∂E the vector s is equal to Ey/∥Ey∥2, where y is the boundary point.

Last, certain random walks need to sample uniformly from special sets, namely from

the boundary and/or the interior of the unit ball and the interior of a given ellipsoid. To

sample from the boundary of the unit ball Bn we sample n numbers g1, . . . , gn from the

standard Gaussian distribution N (0, 1) and then the vector q = (g1, . . . , gd)/
√∑

g2i is

uniformly distributed on the boundary of Bn. Moreover, the point u1/nq, where u ∈ R is

uniformly distributed in [0, 1], is uniformly distributed in Bn. Last, the point Lx, where x

is uniformly distributed in the boundary of Bn and E = LTL, is uniformly distributed in

the ellipsoid E .

Computing an interior point. To run a geometric random walk it is necessary to

compute a point in the interior of the convex body we want to sample from. When the

convex body is the convex polytope in Eq. (3.4) one could compute the largest ball inside

P, called Chebychev ball. Then, by definition, the center of the ball lies inside P. To

compute the Chebychev ball we have to solve the following linear program,

max r

subj. to: aTi x+ r∥ai∥2 ≤ bi,
(3.12)

where ai, i = [m] are the rows of the matrix A in Eq. (3.4). When the convex body is the

intersection between a polytope and an ellipsoid, K = P ∩ E , one could apply on K the

transformation that maps the ellipsoid E to the unit ball Bn and consider the intersection

of the transformed polytope with Bn. Then, the largest ball inside the latter body can be

computed by solving the following Second-Order Cone Program (SOCP),

max r

subj. to: aTi x+ r∥ai∥2 ≤ bi

∥x∥2 ≤ 1− r,

(3.13)

where the pairs ai, bi define the facets of the transformed polytope. We can obtain a point

in K by applying the inverse transformation on the computed center in Eq. (3.13).
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Empirical convergence to the target distribution. In order to evaluate the quality

of a sample as an accurate approximation of the target distribution, several convergence

diagnostics (Roy, 2020) are available like potential scale reduction factor (PSRF) (Gelman

and Rubin, 1992), maximum mean discrepancy (MMD) Gretton et al. (2012) and the

uniform tests introduced in Cousins (2017). For a dependent sample, a powerful diagnostic

is the effective sample size (ESS). It is the number of effectively independent draws from the

target distribution that the Markov chain is equivalent to. In our empirical applications,

we ensure that PSRF < 1.1 and ESS > 0.95n, where n reflects the dimensionality of the

problem (i.e., in general the number of assets minus the number of equality constraints).

Starting point. A crucial aspect for the efficiency of a random walk is its starting point,

which needs to be a point in the interior of the convex body. When the starting point

comes from a distribution close to the target distribution, then it is called a warm start.

The mixing time analysis in the literature usually requires a warm start to bound the rate

of convergence. When the starting point is a fixed or a corner point it is called a cold start.

Regarding uniform sampling, in Lovász and Vempala (2006) they give an algorithm that

computes a warm start after Õ(n4) calls to the membership oracle of the input convex

body.

In practical implementations the starting point usually is a ”central” point as the

Chebychev or the analytical center of the polytope (Cousins and Vempala, 2016; Chalkis

et al., 2023a; Kook et al., 2022). A common practice is to allow for a user defined

positive integer that corresponds to the number of Markov points to be ignored before the

implementation starts to store the generated points. Several practical methods have been

developed to compute a good starting point (Emiris and Fisikopoulos, 2014; Chalkis et al.,

2021b; Chevallier et al., 2018; Cousins and Vempala, 2016).

Roundness of the distribution. Another key aspect affecting the performance of a

random walk is the roundness of the target distribution, which refers to how closely the

covariance of the target distribution aligns with the identity matrix. Regarding uniform

sampling, this translates to the roundness of the body, measured by the ratio R/r (Kannan

et al., 1997; Lovász and Vempala, 2006b). R and r are the radii of the largest and

smallest ball centered at the origin that contains, and is contained, in K, respectively;
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i.e., rBn ⊆ K ⊆ RBn. Hence, before the actual sampling process is started, it is crucial

to reduce R/r, i.e., to put K in a well-rounded position, where R/r = Õ(
√
n). This is

particularly relevant for financial applications like the one we suggest in our empirical

study in Section 3.5 because lower and upper bounds on asset weights are typically tight,

inducing a skinny polytope.

A powerful approach to obtain well roundness is to put K in isotropic position. In

general, K ⊂ Rn is in isotropic position if the uniform distribution over K is in isotropic

position, that is EX∼K[X] = 0 and EX∼K[X
TX] = In, where In is the n × n identity

matrix. Thus, to put K into isotropic position one has to generate a set of uniform points

in its interior and apply to K the transformation that maps the point-set to isotropic

position; then iterate this procedure until K is in O(1)-isotropic position (Cousins and

Vempala, 2016; Lovász and Vempala, 2006b). In Rudelson (1999) they prove that O(log(n))

iterations and Õ(n) uniformly distributed points per iteration suffice to achieve isotropic

position. Several algorithms exist which are based on this routine (Kannan et al., 1997;

Lovász and Vempala, 2006; Jia et al., 2021). In Jia et al. (2021) they build upon Yuansi

(2021) to provide the best algorithm so far that puts a convex body in isotropic position

after Õ(n3) membership oracle calls. The practical method in Chalkis et al. (2021b) brings

a convex body in near-isotropic position by using BiW with multiple starting points for

uniform sampling in each phase. It successfully rounds convex polytopes in a few thousand

dimensions.

An alternative notion of well roundness is the John position. A convex body in John

position has a sandwiching ratio of R/r = Õ(n), which is however worse than that of

isotropic position. To put the body in John position one needs to compute the maximum

volume ellipsoid (MVE) in it and apply to the body the transformation that maps the

ellipsoid to the unit ball. To our knowledge there are specialized results only for the case of

a convex polytope P . In Nemirovski (1999) and Anstreicher (2002) they independently give

an algorithm that computes the John ellipsoid of P in Õ(m3.5) operations. Interestingly,

in Khachiyan and Todd (1993) they provide a linear time transformation of the MVE

problem by computing a minimum volume enclosing ellipsoid (MVEE) of a set of points.

Thus, the algorithms in Kumar and Yildirim (2005) and in Todd and Yıldırım (2007)

that solve the MVEE problem can be used to compute the John ellipsoid after O(mn3/ϵ)

operations. The practical method in Zhang and Gao (2003) to compute the MVE has been
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Year & Authors Type of rounding Total cost Polytope P Convex body K

1997 Kannan et al. (1997) Isotropic position
Õ(n5)

memb. calls
✓ ✓

1999
Nemirovski (1999),
Anstreicher (2002)

John position
Õ(m3.5)

operations
✓ ✗

2003
Zhang and Gao (2003),
Haraldsdóttir et al. (2017)

∗John position ?? ✓ ✗

2005
Kumar and Yildirim (2005),
Todd and Yıldırım (2007)

John position
O(mn3/ϵ)
operations

✓ ✗

2006 Lovász and Vempala (2006) Isotropic position
Õ(n4)

memb. calls
✓ ✓

2016 Cousins and Vempala (2016) ∗Isotropic position ?? ✓ ✓

2021 Jia et al. (2021) Isotropic position
Õ(n3)

memb. calls
✓ ✓

2021 Chalkis et al. (2021b) ∗Isotropic position ?? ✓ ✓

Table 3.1: Overview of the algorithms to round a convex body.
∗Practical methods.

used in Haraldsdóttir et al. (2017) to bring convex polytopes of thousands of dimensions

in John position. However, the practical method in Chalkis et al. (2021b) obtains, in

almost the same runtime, both a better sandwiching ratio than Zhang and Gao (2003) –as

it brings the polytope to a near isotropic position– and a uniformly distributed sample in

P . Last, in Cohen et al. (2019) and Song et al. (2022) they provide algorithms to compute

the John ellipsoid in the special case of a centrally symmetric convex polytope achieving

near optimal performance. However, those algorithms can not be used for the purpose of

rounding any convex polytope. For an overview in rounding a convex body we refer to

Table 3.1.

To round a log-concave distribution with density function π, R is chosen to bound

the expected squared distance of the random variable from the centroid of π, i.e., R2 ≥

Eπ(|x− zπ|2), where zπ is the centroid. We say that a log-concave density function is well

rounded if R/r = O(
√
n), where r is the radius of the ball contained in a level set of π of

constant probability.

In Lovász and Vempala (2003b) they provided the first algorithm to round a log-concave

distribution π ∝ e−f(x) after Õ(n5) membership oracle calls, where f : Rn → R is a convex

function. They introduce an iterative algorithm that brings to isotropic position a certain

level set of the density function, showing that it suffices to bring it to a near isotropic

position. The algorithm can use either HaR or BaW. In Lovász and Vempala (2006a)

they give an algorithm that uses HaR and rounds a log-concave distribution after Õ(n4.5)
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membership oracle calls; they generalize the algorithm in Kalai and Vempala (2006) that

is specialized for the exponential distribution. Moreover, if a near-optimal point of π is

given they provide a multi-phase algorithm that rounds π after Õ(n4) membership oracle

calls. The main idea in Kalai and Vempala (2006); Lovász and Vempala (2006a) is to

consider the density function,

πβ ∝ e−βf(x), x ∈ K, β ∈ R+ (3.14)

where the parameter β > 0 controls the variance of πβ. They introduce a new multi-phase

algorithm where in each phase they set a different value of β; the last phase sets β = 1

and samples from π. Initially, the algorithm invokes the rounding algorithm outlined

in Lovász and Vempala (2006) to obtain a warm start for the uniform distribution over K.

In the initial phase, it samples for β = 0, representing the uniform distribution. As the

algorithm progresses to the j-th phase, the parameter βj incrementally increases to ensure

that a sampled point from πβj−1 serves as a warm start for πβj
in accordance with the

L2 norm on density functions. Furthermore, the sample generated in the j-th phase is

utilized to estimate the covariance matrix for the subsequent phase. Upon reaching β = 1,

the algorithm concludes by applying a linear transformation to both π and K, converting

the ellipsoid defined by the approximated covariance into the unit ball. Consequently,

the resulting density function is well-rounded. Lastly, it is important to state that these

rounding results on constrained, log-concave density functions, highlight the importance

of HaR since it can mix starting from L2 warm starts or even from cold start, which can

be exploited to reduce the number of phases needed to round π.

Best mixing times. Regarding uniform sampling from a general convex body, best

mixing time is achieved by HaR and BaW, that is Õ(n2(R/r)2) steps for a body in general

position with sandwiching ratio equal to R/r. However, one could bring the body to

a near isotropic position, as a preprocessing step, after Õ(n3) membership oracle calls.

Then, both HaR and BaW can generate an almost uniformly distributed point after Õ(n2)

steps. Then, the efficiency per almost uniformly distributed point depends on which

oracle is cheaper (i.e., the membership or the boundary oracle). In the case of sampling

uniformly from a bounded convex polytope P , we have that the number facets m ≥ n+ 1
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Year & Authors Random walk Mixing time
Cost per
step in P

Cost per
step in K

2006 Lovász and Vempala (2006b) Hit-and-Run Õ(n2(R/r)2) O(mn) O(mn+ n2)
2014 Gryazina and Polyak (2014) Billiard walk ?? O(ρmn) O(ρ(mn+ n2))

2016 Lee and Vempala (2017) Geodesic walk Õ(mn3/4) O(mnω−1) –

2016 Narayanan (2016) Generic Dikin Walk Õ(nm+ n3) O(mnω−1) O(mnω−1 + nω+1)

2017 Yuansi et al. (2017) Vaidya walk Õ(m1/2n3/2) O(mnω−1) –

2018 Yuansi et al. (2018) Approximate John walk Õ(n2.5) O(mnω−1) –

2018 Gustafson and Narayanan (2018) John’s Walk Õ(n7) O(mn4 + n8) –

2018 Lee and Vempala (2018a) Uniform Riemannian HMC Õ(mn
2
3 ) O(mnω−1) –

2019 Kannan et al. (1997) Ball walk Õ(n2R2/r2) O(mn) O(mn+ n2)

2020 Laddha et al. (2020) Dikin walk Õ(mn) O(nnz(A) + n2) –

2020 Laddha et al. (2020) Weighted Dikin Walk Õ(n2) O(mnω−1) –
2021 Chalkis et al. (2021b) Multiphase Billiard walk ?? O((ρ+ n)m) O(ρ(mn+ n2))

2021
Lee and Vempala (2018b),
Mangoubi and Vishnoi (2019),
Yuansi (2021)

†Ball walk Õ(n2) Õ(m) O(mn+ n2)

2022 Yuansi and Eldan (2022) †Hit-and-Run Õ(n2) O(mn) O(mn+ n2)

2022 Kook et al. (2022, 2023) Riemannian HMC Õ(mn3) O(n3/2) –

2023 Laddha and Vempala (2023) Coordinate Hit-and-Run Õ(n9(R/r)2) O(m) O(m+ n)

Table 3.2: Overview of all known geometric random walks for uniform sampling. n is
the dimension of the convex body; m is the number of facets of the polytope; D is the
diameter of the convex body; ω is the matrix multiplication exponent, i.e., ω ≈ 2.37; R
is the radius of the smallest enclosing ball and r the radius of the largest ball enclosed
in the convex body; ρ is the number of boundary reflections; nnz(·) gives the number of
non-zero elements of a matrix. The symbols ?? and – respectively denote that the mixing
time is unknown and that the method is not applicable to the respective body.
† For a convex body in isotropic position; for Ball walk in the case of an isotropic convex
polytope the (amortized) cost per step is Õ(m) when an O(1)-warm start in the interior
of the polytope is given.

to guarantee boundness. Therefore, for a convex polytope in a general position, the best

mixing time is given between Weighted Dikin walk (Laddha et al., 2020) and Riemannian

HMC (Lee and Vempala, 2018a) while their mixing times do not depend on R/r. Since

they have the same cost per step, which is the most efficient random walk depends on the

number of facets m. Let m = O(nk) where k ≥ 1. For k ≤ 4
3
the most efficient random

walk is Riemannian HMC and for k > 4
3
Weighted Dikin walk achieves a smaller mixing

time. However, if one brings P to a near isotropic position, the most efficient option is

BaW since its mixing time is Õ(n2) (same with HaR and Weighted Dikin walk) and its

cost per step is the smallest among all uniform samplers, i.e., Õ(m) steps.

Considering non-uniform sampling, there are known bounds only for the case of general

log-concave distributions. The geometric random walk that achieves the best mixing time

is BaW. In particular, for a log-concave in a general position BaW mixes after Õ(n2D)

steps where D is the diameter of the support of the target distribution (Lee and Vempala,

2017). If the target distribution is in isotropic position then BaW mixes after Õ(n2) steps.
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Year & Authors Random walk Mixing time
Cost per
step in P

Cost per
step in K

1987 Smith (1984) Coordinate Hit-and-Run ?? O(m) O(m+ n)

2006 Lovász and Vempala (2006a) Hit-and-Run Õ(n2R2/r2) O(mn) O(mn+ n2)

2018 Chevallier et al. (2018) Exact HMC with reflections ?? O(ρϕ) O(ρϕ)
2019 Lee and Vempala (2017) Ball walk Õ(n2D) O(mn) O(mn+ n2)

2021
Lee and Vempala (2018b),
Yuansi (2021)

†Ball walk Õ(n2) O(mn) O(mn+ n2)

2022 Kook et al. (2022, 2023) Riemannian HMC Õ(mn3) O(n3/2) –

2023 Chalkis et al. (2023b) Reflective HMC ?? O(Lmn) O(L(mn+ n2))

Table 3.3: Overview of all known geometric random walks for general log-concave sampling.
ϕ is the cost to compute the intersection between the Hamiltonian trajectory and the
boundary of the convex body. D is the diameter of the support of the distribution. L
is the number of leapfrog steps in a HMC step. For the rest parameters we refer to the
Table 3.2.
† For a log-concave distribution in isotropic position.

However, when the starting point is a corner point BaW is known to mix slowly, while HaR

is known to mix rapidly from any given interior point, including corner points (Lovász and

Vempala, 2006a). However, both Reflective and Riemannian HMC have shown superior

performance in practice (Chalkis et al., 2023b; Kook et al., 2022). For a quick overview on

the random walks that allow for non-uniform sampling we refer to Table 3.3.

Geometric random walks in practice. Considering uniform sampling in practice, there

are several areas of application with the most effort being devoted to sampling steady states

of metabolic networks in biology (Haraldsdóttir et al., 2017; Chalkis et al., 2021b; Jadebeck

et al., 2020) and practical volume calculation of convex polytopes (Emiris and Fisikopoulos,

2014; Cousins and Vempala, 2016; Chalkis et al., 2023a). Until recently the dominant

paradigm for random walks was Coordinate Direction Hit-and-Run (CDHR) (Kaufman

and Smith, 1998), which is a version of HaR that uses directions parallel to the axes in each

step instead of random ones. The mixing time of CDHR for uniform sampling has been

bounded by Õ(n9(R/r)2) (Laddha and Vempala, 2023; Narayanan and Srivastava, 2020)

which is the worst bound among uniform geometric random walk samplers. Interestingly,

experiments (Emiris and Fisikopoulos, 2014; Haraldsdóttir et al., 2017) indicate that

CDHR achieves a similar mixing rate with both HaR and BaW. Thus, the faster step

of CDHR compared to HaR’s and BaW’s—O(m) vs. O(mn)—is the main reason why

CDHR overshadowed, until recently, all other random walks in practical computations on

convex polytopes. However, in Chalkis et al. (2021b) a new multi-phase sampler based on
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BiW proved to be much faster in practice than CDHR for uniform sampling over convex

polytopes. Moreover, in Chalkis et al. (2023a) they again show the superior performance

of BiW against HaR and CDHR by developing a new practical algorithm to approximate

volume of polytopes. The Riemannian HMC in Kook et al. (2022) is specialized for convex

polytopes and its mixing rate does not depend on the roundness of the polytope. In their

experiments on metabolic networks they show that it is faster than CDHR for convex

polytopes in a general position. However, there are not any experimental results that

compare this Riemannian HMC sampler with the multi-phase sampler in Chalkis et al.

(2021b) for rounded and non-rounded polytopes.

Regarding non-linear convex bodies, in Chalkis et al. (2022) they provide computational

oracles to implement several geometric random walks for the case of spectrahedra (the

feasible region of Semidefinite Programs). Their experiments show that BiW outperforms

HaR, CDHR and BaW despite the fact that its cost per step is bigger comparing to

all of the rest cost per steps. Regarding non-uniform sampling from non-linear convex

bodies, in Chalkis et al. (2023b) they show that the Reflective HMC is the best performer

for isotropic log-concave distributions. Last, for the case of log-concave sampling over

a convex polytope again in Chalkis et al. (2023b) they show that the Reflective HMC

outperforms both HaR and CDHR. The Riemannian HMC in Kook et al. (2022) appears

to have a relatively small cost per step and exhibits mixing times seemingly unaffected

by the roundness of the distribution. These characteristics suggest that it could serve as

a competitive random walk for this particular scenario. Nevertheless, there is currently

a lack of empirical experiments evaluating its performance specifically on log-concave

distributions.

3.4.1 Ball walk (BaW)

BaW can be seen as a special instance of the Metropolis-Hastings algorithm (Hastings,

1970) for constrained sampling in convex domains. Initially, it was introduced for uniform

sampling over convex bodies by Kannan et al. (1997) in the context of volume approximation

and rounding of convex bodies. They prove a bound on the mixing time of Õ(n2R2/r2),

which translates to Õ(n3) for an isotropic convex body. For a general isotropic log-concave

distribution π constrained in a convex body the mixing time of BaW is Õ(n2/ψ(π)2),
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where ψ(π) is the isoperimetric coefficient of π (Kannan et al., 1997).

In Kannan et al. (1997) they bound ψ(π) from below with n1/2, thus resulting in

the mixing time of Õ(n3) for isotropic log-concave distributions. Improving this bound

on ψ(π) has been a significant open problem in convex geometry for many years, with

bounding ψ(π) by a constant being famously known as the Kannan-Lovász-Simonovits

(KLS) conjecture (Lee and Vempala, 2018b). Furthermore, it has been demonstrated (Lee

and Vempala, 2017) that, if the KLS conjecture holds true, the mixing time of BaW

reduces to O(n2) when the radius of the ball is δ = O(1/
√
n). However, for larger values

of δ, the rejection probability escalates in each step, leading to an increase in the mixing

time. Hence, a lower bound of Ω(n2) remains valid for the mixing time of BaW.

In Lee and Vempala (2017) they improve the bound on ψ(π) to n1/4 which leads to a

mixing time of Õ(n2.5) for isotropic log-concave distributions. They further extend this

result and prove that the mixing time of BaW is Õ(n2D), where D represents the diameter

of the convex body.

Finally, in Yuansi (2021) an almost constant bound on ψ(π) is given, implying that

as the dimension n increases, the mixing time of BaW converges to Õ(n2) for isotropic

log-concave distributions – which is also a tight bound on its mixing time.

An intriguing observation in Mangoubi and Vishnoi (2019) relates to the uniform

distribution case and an isotropic convex polytope. They introduce an implementation

of BaW steps that demand O(m) operations following an initial step that costs O(mn)

operations. Consequently, the total expense for generating an almost uniformly distributed

point decreases by a factor of n in the context of an isotropic convex polytope.

Step overview. In each step, BaW picks uniformly a point y from a ball of radius δ

centered on the current Markov point p. Then, if the point lies outside of K the random

walk stays on p; otherwise, it applies a Metropolis filter to decide moving to y or not.

In theory the radius δ should be around Õ(1/
√
n) (Kannan et al., 1997; Cousins and

Vempala, 2015) to achieve the optimal mixing time for log-concave sampling. Since

the implementation of BaW requires only membership oracle calls the cost per step is

O(mn) in the general case. In the case of uniform sampling from an isotropic polytope

P in Mangoubi and Vishnoi (2019) they reduce the cost per step to Õ(m) operations by

conducting the following analysis: First, for all the sampled points the starting point is

102



ALGORITHM 3: Ball walk(K, p, π, δ)
Input :Convex body K; point p ∈ K, π probability distribution function over K.
Output :A point q in K
Pick a uniform random point y from the ball of radius δ centered at p;
if y /∈ K then q ← p end
else if y ∈ K then

α = min

{
1, π(y)

π(p)

}
;

u ∼ U [0, 1];
if u ≤ α then q ← y else q ← p;

end
return q;

always the O(1)-warm start given as input. Then, they exploit the property that any

Markov chain whose stationary distribution is close to the uniform distribution on the

polytope will spend on average at least 1
n
of its time a distance 1

n
from the boundary of

the polytope. They compute a lower bound on the distance of the current Markov point

to each one of the facets. Thus, they check a certain linear constraint aTi p ≤ bi only if the

lower bound on the distance of the point p to the i-th facet is O( 1
n
). Finally, they prove

that with at least probability 1− ϵ the BaW will not violate any linear constraint, where

the small ϵ > 0 is a parameter used to bound the size of BaW’s step towards any facet.

Practical performance. In Cousins and Vempala (2016) they provide a BaW imple-

mentation for spherical Gaussian sampling to approximate the volume of a polytope. The

mixing time in practice is –as expected– Õ(n2). After an experimental evaluation, they

set the radius in each step to δ = 4r/max{1, α}n, where α = 1/2σ and r is the radius

of the largest inscribed ball in the convex body. However, due to the ignored constant

terms in the big-O notation, the number of steps BaW needs to mix in practice is higher

that the number of steps that both HaR and CDHR need. Thus, computations carried

out with HaR are faster by a constant than the same computations carried out by BaW.

CDHR is faster as the dimension increases than BaW since it has a smaller cost per step.

Considering uniform sampling, BaW’s mixing time in practice is also Õ(n2) (Chalkis and

Fisikopoulos, 2021) while the radius of each step is δ = 4r/
√
n.
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Software. The MATLAB library cobra features an implementation of BaW for Gaussian

sampling, built upon the findings in Cousins and Vempala (2016). This implementa-

tion has been replicated in the C++ library volesti. Additionally, the C++ package

PolytopeWalk (Yuansi et al., 2020) implements the algorithms outlined in Yuansi et al.

(2018). Concerning the reduced cost per step in the uniform case, as far as our knowledge

extends, there hasn’t been any practical implementation leveraging this result to create

faster software based on the BaW uniform polytope sampler described in Mangoubi and

Smith (2017).

3.4.2 Hit-and-Run (HaR)

HaR was first defined by Smith in Smith (1984) for uniform sampling from bounded convex

bodies, and extended in Bélisle et al. (1993) for any density function over a (non-)convex

body. HaR’s mixing time has been studied extensively over the past decades. In Lovász

and Vempala (2003a) and Lovász and Vempala (2006b) they show that HaR mixes after

Õ(n2(R/r)2)) steps for log-concave distributions (including the uniform distribution) and

for both a warm and a cold start. That implies a mixing time of Õ(n3) for rounded target

distributions. In the case of sampling uniformly an isotropic convex body, in Yuansi and

Eldan (2022) they prove that its mixing time is Õ(n2) building upon the near optimal

bound implied by the KLS conjecture. Several variants of HaR have been developed.

For instance, in Kaufman and Smith (1998) they study optimal direction choices instead

of picking a uniformly random direction in each step. It turns out that the optimal

direction choice is to pick a direction from the Gaussian distribution N (0,Σ) where Σ

is the covariance of the target log-concave distribution. This approach is equivalent to

sampling from an isotropic distribution (Kalai and Vempala, 2006).

An important property of HaR it is that it mixes from a warm start that comes from a

distribution with a bounded L2 norm from the target distribution. This allows to develop

fast multi-phase polynomial randomized algorithms for several important problems in

computational statistics and optimization as one would need a smaller number of phases

comparing to random walks that mix from an O(1) warm start, i.e., BaW. Thus, HaR is

the random walk of choice to round a log-concave distribution, to approximate an integral

over a convex set or solving a convex problem (Lovász and Vempala, 2006a). Regarding
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additional applications, a specific version of HaR, i.e. artificial centering hit and run, has

been widely used to study constrained based models in biology (Megchelenbrink et al.,

2014; Saa and Nielsen, 2016). HaR has been used for volume computation (Lovász and

Vempala, 2006), sampling steady states of metabolic networks (Megchelenbrink et al.,

2014; Saa and Nielsen, 2016), convex optimization (Kalai and Vempala, 2006) and other

applications (Berbee et al., 1987; Haraldsdóttir et al., 2017). Its practical performance

established this random walk as one of the main paradigms for constrained log-concave

sampling.

Step overview. At each step the algorithm picks a uniformly distributed unit vector

that defines a line through the current Markov point and computes the intersection of the

line with ∂K by calling the boundary oracle of K obtaining a segment in the interior of K.

Then, the next Markov point is chosen according to πℓ, i.e., the constraint of π over that

segment. To sample from πℓ one could use a univariate Metropolis Hastings algorithm for

O(1) iterations, or perform exact sampling if there is a closed form of πℓ at hand.

Practical performance. Extended experiments (Cousins and Vempala, 2016; Har-

aldsdóttir et al., 2017) have shown that HaR mixes after Õ(n2) steps for well-rounded

convex polytopes; this result agrees with the latest theoretical bounds on the mixing

time (Yuansi and Eldan, 2022). Moreover, the experimental results in Cousins and Vempala

(2016) show a convergence after Õ(n2) steps for the Gaussian distribution. Interestingly,

the constant in the Õ(·) notation is many orders of magnitude smaller than in theory. For

example, in Haraldsdóttir et al. (2017) they propose a step of 8n2.

Software. The current (competitive) implementations of HaR include, the C++ library

volesti (Chalkis and Fisikopoulos, 2021; Chalkis et al., 2024), the MATLAB library

cobra (Heirendt et al., 2019), the C++ library HOPS (Jadebeck et al., 2020), as well as the

R packages HitAndRun (G. van Valkenhoef, T. Tervonen, 2022) and walkr (Yao, 2020).

The most efficient ones are those in volesti and HOPS as they are both optimized C++

implementations.
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ALGORITHM 4: Hit and Run(K, p, π)
Input :Convex body K ⊂ Rn, point p ∈ K, π probability distribution over K
Output :A point q ∈ K
Pick a line ℓ through p;
return a random point q on the chord ℓ ∩ K chosen from the distribution πℓ;

3.4.3 Coordinate Directions Hit-and-Run (CDHR)

CDHR can be used to sample from any distribution π over a convex body K. It was first

introduced for uniform sampling in Smith (1984).

Despite remaining relatively obscure in practical applications for many years, with a

few exceptions (Berbee et al., 1987), CDHR eventually found utility in practical volume

approximation algorithms (Emiris and Fisikopoulos, 2014; Cousins and Vempala, 2016), for

uniform and spherical Gaussian sampling. Notably, in both scenarios, CDHR demonstrated

superior performance compared to HaR. This success story continued with Haraldsdóttir

et al. (2017), where CDHR is employed to uniformly sample steady states of metabolic

networks, wherein the sampled region forms a convex polytope P. In this work, CDHR

is combined with a preprocessing step that transforms the polytope into John position,

giving rise to an algorithmic pipeline dubbed Coordinate Hit-and-Run with Rounding

(CHRR). Subsequently, CDHR became the primary paradigm for sampling from polytopes

until the emergence of a new implementation of BiW, as presented in Section 3.4.4.

Expanding its utility to sampling from nonlinear constrained regions, Chalkis et al.

(2022) implemented CDHR for log-concave sampling from the feasible regions of Semidefi-

nite programs. In their experimental analysis, they demonstrate that CDHR outperforms

HaR but falls short of BiW’s performance in the case of uniform sampling.

The practical success of CDHR spurred increased research efforts to study its mixing

time, with Laddha and Vempala (2023) and Narayanan and Srivastava (2020) providing

the first upper bound guarantees for uniform sampling.

Step overview. In each step we uniformly pick an orthonormal vector ek ∈ Rn that

defines the line ℓ passing thought the current Markov point p (see Alg. 5). When the

sampled body is a convex polytope, the boundary oracle in the very first step costs O(md)

as showed above. For the step j-th step with j > 1, to compute the intersection between ℓ
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ALGORITHM 5: Coordinate Directions Hit and Run(K, p, π)
Input :Convex body K ⊂ Rn, point p ∈ K, π probability distribution over K
Output :A point q ∈ K
Pick a standard orthonormal vector ei, i ∈ [n];
Let the line ℓ = {x ∈ Rn | x = p+ tei, t ∈ R} through p;
return a random point q on the chord ℓ ∩ K chosen from the distribution πℓ;

and ∂P we compute th following roots,

aTi (p+ tek) = bi ⇒ t =
bi − aTi p
aTi ek

, i ∈ [m], (3.15)

and we keep the smallest positive and the largest negative. Notice that aTi p is already

computed in the (j−1)-th step and aTi ek takes 1 operation. Sampling from the constrained

πℓ takes Õ(1) operations and, moreover, we have to update just one coordinate per step.

Thus, the amortized cost per step of CDHR for polytopes is O(m). It has the smallest

per-step cost among all the known geometric random walks together with Ball walk in the

case of convex polytopes.

When the sampled body is an intersection between a polytope and an ellipsoidK = P∩E

the cost of computing the intersection of the line ℓ with the boundary of the ellipsoid E is

added to the cost per step of CDHR. For this we have,

(p+ tek)
TE(p+ tek) = c⇒ Ekkt

2 + (2pTEek)t− c = 0, (3.16)

where the dominant computation is the dot product between p and the k-th column of the

matrix E which takes O(n) operations. Then, the real roots in the Eq.(3.16) correspond

to the intersection ℓ ∩ ∂K. Thus, the amortized cost per step of CDHR for sampling K is

O(m+ n).

Practical performance. Extended experiments (Cousins and Vempala, 2016; Har-

aldsdóttir et al., 2017) have shown that CDHR mixes after Õ(n2) steps achieving the same

mixing rate with HaR and BaW. In Haraldsdóttir et al. (2017) they propose a step of 8n2

to sample from polytopes in John position. Since CDHR achieves the same mixing rate as

HaR in practice, it outperforms HaR because of its cheaper cost per step.
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Software. CDHR is implemented in the C++ library volesti, the MATLAB library

cobra and the C++ library HOPS. The most efficient ones are those in volesti and HOPS

as they are both optimized C++ implementations.

3.4.4 Billiard walk (BiW)

BiW is designed for sampling exclusively from the uniform distribution over a convex (or

non-convex) body. It was first introduced in Van den Meersche et al. (2009) and later

independently in Gryazina and Polyak (2014) where they prove asymptotic convergence

for convex and non-convex bodies. Nevertheless, its mixing time remains an open problem.

In both, Van den Meersche et al. (2009) and Gryazina and Polyak (2014), the authors

experimentally showcase that the mixing rate of BiW surpasses that of HaR for a limited

class of bodies.

To our knowledge, considering applications that require uniform sampling, BiW has

been used to address important applications in Chalkis et al. (2021b) and in Chalkis et al.

(2023a). In Chalkis et al. (2021b) they introduce an enhancement in the cost per step of

BiW for convex polytopes, demonstrating superior performance over both HaR and CDHR

when sampling the largest human metabolic network known at that time. The authors also

present a multi-phase sampling pipeline that enhances the mixing rate of BiW from one

phase to the next, ultimately providing both a rounded body and a uniformly distributed

sample in the initial body upon termination. In Chalkis et al. (2023a), the improved

version of BiW is utilized to estimate polytope volumes in thousands of dimensions for the

first time.

Step overview. BiW exploits linear trajectories and boundary reflections. In each step,

BiW uniformly picks a unit direction, akin to HaR. However, being at p, the random walk

then moves only forward. Upon encountering the boundary, the trajectory undergoes

reflection, with a maximum of ρ reflections permitted in total. The step concludes once

the trajectory has traveled a distance L, drawn from a predetermined distribution. If the

trajectory exceeds ρ reflections before reaching distance L, the random walk remains at

point p.

In the case of a convex polytope P, in Chalkis et al. (2021b) they reduce the cost

per step by inducting the following analysis: To compute the intersection of the ray
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ALGORITHM 6: Billiard Walk(K, p, ρ, τ)
Input :Convex body K; point p ∈ K; upper bound on the number of reflections

ρ; length of trajectory parameter τ .
Output :A point q in K
Length of the trajectory L← −τ ln η, η ∼ U(0, 1);
Current number of reflections i← 0;
Initial point of the step p0 ← p;
Uniformly distributed direction v ∈ Sn−1;
do

Segment ℓ← {xi + tvi, 0 < t ≤ L} ;
if ∂P ∩ ℓ = ∅ then

pi+1 ← pi + Lvi;
i← i+ 1;
break;

end
pi+1 ← ∂K ∩ ℓ;
The inner vector, s, of the tangent plane on p, s.t. ||s|| = 1;
L← L− |P ∩ ℓ|;
vi+1 ← vi − 2⟨vi, s⟩s;
i← i+ 1;

while i ≤ ρ;
q ← pi;
if i = ρ+ 1 then

q ← p0;
end
return q;

ℓ := {p+ tv, t > 0} with ∂P in the very first step, BiW uses the boundary oracle of P

which costs O(mn) operations. Let pi and vi denote the point and the direction vector of

each reflection in a BiW step, while i > 1. To compute the next intersection we have to

solve,

aTj (xi + tvi) = bj ⇒ aTj (xi−1 + ti−1vi−1) + taTj (vi−1 − 2⟨vi−1, ak⟩ak) = bj, j = [m] (3.17)

and

vi+1 = vi − 2⟨vi, al⟩al, (3.18)

where ak, al are the normal vectors of the facets that ℓ hits at iteration i − 1 and i

respectively. Index l is computed by solving all the m equations in (3.17) while each one of

them is solved after O(1) operations as we use the stored values from the previous iteration.

109



Also the inner product ⟨vi, al⟩ in Eq. (3.18) is stored in the previous iteration. After

computing all ⟨ai, aj⟩ as a preprocessing step, which takes m2n operations, the per-step

cost of BiW is O((n+ ρ)m).

In the case of the convex body K, which is a polytope intersected with an ellipsoid, the

computations outlined in Eq. (3.17) cannot be completed within O(m) operations, as is

the case with a polytope alone. In particular, when the direction vi−1 is reflected from the

boundary of the ellipsoid, a constant number of dot products must be computed in the

j-th equation, resulting in a total of O(mn) operations in Eq. (3.17). Since the intersection

between a ray and the boundary of the ellipsoid is computed after O(n2) operations, the

total cost per step in this case becomes O(ρ(mn+ n2)).

Practical performance. In Chalkis et al. (2023a) they experimentally show that BiW

mixes after Õ(1) steps for well-rounded convex bodies. Moreover, in both, Chalkis et al.

(2021b) and Chalkis et al. (2023a), they show that setting ρ = O(n) suffices to both

achieve this mixing rate and to avoid pathological cases where the trajectory gets stuck in

a corner. The latter implies that in practice, BiW achieves a Õ(1) mixing time while the

cost per step is O(mn) for well rounded polytopes. In the case of the intersection between

a polytope and an ellipsoid the cost per step becomes O(n2).

Software. BiW is implemented in the C++ library volesti that provides both the

improved version of BiW and the multi-phase sampling method given in Chalkis et al.

(2021b). BiW is also implemented in the R package Xsample (Van den Meersche et al.,

2009) where it was first introduced as a random walk.

3.4.5 Dikin walk

The Dikin walk method is exclusively applicable for uniformly sampling from a convex body.

Here we only consider the case of a convex polytope, denoted as P. Initially introduced

in Kannan and Narayanan (2012), this method utilizes interior point techniques revolving

around Dikin ellipsoids, which by definition are enclosed in P . An intriguing property of

the Dikin walk is its invariance under affine transformations of the polytope, implying

that its mixing rate remains unaffected by the polytope’s shape characteristics, such as

the ratio between the enclosing and inscribing radii (R/r), as observed in prior random
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walk approaches. In Kannan and Narayanan (2012), the authors establish a mixing time

bound of Õ(mn) steps, assuming a warm start. A shorter proof for a Gaussian variant

is provided in Sachdeva and Vishnoi (2016). When initiated from the Chebychev center,

it is demonstrated that convergence to the target distribution necessitates Õ(mn2) steps.

Additionally, the Dikin walk is utilized for solving linear programs within Õ(mn2) steps.

To define the Dikin ellipsoids they use the Hessian of the simple log-barrier of the polytope,

H(x) =
∑

1≤i≤m

aia
T
i

(1− aTi x)2
, x ∈ P . (3.19)

In Laddha et al. (2020) they introduce the notion of strong self-concordance of a barrier

function. They prove that Dikin walk mixes in Õ(nν̂) steps from a warm start in a convex

body using a strongly self-concordant barrier with symmetric self-concordance parameter

ν̂. They show that the strong self-concordance of Lee-Sidford barrier is bounded from the

standard self-concordance parameter ν = O(n). Thus, they prove that Dikin walk, in a

polytope P , with Lee-Sidford barrier mixes after Õ(n2) steps.

Finally, in Narayanan (2016) they extend the results in Kannan and Narayanan (2012)

for an intersection between a polytope and a spectrahedron, that is the feasible region of a

Semidefinite Program, i.e., the convex set given by a Least Matrix Inequality (LMI). They

prove that Dikin walk mixes after Õ(mn+ nνh), where νh is the size of the matrices in

LMI.

Step overview. Dikin walk uses the Hessian of a convex barrier function to define an

ellipsoid centered at the current Markov point, which is contained in the body. In each

step a uniformly distributed point in the ellipsoid is sampled. The new point is accepted

with a probability that depends on the ratio of the volumes of the ellipsoids centered at

the two points. The latter filter is applied to guarantee the convergence to the uniform

distribution.

Since the implementation of each step requires to compute the volumes of two ellipsoids,

which involves the computation of the determinant of a positive matrix, the cost per step

of Dikin walk is O(mnω−1). In Laddha et al. (2020) they show that the step of Dikin

walk with the simple log-barrier can be implemented after O(nnz(A) + n2), where nnz(·)

denotes the number of non-zero elements in matrix A.
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ALGORITHM 7: dikin walk (P , p,H(·), r)
Input : polytope P ; positive definite matrix H(x) for each point point x ∈ P ;

p ∈ P ; radius r.
Output :A point q in P
Let the ellipsoid Ep(r) = {x ∈ Rn | (x− p)TH(p)(x− p)};
Pick y uniformly from Ep(r);

α = min

{
1, vol(Ep(r)

vol(Ey(r))

}
;

u ∼ U [0, 1];
if u ≤ α then q ← y else q ← p;
return q;

Practical performance. See Section 3.4.7

Software. Dikin walk is implemented in the C++ package PolytopeWalk. The same

implementation is integrated in volesti. Last, there is an R implementation provided by

the R package walkr (Yao, 2020).

3.4.6 Vaidya walk

Vaidya walk is closely related to Dikin walk and goes back to Vaidya (1996). It can be

used to sample from the uniform distribution over a convex polytope P. The point of

difference is the ellipsoid it uses in each step. Instead of a Dikin ellipsoid it uses a Vaidya

ellipsoid centered on the current Markov pointP . In Yuansi et al. (2018), they establish an

upper bound of Õ(m1/2n3/2) for the mixing time of the Vaidya walk, starting from a warm

start. It’s worth noting that comparing the Vaidya walk with the Dikin walk reveals a

trade-off between the number of facets m and the dimension n. When m≫ n, the Vaidya

walk proves more efficient than the Dikin walk. However, for small m, the mixing rate of

the Dikin walk surpasses that of the Vaidya walk.

The efficiency of the Dikin walk hinges on the representation of P, particularly on

the presence of redundant inequalities. Although adding redundant inequalities doesn’t

alter the polytope P itself, they heavily impact the Hessian of f , notably reducing the

size of the Dikin ellipsoid and consequently affecting the mixing time of the Dikin walk.

To address this issue and enhance the dependence of the Dikin walk on the number of

facets m, the Vaidya walk introduces a solution. Its core concept involves employing a

barrier with unequal weights for the logarithmic terms in the simple log-barrier function,
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ALGORITHM 8: vaidya walk (P, p, r)

Input : polytope P ; point p ∈ P ; radius r.
Output :A point q in P
C ∼ fair coin;
if C head then do nothing, go to the next step;
Pick ξ ∼ N (0, In);

Propose y = p+ r
(mn)1/4

V
−1/2
p ξ;

if y /∈ P then q ← p end
else if y ∈ P then

α =

{
1, gy(p)

gp(y)

}
;

u ∼ U [0, 1];
if u ≤ α then q ← y else q ← p;

end
return q;

or equivalently, using a matrix with unequal weights to define the ellipsoid in each step

of the random walk, as outlined in Eq. (3.19). uch modifications, previously utilized

in optimization contexts (Vaidya, 1996; Lee and Sidford, 2014), have shown substantial

improvements.

Step overview. Instead of uniformly distributed proposals from state-dependent ellip-

soids, the Vaidya walk utilizes a Gaussian proposal centered at the current Markov point

p of the random walk, with the covariance being dependent on the point, given by

Vp =
m∑
i=1

(σp,i + βν)
aTi ai

(1− aTi p)2
(3.20)

where βν = n/m and the scores,

σp :=

(
aT1H(p)a1
(1− aT1 p)2

, . . . ,
aTmH(p)am
(1− aTmp)2

)
. (3.21)

A single step of Vaidya walk with radius parameter r > 0 is given by the pseudocode

of Alg. 8. With gp(z) we write the probability density function of the Gaussian with

covariance Vp and centered at p ∈ P ,

gp(z) =
√

detVp

(
mn

2πr2

)n/2

exp

(
− mn

2r2
(z − p)TVx(z − p)

)
. (3.22)

113



Practical performance. See Section 3.4.7

Software. Vaidya walk is implemented in the C++ package PolytopeWalk which is

based on the algorithms given in Yuansi et al. (2018). The same implementation is

integrated in volesti.

3.4.7 John walk

John walk was first introduced for uniform sampling from a convex polytope in Gustafson

and Narayanan (2018) and latter an improved version was given in Yuansi et al. (2018)

introducing Approximate John walk. It goes one step further than Vaidya walk and estab-

lishes a sublinear dependence on the number of facets m in the mixing time. In Gustafson

and Narayanan (2018) they compute the exact largest ellipsoid centered on the current

Markov point p, namely the exact John ellipsoid. Their analysis gives a mixing time

of Õ(n7) steps. Interestingly, in Yuansi et al. (2018) they employ the analysis in Lee

and Sidford (2014) that use John’s weights to improve the performance of interior point

methods to solve linear programs by employing approximate John ellipsoids. In Yuansi

et al. (2018) they integrate that analysis to improve the mixing time of John walk and

prove a bound of Õ(n2.5) steps which depends logarithmic on the number of facets m.

Step overview. In each step being at a point p ∈ P John walk approximates the largest

inscribed ellipsoid in P centered at p and employs the covariance matrix that defines the

ellipsoid to compute a Gaussian proposal. The inverse covariance matrix underlying the

John walk is given by,

Jp =
m∑
i=1

ζp,i
aia

T
i

(1− aTi p)2
. (3.23)

The weight vector ζp ∈ Rm is obtained by solving the convex program,

ζp = argmax
w∈Rm

{ m∑
i=1

wi −
1

aJ
log det(ATS−1

p W aJS−1
p A)− βJ

m∑
i=1

logwi

}
, (3.24)

where βJ := d/2m, aJ := 1 − 1/log2(1/βJ), matrix W = diag(w) and Sp the slackness

matrix at p. The convex program of Eq. (3.24) was introduced in Lee and Sidford (2014)
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ALGORITHM 9: john walk (P , p, r)
Input : polytope P ; point p; radius r of the John ellipsoid.
Output :A point q in P
C ∼ fair coin;
if C head then do nothing, go to the next step;

Propose y ∼ N
(
x, r2

(d)3/2
J−1
x

)
;

if y /∈ P then q ← p end
else if y ∈ P then

α =

{
1, gy(x)

gx(y)

}
;

u ∼ U [0, 1];
if u ≤ α then q ← y else q ← p;

end
return q;

and ζp are called approximate John weights. It is also closely related with the problem of

computing the largest ellipsoid in P centered at p, which was first studied in J. (2014).

However, John walk step is costlier than that of Dikin and Vaidya walk by a constant

factor (Yuansi et al., 2018).

Practical performance. In Yuansi et al. (2018) they compare Vaidya walk against

Dikin and John walk by performing experiments on well-rounded polytopes. Both Dikin

and Vaidya presented to achieve a better performance than John walk. However, no

extensive experimental evaluation of John walk took place until now.

Software. John walk is implemented in the C++ package PolytopeWalk. The same

implementation is integrated in volesti.

3.4.8 Hamiltonian Monte Carlo (HMC)

HMC can be used to sample from any probability density function π(·) in Rn. It simulates

a particle moving in a conservative field determined by − log π(p) and −∇ log π(p). Being

at p ∈ K, HMC introduces an auxiliary random variable v ∈ Rd, called the momenta, and

generates samples from the joint density function

π(p, v) = π(v|p)π(p). (3.25)
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Then, marginalizing out v recovers the target density π(p). Usually we consider the

momenta v to follow the standard Gaussian distribution N (0, In). Then, the probability

density function,

π(p, v) ∝ e−H(p,v), (3.26)

where H(p, v) = − log π(p, v) = − log π(p) + 1
2
|v|2 is the corresponding Hamiltonian

function. In each step being at p, HMC draws a value for the momentum, v ∼ N (0, In).

Then, (p, v) is given by the Hamilton’s system of ordinary differential equations (ODE),

dp

dt
=
∂H(p, v)

∂v
dv

dt
= −∂H(p, v)

∂p

⇒


dp(t)
dt

= v(t)

dv(t)
dt

= −∇ log π(p)

(3.27)

The solution of the ODE in Eq. (3.27) gives a trajectory p(t) ∈ Rn, where, ideally, the

next Markov point is randomly picked from it. When a closed form solution is not known,

the ODE is solved by the leapfrog method so that the convergence is guaranteed. Thus,

to discretize the Hamiltonian Dynamics we use the leapfrog integrator,

v̂i+1 = vi +
η

2
∇ log(π(pi)), pi+1 = pi + ηv̂i+1, vi+1 = v̂i+1 +

η

2
∇ log(π(pi+1)),

where η > 0 is the leapfrog step. The new position is accepted with a probability obtained

by a regular Metropolis filter. In general, the step length and the number of steps until

we obtain the next Markov point are inputs. However, there are several heuristics to

determine those two parameters (Hoffman and Gelman, 2014; Chalkis et al., 2023b) to

improve the mixing rate of the random walk.

In the case where π is restricted over a convex body K there are two versions of HMC

that can sample from the target distribution. The first is the Reflective HMC that employs

boundary reflections in each leapfrog step so that the random walk stays inside the body.

The second is the Riemannian HMC that uses the log-barrier of the convex body to satisfy

the constraints in each step.
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3.4.9 Reflective NUTS HMC (ReNHMC)

The Reflective HMC using a leapfrog integrator was introduced for log-concave sampling

from linear and non-linear convex bodies (Afshar and Domke, 2015; Chalkis et al., 2023b).

The mixing time is unknown and an open problem. ReNHMC is a Reflective HMC sampler

that employs the NUTS criterion (Hoffman and Gelman, 2014). NUTS exploits the fact

that a Hamiltonian trajectory tends to fill the space by forming a spiral. Thus, the optimal

number of leapfrog steps is that one when the trajectory starts making a U-turn and

approaches the initial point. NUTS is a heuristic that checks the inner products of the

position and momenta between the current and the initial position to declare stopping.

Step overview. When the position is updated, i.e., pi+1 = pi+ηv̂i+1, it might lie outside

of K. In this case, ReHMC reflects the ray {pi + tv̂i+1 | t ≥ 0} so that the new proposal

is inside K. Notice, that the ray may need to be reflected more than once in the case

where the step length η again leads outside of K after a certain reflection. The proposal

is again accepted after applying a Metropolis filter. In each leapfrog step we check the

NUTS criterion given in Hoffman and Gelman (2014).

Practical performance. In Chalkis et al. (2023b) they show that ReHMC outperforms

both HaR and CDHR for log-concave sampling from convex polytopes and spectrahedra in

thousands of dimensions. ReNHMC has never been implemented for truncated sampling

before this paper.

Software. ReNHMC is implemented in the C++ library volesti.

3.4.10 Constrained Riemannian HMC (CoRHMC)

CoRHMC introduced in Kook et al. (2022) can be used for log-concave sampling over a

convex polytope P. In general, Riemannian HMC uses a Riemannian manifold over the

convex body K. For this, it defines a local distance and integrate it in the Hamiltonian

function, i.e.,

H(p, v) = − log π(p) +
1

2
vTM(p)−1v +

1

2
log detM(p), (3.28)
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where M(p) ∈ Rn×n is a position-dependent positive definite matrix. The, the ODE solved

in each step becomes,

dp

dt
=
∂H(p, v)

∂v
=M(p)−1v

dv

dt
= −∂H(p, v)

∂p
= −∇ log π(p)− 1

2
Tr

[
M(p)−1∂M(p)

∂p

]
+

1

2
pTM(p)−1∂M(p)

∂p
M(p)−1p,

(3.29)

where Tr[·] is the regular matrix trace. Unfortunately, the discrete leapfrog integrator

does not guarantee convergence to the target distribution. To solve this ODE one should

use a symplectic numerical integrator (Girolami and Calderhead, 2011). However, this

task seems quite challenging in practice. The main difficulty is to achieve the numerical

accuracy required when the Markov point is close enough to the boundary so that the

computations would not lead to numerical overflow.

CoRHMC is a specialized sampler for convex polytopes. In Kook et al. (2023) they

provide efficient methods to solve the ODE in Eq. (3.29) by achieving a cost per step

of O(n3/2). In Kook et al. (2023) they show that CoRHMC mixes after Õ(mn3) steps

which is worse than the mixing time of both HaR and BaW for rounded distributions.

However, this sampler performs significantly well in practice by outperforming both HaR

and CDHR as shown in Kook et al. (2022). Its main advantage is that its mixing rate

does not depend on the roundness of the distribution; thus, CoRHMC does not require

any rounding preprocess for skinny distributions (or skinny polytopes in the case of

uniform distribution). Thus, it can sample efficiently from hard instances in thousands of

dimensions within minutes (Kook et al., 2022). Notably, it has never been performed a

comparison between CoRHMC and the MMCS with BiW given in Chalkis et al. (2021b)

for uniform sampling over a convex polytope.

Software. CoRHMC is implemented in the MATLAB package PolytopeSamplerMatlab (Kook

et al., 2021). volesti also contains an implementation of CoRHMC in C++.
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3.5 Empirical Study

We employ geometric random walks to explore factor anomalies in constrained long-only

portfolios. To do so, we follow the investment guidelines of a prominent market index which

we believe accurately represents the typical framework followed by many mutual funds and

institutional investors. The index that we look at is the MSCI Diversified Multiple-Factor

index25 (hereinafter referred to as the DMF index) for the U.S. market. The DMF index

aims to create systematic exposure to the four factors: value, momentum, quality, and

size, while maintaining a risk profile similar to that of the underlying capitalization-

weighted parent index, which is the MSCI USA index. The allocation of the DMF index

is determined through an optimization which maximizes the exposure to a combination of

the four factors, subject to a risk tolerance set equal to the ex-ante variance of the parent

index at the time of calculation.

MSCI’s prospectus explains that the DMF index is designed to systematically capture

the additional sources of systematic return associated with the four factor investing styles.

However, the MSCI approach significantly differs from the typical academic literature

on factor premia (measured by the performance difference between a long position in a

portfolio of companies with the most favorable factor characteristics and a short position

in a basket of assets with the least favorable factor characteristic) in that their model

operates in a long-only setup with stringent constraints on asset weights, sector allocations,

risk tolerance, and bandwidths on additional factor exposures, all relative to the parent

index. In particular, asset weights are bound to the allocation of the parent index by

a bandwidth of ±2%-points per stock and of ±5%-points on sector level. Within those

limits, MSCI tries to harvest the premias by tilting the capitalization-weighted allocation

towards stocks with elevated factor exposure.

A pertinent question arises concerning the possibility of capturing academically inves-

tigated factor premia within such a strongly constrained setup. To find out we employ a

geometric random walk to sample portfolios from within the set of constraints imposed by

the DMF index and analyze whether the sampled portfolio’s out-of-sample26 performances

varies in a systematic way with their factor scores. Do portfolios with higher value-,

25See https://www.msci.com/diversified-multi-factor-index.
26Out-of-sample means that, at every point of the back-testing procedure, we only use information that

was effectively available at that point in time.
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momentum-, quality-, size- or volatility-scores deliver higher, lower, or equal return and

risk than their low-scoring counterparts?

The traditional method of factor analysis involves forming percentile portfolios based

on a sorting of companies idiosyncratic factor scores. Backtests are then conducted

where each percentile portfolio is weighting it’s constituents equally or according to

capitalization. Factor anomalies are identified through the outperformance of the top

percentile portfolio relative to the bottom percentile. Interaction with other factors is

examined through regression analysis. In contrast, our RP-based approach offers anomaly

detection within investor-defined constraints, and factor interactions can be directly

controlled by incorporating factor constraints, eliminating the need for indirect regression

methods.

Backtesting framework. In Section 3.3, we outlined the process of constructing a RP

by initially defining investment constraints geometrically and then deriving the distribution

of performance statistics either analytically or through sampling and simulation. However,

this construction assumes the availability of clean time series data for all stocks, of

equal length, to estimate market parameters. Consequently, the described RPs represent

snapshots. For an extended analysis of a stock universe over time, adjustments must

consider changes in index composition and corporate actions affecting individual stocks

(such as splits, mergers, and dividends). This complicates matters as both the number

of investable assets and the geometric body induced by the constraints evolve over time.

Therefore, akin to quintile portfolios, RPs must undergo regular rebalancings, precluding

analytical solutions even for the naive case.

The method which we pursue is the following: Every month we construct a new

RP by casting the constraints employed by the DMF index to a convex body. The

linear constraints, which include the lower and upper bounds on asset, sector, and factor

exposures, establish a polytope, and the constraint on variance shapes an ellipsoid. These

bounds shift from one month to the next, adapting to changes in the allocation and risk

level of the parent index. Subsequently, we sample from the convex body using a geometric

random walk. Because of the quadratic constraint, the choice of sampler is limited to

either HaR, CDHR, BaW, BiW or ReNHMC. Among those, only HaR, CDHR, BaW and

ReNHMC allow for a distribution other than the uniform. Since ReNHMC is considerably
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faster than the alternatives (Chalkis et al., 2023b; Cousins and Vempala, 2016), ReNHMC

is our method of choice (without the variance constraint we would use CoRHMC). As

probability model we use the Dirichlet distribution with a parameter vector equal to the

weights of the capitalization-weighted parent index, i.e., α = ωbm. This generates samples

which have E(ω) = ωbm, yet are close to the boundary of the constraints set27.

For each sampled portfolio, we then simulate the cumulative returns path for the

subsequent month using the returns of the portfolio’s constituents. At the next rebalancing,

the process is repeated and the simulated price paths are concatenated to consecutive time

series spanning the entire period of analysis.

Concatenation from one period to the next follows a similar logic to the formation

of quintile portfolios. Portfolios are matched based on factor scores, where the portfolio

with the highest exposure to a certain factor in one period is combined with the portfolio

scoring highest in the following period, and so forth, down to the lowest scoring pair.

Sorting the time-series by factor exposure allows for an analysis of the correlation between

factor rank and performance over a long-term period. For example, if there is a monotonic

relation between momentum score and return, this should be evident in the backtests

through a decreasing out-of-sample return with the simulation index. In other words, the

first simulation, forming a concatenation of best-momentum portfolios, should yield the

largest cumulative return over the entire backtesting period, with performance gradually

decreasing for subsequent simulations.

To evaluate the influence of the MSCI constraints, we iterate the backtesting exercise

twice, initially applying only the simplex condition before introducing the MSCI constraints

in a second round.

3.5.1 Data

The implementation of the MSCI Multifactor framework requires a comprehensive dataset

of stock price series from companies covered by the MSCI USA index, which includes large

and mid-cap equities traded in the U.S28. As the composition of the MSCI USA index is

proprietary, we suggest utilizing data from the Center for Research in Securities Prices

27Recall that sampling with a parameter vector α with sum less than n results in weights towards the
boundaries. We want points to be close to the boundary since the solution of the optimization problem
that the DMF index is solving is always a boundary point.

28See https://www.msci.com/our-solutions/indexes/developed-markets.
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(CRSP) as an alternative data source. We select a subset of stocks listed on the NYSE,

AMEX, and NASDAQ indexes, focusing solely on ordinary common shares of companies

incorporated in the U.S. (CRSP shares code 10 and 11). Additionally, we exclude foreign

shares, certificates, American depository receipts, shares of beneficial interest, depository

units, American trust components, closed-end funds, and real estate investment trusts

from our dataset. We found that a good approximation to mimick the MSCI universe

is to filter for the largest stocks listed on the three exchanges such that in aggregate

they cover 85% of total market capitalization. On average, over the backtesting period,

this translates to approximately 600 securities per rebalancing. While this approach

does not precisely replicate the MSCI methodology, a comparative analysis using both

datasets reveals qualitatively identical results. The primary goal is not to achieve an exact

replication but rather to establish a representative framework. Through the utilization of

CRSP data, all our findings can be reproduced and validated.

Furthermore, to be included in our study, stocks need a consistent price history of five

years without any gaps larger than two weeks. This is needed to compute the covariance

matrix in the quadratic constraint bounding portfolio variance to that of the parent index.

Moreover, illiquid stocks are removed from the investable universe. As a threshold, we

require a median trading volume over the previous 252 trading days to be above USD 1.5

million. We do this because, on the one hand, such illiquid stocks are not easily tradable

and therefore would lead to a large implementation shortfall (i.e., the difference between a

simulated performance and one obtained from real investments) and, on the other hand,

such companies display artificially low volatility due to a lack of trading and not because

they are not risky. The cleaning process is necessary to ensure that at every point in time,

the investable universe only contains information that was effectively available at that

point in time and to avoid any positive survivorship bias.

All estimations are based on discrete daily total29 returns using closing prices denoted

in USD, covering the period 01.01.1995 to 31.12.2022. Backtests begin on 03.01.2000. All

descriptive statistics are calculated on annualized discrete monthly returns, as is customary

in the financial industry.

29Returns, i.e., the percentage changes in prices from time t− 1 to t, are termed total when adjusted
for dividends (i.e., dividends are re-invested).
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Factors. The DMF index actively manages its exposure to specific target and non-

target style factors relative to the parent index, not only via a weighting in the objective

function, but also by setting benchmark-relative constraints. Book-to-Price, Earnings

Yield, Earnings Quality, Investment Quality, Profitability, and Momentum exposures are

required to fall within the range of [0.1, 0.6], Earnings Variability, Leverage, and Size

within [−0.6,−0.1]. Moreover, the index limits its exposure to non-target style factors,

namely Beta, Residual Volatility, Growth, and Liquidity to remain within a range of ±0.1

standard deviations relative to the parent index.

For value and quality, MSCI computes scores by a weighting of sub-scores. Value, for

instance, consists of one-third Price-to-Book and two-thirds Earnings Yield. The scores

are further sector standardized using the GICS30 classification system. Details can be

taken from the MSCI methodology paper.

Table 3A.4 in Appendix 3A shows how we have mapped the MSCI factors to JKP

factors. All scores (i.e., exposures) are ultimately standardized to z-scores and winsorized

at ±3. Note that the standardization is a monotonous transformation which does not

affect the ordering of the scores. Winsorization, on the other hand, does have an influence.

On a portfolio level, the factor score i.e., the exposure of a portfolio ω to some factor fs

is simply taken to be the weighted sum of the portfolio weights times the company factor

scores, i.e.,
∑

i ωiβi,s. We notice that, because of the standardization and winsorization

steps, the weighted sum method is not exactly the same as when we would regress the

portfolio returns on the factors.

3.5.2 Implementation

We use the C++ library volesti (Chalkis and Fisikopoulos, 2021; Chalkis et al., 2024),

an open-source library for high dimensional MCMC sampling and volume approximation.

volesti provides the implementations of all the geometric random walks in Section 3.4.

The core of its implementation is in C++ to optimize performance while the user interface

is implemented in R. The library employs eigen (G. et al., 2010) for linear algebra and

boost (Maurer and Watanabe, 2017) for random number generation.

30See https://www.msci.com/our-solutions/indexes/gics
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3.5.3 Results

Figures 3.6 and 3.7 contain scatter-plots depicting the relation between portfolio factor

exposure and portfolio risk (first column), portfolio factor exposure and portfolio return

(second column) and portfolio risk and portfolio return (third column). Factor exposure

levels are scaled for all factors to live on the interval [-1, 1]. Figure 3.6 reflects the

case where no constraints are applied other than the simplex condition. The plots are

overlayed by grey points, labeled one to five, indicating the performance statistics of five

sorting-based quintile portfolios. The blue line indicates the fit of a polynomial regression

(of degree two). Figure 3.7 shows the results when the constraints imposed by the DMF

index are met.

We note the following observations: In the initial backtests, where only the simplex

constraint is enforced, the results affirm a positive relationship between portfolio factor

scores and returns across all factors except size. Interestingly, for size, the relationship

appears slightly negative. This could be attributed to the asset universe defined by

MSCI, which primarily consists of large and medium-sized companies. Notably, value

and momentum exhibit non-linearities, with slopes becoming steeper at both ends of

the spectrum. The relationship between portfolio factor scores and risk exhibits a U-

shaped pattern, indicating that portfolios with particularly high and particularly low

factor exposure tend to have higher variance compared to their unexposed counterparts.

This U-shaped pattern is observed across all four factors. The results align closely with

classical sorting-based simulations, which are superimposed in Figure 3.6 as grey dots

labeled 1 to 5, indicating the corresponding (equally-weighted) quintile portfolios. The

primary benefit of the sampling-based approach over the sorting-based method lies in

its independence from the weighting within percentile portfolios, eliminating potential

strong influences on the results. Additionally, the sampling method provides greater

granularity by illustrating the uncertainty in the outcomes of percentile portfolios. Also,

it can be seen that some of the quantile portfolio are rather outlying relative to the

conditional performance distributions. However, we consider this initial application more

as a proof-of-concept. The true advantage becomes apparent when additional constraints

are introduced, rendering sorting-based methods impractical.

The addition of benchmark-relative bounds used by the DMF index has varying effects.
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Figure 3.6: Performance vs. factor exposure - Long Only.

For momentum, the relationship between factor exposure and return remains clearly

positive, with a correlation coefficient of 0.229, compared to 0.251 for the long-only case.

For value, the correlation remains positive but weakens from initially 0.266 to 0.128. For
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Figure 3.7: Performance vs. factor exposure - Within the constraints of the MSCI Diversified

Multifactor Index.

quality, the positive correlation of 0.189 vanishes to 0.038. For size, where the relation

was negative, the effect is further strengthened, showing in correlations dropping from
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initially -0.106 to -0.168. The non-linear relationships between factor scores and risk are

significantly influenced. The graphs indicate that imposing the DMF constraints limits

allocations in such a way that one ends up in one of the two legs of the previously identified

U-shaped patterns. For size, value, and momentum, this corresponds to the right leg,

exhibiting positive (near-linear) relations with correlations of 0.553, 0.693, and 0.813,

respectively. Conversely, for quality, it corresponds to the left leg, displaying a negative

correlation of -0.580.

Given the observable patterns in the constrained setup we draw the following conclusion:

Tilts towards value and momentum are rewarded with higher returns but come at the price

of increased volatility. The tilt towards quality has a risk reducing effect without impacting

returns, thus increasing overall efficiency. The size tilt should not be actively sought as

the relation between size exposure and both, risk and return, is unfavorable. However,

we have to keep in mind that, due to the concentration of the capitalization-weighted

allocation, any deviation from it will likely increase the size exposure. Value, momentum

and quality tilts each imply a size tilt, though without the performance drag of an isolated

size tilting. Overall, factor patterns appear to be present even within the very strong

bounds implied by the DMF index and an active investment approach trying to harvest

them seems justified.

Our method for sampling portfolios within given constraints would allow us to analyse

the impact of specific constraints in isolation. For instance, it would be interesting to

repeat the analysis after removing one of the constraints, like the bound on variance, or a

group of constraints, like the control on non-target factor exposures. We leave this idea

for future applied research.

To finalize, let us challenge once more the option to use the RP for statistical testing;

here, to test the outperformance of the DMF index relative to its parent. With an

Information ratio (IR) of 0.42, the DMF index resides at the 0.025 quantile of the

distribution of IR’s measured from the RP backtests. We could consider this as indication

of skill for MSCI’s factor team. However, the quantile value is in direct dependence of the

parameter of the Dirichlet distribution which we chose to sample weights from. Although

our choice of parametrization is economically justified, the sensitivity on inferential results

is hardly acceptable. Conversely, the relation between factor exposure and performance is

robust to a wide range of parameter values (we have tested α = ωbm × {0.01, 0.1, 1, 5, 10},
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all giving qualitatively similar results. Only with a scaling factor > 10 do the resulting

samples become too homogenous).

3.6 Conclusion

We discussed the use of randomized control techniques in the context of empirical asset

pricing and performance evaluation. We examined the scenario where the performance

distribution of a random portfolio, serving as the random control group, forms the basis

for assessing the performance of an elaborated investment strategy relative to the (null)

distribution of performances under chance. A random portfolio was defined as a portfolio

whose weights constitute a random vector with a specific probability distribution supported

on a bounded space, reflecting the investor’s investment constraints, such as bounds on

asset weights or risk limits.

We explained that commonly employed random portfolios do not offer a statistically

acceptable experimental design for performance comparisons and cautioned the reader

against such a use case with the aid of an illustrative example. However, under consideration

of the random portfolios construction methodology, we found random portfolios to be a

helpful tool for visual and descriptive perform analysis. Furthermore, we suggested a novel

use case, involving the investigation of the relationship between portfolio factor scores and

performance in a constrained setup, which allows to empirically test for the presence of

factor anomalies under stringent investment guidelines.

We proposed a categorization of random portfolios into three groups — naive, basic, and

regularized — based on weight distribution and geometric structure of the distribution’s

support. Additionally, we introduced geometric random walks, a class of Markov chain

Monte Carlo methods, as a novel and powerful paradigm to sample random portfolio

weights adhering to linear and quadratic constraints under various models. We provided a

survey of all existing geometric random walks, explaining their strengths, limitations, and

computational complexities.

Ultimately, we performed experiments on real-world datasets using the open-source

software volesti which implements various geometric random walk samplers. We replicated

the investment guidelines of the MSCI Diversified Multi-Factor index, a well-known index

in the industry. This index aims to harvest sources of active returns by tilting the allocation
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of the capitalization-weighted parent index towards the four factors: value, quality, size,

and momentum, while respecting bounds on risk, weights, and factor exposures relative to

the parent index.

Our study revealed diverse impacts of DMF index constraints on factor-exposure-

performance relations, compared to an otherwise unconstrained long-only framework.

Momentum maintained a positive relation to returns, nearly as strong as in the long-

only case. Value showed a diminishing positive relation, while quality’s positive relation

vanished in the constrained scenario. Size exhibited a negative relation, which intensified

with constraints. Regarding risk, there was a truncation of the initial U-shaped relation,

with momentum, value, and size showing increased volatility with higher factor exposures,

while quality exhibited a negative correlation with volatility.

In summary, tilts towards value and momentum offered higher returns with increased

volatility, quality tilts reduced risk without affecting returns, and size tilts led to lower

returns and higher risk. Our findings suggest that factor patterns persist even within

stringent constraints, justifying an active investment approach to capitalize on the positive

ones.
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Appendix

3A Factor mapping

MSCI factor JKP factor
Book-to-Price Book-to-market equity
Earnings Yield Earnings-to-price
Earnings Quality Total accruals
Investment Quality Return on equity

Profitability Gross profits-to-assets
Momentum Price momentum t-12 to t-1

Earnings Variability Earnings variability
Leverage Book leverage

Size Market Equity
Beta Market Beta

Residual Volatility Idiosyncratic volatility from the CAPM (252 days)
Growth Sales Growth (1 year)
Liquidity Liquidity of market assets

Table 3A.4: Mapping of MSCI factors to JKP factors.
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Chapter 4

On The Geometry of the Bootstrap

Cyril Bachelard and Olivier Gallay

A version of the article will be submitted to European Journal of Operations Research.

Abstract

The study examines nonparametric bootstrap techniques from a geometric perspective,
based on a unified representation of classical and Bayesian frameworks using random
weights. It establishes a clear relationship between resampling plans and the distribution
of the weights, and presents a direct computational method for the exact Bayesian boot-
strap distribution without resorting to sampling. Moreover, the study connects the exact
moments of bootstrap distributions to the Lp norm of the random weights and proposes
ways to incorporate prior information into bootstrap procedures through a parametrization
of the weight distribution. Finally, applications are discussed where it is common to use
bootstrap standard errors, which by the geometric perspective, can be determined without
the need for resampling.

Keywords: Nonparametric bootstrap, bayesian bootstrap, informative priors, concentra-

tion phenomena, bootstrap regression.
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4.1 Introduction

Consider a sample of n independent and identically distributed (iid) realizations x =

{x1, ..., xn} of a random variable X having unknown probability distribution F defined on

a space X 1. Let a statistic of interest be of the form θ̂ = n−1
∑n

i=1 zi where zi = g(xi).
2

The (nonparametric) bootstrap technique constructs an approximation of the sampling

distribution for the estimate by resampling, uniformly with replacement, from z and

repeatedly recomputing the satistic on the resampled data z∗ = {z∗1 , ..., z∗n}. Notice that a

bootstrap sample z∗ is an iid sample drawn from the nonparametric maximum likelihood

estimator for F , i.e., the empirical probability distribution F̂n putting mass 1/n on each

element zi. There exist nn distinct ways to generate bootstrap samples. However, since

the calculation of θ̂ is symmetric in its arguments (i.e., the operation is insensitive to the

order in which the arguments are presented), the total number of distinct samples (i.e., up

to permutation) is K =
(
2n−1
n

)
. In principle, all K combinatorial possibilities and their

corresponding occurence probabilities can be enumerated leading to an exact bootstrap

distribution

D(γ) = P(θ̂ ≤ γ) =
K∑
k=1

pk1{θ̂(∗,k) ≤ γ} (4.1)

with θ̂(∗,k) = n−1
∑n

i=1 z
(∗,k)
i , −∞ < γ <∞ and pk denoting the probability for z(∗,k) to be

sampled. In practice, however, the computation of (4.1) by enumeration is only possible

for small n (see Section 4.4.2 for more details). It belongs to the computational complexity

class of #P-hard problems (Bertsimas and Sturt, 2020), i.e., a class of counting problems

which cannot generally be solved in a polynomial time (unless P = NP ).

Efron (1979), in his seminal paper, introduced the bootstrap as a generalization of

the Jacknife (Quenouille, 1949; Tukey, 1958), replacing the deterministic leave-one-out

scheme of the Jacknife with a randomization method by using sampling with replacement.

The introduction of randomization was motivated by the computational intractability of

1In this analysis, we restrict our attention to the case where X denotes an interval of the real line. It
is nevertheless noteworthy that the bootstrap method is applicable to distributions defined over broader
domains, such as the plane or function spaces.

2The transformation g is introduced to stress that our results extend to statistics beyond the sample
mean. As an example, take zi = (xi − x̄)r with x̄ denoting the arithmetic mean of the sample x, then

θ̂ = n−1
∑n

=1 zi defines the r-th sample central moment of x. Further examples are given in Section 4.5,
which discusses applications.
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exact calculations. Rather than exhaustively enumerating all K combinatorial possibilities,

the bootstrap approximates the distribution by resampling R times from the dataset.

Typcially, R≪ K. The approximation then reads

D(γ) = P(θ̂ ≤ γ) ≈ 1

R

R∑
r=1

1{θ̂(∗,r) ≤ γ} (4.2)

with θ̂(∗,r) = n−1
∑n

i=1 z
(∗,r)
i .

The bootstrap approximation has been extensively studied and is well understood in

terms of asymptotic first and higher order properties (see e.g., Singh (1981) and Weng

(1989)). From its core idea, many variants of the bootstrap of Efron (1979) (henceforth

referred to as the classical bootstrap, abbreviated as B), have been derived. Of particular

relevance for the current exposition are the generalizations proposed by Zheng (1987) and

Mason and Newton (1992), which utilize a random weighting scheme. Additionally, the

Bayesian bootstrap, introduced by Rubin (1981) and hereinafter referred to as BB, along

with its variants such as the weighted likelihood bootstrap by Newton and Newton and

Raftery (1994), and adaptations of the Bayesian interpretation by Boos and Monahan

(1986) using informative priors, are noteworthy.

Common to the classical bootstrap and its descendants is their numerical, random and

approximative characteristic. Motivated by the inaccuracy resulting from randomization,

which can be substantial in certain applications, Bertsimas and Sturt (2020) proposed a

deterministic approach. The authors presented a fully polynomial time approximation

scheme (FPTAS) to compute confidence intervals for (4.1) with guaranteed error bounds

as well as an exact algorithm based on polynomial multiplication allowing for exact

computation of bootstrap confidence intervals which is described as ”practically tractable

for data sets of values represented with several significant digits”.

In the subsequent discussion, we examine the bootstrap method through a geometric

lens, unveiling novel sampling-free approaches - both exact and approximate. Specifically,

our analysis reveals the existence of an efficient deterministic algorithm for computing

the exact Bayesian bootstrap distribution of Rubin (1981), along with certain derivative

methods that incorporate prior information. Additionally, we present analytical findings

pertaining to the central moments of the exact bootstrap distribution as in (4.1), with the

sample size n held constant. We explore these results across various bootstrap procedures,

145



including classical and Bayesian methods, with and without informative priors.

The remainder of this document is structured as follows. Section 4.2 presents the

nonparametric bootstrap from a geometric perspective and shows that the BB distribution

relates to the volume of the intersection of a simplex with a half-space, which can be

computed exactly and efficiently. The performance of the method is illustrated using a

numerical example borrowed from Bertsimas and Sturt (2020). Section 4.3 establishes

a connection between the central moments of the exact bootstrap distribution (classical

and Bayesian) and geometric properties of random weights. For the classical bootstrap,

those properties rest on combinatorial aspects which are briefly reviewed. The results

are generalized to the cases with informative priors in Section 4.4. Finally, Section 4.5

suggests practical applications. Section 5.5 concludes and suggests potential directions for

future research.

4.2 Geometry of the bootstrap and an exact algorithm

Sampling with replacement from F̂n means drawing counts c = {c1, ..., cn} from a Multi-

nomial distribution Mult(π1, ..., πn) with n trials where all probabilities are equal, i.e.,

πi = 1/n, i = 1, ..., n. Normalizing each count produces weights ωi = ci/n. Instead of

recomputing the statistic in question on resampled data z∗, the boostrap statistic can

be computed on the weighted data, i.e., as θ̂∗ =
∑n

i=1 ω
∗
i zi, where the weights ω∗ are

drawn from the scaled Multinomial distribution, denoted M1/n, 1 being a vector of ones,

therefore satisfying ω∗
i ≥ 0 and

∑n
i=1 ω

∗
i = 1. In this sense, the data, z, are fixed3 whereas

the weights, ω, are random and averaging across bootstrap samples effectively means

averaging over the distribution of the weights (i.e., E(θ̂) =
∑n

i=1EM1/n
(ω)izi). As such,

the resampling plans of various bootstrap procedures can be expressed in terms of a

distributional model of the weights.

The geometric properties of the distribution of the weights induced either implicitely

or explicitely by different resampling plans reveal much about the properties of the

corresponding bootstrap distributions and inferential conclusions. For instance, exact

standard errors depend on the expected squared L2-norm of the weights and exact higher

central moments on higher-order expected Lp-norms under various models (see Section

3The nonparametric bootstrap is always conditional on the observed sample. Special to our proposed
geometric approach is that we treat z as a constant vector defining a hyperplane.
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4.3). Further, the exact BB distribution relates to a ratio of volumes which can also be

computed exactly (see Section 4.2.1).

Geometrically, the set of possible weights implied by the classical bootstrap forms a

discrete grid of nodes, denoted Gn, over the standard (n-1)-simplex4

Sn−1 := {s ∈ Rn|si > 0,
∑

i si = 1; i = 1, ..., n}. The grid contains a total of |Gn| = K =(
2n−1
n

)
nodes induced by the set of all normalized partitions of integer n. For instance,

the case n = 3 yields P(3) = {ρ(1), ρ(2), ρ(3)} = 1
3
{(3, 0, 0), (2, 1, 0), (1, 1, 1)} with distinct

permutations Q = {Q1, Q2, Q3} = 1
3
{{(3, 0, 0), (0, 3, 0), (0, 0, 3)}, {(2, 1, 0), (1, 2, 0), (0, 1, 2),

(0, 2, 1), (2, 0, 1), (1, 0, 2)} {(1, 1, 1)}}. We say that a node is activated whenever a cor-

responding sample z(∗,k), k = 1, ..., K is drawn. In this sense, the classical bootstrap

corresponds to a probability weighting of z by the Cartesian coordinates of the activated

grid nodes5.

All permutations within a partition share the same activation probabilities, forming

what we call activation probability level sets. Those level sets can be enumerated (in

principle) and therefore give us the total probability for the sets. We go through the

combinatorial excercise of computing them in Section (4.2.3) in order to strengthen the

geometric perspective. For large n, |P(n)| = L≪ K = |Gn|.

For given n, the grid is fully determined and, no matter how long the bootstrap

approximation is run (i.e., how large one chooses R), off grid weights will never be

sampled. This is where the BB generalizes the classical bootstrap. Instead of sampling

from the discrete Multinomial, the BB samples from the continuous Dirichlet distribution

Dir(α = (α1, ..., αn)) (see Definition 7 below).

The BB uses as non-informative (and improper) prior the limiting Dirichlet distribution

with α → 0 which puts all mass on the vertices of the simplex. Since the Dirichlet

distribution is the conjugate prior to the Multinomial distribution, the (proper) posterior

is again Dirichlet distributed with altered parameter α′ = α+ c = 1. This so called flat

parametrization distributes weights uniformly over the probability simplex.

4We use the superscript (·)n−1 to stress that the simplex is a n− 1 dimensional body embedded in n
dimensional (Euclidean) space.

5We use the terms weights and grid nodes interchangeably depending on whether we talk about the
computation of weighted averages or to give a geometric intuition. An alternative term would be that of a
probability mass function (pmf). However, we prefer not to use the latter because it would restrict the
discussion to the case where weights live on the probability simplex whereas some of our results generalize
to other geometric bodies as the support for the distribution of the weights.
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Figure 4.1 provides an illustration of the weights-space for the cases n = 3 and n = 4.

The grey bodies correspond to the 2-dimensional simplex in n = 3 (left figure) and the

projection of the 3-dimensional simplex in n = 4 (right figure). In both figures, black

squares represent the nodes of the grid Gn.

Figure 4.1: Left: Simplex and grid for n = 3. Right: Projection of the simplex and grid
for n = 4.

The main difference between the two bootstrap methods then lies in their interpretation.

Instead of simulating the sampling distribution of a statistic (approximating a parameter),

as is done in the classical bootstrap, the BB simulates the posterior distribution of the

parameter.

Zheng (1987) reinterpreted Rubin’s results from a frequentist perspective, introducing

the term random weighting bootstrap (RWB). They argued that the conditional distribution

obtained from the BB methodology would also approximate the sampling distribution,

demonstrating consistency under ω ∼ Dα. Mason and Newton (1992) further generalized

the random weighting idea, naming it the generalized bootstrap (GB), only assuming that

weights are exchangeable, positive, sum to one, and that
∑
i = 1n(ωi − 1/n)2

p−→ c > 0 as

n→∞, encompassing the flat Dirichlet model or ω ∼ D4, as proposed in Weng (1989), as

special cases. They provided conditions on the weights to guarantee consistency.

In the subsequent discussion, we abstract from interpretational positions (Bayesian

versus frequentist) and focus solely on the procedural aspect, considering the BB, RWB,

and the special case of the GB with ω ∼ Dα as equivalent.

In terms of inference, the Bayesian and the frequentist bootstrap methods are well known

to produce similar results, as emphasized by Rubin (1981) and thoroughly investigated
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by Lo (1987) and Weng (1989). We introduce a fresh perspective on this matter by

examining the geometric properties of the weights distribution. Contrary to the common

notion that the analysis of the bootstrap and its properties necessitates asymptotic theory

(Bickel et al., 1997), the geometric perspective enables drawing conclusions for any finite n.

Before delving into the comparison between classical and Bayesian bootstrap, we

demonstrate how the exact BB distribution for θ̂ can be computed efficiently using a

geometric algorithm. Subsequently, inferential similarity justifies utilizing the exact BB

distribution as an approximation, free of randomization error, to the exact classical

bootstrap distribution.

4.2.1 Computing the exact Bayesian bootstrap distribution

The following result builds upon the fact that the flat Dirichlet distribution spreads

uniformly over the simplex. For ease of reference, the following definitions are recalled.

Definition 6 (Uniform Distribution).

Let S ⊂ Rn be a bounded d-dimensional surface, where d ≤ n, and let V denote Lebesgue

measure. We say that the vector X = (X1, X2, ..., Xn) ∈ S is uniformly distributed, or

that elements X1, X2, ..., Xn are jointly uniformly distributed over S with positive Lebesgue

measure, if P(X ∈ A ⊂ S) = V (A)/V (S).

Definition 7 (Dirichlet Distribution).

Let ω = (ω1, ..., ωn) be a vector with n components, where ωi ≥ 0 for i = 1, 2, ..., n and∑n
i=1 ωi = 1. The Dirichlet probability density function (pdf) is

f(ω1, ..., ωn) =
1

B(α)

n∏
i=1

ωαi−1
i ,

B(α) =

∫
Sn−1

n∏
i=1

ωαi−1
i dω =

∏n
i=1 Γ(αi)

Γ(α0)

with α0 =
∑n

i=1 αi and αi ≥ 0 for i = 1, ..., n. B(α) denotes the multinomial beta function

acting as the normalizing constant which can be represented with the gamma function

Γ(x) =
∫∞
0
tx−1e−tdt.

In the symmetric case, where all elements of the parameter vector α are equal to 1,

Dirichlet random variables are uniformly distributed over the simplex. When n = 2, one
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finds the Beta(α1, α2) distribution as a special case.

The marginal distribution of ωi are Beta(αi, α0 − αi) with expectation E(ωi) = αi/α0,

variance V(ωi) = αi(α0−αi)

α2
0(α0+1)

, covariance C(ωi, ωj) =
−αiαj

α2
0(α0+1)

, i ̸= j, and E(ωi, ωj) =

αiαj

α0(α0+1)
, i ̸= j.

Note that the Dirichlet distribution is supported by the simplex Sn−1 which has

Lebesgue measure zero and is therefore singular with respect to (w.r.t.) Lebesgue measure

in Rn. The simplex constraint is sometimes made explicit by specifying the density over

n− 1 free variables as f(ω) = 1
B(α)

∏n−1
i=1 ω

αi−1
i (1−

∑n−1
i=1 ωi)

αi−1.

Building upon the above definition we can formulate the exact BB distribution as

C(γ) = P(θ̂ ≤ γ) =

∫
Sn−1

f(ω)1{z⊤ω ≤ γ}dω. (4.3)

Proposition 8. Let H(z, γ) := {h ∈ Rn|z⊤h ≤ γ} denote a half-space with normal z and

scalar γ. Then, C(γ) = P(θ̂ ≤ γ) = V (Sn−1∩H(z,γ))
V (Sn−1)

.

Proof.

C(γ) = P(θ̂ ≤ γ) =

∫
Sn−1

f(ω)1{z⊤ω ≤ γ}dω

=

∫
Sn−1

(
Γ(α0)∏n
i=1 Γ(αi)

n∏
i=1

ωαi−1
i

)
1{z⊤ω ≤ γ}dω

=
Γ(α0)∏n
i=1 Γ(αi)

∫
Sn−1

(
n∏

i=1

ωαi−1
i

)
1{z⊤ω ≤ γ}dω

=
1∫

Sn−1

∏n
i=1 ω

αi−1
i dω

∫
Sn−1

(
n∏

i=1

ωαi−1
i

)
1{z⊤ω ≤ γ}dω

=

∫
Sn−1∩H(z,γ)

∏n
i=1 ω

αi−1
i dω∫

Sn−1

∏n
i=1 ω

αi−1
i dω

=
V (Sn−1 ∩H(z, γ))

V (Sn−1)

where the last step follows directly from the definition of uniformity and because ωαi−1
i = 1

for the symmetric case where all αi = 1.

Computation of the ratio V (Sn−1∩H(z,γ))
V (Sn−1)

has been subject to several studies (Varsi, 1973;
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Ali, 1973; Cho and Cho, 2001; Lasserre, 2015; Dirksen, 2017). Lasserre (2015) provided a

closed form expression to the problem. Unfortunately, their solution becomes numerically

unstable when n ≥ 20, as noted in Cales et al. (2018) and Cales et al. (2021).

Varsi (1973) proposed an algorithm to compute the (nonempty) content of the simplex

cut off by a hyperplane (the frustum of the simplex) by means of a dissection technique.

Ali (1973) shortly after proved that the algorithm is equivalent to divided differences using

the Fourier-Stieltjes transform. For convenience, we reproduce the structure of Varsi’s

algorithm in Appendix 4A the way it is presented in Ali (1973) with slightly adapted

notation. The interested reader is referred to Varsi (1973) and Ali (1973) for the proof.

Varsi’s algorithm requires O(n2) computations to get the level of the cumulative (exact

bootstrap) distribution function (cdf) at a particular value. In order to evaluate the full

cdf, the algorithm has to be evaluated for a sequence of threshold values γ, i.e., for a series

of parallel shifted hyperplanes. The pdf may be obtained by numerical derivation, or, as

suggested in Cales et al. (2021), by use of B-splines (Curry and Schoenberg, 1966) and

making use of the Boor-Cox recursion formula (Boor, 1972; Cox, 1972). Cales et al. (2021)

further provide the derivation of the closed-form expression for the ratio of volumes given

in Lasserre (2015), yet note that the computation inherits the numerical instability.

Varsi’s algorithm allows for the computation of the exact bootstrap distribution of

linear statistics under the BB paradigm of Rubin (1981). In Section 4.4.3 it is shown

that the approach generalizes to cases where the support of the weights is a subset of the

simplex (which, to the best of our knowledge, has not been considered as a bootstrap

option before), as long as there exists a one-to-one mapping between the initial simplex

and the codomain.

4.2.2 Numerical example

Bertsimas and Sturt (2020) provide an example comparing confidence intervals obtained

from 100 runs of the randomized algorithm of the classical bootstrap with their proposed

deterministic and exact procedures in terms of accuracy and tractability. They consider

a dataset z = (1010, 1020, ..., 1070, 1, ..., 1) with n = 81 elements. Their experiment

illustrates a significant randomization error of the traditional method even when R is very

large (they set R = 106; common is to use R = 103). Out of the 100 bootstrap runs, more

151



than 25% produced an estimate of less than 25 for the 0.025-quantile, which is way off the

true quantile value of 37.08 (rounded to two digits) which they identify with their exact

method.

By their deterministic method, the exact quantile value can be approximated to

arbitrary precision. However, the proposed method does not scale well with dimension

and data complexity.

Varsi’s algorithm does not suffer from those limitations. For the current example,

Varsi’s algorithm returns a value of 38.30 which, not surprisingly, is fairly close to the true

value of the exact classical bootstrap. Recall that the value returned by Varsi’s algorithm

is not just a fast deterministic approximation to the quantile value of the exact classical

bootstrap, but corresponds to the true quantile value of the exact Bayesian bootstrap.

4.2.3 Concentration phenomena

Due to well-known concentration phenomena6 appearing in high dimensions (concentration

of measure (Milman and Schechtman, 1986), concentration of distance (Aggarwal et al.,

2001)), uniform weights on the simplex strongly concentrate in a high-volume area of

the simplex with increasing n. The same holds for the grid nodes embedded in Sn−1. A

basic geometric question therefore arises about the expected length of random weight

vectors and concentration bounds that set probabilistic deviation limits. We first analyze

this question for the discrete case ω ∈ Gn, going through the underlying combinatorics

step-by-step and making a numerical example.

Partitions and node activation probabilities

As previously stated in Section 4.2, node activation probabilities of the grid induced by the

resampling plan of the classical bootstrap follow a multinomial law and many nodes share

the same activation probabilities. To gain a clear understanding of this effect, consider

the following computational procedures:

First, enumerate all partitions P(n) for integer dimension n. A partition ρ of a

positive integer n is a non-increasing sequence of positive integers ρ1, ρ2, ..., ρn such that

6The phenomena occur geometrically only in high dimensions, or probabilistically for a large number
of random variables with sufficient independence between them. For a standard reference, consult Ledoux
(2001).
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∑n
i=1 ρi = n (see Andrews (1998) for a standard reference). Ordering does not matter, i.e.,

partitions are identical up to permutation (e.g., there are 30 possible distinct reorderings

of vector (5, 1, 0, 0, 0, 0) which we consider identical). The elements of a partition indicate

the number of times a certain value is sampled during one bootstrap draw: #{z∗i = zi}.

Each partition ρ(l) ∈ P(n), l = 1, ..., L, defines a probability level set. As an example, we

set n = 6 and show all distinct partitions in Table 4.1. For n = 6, there are K =
(
2n−1
n

)
= 11!/(5!6!) = 462 grid nodes clustered in L = 11 partitions.

The partitions can be thought of as sets of leaves of a probability tree with n layers

and n branches at each layer. The number of possible paths through the tree that lead to

a specific level set is given by the multinomial coefficient al = n!

/∏n
i=1 ρ

(l)
i !. The number

of leaves for each level set is bl = n!

/∏Jl
j=1 c(ρ

(l))j!, where c(ρ
(l)) denotes the number of

counts for all Jl distinct values in ρ
(l). For instance, c((5, 1, 0, 0, 0, 0)) = (1, 1, 4). Finally,

the distinct probabilites pl for each level set l are given by

pl = al/a
⊤b = al(1/n)

n

and the total probaility of all nodes contained in a level set (i.e., the probability of

activating any node in the level set) by

ṗl = blδl = (blal)/a
⊤b = blal(1/n)

n.

Partition
ρ(l)

# Paths to node
al

# Nodes per level set
bl

Probability
pl

Total probability
ṗl

{6,0,0,0,0,0} 1 6 2.14× 10−5 1.29× 10−4

{5,1,0,0,0,0} 6 30 1.29× 10−4 3.86× 10−3

{4,2,0,0,0,0} 15 30 3.15× 10−4 9.65× 10−3

{4,1,1,0,0,0} 30 60 6.43× 10−4 3.86× 10−2

{3,3,0,0,0,0} 20 15 4.29× 10−4 6.43× 10−3

{3,2,1,0,0,0} 60 120 1.29× 10−3 1.54× 10−1

{3,1,1,1,0,0} 120 60 2.57× 10−3 1.54× 10−1

{2,2,2,0,0,0} 90 20 1.93× 10−3 3.86× 10−2

{2,2,1,1,0,0} 180 90 3.86× 10−3 3.47× 10−1

{2,1,1,1,1,0} 360 30 7.72× 10−3 2.31× 10−1

{1,1,1,1,1,1} 720 1 1.54× 10−2 1.54× 10−2

Table 4.1: Partitions for n = 6. There are K =
(
2n−1
n

)
= (2n−1)!

(n−1)!n!
=
∑L

l=1 bl = 462 grid
nodes clustered in L = 11 probability level sets.
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In this low-dimensional example, it is straightforward to compute the exact bootstrap

distribution, as given in equation (4.1). One just needs to evaluate all K nodes by

enumerating all bl distinct permutations for each partition (e.g., there are bl = 6 distinct

permutations of the partition {6,0,0,0,0,0}).

Described combinatorial derivation readily extends to alternative bootstrap sampling

procedures like the m-out-of-n bootstrap (Bickel et al., 1997). Let’s undertake the

partitioning exercise again for the scenario where n = 6 and m = 4, implying that we

sample fewer than n observations. The partitions are to be made over m, but each

partition vector ρ(l) must be extended with zeros to contain n elements. Calculations of

node activation probabilities via the probability tree routine remains almost unchanged.

Noticing that the tree has now m levels instead of n, we generalize the formula for the

number of paths as

al =

(
n∑

i=1

ρ
(l)
i

)
!

/ n∏
i=1

ρ
(l)
i !

and observe that m =
∑n

i=1 ρ
(l)
i .

The distinctive and cumulative level set probabilities read:

pl = al/a
⊤b = al(1/n)

m

ṗl = blpl = (blal)/a
⊤b = blal(1/n)

m.

Table 4.2 contains the partitions, probability tree elements and distinctive node

activation probabilities induced by the bootstrap which samples m = 4 our of n = 6

observations.

The geometric interpretation of the bootstrap which samples fewer than n observations

is that the induced grid, call it Gn,m, contains fewer grid nodes which are closer to the

boundary of the simplex. In the limiting case m = 1, Gn,1 contains only the vertices of

the simplex. Hence, the distribution of the 1 out of n bootstrap equals the empirical

distribution of the data F̂ (z). We will revisit the m-out-of-n bootstrap method in Chapter

4.4.2 when discussing bootstrap techniques with prior information.

154



Partition
ρ(l)

#Paths to node
al

#Nodes per level set
bl

Probability
pl

Total probability
ṗl

{4,0,0,0,0,0} 1 6 7.72× 10−4 4.63× 10−3

{3,1,0,0,0,0} 4 30 3.09× 10−3 9.25× 10−2

{2,2,0,0,0,0} 6 15 4.63× 10−3 6.94× 10−2

{2,1,1,0,0,0} 12 60 9.26× 10−3 5.56× 10−1

{1,1,1,1,0,0} 24 15 1.85× 10−2 2.78× 10−1

Table 4.2: Partitions for n = 6 and m = 4. There are K =
∑L

l=1 bl = 126 grid nodes
clustered in L = 5 probability level sets.

The learning from the above combinatorial exercise is that the total probability strongly

concentrates in relatively few partitions. In our low dimensional example, one third of

the total probability is attached to a single partition. With increasing n, only a small

fraction of all partitions will have non-neglectable total probability. For instance, when

n = 81, as in the example in Section 4.2.2 borrowed from Bertsimas and Sturt (2020),

there are roughly K = 1.83e+ 47 grid nodes and L = 18′004′327 partitions (i.e., distinct

probability level sets), out of which just 1863 make up for 99% of the total probability

(or, 8298 make up for 99.99% of the total probability which consists of roughly 41% of all

nodes). When running the bootstrap, it becomes overwhelmingly likely that the randomly

activated nodes belong to the group of partitions with high total probability.

Nodes within any partition (i.e., permutations) share some important geometric prop-

erties. First, they have identical Lp-norms for all p > 0.7 Second, the nodes have identical

entropy levels as well as relative rentropy w.r.t. to the centroid of the simplex (measured

in terms of Kullback-Leibler divergence).

Because of the concentration phenomenon of the partitions and because nodes within

any partition live on the surface of a ball and the fact that high probability partitions

have similar or identical distance measures, the overall distribution of nodes is strongly

concentrated within a thin shell. If that shell also accommodates most weights from the

BB (which it does), then it is clear that the two procedures produce inferentially similar

results.

If we randomly, i.e., with uniform probability, draw a point, from either the grid Gn

by sampling with replacement, or from the simplex by sampling from the flat Dirichlet

distribution, the length of that vector will not entirely random. With high probability, the

7Note that for p < 1 the function ||x||p = (|x1|p+ ...+ |xn|p)1/p) does not define a norm since it violates
the subadditivity property.
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length is going to be close to radius ED1(||ω||2) or EM1/n
(||ω||2). A simple upper bound on

|θ̂| is given by the Cauchy-Scharz inequality |θ̂| ≤ ||z||22 · ||ω||22 where ||z||22 is known and

||ω||22 can be bounded with high probability because of discussed concentration phenomena.

4.3 Exact moments

One of the primary applications of the bootstrap lies in the estimation of standard error

(SE) by the second central moment of the bootstrap distribution. Let us denote by ar and

µr the r-th initial and central moments of a random variable X respectively as ar = E(X
r)

and µr = E(X − E(X))r, r ∈ N. For the sample mean, denoted x̄, recall the well known

result µ2(x̄) =
µ2

n
which holds since E(x̄) = E

(
1
n

∑n
i=1 xi

)
= 1

n

∑n
i=1E(xi) = E(xi) = a1

and E ((x̄− a1)2) = 1
n2E

(
(
∑n

i=1(xi − a1))
2
)
= 1

n2

∑n
i=1E(xi − a1)2 =

µ2

n
.

The classical bootstrap of the sample mean (in the limit R→∞) recovers the moments

of the sampling distribution under F̂ . This is equivalent to replacing the unknown

population moments ar and µr with their sample counterparts âr(x) and µ̂r(x).

If we consider as the statistic of interest a weighted average x̄v :=
∑n

i=1 vixi for some

fixed weights vector v ∈ Sn−1, then the above expressions for the central moments are

easily adapted. Considering that E(x̄v) = E(
∑n

i=1 vixi) =
∑n

i=1 viE(xi) = E(xi) = a1 we

have

µr(x̄v) = E ((x̄v − E(x̄v))r) = E

((
n∑

i=1

vi(xi − a1)

)r)
.

For instance, for r = 2 we get

µ2(x̄v) = E

(
n∑

i=1

v2i (xi − a1)2 + 2
n∑

i=1

n∑
j>i

vivj(xi − a1)(xj − a1)

)

=
n∑

i=1

v2iE(xi − a1)2 = µ2

n∑
i=1

v2i

which is equal to µ2

n
when ∀i, vi = 1

n
. The double sum drops because ∀i, E(xi − a1) = 0.

The above evaluation considers the weights as given and vector x as random. Returning

to the formulation of θ̂ as a conditional estimate, the expectation is taken over the

distribution of the weights and the double sum no longer drops. Writing A = (zi−z̄)(zi−z̄)⊤,
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the expectation under M1/n is computed by a summation over all K grid node activation

probabilities pk as

EM1/n

(
(θ̂ − EM1/n

(θ̂))2
)
= EM1/n

( n∑
i=1

ωi(zi − z̄)

)2
 = EM1/n

(
ω⊤Aω

)
=

K∑
k=1

pk

[
(ω(k))⊤Aω(k)

]

which can be simplified to a summation over L as

K∑
k=1

pk

[
(ω(k))⊤Aω(k)

]
=

L∑
l=1

ṗlσl.

σl can be seen as a variance within a level set (i.e., within a set of permutations of a

partition), i.e.,

σl =
1

|Q(l)|
∑
j∈Q(l)

(ω(j))⊤Aω(j) =
1

|Q(l)|
∑
j∈Q(l)

 n∑
i=1

q
(j,l)
i zi −

1

|Q(l)|
∑
j∈Q(l)

n∑
i=1

q
(j,l)
i zi

2

where q ∈ Q(l), Q(l) denoting the set of all distinct permutations of partition ρ(l), as defined

in Section 4.2. Notice that 1
|Q(l)|

∑
j∈Q(l)

∑n
i=1 q

(j,l)
i zi =

1
n

∑n
i=1 zi = z.

Denoting the unbiased variance of z by σ(z), the above further simplifies in terms of

the (scaled) partition’s norm as

σl = σ(z)

(
||ρ(l)/n||22 −

1

n

)
.

Therefore,

V(θ̂) = σ(z)
L∑
l=1

ṗl

(
||ρ(l)/n||22 −

1

n

)
.

4.3.1 Exact standard error

Let ω̄ := E(ω). In either case, ω ∼ D1 or ω ∼ M1/n, the centre of mass corresponds to the

centroid of the simplex ω̄ = (1/n, ..., 1/n) with squared 2-norm ||ω̄||22 = 1
n
. Note that the

sum of the r-th power of the non-negative weights corresponds to
∑n

i=1 ω
r
i = ||ω||rr.

Further, let m2(z) denote the unbiased sample variance of z, defined in terms of the
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biased estimator m̃2(z) =
1
n

∑n
i=1(zi − z̄)2, z̄ = 1

n

∑n
i=1 zi, times a bias correction term

such that m2(z) = m̃2(z)
n

n−1
. Bear in mind that we treat z to be a fixed vector and that

therefore, the variance is not to be understood in a probabilistic sense but as a functional

such that m2(z) is a scalar.

Proposition 9. The standard error of the exact bootstrap distribution, classical and

Bayesian, of statistic θ̂ is given by

SE(θ̂) =

√
µ2(θ̂) =

√
m2(z) [E(||ω||22)− ||ω̄||22].

Proof of proposition 9 under ω ∼ M1/n.

First, let us establish that E(ω2
i ) =

2n−1
n3 , E(ωiωj) =

n−1
n3 and E(||ω||22) = 2n−1

n2 , which
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follows directly from the properties of the Multinomial distribution. Then,

E
(
(θ̂ − E(θ̂))2

)
= E

( n∑
i=1

ωizi −
n∑

i=1

ω̄izi

)2


= E

( n∑
i=1

ωi(zi − z̄)

)2


=
n∑

i=1

E(ω2
i )(zi − z̄)2 + 2

n−1∑
i=1

n∑
j>i

E(ωiωj)(zi − z̄)(zj − z̄)

=
1

n3

(
(2n− 1)

n∑
i=1

(zi − z̄)2 + (n− 1)2
n−1∑
i=1

n∑
j>i

(zi − z̄)(zj − z̄)

)

=
1

n3

(2n− 1)
n∑

i=1

(zi − z̄)2 + (n− 1)

( n∑
i=1

(zi − z̄)

)2

−
n∑

i=1

(zi − z̄)2


=
1

n3

(
(2n− 1)

n∑
i=1

(zi − z̄)2 + (n+ 1)
n∑

i=1

(zi − z̄)2
)

=
1

n2

n∑
i=1

(zi − z̄)2

and

m(z)
(
E(||ω||22)− ||ω̄||22

)
= m̃2(z)

n

n− 1

(
2n− 1

n2
− 1

n

)
=

(
m̃2(z)

n− 1
− 1

n2 − n

)
=

1

n2

n∑
i=1

(zi − z̄)2

thus recovering the well known standard error of the sample mean SE(z̄) =
√

m̃2(z)
n

.

For the BB, the expectation can be derived from the property of the Dirichlet distribu-

tion that the marginals have a Beta(α, β) distribution with moments E(Xr) =
∏r−1

v=0
α+v

α+β+v
,

i.e.,
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EDα(||ω||rr) = EDα(
n∑

i=1

ωr
i ) =

n∑
i=1

EDα(ω
r
i ) =

n∑
i=1

r−1∏
v=0

αi + v

α0 + v
. (4.4)

Hence, the standard error of the BB distribution for θ̂ can be expressed in terms of the

parameters of the posterior Dirichlet distribution as

µBB
2 (θ̂) = m2(z)

(
EDα(||ω||22)−

n∑
i=1

ω̄2

)
= m2(z)

(
n∑

i=1

1∏
v=0

αi + v

α0 + v
−

n∑
i=1

α2
i

n2

)
.

In the symmetric case, α = 1 (implying a Beta(1, n− 1) for the marginals), and

ED1(||ω||22) = n
1∏

v=0

1 + v

n+ v
=

2

n+ 1
.

Therefore,

µBB
2 (θ̂) = m2(z)

(
EDα(||ω||22)− ||ω̄||22

)
= m̃2(z)

n

n− 1

(
2

n+ 1
− 1

n

)
=

1

n(n+ 1)

n∑
i=1

(zi − z̄)2.

Proposition 9 is not limited to the bootstraps of Efron (1979) and Rubin (1981) but

extends to any parametrization of the respective models, i.e., ω ∼ Mπ or ω ∼ Dα. A proof

is given in Appendix 4C. It depends on an adjustment of the bias correction term which

will be discussed in Section 4.4 when we extend the respective bootstrap models to reflect

prior beliefs.

Corollary 10. The difference between the standard errors of the BB and the classical

bootstrap results from the difference in the expected squared 2-norm of the corresponding

weights:

µB
2 (θ̂)− µBB

2 (θ̂) = m2(z)
(
EM1/n

(||ω||22)− ED1(||ω||22)
)
.
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Given that EM1/n
(||ω||22) ≥ ED1(||ω||22) because 2n−1

n2 ≥ 2
n+1

it follows that µB
2 (θ̂) ≥

µBB
2 (θ̂) for all n. The rate of convergence (or divergence) depends on the data z, respectively

on its biased second sample moment m̃2(z) since µ
B
2 (θ̂) − µBB

2 (θ̂) = m̃2(z)(
1
n
− 1

n+1
) =

m̃2(z)
1

n2+n
.

Corollary 11. The mapping λ(n) = (n−1)2

n(n+1)
ensures that µB

2 (θ̂) = µBB
2,λ (θ̂) for some version

of the Bayesian bootstrap which uses a symmetric Dirichlet distribution parametrized by

α = 1λ(n).

Proof.

µB
2 (θ̂) = µBB

2,1λ(n)(θ̂) ⇔

EM1/n
(||ω||22) = ED1λ(n)

(||ω||22) ⇔
2n− 1

n2
=

1 + λ(n)

1 + λ(n)n

⇒ λ(n) =
(n− 1)2

n(n+ 1)
.

4.3.2 Exact higher central moments

Let m3(z) = m̃3(z)
n2

(n−1)(n−2)
, i.e., the third biased central moment m̃3(z) =

1
n

∑n
i=1(zi− z̄)3

times the bias correction term for the third central moment.

Proposition 12. The third central moment of the exact bootstrap distribution, classical

and Bayesian, of statistic θ̂ is given by

µ3(θ̂) = m3(z)
[
E(||ω||33)− 3E(||ω||22)||ω̄||22 + 2||ω̄||33

]
.

For the classical bootstrap we have EM1/n
(||ω||33) = 5n2−6n+2

n4 and hence,
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µB
3 (θ̂) = m3(z)

[
EM1/n

(||ω||33)− 3EM1/n
(||ω||22)||ω̄||22 + 2||ω̄||33

]
= m̃3(z)

n2

(n− 1)(n− 2)

[
5n2 − 6n+ 2

n4
− 3

2n− 1

n2

1

n
+ 2

1

n2

]
=

1

n3

n∑
i=1

(zi − z̄)3 =
m̃3(z)

n2
.

Plugging in the previously obtained value for the expected squared 2-norm when

ω ∼ D1 and further recognizing that E(||ω||33) = n
∏2

v=0
1+v
n+v

= 6
(n+1)(n+2)

, one finds the

third central moment of the BB distribution of θ̂ to be equal to

µBB
3 (θ̂) = m3(z)

(
ED1(||ω||33)− 3ED1(||ω||22)||ω̄||22 + 2||ω̄||33

)
= m̃3(z)

n2

(n− 1)(n− 2)

(
6

(n+ 1)(n+ 2)
− 3

2

n+ 1

1

n
+ 2

1

n2

)
=

2

n(n+ 1)(n+ 2)

n∑
i=1

(zi − z̄)3.

As for the standard error, proposition 17 holds for any parametrization of the Multi-

nomial or the Dirichlet models, as long as the bias correction term in m3(z) is correctly

adapted (see Section 4.4.1), implying the identity:

E
(
(θ̂ − E(θ̂))3

)
=

n∑
i=1

E(ω3
i )b

3
i + 3

n∑
i=1

n∑
j=1
j ̸=i

E(ω2
i ωj)b

2
i bj + 6

n−2∑
i=1

n−1∑
j>i

n∑
k>j

E(ωiωjωk)bibjbk

= m3(z)

(
E(||ω||33)− 3

n∑
i=1

ω̄iE(ω
2
i ) + 2||ω̄||33

)

where bi = (zi − z̄), i = 1, ..., n.8

8Under ω ∼ Dα one has:

E(ω3
i ) =

(αi + 2)(αi + 1)αi

(α0 + 2)(α0 + 1)α0
; E(ω2

i ωj) =
(αi + 1)αiαj

(α0 + 2)(α0 + 1)α0
; E(ωiωjωk) =

αiαjαk

(α0 + 2)(α0 + 1)α0
.
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Corollary 13. The difference in third central moments of the classical bootstrap and the

BB depends on EM1/n
(||ω||33)− ED1(||ω||33) + (EM1/n

(||ω||22)− ED1(||ω||22)).

From the closed-form expressions above one finds that, for any finite n,

µB
3 (θ̂)− µBB

3 (θ̂) = m̃3(z)

(
1

n2
− 2

(n+ 1)(n+ 2)

)
> 0.

Unlike the second and third central moments, where the distinction between biased

and unbiased moment estimators is a constant factor unaffected by the data, higher-order

moments require the computation of combinations of lower moments which results in

systems of equations that need to be solved. However, any higher order central moment

of the exact bootstrap distributions of linear statistics, Bayesian and classical, under flat

parametrization of the Dirichlet or the scaled Multinomial model, can in principle be

computed using the recursive schemes presented by Cales et al. (2021) and Angelova

(2012) respectively9. Cales et al. (2021) report average computation time for moments

up to r = 20 and sample size n = 10′000 to be roughly 0.05 seconds. We replicate their

algorithm for central moment computation in Appendix 4B adapted to our notation and

correcting a small error.

4.3.3 The moment problem

Since the moments of the exact bootstrap distributions can be computed in several cases, we

may attempt to address the inverse problem of reconstructing the bootstrap distributions

from a finite collection of moments. This poses a probabilistic instance of the (truncated)

moment problem. Engaging in a rigorous discussion on the moment problem is beyond

the scope of the current study. Nonetheless, we aim to provide a perspective for future

research in this direction. There are several approaches to compute approximants of

density functions from moments (or cumulants). Examples include the use of Pearson or

Johnson curves, series expansions of the type of Gram-Charlier, Edgeworth or Cornish-

Fisher, saddlepoint approximations or the maximum entropy principle. We recommend

consulting John et al. (2007) for more information on these methods and Provost (2005)

for a practically oriented overview.

9Effectively, the computation is limited by physical storage capabilities since it involves enumerating
all partitions of the integer moment degrees.
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The upcoming practical application serves to motivate further exploration into moment-

based bootstrap inference.

4.3.4 Numerical example revisited

Let us revise the numerical example given by Bertsimas and Sturt (2020) presented

in Section 4.2.2 concerning the estimation of the 0.025-quantile of the distribution of

θ̂. Re-running the BB procedure 100 times with R = 106 produced quantile estimates

ranging from 33.42 to 43.43 with mean 38.55942, highlighting the significance of the

randomization error. Recall that the true quantile, which we found using Varsi’s algorithm,

is 38.30214. We now approximate the quantile based on the exact central moments using

Algorithm 11 (see Appendix 4B) and making use of the package DPQutils from the open

source statistical programming language R which implements the Cornish-Fisher expansion

to directly approximate the quantile of interest from moments. The function first requires

a conversion of the central moments to cumulants which is straightforward. The function

returns a quantile value of 38.15213 based on the first 4 central moments and of 38.30071

based on the first 20 central moments.

# of moments included 2 3 4 5 ... 20

0.025-quantile estimate 27.58902 37.40548 38.15213 38.33664 ... 38.30071

Table 4.3: Quantile estimates based on the Cornish-Fisher expansion using the first 2 to
20 exact central moments of the BB distribution.

4.4 Informative priors

This Section expands upon the earlier analysis of the bootstrap methods to incorporate

prior information. For instance, we can contemplate sampling probabilities that deviate

from uniformity to express the belief that certain data elements hold more significance

than others in computing the statistic of interest. Instead of constraining the subjective

information to a model of z, we adhere to the viewpoint that the data are fixed and,

instead, manipulate the distribution of the weights.

We explore four types of modifications to the weight distribution, enabling the integra-

tion of prior beliefs: Asymmetry, concentration, constrained domain, and mixtures.
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4.4.1 Asymmetry

Asymmetry is encoded by non-uniform probabilities in the scaled Multinomial distribution

for the classical bootstrap and by a non-flat parameter vector of the Dirichlet distribution

in the case of the BB. By deviating from uniformity in the initial parameter elements

imparts prior information to either procedures which is why we use the term informative

prior for the Bayesian as well as the frequentist bootstrap alike. The non-uniformity in

the parameter elements then breaks the symmetry in the distribution of the weights.

In the classical bootstrap, unequal probabilities in the sampling procedure alter the

initially determined grid node activation probabilities. In the extreme scenario where

the probability vector of the scaled Multinomial distribution contains n distinct elements,

each grid node possesses a unique activation probability, causing the probability level sets

established in Section 4.2.3 to completely disappear.

For the BB, the distribution becomes skewed, with more mass concentrated towards

the vertices corresponding to the lowest αi. In both procedures, the center of mass deviates

from the centroid of the simplex (in the classical bootstrap, generally ω̄ /∈ Gn).

Propositions 9 and 17 can be extended to accommodate asymmetry by substituting

the estimates of the sample central moments of z, denoted as mr, with weighted central

moments and bias correction terms that account for the effective sample size.10

Recall that ω̄ := E(ω) which is known. The biased sample weighted central moments

are defined in terms of the weighted mean z̄ω̄ = 1
V1

∑n
i=1 ω̄izi and the sum of the weights

V1 =
∑n

i=1 ω̄i, as follows:

m̃r(z, ω̄) =
1

V1

n∑
i=1

ω̄i(zi − z̄ω̄)r; r = 2, 3, ...

The sample-size bias corrected weighted central moments are derived assuming inde-

pendent measurements and weights. They are defined in terms of sample estimators as

follows (Rimoldini, 2014):

10as the weightings become more uneven, the biased weighted variance tends to decrease. However,
increased unevenness in weightings makes the weighted mean more unstable, as it is increasingly influenced
by one or a few points with high weights. To address the statistical uncertainty in the mean, a bias
correction larger than the standard n

n−1 factor is necessary to compensate for the reduced degrees of

freedom. This correction involves replacing n with the effective sample size neff =
∑

i(vi)
2∑

i v
2
i
. Consequently,

neff

neff−1 is expressed as
(
∑

i vi)
2

(
∑

i vi)
2−

∑
i v

2
i
or equivalently 1

1−
∑

i v
2
i
for v ∈ Sn−1.

165



Vr =
n∑

i=1

ω̄r
i

m2(z, ω̄) =
V 2
1

V 2
1 − V2

m̃2(z, ω̄)

m3(z, ω̄) =
V 3
1

V 3
1 − 3V1V2 + 2V3

m̃3(z, ω̄).

When dealing with the fourth and higher moments, the bias correction terms become

excessively intricate11, making it challenging to provide a straightforward representation

in terms of (expected) norms. However, for the second and third central moments

of the bootstrap distribution, where weights are consistently non-negative, denoting

Vr =
∑n

i=1 ω̄
r
i = ||ω̄||rr, we can derive the following generic representations.

Proposition 14.

µ2(θ̂) = m̃2(z, ω̄)
E(||ω||22)− ||ω̄||22

1− ||ω̄||22
.

Proposition 15.

µ3(θ̂) = m̃3(z, ω̄)
E(||ω||33)− 3

∑n
i=1 ω̄iE(ω

2
i ) + 2||ω̄||33

(||ω̄||11)3 − 3||ω̄||11||ω̄||22 + 2||ω̄||33
.

The computation of the expectation of the r-th power of the r-norm works as detailed

in Section 4.3. Notice that ω̄ no longer constitutes the centroid of the simplex; rather, it

may assume any position on the simplex. Consequently, its r-th power r-norm is no longer

equal to n−(r−1) for a given n.

An important aspect is whether
∑n

i=1 αi = n. If this condition holds, the impact of

prior belief on the deviation of the BB distribution under prior information compared

to the BB distribution under a non-informative prior depends solely on the difference

between the weighted and unweighted biased sample central moments of the data vector.

For the second and third central moments the differences satisfy:

11For the fourth weighted central moment one has

m4(z, ω̄) =
V 2
1 (V 4

1 −3V 2
1 V2+2V1V3+3V 2

2 −3V4)

(V 2
1 −V2)(V 4

1 −6V 2
1 V2+8V1V3+3V 2

2 −6V4)
m̃4(z, ω̄)− 3V 2

1 (2V 2
1 V2−2V1V3−3V 2

2 +3V4)

(V 2
1 −V2)(V 4

1 −6V 2
1 V2+8V1V3+3V 2

2 −6V4)
m̃2

2(z, ω̄).
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µ2,ω̄(θ̂)− µ2(θ̂) ∝ m̃2(z, ω̄)− m̃2(z)

µ3,ω̄(θ̂)− µ3(θ̂) ∝ m̃3(z, ω̄)− m̃3(z).

Or equivalently,

µ2,ω̄(θ̂)

µ2(θ̂)
=
m̃2(z, ω̄)

m̃2(z)

µ3,ω̄(θ̂)

µ3(θ̂)
=
m̃3(z, ω̄)

m̃3(z)
.

Introducing prior information by altering the symmetry of the distribution of weights

is operationally straightforward, involving a simple adjustment of the hyperparameter.

When
∑n

i=1 αi = n, the influence on central moments is intuitive, as it is proportional to

the disparity between weighted and unweighted sample central moments. However, when∑n
i=1 αi ̸= n, an additional effect comes into play, related to the concentration of weights

around the mode. This represents the second approach for integrating prior information

into the bootstrap methodology, which we proceed to investigate subsequently.

4.4.2 Concentration

The central moments of the bootstrap distribution are influenced by the expected r-th

power of the distance of the weights to their mean. Modifying the distribution of weights

around the mean, either by concentrating or dispersing mass, has a direct impact on the

bootstrap distribution.

Consider the case of the BB distribution with a symmetric but non-flat Dirichlet

parameter α = 1λ. Here, λ ≥ 0 is a scaling parameter. For λ > 1, the distribution

becomes more concentrated around the centroid of the simplex, while λ < 0 pushes weights

outward towards the faces, edges, and vertices of the simplex, relative to the uniform

density implied by the flat base case (λ = 1).

As the parameter λ approaches infinity (and consequently α0 tends to infinity), the

mass converges to a singular point. This results in a degenerate distribution characterized
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by the Dirac delta function centered at the centroid. Conversely, as λ tends to zero (leading

to α0 approaching zero), the weight distribution becomes sharply focused around the n− 1

possible Dirac delta distributions, each centered on one of the corners of the simplex.

The computation of ED1λ
(||ω||rr) follows the expression in equation 4.4. In the cases

of r = 2 and r = 3, this results to

ED1λ
(||ω||22) =

1 + λ

1 + nλ
and ED1λ

(||ω||33) =
λ2 + 3λ+ 2

n2λ2 + 3nλ+ 2
.

Expressed in terms of log λ, the expectation exhibits the characteristics of a reverse

asymmetric sigmoidal function.

The parameter λ can be interpreted as a measure of prior confidence influencing the

uncertainty in the estimator θ̂(z). When λ > 1, uncertainty is reduced, whereas for λ < 1,

uncertainty is increased. In the extreme cases where λ → ∞ and λ → 0, all bootstrap

central moments converge to zero in the former and to the sample central moments of z in

the latter case.

In the classical bootstrap, a similar impact is achieved by modifying the number of

draws from the data vector, resulting in the m-out-of-n bootstrap (Bickel et al., 1997). As

detailed in Section 4.2.3, adjusting m gives rise to a new grid structure Gn,m with either

fewer nodes (m < n) compared to the base grid Gn induced by the classical n out of n

bootstrap. In such cases, nodes are positioned closer to the faces, edges, and vertices of

the simplex, indicating that EM1/n,m
(||ω||22) > EM1/n

(||ω||22). Conversely, when Gn,m has

more nodes (m > n) than Gn, nodes concentrate nearer to the centroid of the simplex,

resulting in EM1/n,m
(||ω||22) < EM1/n

(||ω||22).

The exact expected r-th r-norm can be computed as in Section 4.2.3 from the

node activation probabilities of grid Gn,m and partitions ρ, given by EM1/n,m
(||ω||rr) =∑n

i=1 ṗ
(l)||ρ(l)/n||rr. For instance, when m ≤ n, the calculation for EM1/n,m

(||ω||22) = m+n−1
mn

.

In either case, BB with λ ̸= 1 or classical bootstrap with m ̸= n, the impact of the prior

view on the posterior central moments is proportional to the difference in the expected

r-th power of the r-norm. Let ω ∼ D1 and ω
′ ∼ D1λ (or ω ∼ M1/n and ω

′ ∼ M1/n,m).

Then,
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µ
′

2(θ̂)− µ2(θ̂) ∝ E(||ω
′||22)− E(||ω||22)

µ
′

3(θ̂)− µ3(θ̂) ∝ E(||ω
′||33)− E(||ω||33) + E(||ω

′ ||22)− E(||ω||22)

Further notice that setting λ = 1−m
1−n

+ m−1
n(1−n)

= m−1
n

ensures that µB
2,m(θ̂) = µBB

2,λ (θ̂).

An alternative, non-analytical approach to introducing prior uncertainty into the boot-

strap procedure (both classical and Bayesian) is to initially sample weights uniformly and

then (non-linearly) push weights toward the vertices by applying ω′
i = ωq

i /
∑n

i=1 ω
q
i . This is

based on the observation that as q →∞, ||ω||q → max
i
, ωi, meaning that weights converge

to a vector of all zeros except for a one at the position of the initially largest weight. The

expected distance measure becomes E(||ω′||rr) = E(|| ωq

||ω||qq ||r
r) = E

(∑n
i=1

(
ωq
i∑n

i=1 ω
q
i

)r)
=∑n

i=1 E (ωqr
i (
∑n

i=1 ω
q
i )

−r).

4.4.3 Constrained domain

An additional method for integrating prior information entails imposing restrictions on the

distribution support of the weights. For the classical bootstrap, this would mean to discard

certain nodes of grid Gn. For the BB, the restriction we consider here involves subsetting

the simplex through linear constraints to form a polytope (i.e., slicing the simplex with

hyperplanes).

Constraining the simplex means that we can no longer make use of the Dirichlet

distribution as it is a distribution over the entire simplex. However, in specific instances,

it is feasible to manipulate the domain to create a variation of the Dirichlet model that

facilitates a straightforward extension of propositions 14 and 15. One such model is

the shadow Dirichlet distribution, proposed by Frigyik et al. (2010). If ω ∼ Dα and

T an n × n left-stochastic matrix (i.e., each column sums to one) of full rank, then

Rω =: ω̃ ∼ SD(T , α), where SD denotes the shadow Dirichlet model with pdf

f(ω̃) =
1

|det(T )|B(α)

n∏
i=1

(T −1ω̃)αi−1
i .

Frigyik et al. (2010) describe how to construct a shadow Dirichlet for three types of
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restricted domains: regularized pmf’s, bounded variation between pmf components, and

monotonic pmfs.

Figure 4.2 visualizes the shadow of a flat Dirichlet distribution restricted by a mononotic

T which has k−th column [0 ... 0 1/(n−k+1)...1/(n−k+1)]⊤. The resulting constrained

weights are uniformly distributed over the restricted domain given by the orange surface.

Within this domain it holds that ω1 > ω2 > ... > ωn.

Figure 4.2: Grey surface: ω ∼ Dα. Orange surface: ω ∼ SD(T , 1). Grey circle: Ω := {ω ∈
Sn−1 : ||ω||22 = E(||ω||22)}. Red ellipsoid: T Ω. Grey line: Hyperplane with normal z. Red
line: Hyperplane with normal T ⊤z.

If we were to solve for the standard error under the shadow Dirichlet model, i.e.,

ESD

((
θ̂ − ESD(θ̂)

)2)
, as we did in Section 4.3, we could proceed with the expres-

sions ESD(ω̃iω̃j) =
(
T Cov(ω)T ⊤)

ij
+
(
T α

α0

)
i

(
T α

α0

)
j
and ESD(ω̃

2
i ) =

(
T Cov(ω)T ⊤)

ii
+(

T α
α0

)2
i
. However, rather than going through the algebra it suffices to replace the variance

of the data in Proposition 9 with the weighted variance of transformed data, i.e., replacing

i.e., m2(z, ω) with

m2(M, z, ω) =
m∑
j=1

ω̄j

(
(T ⊤z)j − T ⊤z̄

)2( 1

1−
∑m

j=1 ω̄
2
j

)
.

Notice that the columns in T represent the vertices of the constrained simplex which

we denote by ST .
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Proposition 16.

µ2(θ̂) = m2(T , z, ω)
(
E(||ω||22)− ||E(ω)||22

)
=

(
m∑
j=1

ω̄j

(
(T ⊤z)j − T ⊤z̄

)2) E(||ω||22)− ||ω̄||22
1− ||ω̄||21

.

Proposition 17.

µ3(θ̂) = m3(T , z, ω)
(
E(||ω||33)− 3E(||ω||22)||ω̄||22 + 2||ω̄||33

)
=

(
m∑
j=1

ω̄j

(
(T ⊤z)j − T ⊤z̄

)3) E(||ω||33)− ||ω̄||33 − 3
∑n

i=1 ω̄iE(ω
2
i ) + 3||ω̄||33

(||ω̄||11)3 − 3||ω̄||11||ω̄||22 + 2||ω̄||33
.

When ω̃ ∼ SD(T ,1), i.e., T −1ω̃ = ω follows a flat Dirichlet distribution, then Varsi’s

algorithm (10) can be used to compute the full bootstrap distribution exactly.

Proposition 18. Let H(T , z, γ) := {h ∈ Rn|z⊤T h ≤ γ} denote a half-space with normal

T ⊤z and scalar γ. Then CT (γ) = P(θ̂(T , z, ω) ≤ γ) = V (Sn−1∩H(T ,z,γ))
V (Sn−1)

.

Proof.

CT (γ) = P(θ̂ ≤ γ) =

∫
ST

f(ω)1{z⊤ω ≤ γ}dω

=

∫
ST

1

|det(T )|B(α)

n∏
i=1

ωαi−1
i 1{z⊤ω ≤ γ}dω

=
1

|det(T )|
1∫

Sn−1

∏n
i=1 ω

αi−1
i dω

∫
ST ∩H(z,γ)

n∏
i=1

ωαi−1
i dω

=
1

|det(T )|
V (ST ∩H(z, γ))

V (Sn−1)

=
V (ST ∩H(z, γ))

V (ST )
|det(T )|−1

|det(T )|−1

=
V (Sn−1 ∩H(T , z, γ))

V (Sn−1)
.

4.4.4 Mixtures

Our findings so far can be extended by examining weights that adhere to a mixture of

previously discussed distributions. In the case of finite mixtures, let us consider a vector v

171



with a finite integer J elements, where vj > 0 and
∑J

j=1 vj = 1. The central moments of

the distribution of the statistic θ̂ based on weights ω ∼ Mix(v) can be expressed as follows:

µMix(v)
r (θ̂) =

J∑
j=1

vjµ
(j)
r (θ̂).

For instance, for r = 2, one has

µ
Mix(v)
2 (θ̂) =

J∑
j=1

vjm2(z, ω
(j))
(
E(||(ω(j)||22)− ||E(ω(j))||22

)

where ω(j) follows a different distribution for each j = 1, ..., J .

Taking v(a) to be a probability density and a ∈ A it is thinkable to extend the idea to

compound distributions

µMix(v(a))
r (θ̂) =

∫
A
v(a)µ(a)

r (θ̂)da.

4.5 Applications

We next explore three statistical procedures commonly subjected to bootstrap applications:

regression, eigenvalue estimation, and nonparametric kernel density estimation. The reader

will certainly find more examples. In the first application we want to learn about the

distribution of the regression coefficients. In the second case we are interested in the

distributon of eigenvalues and in the third case we show how to use our results on the

bootstrap for density approximation based on kernel methods. The examples are presented

from a procedural standpoint without delving into a detailed analysis of their properties,

as such an analysis would exceed the scope of this article.

By utilizing either Varsi’s algorithm for obtaining the exact bootstrap distribution or

the exact central moments based on the norms of the weights to approximate the bootstrap

distribution via the Cornish-Fisher expansion, we significantly reduce computational
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complexity. Moreover, these approaches eliminate the need for sampling and fully eradicate

randomization error.

4.5.1 Regression

The bootstrap has been proposed as a data-driven alternative for conducting inference in

regression, offering a departure from some of the conventional assumptions and asymptotic

arguments.

Consider the linear regression model

y = Xβ + ε (4.5)

with response variable y = {yi}ni=1, covariates X = {xi}ni=1 where xi = (xi,1, ..., xi,d), error

term ε = {εi}ni=1 and β = (β1, ..., βd)
⊤ the unknown parameter of interest. There are two

main classes of bootstrap regressions distinguished by their resampling plans: those acting

on the data and those acting on the residuals.

In the former case, where manipulation is made on the data, one resamples the rows

of the observed data matrix (y,X), i.e., the dependent variable and the independent

variables are always selected in pairs, hence the name pairs bootstrap (Freedman, 1981).

Ordinary least squares (OLS) estimates are then computed on the resampled data as

β̂∗ = (X∗⊤X∗)−1X∗⊤y∗. Alternatively, rather than by resampling we may introduce

random weights ω stored in a diagonal matrix W and write β̃ =
(
X⊤WX

)−1
X⊤Wy =

β +
(
X⊤WX

)−1
X⊤Wε.

This formulation is equivalent to the weighted least squares (WLS) estimator used

for addressing heteroskedasticity, except that in WLS, the weights are not random but

typically correspond to the reciprocal of the skedastic function v(x) = E(ε2|x) determining

the conditional heteroskedasticity (see e.g., Romano and Wolf (2017)). Applied to the

classical pairs bootstrap, weights follow a Multinomial law with E(ωi) = 1, ∀i. However,

by constructing random weights which satisfy E(ω) = 1/v̂(x), for instance via ω ∼ Dα,

with α ∝ 1/v̂(x), one gets a pairs bootstrap which is also an instance of WLS regression

with incorporated uncertainty about the skedastic function. This addresses the limitation

of the WLS theory, which assumes that the weights are known exactly, a rare occurrence.

Unfortunately, with this added complexity, there is no longer a closed form for the
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covariance of the regression coefficients. From this perspective, the second bootstrap

variant, acting on the residuals, is more attractive.

In the residuals bootstrap, coefficients are initially estimated on the full sample

using OLS: β̂ = (X⊤X)−1X⊤y. The residuals are then resampled (with replacement)

and incorporated into model (4.5), leading to altered response variables y∗ = Xβ̂ + ε̂∗.

This, in turn, allows for the re-estimation of the coefficients: β̃∗ = (X⊤X)−1X⊤y∗ =

(X⊤X)−1X⊤(Xβ̂ + ε̂∗). As before, we can reformulate the equation in terms of (scaled)

random weights W = diag(ω)n as β̃ = (X⊤X)−1X⊤(Xβ̂ +Wε̂) = β̂ + (X⊤X)−1X⊤Wε̂.

The second-step estimations are conditional on X and β̂, and we can express them as

E(β̃|X, β̂) = β̂ + (X⊤X)−1X⊤E(W )ε̂

and

Cov(β̃|X, β̂) = E

((
β̂ + (X⊤X)−1X⊤ − β̂ − (X⊤X)−1X⊤E(W )ε̂

)2)
= E(AWΣWA)− b2

where A = (X⊤X)−1X⊤, Σ = ε̂ε̂⊤, b = (X⊤X)−1X⊤E(W )ε̂ and E(W ) = diag(ω̄) with

ω̄ = E(ω).

Let aj denote the j-th row of matrix A, then

β̃j = β̂j + ω⊤ (a⊤j ⊙ ε̂)n︸ ︷︷ ︸
=:z

where ⊙ denotes the Hadamard product (i.e., elementwise multiplication). By proposition

14 and acknowledging that β̂j|z is a constant we have

SE(β̃j) =
√
m2(z, ω̄) (E(||ω||22)− ||ω̄||22).

Taking ω ∼ M1/n, this reduces to SE(β̃) = (
∑n

i=1((z − z̄)2)/n2)
1/2

. In contrast, the

variance of the classical residual bootstrap estimator is SE(β̂∗) = (σ2
ε∗(X

⊤X)−1)1/2 where

σ2
ε∗ is the average variance of the bootstrap error terms. The formulation in terms of
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random weights offers an advantage as it allows for easy modification of the bootstrap

resampling plan by changing the distribution of the weights. Additionally, it is worth

noting that if we choose ω ∼ D1, then the complete distribution of β̃j becomes available.

In our approach, conditional heteroskedasticity can be addressed in two ways. The

first solution involves scaling the OLS residuals by a factor dependent on the leverage

value, i.e., the diagonal elements of the hat matrix hii =
[
X(X⊤X)−1X⊤]

ii
. This scaling

is given by ε̂i
1−hii

, as originally suggested in Wu (1986), underlying the wild bootstrap.

This approach is used in the Heteroskedasticity Consistent Covariance Estimators (HCCE)

introduced in MacKinnon and White (1985). With this formulation, it is reasonable to

take weights from a flat Dirichlet distribution.

The second possibility is to choose a Dirichlet parametrization α ∝ 1
1−hii

for the weights

without adding any scaling to the OLS residuals. Unlike the first variant, selecting an

asymmetric distribution for the random weights vector adjusts the uncertainty on each

residual corresponding to the i-th leverage term. While the full conditional distribution of

the coefficient is no longer available, exact central moments still are.

We note that all the results discussed also apply to regressions under Rigde regu-

larisation, i.e., with L2 penalty, since in this case: β̂ = (X⊤X + λI)−1X⊤y ⇒ A =

(X⊤X + λI)−1X⊤ and b = (X⊤X + λI)−1X⊤E(W )ε̂.

4.5.2 Eigenvalue Estimation

The distribution of eigenvalues for a class of rotation equivariant (i.e., with constant

eigenvectors) covariance matrices can be estimated in the following manner.

Let X denote an elliptically distributed random vector having mean zero and covariance

Σ = Cov(X) with eigenvector matrix Γ and diagonal eigenvalue matrix Λ allowing for the

factorization Σ = ΓΛΓ⊤. Let S = XΓ be principal components such that Cov(S) = Λ.

Taking sj to be the j-th column of S one has E(sj) = λj, where λj is the j-th eigenvalue.

We aim to learn about the distribution of the average of an estimate λ̂j obtained from

the sample covariance matrix Σ̂ = Cov({Xt}Tt=1). Let us write λ̃j =
∑n

i=1 ωizi, where

ω is a random probability vector and z is the squared j-th sample principal component

z = s̃2j obtained from the rotated data sample {Xt}Tt=1. Then, the standard error of the

bootstrap distribution of the mean of the j-th eigenvalue can be derived analytically
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using our previous results. Under ω ∼ D1, the entire exact bootstrap distribution of λ̃j is

computable using Varsi’s algorithm.

4.5.3 Nonparametric Density Estimation

Let y = (y1, y2, ..., yn) be an iid sample drawn from some univariate distribution with an

unknown density f . A common way to estimate f from data is to use kernel smoothers.

The kernel density estimator (KDE) accredited to Rosenblatt (1956) and Parzen (1962) is

f̂h(y) =
1

n

n∑
i=1

Kh(y − yi) =
1

nh

n∑
i=1

K
(y − yi

h

)
,

where K is the kernel and h > 0 is a smoothing parameter called the bandwidth.

Bootstrap applications to KDE are mainly twofold: i) bandwith selection and ii)

confidence interval estimation. In the first case, the bootstrap analog to the Parzen-

Rosenblatt estimator, which is

f̂ ∗
h(y) =

1

n

n∑
i=1

Kh(y − y∗i ),

is used to pick h so as to minimize the mean integrated squared error (MISE)

E∗
∫ (

f̂ ∗
h(y)− f̂h′(y)

)2
dy,

where h′ is a pilot bandwith and E∗ denotes the expected value w.r.t. the bootstrap

sample.

In the second case, confidence intervals about the estimated f̂h at a given value x are

drawn from the bootstrap distribution of f̂ ∗
h(x).

To leverage on our previous results, define a bootstrap estimator as a randomly weighted

sum of kernel function values zi = Kh(y − yi), i.e., as

f̂h,ω(y) =
n∑

i=1

ωizi. (4.6)

Under ω ∼ D1 Varsi’s algorithm returns the exact quantile values of the distribution
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of f̂h,ω(x). Beside the elimination of randomization error and the improvements in compu-

tational speed, another advantage of this approach is that confidence bounds are smooth

(just like the KDE).

Further, the ideas from Section 4.4 to include prior information draw a link to conditional

kernel density esimation. Let x = (x1, ..., xn) be an iid data sample from a second random

variable X ∈ Rp having continuous distribution and density f(x). Consider the Nadaraya-

Watson kernel smoother first proposed in Rosenblatt (1969):12

f̂h(y|x) =
n∑

i=1

vi(x)Khy(yi − y)

with weight function

vi(x) =
Khx(xi − x)∑n
i=1Khx(xi − x)

.

and smoothing parameter h = (hy, hx).

Let us define random weights such that E(ωi) = vi(x). For instance, we may choose a

Dirichlet distribution with parameter α = v(x)n. Doing so, we get

f̂h,ω(y|x) =
n∑

i=1

ωizi

which comes with standard error and third central moment for free as we can apply

propositions 14 and 15.

Additionally, one could think of adding a data-driven (i.e., automatically tuned)

concentration parameter λ(x) > 0 and use a Dirichlet model with α = v(x)nλ(x) creating

a wider spread for the distribution of f̂h,ω(x)(y|x) in sparsly populated neighbourhoods of

x, e.g., using λ(x) = e−
∑n

i=1 v(x) log(v(x)) ∈ [1/n, 1].

4.6 Conclusion and further discussion

In our examination of nonparametric bootstrap techniques, we approached the subject

from a geometric perspective. We identified that the various methods, which include both

classical and Bayesian frameworks, can be effectively represented by random weights. We

12See also Nadaraya (1964) and Watson (1964).
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found that there is a one-to-one correspondence between the resampling plan and the

model of the random weights.

The geometric properties of the distribution of the weights were then mapped to exact

results on the bootstrap distributions. For example, we demonstrated that the Bayesian

bootstrap distribution proposed by Rubin (1981) for linear statistics can be expressed

in terms of the ratio of the volume of the intersection of a standard unit simplex with a

half-space over the volume of the simplex. This ratio can be computed exactly using a

closed-form expression provided in Lasserre (2015) or an exact iterative formula proposed

by Varsi (1973). As a result, Rubin’s bootstrap distribution and inferential results can be

obtained directly without resorting to sampling procedures, regardless of the distribution

of the data x.

We further established a link between the exact central moments of the bootstrap

distribution and the (expected) norm of the random weights which holds for all commonly

used bootstrap procedures. Additionally, we discussed methods for incorporating prior

information into bootstrap procedures by integrating the information into the parametriza-

tion of the distribution of the weights, inherently resulting in an adjusted resampling

plan.

Finally, applications were discussed where it is common to use bootstraped standard

errors, which by our solution, are given without a need for resampling.

The following considerations present avenues for further exploration.

Dependent data. Discussed bootstrap methods assume that data are iid. Extensions to

dependent data include the moving block bootstrap (Künsch, 1989), the non-overlapping

block bootstrap (Carlstein, 1986), the circular block bootstrap (Politis and Romano,

1992) and the stationary bootstrap (Politis and Romano, 1994). See Lahiri (1999)13 for a

comparison of the of the different methods.

Instead of sampling blocks, let us define g(xt) =
∑

(t−b):t(xt − x̄)2, i.e., we apply a

rolling average over the time series {xt}Tt=1 where b defines the block length. Then, run

a bootstrap where at each step, sampling with replacement is done n/b = m < n times.

13See also Nordman (2009) which correct an error in Lahiri’s calculation of the variance associated with
the stationary bootstrap of Politis and Romano (1994).
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The resulting m-out-of-n bootstrap distribution is equivalent to the overlapping block

bootstrap.

Information theoretic considerations. The concept of typicality from information

theory allows for a characterization of the sequence of sampled partitions discussed in

Section 4.2.3. When running the bootstrap R times, the average log probability of the

sequence of sampled partitions will be close to the entropy of the distribution of the par-

titions. Formally, − 1
B
log2 p(ρ1, ...ρB) ≈ H(P(n)) where H(P(n)) =

∑L
l=1 p(ρl) log2

1
p(ρl)

.

Note that the most likely sequence, the one where the most likely partition is sampled

R times, does not belong to the typical set since (max p)B ̸≈ 2−BH(P(n)). Because typical

sequences assume a probability about 2−BH(P(n)) and their total probability is almost 1,

the size of the typical set has to be approximately 2BH(P(n)).

When running the classical bootstrap, the sequence of partitions induced by the

activated grid nodes likely belongs to the typical set of such sequences when R is chosen

large enough. Hence, the information-theoretic perspective provides a means to choose R.
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Dirksen, H. (2017). Sections of the regular simplex volume formulas and estimates.

Mathematische Nachrichten, 290:2567 – 2584.

Efron, B. (1979). The bootstrap: Another look at the jacknife. The Annals of Statistics,

7:1 – 26.

Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics, 9:1218

– 1228.

Frigyik, B., Gupta, M., and Chen, Y. (2010). Shadow dirichlet for restricted probability

modeling. Advances in Neural Information Processing Systems 23, pages 613 – 621.

John, V., Angelov, I., Oncül, A. A., and Thévenin, D. (2007). Techniques for the recon-

struction of a distribution from a finite number of its moments. Chemical Engineering

Science, 62:2890 – 2904.
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Appendix

4A Algorithm of Varsi (1973)

ALGORITHM 10: Varsi’s algorithm

Compute ui = zi − γ, i = 1, ..., n.

Label non-negative ui as u
+
1 , ..., u

+
F and negatives as u−1 , ..., u

−
H .

Initialize A0 = 1, A1 = A2 = ... = AF = 0.

For h = 1, ..., H repeat Af =
u+
f Af−u−

h Af−1

u+
f −u−

h

, f = 1, ..., F .

Then, for h = H, Af = V (Sn−1∩H(z,γ))
V (Sn−1)

.

4B Algorithm of Cales et al. (2021)

ALGORITHM 11: Exact central moments under ω ∼ D1

Input : set of all partitions of integer r: P(r)

Output : r-th central moment µr(θ̂)

Set S = 0;

foreach ρ ∈ P(r) do
decompose ρ in its d unique non-zero elements (lj)

d
j=1 with multiplicities

(pj)
d
j=1;

a =
d∏

j=1

(
n∑

i=1

(zi − z̄)lj
)pj

;

b =
d∏

j=1

pj!l
pj
j ;

S = S + a/b;

end

return µr(θ̂) = S/
(
n−1+r

r

)
;
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4C Proof of proposition 14 under ω ∼ Dα

LHS = E
(
(θ̂ − E(θ̂))2

)
= E

( n∑
i=1

ωi(zi − z̄)

)2


=
n∑

i=1

E(ω2
i )(zi − z̄)2 + 2

n−1∑
i=1

n∑
j>i

E(ωiωj)(zi − z̄)(zj − z̄)

=
n∑

i=1

αi(αi + 1)

α0(α0 + 1)
(zi − z̄)2 + 2

n−1∑
i=1

n∑
j>i

αiαj

α0(α0 + 1)
(zi − z̄)(zj − z̄)

=
1

α0(α0 + 1)

(
n∑

i=1

αi(zi − z̄)2 +
n∑

i=1

α2
i (zi − z̄)2 + 2

n−1∑
i=1

n∑
j>i

αiαj(zi − z̄)(zj − z̄)

)

=
1

α0(α0 + 1)


n∑

i=1

αi(zi − z̄)2 +

(
n∑

i=1

αi(zi − z̄)

)2

︸ ︷︷ ︸
=0=

∑n
i=1 αi(zi− 1

α0

∑n
i=1 αizi)=

∑n
i=1 αizi−

∑n
i=1

αi
α0

∑n
i=1 αizi


=

1

α0(α0 + 1)

n∑
i=1

αi(zi − z̄)2.

RHS =
n∑

i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
E(||ω||22)− ||ω̄||22

)
=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
n∑

i=1

αi(αi + 1)

α0(α0 + 1)
−

n∑
i=1

α2
i

α2
0

)

=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
n∑

i=1

α0(α
2
i + αi)− (α0 + 1)α2

i

α2
0(α0 + 1)

)

=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
1

α2
0(α0 + 1)

n∑
i=1

(α0αi − αi)

)

=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
α2
0 −

∑n
i=1 α

2
i

α2
0(α0 + 1)

)

=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
1−

∑n
i=1(

αi

α0
)2

α0 + 1

)

=
∑
i=1

ω̄i(zi − z̄)2
1

1−
∑n

i=1 ω̄
2
i

(
1−

∑n
i=1 ω̄

2
i

α0 + 1

)
=
∑
i=1

(
αi

α0

)
(zi − z̄)2

1

α0 + 1

=
1

α0(α0 + 1)

∑
i=1

αi(zi − z̄)2.
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4D Closed-form expressions

Closed-form expressions of the first four scaled central moments (i.e., mean, variance,

skewness and kurtosis) of the exact classical and Bayesian bootstrap distribution.

Let us define sample skewness and sample kurtosis as sk(z) =
1
n

∑n
i=1(zi−z̄)3

[ 1n
∑n

i=1(zi−z̄)2]
3/2 and

k(z) =
1
n

∑n
i=1(zi−z̄)4

[ 1n
∑n

i=1(zi−z̄)2]
4/2 . Then:

MB
2 =

1

n2

n∑
i=1

(zi − z̄)2

MB
3 =

1

M
3/2
2

1

n3

n∑
i=1

(zi − z̄)3

= sk(z)
1

n1/2

MB
4 =

1

(MB
2 )2

1

n4

n∑
i=1

(zi − z̄)4 + 3− 3

n

= k(z)
1

n
+ 3− 3

n

and

MBB
2 =

1

n(n+ 1)

n∑
i=1

(zi − z̄)2

MBB
3 =

1

M
3/2
2

2

n(n+ 1)(n+ 2)

n∑
i=1

(zi − z̄)3

MBB
4 =

1

M2
2

1

n(n+ 1)(n+ 2)(n+ 3)

6
n∑

i=1

(zi − z̄)4 + 3

(
n∑

i=1

(zi − z̄)2
)2
 .

Under the Multinomial model with non-uniform probabilities we have:
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MB
2 (ω̄) =

1

n

n∑
i=1

ω̄i(zi − z̄ω̄)2

=
s̃ω̄
n

MB
3 (ω̄) =

1

(M ω̄
2 )

2

1

n2

n∑
i=1

ω̄i(zi − z̄ω̄)4

= sk(z, ω̄)
n1/2

n

MB
4 (ω̄) =

1

(M ω̄
2 )

2

1

n3

n∑
i=1

ω̄i(zi − z̄ω̄)4 + 3− 3

n

= k(z, ω̄)
1

n
+ 3− 3

n
.

Under the flat Dirichlet Model one has:

MBB
2 (ω̄) =

1

n+ 1

n∑
i=1

ω̄i(zi − z̄ω̄)2

=
s̃ω̄

n+ 1

MBB
3 (ω̄) =

1

(M ω̄
2 )

3/2

2

(n+ 1)(n+ 2)

n∑
i=1

ω̄i(zi − z̄ω̄)3

= sk(z, ω̄)
2(n+ 1)1/2

n+ 2

MBB
4 (ω̄) =

1

(M ω̄
2 )

2

1

(n+ 1)(n+ 2)(n+ 3)

6
n∑

i=1

ω̄i(zi − z̄ω̄)4 + 3n

(
n∑

i=1

ω̄i(zi − z̄ω̄)2
)2


=
3(n+ 1)

(n+ 2)(n+ 3)
(2k(z, ω̄) + n) .
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Chapter 5

Good and Bad Turbulence

Cyril Bachelard

A version of the article has been submitted to Journal of Applied Econometrics.

Abstract

Kritzman and Li (2010) quantified financial turbulence by the squared Mahalanobis
distance applied to the cross-section of asset returns and advocated its adoption as an
effective indicator of market turmoil, aiding decision making in portfolio selection and risk
management. In this study, we empirically and theoretically assess the predictive power of
their indicator. We establish a set of jointly sufficient conditions on the data generating
process of asset returns to validate its applicability for dynamic hedging. Additionally, we
explore potential pitfalls in practical applications and propose an enhanced indicator based
on the discrepancy between two smoothed distance measures. This improved indicator
effectively distinguishes good from bad turbulence in the sense of turbulent but favorable
versus turbulent and unfavorable market developments. Our approach extends discriminant
analysis to a nonparametric framework specifically designed for financial time series that
exhibit non-normal distribution and temporal dependence.

JEL classification: C11, C13, C14, C32, C38, C58.

Keywords: Mahalanobis Distance, Dynamic Hedging, Discriminant Analysis, Stochastic

Volatility, GARCH.
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5.1 Introduction

Turbulence qualitatively describes a state of confusion and disorganized change. In

a financial context, the term is used to describe episodes of turmoil characterized by

large market swings. Like the physical phenomenon, the economic interpretation comes

with a negative connotation and intuition dictates that investors should steer clear of

turbulent events. Typical ingredients used to cook up indicators of financial turbulence

include (implied) volatility, correlations, spreads and liquidity as well as macroeconomic

factors. Chow et al. (1999) and Kritzman and Li (2010) related financial turbulence to the

mathematical concept of distance and its use to detect unusual patterns in stock market

price fluctuations. The authors define instances as unusual when a vector of asset returns,

xt ∈ Rn, representing the cross-section of price changes for a set of n assets from time t− 1

to t, deviates significantly from the center of the multivariate asset return distribution. In

other words, the irregularity of a data point xt, relative to other data points, is measured

by its distance from the distribution’s center.

Kritzman and Li (2010) state that the dates where one observes such distant or outlying

observations tend to cluster over time and that those episodes which they call turbulent

are characterized by substantially lower risk adjusted returns than those observed during

non-turbulent, i.e., quiet periods. Their definition aligns with the negative connotation

of turbulence, signifying undesirable and persistent circumstances. The authors further

highlight the potential for mitigating losses by acting on early warning signals derived

from a distance-based monitoring of market conditions. Although it may not be possible

to anticipate the initial shock, quickly adjusting investment positions through hedging

or reallocating to safe havens after a spike in turbulence is detected can be advisable

to minimize exposure to subsequent aftershocks, which tend to occur because of the

persistence property of the turbulence measure.

The methodology presented by Chow et al. (1999) and Kritzman and Li (2010) utilizes

the Mahalanobis distance as the underlying metric for measuring turbulence. This distance

is commonly used in multivariate outlier detection and is closely related to Hotelling’s T-

square distribution, which is used for multivariate statistical testing. From this perspective,

monitoring market turbulence boils down to multivariate outlier detection. But why should

multivariate outliers in return series cluster over time and more often than not reside in
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the negative orthant? And are these two features sufficient for a turbulence-based risk

management approach to provide the desired protection?

In the following section we will demonstrate that the empirical observations regarding

the persistence and negative correlation of turbulence with market returns find support in

the academic literature. These findings can be partly explained by two well-established

stylized facts1 of asset returns (Cont, 2001): volatility clustering and the leverage effect.

However, the two features alone are not enough to create a meaningful turbulence-based

investment strategy. To make such a strategy viable, a further condition on the data

generating process of asset returns is required. A simple simulation will make this point

clear.

While being straightforward and accessible, the practical effectiveness of a Mahalanobis-

based monitoring of market developments is limited. This limitation arises from two

primary factors: i) trading costs and ii) missed profits resulting from false positive signals.

While the issue of trading costs can be mitigated through signal filtering techniques, the

missing out problem is more inherent. Although turbulence values spike during market

crashes, they also exhibit such spikes during strong market rallies. This symmetry poses a

problem for a turbulence-based risk management approach as it is prone to overlooking

subsequent rebounds that typically follow significant negative market corrections. Our

primary contribution is the introduction of an alternative Mahalanobis-based measure

that effectively distinguishes between good and bad turbulence, corresponding to unusual

positive and negative returns, respectively.

We promote a change of perspective in the use of the Mahalanobis distance for

turbulence identification. While the approach based on the work of Chow et al. (1999)

and Kritzman and Li (2010) relates to the statistical application of multivariate outlier

detection, our proposal aligns with another common usage of the Mahalanobis distance in

cluster analysis and supervised classification. Our idea involves adopting a binary mixture

model to describe the evolution of asset returns and classifying a test point based on

the distribution with the smallest Mahalanobis distance. Two Mahalanobis distances are

computed using two sets of parameters, i.e., centers and shape matrices describing the

asset return distribution during either upward or downward trending regimes (bear and

1Stylized facts are statistical properties that appear to be present in empirical asset returns across
time and markets.
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bull markets). The difference between these two distances provides an improved indicator

allowing for a distinction of good and bad turbulence with considerable predictive power.

Our proposed measure exhibits a close relationship with the objective function employed

in quadratic discriminant analysis (QDA), a supervised classification method. However,

unlike in QDA, our objective is not to learn posterior class probabilities but rather to

develop a statistical indicator for portfolio and risk management purposes. As a result,

our work offers a finance-specific perspective on supervised learning, encompassing QDA

as a Bayesian classifier. This perspective contributes to two additional aspects: adapting

discriminant analysis to financial time series that do not adhere to normal distribution or

independence over time, and addressing the labeling problem.

When working with financial time series, supervised learning encounters a challenge

uncommon in typical classification exercises involving distinct categories like cats and

dogs: labeling the training data. Determining a sample of well-classified elements is not

straightforward when working with financial data. This issue has received limited attention

in the literature. In our case, the labels need to identify the market as either upward or

downward trending. While multiple approaches can achieve this, each produces a distinct

set of labels, introducing ambiguity in the learning target. We propose employing a robust

pattern recognition technique to objectify this choice.

In a final step, we present a method that results in a smoothly time-varying discrimi-

nant, effectively balancing statistical significance and economic significance in terms of

predictive power and financial rewards after accounting for transaction costs.

The remainder of this article is structured as follows: Section 5.2 presents the definition

of the turbulence measure together with methods to discriminate turbulent from quiet

events and discusses the indicators properties. Section 5.3 explores the connection be-

tween turbulence and discriminant analysis and introduces a novel indicator to distinguish

between good and bad turbulence based on a pattern recognition technique to distinguish

between bear and bull phases. A data-driven approach to smooth the turbulence measure

based on an orthogonalized stochastic volatility model is proposed to reduce trading and re-

lated costs. Section 5.4 conducts a statistical and economic analysis of hedging rules derived

from various turbulence measures using both real and synthetic data. Section 5.5 concludes.
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5.2 Financial turbulence: Measures, properties and

hedging rules

Let X be a real-valued random vector having probability distribution FX ∈ F , F denoting

the family of elliptically symmetric distributions defined on Rn. In our context, X

represents the price variation of a collection of assets. Throughout this work, we are going

to use a set of n = 24 time series of daily discrete country index returns of the index

provider MSCI2 to exemplify and illustrate theoretical concepts. Details about the data

are given in section 5.4.1. Whenever we refer to computations on empirical returns we use

the notation {xt}Tt=1 to emphasize the time series nature of the data.

The Mahalanobis distance is defined as

D =
√

(X − µ)⊤Σ−1(X − µ) (5.1)

with Σ = Cov(X) a positive definite covariance matrix and µ = E(X) the center of the

distribution of X.

The Mahalanobis metric measures the distance of a realization x of a random vector

X to its expected value3. The scaling by the covariance matrix Σ differentiates the

Mahalanobis from the Euclidean distance (note that the two are equivalent for Σ = I).

Because of the scaling, points with equal distance to the common center do not reside on

a sphere but on the shell of an ellipsoid. The Mahalanobis distance thus accounts for the

variances of and correlations among the marginals of X. Geometrically we can think of

the Euclidean ball being stretched and compressed by the eigenvalues of the covariance

matrix and in direction of the matrix’s eigenvectors to form an ellipsoid.

For the family F the ellipsoid forms an iso-density curve allowing for an evaluation of

how likely it is that a point lies at a particular distance (or closer) from the center of the

distribution4. This is why the Mahalanobis distance is ubiquitously used for multivariate

outlier detection and statistical testing. Note that a point can be a multivariate outlier

even if it is not a univariate outlier for any variable. The Mahalanobis distance essentially

2See https://www.msci.com
3Note that nothing prevents us from replacing µ with any other vector y ∈ X so that the Mahalanobis

distance in this case would not measure distance to the center but among two realizations.
4For the special case of the multivariate Normal distribution the probability density of an observation

is uniquely determined by the Mahalanobis distance.
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serves as a multivariate analog to a z-score, i.e., of the idea of measuring how many

standard deviations away a realization of a random variable is from it’s mean. In practical

applications where the population distribution is often unknown, point estimates like the

sample moments or robust statistics like the median for the centroid or shrinkage type

estimators for the covariance are plugged into the distance function (Hardin and Rocke,

2005).

In Kritzman and Li (2010), the authors compute turbulence as the squared Mahalanobis

metric for all realization of a set of n financial time series {xt}Tt=1 based on the set’s sample

mean µ̂ and covariance Σ̂. Their turbulence indicator reads

dt = (xt − µ̂)⊤Σ̂−1(xt − µ̂). (5.2)

Values of dt above a certain threshold γ are considered as turbulent events and values

below as quiet. The obvious question is how to choose γ. If asset returns would be indepen-

dent and identically distributed (iid) Gaussian random variables with known population

parameters, then D would follow a χ2(n) distribution and the sample counterpart, d
1/2
t ,

a scaled Beta distribution (Hardin and Rocke, 2005), and one could set γ such that the

probability of exceeding the critical value is fixed, say for instance, at 5%. But, if that

assumption was indeed true, then there would be no point to do the exercise because, by

the symmetry of the Normal distribution, distant observations would not be associable

to negative market developments. When the distribution of the data at hand departs

from a Normal (or any elliptical for that matter), the quadratic form in equation 5.2 still

yields an ellipsoid when set to a constant. However, the interpretation of its shell as a

probability density contour (and its volume as representing probabilities following a χ2

distribution under the Gaussian assumption) no longer holds and it is not clear how to

select and interpret γ.

Figure 5.1 compares the empirical distribution of observed turbulence values computed

on the MSCI World country index series with a theoretical counterpart under a Normal

assumption. From the chart it is evident that the χ2 approximation does not fit the data.

Most empirical distances lie below theoretical values while some range way above creating

a heavy right tail (which might best be described by a power law). In the following

section we investigate the question as to why this is. As we will see, it is not primarily the
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departure from a Gaussian or elliptical shape that causes this phenomen.

Figure 5.1: The left panel shows the time evolution of a turbulence indicator, defined by the
Mahalanobis distance, computed on 24 MSCI country indices. All substantial corrections
in the MSCI World index are characterized by a spike in the turbulence index. To compare,
the red dashed line indicate the 95% confidence interval based on a Gaussian model fitted
to the empirical data. The right panel compares the corresponding distributions of the
two indicators. The departure of the empirical distribution from the theoretical χ2 model
is evident.

Kritzman and Li (2010) make no statement about the distributional family asset returns

belong to. They provide illustrative examples using a Gaussian assumption describing the

ellipsoid as the boundary discriminating turbulent from quiet dates but ultimately select

γ according to an empirical quantile. I.e., turbulent events are those with the highest

distance values within the dataset, without considering a model for X. This makes sense

for descriptive in-sample analysis but less so for out-of-sample backtests as the method

will reclassify previously turbulent dates as non-turbulent with the advent of new data.

An alternative approach is to compare empirical distance values with cutoff values

derived from a theoretical model. In this approach, dates are identified as turbulent when

empirical observations deviate from the predictions of the model (implying that turbulence

coincides with a breakdown of the validity of the equations used to describe the system

during normal times). By adopting this method, turbulent events are not necessarily

considered unusual in terms of the empirical distribution of asset returns, but rather in

relation to an idealized elliptical model. In other words, turbulence is deemed excessive

when it exceeds the expectations of the model. Consequently, turbulent observations may

not be empirically rare.

In section 5.4 we investigate the benefit of hedging a long exposure in the MSCI World
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index during periods of elevated turbulence and compare it to other Mahalanobis based

hedging rules which will be presented in the remainder.

The first generic hedging rule is:

R1 : h(x) =

 1 if x ∈ T := {d(x) ∈ R | d(x) ≥ P−1(p)}

0 else

According to rule R1, a hedge is constructed whenever the turbulence indicator d(x)

exceeds the p-quantile of a distribution function P . This can be the indicators’ empirical

distribution, i.e., P = F̂n, as suggested in Kritzman and Li (2010), or the χ2 distribution

implied by the Gaussian hypothesis, i.e., P = χ2
n.

5.2.1 Properties

The aforementioned setup allows us to be unspecific about the distribution of asset returns.

Hedging rule R1 heuristically acts to the presence of excess turbulence, either vis-à-vis a

theoretical model or relative to past observations. However, avoiding turbulent episodes

only makes sense if i) turbulent events tend to coincide with negative market movements

more frequently than with positive ones and if ii) turbulence exhibits persistence over a

certain period, making it probable that once a spike occurs, more spikes will follow which

in turn are more often than not connected to negative market developments.

Empirical evidence supporting these two conditions was presented by Kritzman and Li

(2010). However, their analysis was based on an in-sample framework utilizing empirical

percentiles, and they did not provide an explanation as to why this behavior occurred in

the past or whether it should be expected to continue in the future. We therefore ask the

question: what are the conditions regarding the data generating process of asset returns

under which one can expect the observed characteristics of the turbulence measure dt to

generally manifest?

The first thing to note is that under an iid symmetrically elliptical model, neither

feature can occur. Because of the symmetry of the distribution, distant points are no more

likely to reside in the negative orthant than anywhere else and, because of independence,

persistence is prevented.
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Second, recall that by the scaling with the precision matrix (i.e., the inverse covariance

matrix) in the Mahalanabis metric, observations can be distant for two reasons. It might

be that elements in xt take extreme values or that correlations among the elements of xt

differ from historical patterns. I.e., observations can deviate from their usual behavior in

terms of variance or co-variance.

To see this more clearly, let zt = xt − µ and reformulate equation 5.2 as

dt =
n∑

i=1

z2t,iσ̃i,i + 2
n∑

i=1

n∑
j>i

zt,izt,jσ̃i,j ; σ̃i,j = [Σ̂−1]i,j. (5.3)

Both, variances and co-variances of asset returns are known to be time-varying and

persistent. This property is considered a stylized fact of asset returns and usually subsumed

under the term volatility clustering. A wealth of econometric models have been designed

to account for these effects, either deterministically or probabilistically, building on the

seminal work of Engle (1982) and Bollersev (1986) on GARCH processes in the former

case, and Taylor (1982) on stochastic volatility (SV) models in the latter case. In our

setup, this means that both terms, z2t,i and zt,izt,j display autocorrelation. Therefore, the

dynamics of the turbulence indicator dt is driven by the dynamics of second (co-) moments

of asset returns and thus, the empirical persistence of turbulence may be explained by the

dependence over time in second (co-) moments5.

Within the vast literature on volatility dynamics, a spezialized strain has focused on

explaining and modeling another stylized fact stating that there exists a negative correlation

between returns and volatility. High volatility is somehow connected to negative returns.

However, the causality underlying this phenomenon remains controversial. Black (1976)

first documented the inverse relationship and attributed it to the effects of financial leverage.

Further empirical support followed by Christie (1982), Cheung and Ng (1992) and Duffee

(1995) which strengthened the leverage hypothesis supporting the perspective that return

shocks lead to changes in conditional volatility. On the other hand, time-varying risk

premium theory

The GJR-GARCH model of Glosten et al. (1993) may be the most prominent adaptation

of the standard GARCH explicitely modeling an asymmetric response of volatility to past

5Note that although we assume a time-varying structure for the second (co-) moments of asset returns,
the standardization used to compute turbulence is done with a static covariance matrix.
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positive or negative returns. Other implementations include Omori et al. (2007) or Harvey

and Shepard (1996). Irrespective of the causal nature of the asymmetry, the negative

correlation between volatility and returns affects the correlation between turbulence and

returns since, according to equation (5.3), turbulence is largely volatility driven. The

effect may explain why we observe more negative returns than positive ones during high

turbulence phases.

The presence of both stylized facts, volatility clustering and the asymmetric response of

volatility to returns (or vice versa), provides a theoretical basis for utilizing the Mahalanobis-

based turbulence indicator in risk management. In order to assess whether these facts

alone are sufficient, a simulation study is conducted in Section 5.4.4. In this study,

turbulence-based hedging is backtested on synthetic data generated through multivariate

asymmetric GARCH processes, ensuring the incorporation of both stylized properties.

Figure 5.2 illustrates the density of the turbulence indicator computed from a sample

of such simulated data. It is observed that the distribution falls somewhere between

the theoretical and empirical models. In the synthetic environment, turbulence clearly

surpasses theoretical thresholds and exhibits clustering over time. However, it does not

reach the extremes observed empirically, and the clustering over time is not as pronounced.

Figure 5.2: Comparison of the probability distributions of the Mahalanobis-based turbu-
lence indicators under different assumptions regarding the data generating process.

The outcomes of the simulation study reveal that turbulence-based hedging enhances

efficiency, although it comes with reduced returns when accounting for transaction costs.

This diverges from results on real data, which show no performance drag, hinting at the

presence of an overlooked aspect.

Our conjecture is that the absence of simultaneous shocks in the simulated data
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might be a crucial missing element. In real data, major shocks tend to propagate globally,

impacting all series roughly simultaneously and leading to a synchronization of the volatility

dynamics.

Synthetically generating multivariate datasets with this characteristic is challenging.

An econometric model proposed by Paolella and Polak (2015) captures stochastic co-jumps

in volatility series and across assets. More recent developments explore the use of generative

adversarial networks (GANs) as a deep learning model for generating artificial financial

time series, but their multidimensional applications remain elusive.

As a simple and thus easily replicaple alternative to the more involved GARCH or

GAN-based simulations, we suggest to employ a nonparametric technique to resample

real data in Section 5.4.4. This approach allows for the modification of historical asset

price paths while preserving the mentioned stylized properties. The simulation study

concludes that synthetic turbulence, exhibiting volatility clustering, asymmetric response,

and volatility synchronization, behaves similarly to observed turbulence in real data and

can be exploited to time risk management decisions.

5.3 Discriminating good from bad turbulence

As previously discussed, the term turbulence is associated with negative market develop-

ments and we have given some theoretical justification for it’s use as a risk signal. However,

empirical observations show that among the largest spikes in turbulence happen when

markets close far in the positive. This is not surprising, given the symmetry of definition

(5.2), by which unusually positive market developments are just as turbulent as unusually

negative ones. Although empirical observations confirm that avoiding turbulent phases

boosts risk-adjusted returns (winning by losing less), a price has to be payed in terms of

missed rallies which also cause excessive levels of turbulence. We now introduce a simple

technique to discriminate up- from downturn induced turbulence.

Let {xt}Tt=1 represent a multivariate time series of asset returns, as before. We posit

that the observation xt is part of one of two populations: class C1, characterized by a mean

vector µ1 and dispersion matrix Σ1, or class C2 with parameters µ2 and Σ2. Our training

set comprises data up to a specific point τ < T , which includes a bivariate series of state

variables or class labels {yt}τt=1. Each yt ∈ {1, 2} denotes the class membership of a data
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point. Consequently, our training set can be expressed as {(xt, yt)}τt=1.

The state variable partitions the historical data into either upward- or downward-

trending market regimes. Consequently, classes C1 and C2 represent falling and rising

market environments (we interchangeably refer to classes as regimes or states). When

yt = 1, it signifies a downward-trending market at time t, while yt = 2 indicates an

upward-trending phase. Notice that yt = 2 doesn’t imply a positive return on day t but

rather that it belongs to an upward-trending phase.

Details on obtaining the state series are provided in section 5.3.2. Using the estimated

parameters µ̂1, µ̂2, Σ̂1, Σ̂2 characterizing the regimes, we can compare the (squared) distance

of a data point xt to each class center as follows:

dt,1 = (xt − µ̂1)
⊤Σ̂−1

1 (xt − µ̂1)

dt,2 = (xt − µ̂2)
⊤Σ̂−1

2 (xt − µ̂2).

Elevated levels in dt,1 or dt,2 indicate turbulence under C1 or C2, respectively. However,

these turbulence indicators lead to different interpretations. Large values in dt,1 suggest

that observed events are unusual within the context of C1, i.e., they are atypical during

falling markets. This type of turbulence is referred to as good turbulence. Conversely,

large values in dt,2 suggest a departure from typical positive market conditions, termed

bad turbulence.

In the subsequent analysis, apart from distinguishing turbulent from quiet episodes, we

further compare dt,1 and dt,2 to assess whether xt is more likely to belong to C2 than to C1.

To interpret the difference dt,1 − dt,2 meaningfully, it is essential to appropriately

scale the two turbulence values. This consideration leads us to delve into the theory of

discriminant analysis.

5.3.1 Turbulence and (quadratic) discriminant analysis

Discriminant analysis is a supervised classification method making use of Bayes’ theorem.

The objective is to find the discriminant, i.e., the function which separates a dataset into

two groups, by equating the posterior probabilities of x belonging to either class C1 or C2
as:
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P(x ∈ C1|X = x)
set
= P(x ∈ C2|X = x). (5.4)

Note that for this excursion on discriminant analysis we drop the time index t since

described methods assume data to be iid. We will later on propose a method which can

be seen as an adaptation of classic QDA for financial time series data.

By Bayes theorem, (5.4) can be decomposed into

f1(x)π1∑2
i=k P(x ∈ Ck|X = x)πk

set
=

f2(x)π2∑2
i=k P(x ∈ Ck|X = x)πk

(5.5)

=⇒ f1(x)π1 = f2(x)π2.

fk(x) = P(X = x|x ∈ Ck) and πk = P(x ∈ Ck) are the class conditional likelihood and

the prior probability, respectively, and the denominator is the marginal probability, which

cancels out.

In the case where f represents the probability density function (pdf) of the multivariate

Normal distribution, we get

1

(
√

2π)d|Σ1|
exp

(
−(x− µ1)

⊤Σ−1
1 (x− µ1)

2

)
π1

set
=

1

(
√
2π)d|Σ2|

exp

(
−(x− µ2)

⊤Σ−1
2 (x− µ2)

2

)
π2.

Taking the natural logarithm, multiplying with 2 and bringing everything to the right

side we obtain
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0 =
[
− ln(|Σ2|)− (x− µ2)

⊤Σ−1
2 (x− µ2) + 2 ln(π2)

]
−
[
− ln(|Σ1|)− (x− µ1)

⊤Σ−1
1 (x− µ1) + 2 ln(π1)

]
= ln

(
|Σ1|
|Σ2|

)
+ 2 ln

(
π2
π1

)
+ x⊤(Σ−1

1 − Σ−1
2 )x+ 2(Σ−1

2 µ2 − Σ−1
1 µ1)

⊤x+ µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2

= ln

(
|Σ1|
|Σ2|

)
+ 2 ln

(
π2
π1

)
+∆d.

The symbol ∆d is used to denote the difference in the squared Mahalanobis distances

which we have written out in a quadratic form x⊤Ax+ b⊤x+ c.6

The discriminant function in QDA reads

δ(x) := ∆d + ln

(
|Σ1|
|Σ2|

)
+ 2 ln

(
π2
π1

)
. (5.6)

The decision rule in QDA follows as

x ∈

 C1 if ∆d ≤ ln
(

|Σ1|
|Σ2|

)
+ 2 ln

(
π2

π1

)
C2 else.

(5.7)

Bose et al. (2015) have generalized QDA to the family of symmetrically elliptical

distributions having a pdf of the form

f(x) =
1

|Σ| 12
g
(
(x− µ)⊤Σ−1(x− µ)

)
resulting in decision rule

x ∈

 C1 if ∆d ≤ C ln
(

|Σ1|
|Σ2|

)
C2 else

(5.8)

for some scaling constant C which may depend on x and assuming π1 = π2.

When C = 1, the decision rule aligns with ordinary QDA. In the case of C = 0, the

class with the minimum Mahalanobis distance is chosen. Bose et al. (2015) propose a

6Where A = Σ−1
1 − Σ−1

2 , b = Σ−1
2 µ2 − Σ−1

1 µ1 and c = µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2.
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procedure for determining an optimal value for C through cross-validation.

Returning to our application, we needed a method to scale dt,1 and dt,2 before assessing

their difference. We suggest a nonparametric approach, scaling the turbulence measures

dt,1 and dt,2 by their respective sample variances, denoted as σt,1 and σt,2. We then define

the difference between good and bad turbulence using the quadratic form:

∆t = σ−1
t,1 dt,1 − σ−1

t,2 dt,2

= x⊤t

[
(σt,1Σ̂1)

−1 − (σt,2Σ̂2)
−1
]
xt

+
[
2(σt,2Σ̂2)

−1µ2 − 2(σt,1Σ̂1)
−1µ1

]⊤
xt

+ µ⊤
1 (σt,1Σ̂1)

−1µ1 − µ⊤
2 (σt,2Σ̂2)

−1µ2

= x⊤t Ãxt + b̃⊤xt + c̃.

(5.9)

Applied to hedging, we define the decision rule

xt ∈

 C1 if ∆t ≤ 0

C2 else.
(5.10)

Correspondingly, we define the following hedging rule for the upcoming empirical

analysis:

R2 : h(xt) =

 1 if xt ∈ T ∩ C1
0 else.

We term our solution nonparametric because the scaling factor is solely data-driven

and not derived from a distributional assumption about C1 and C2. However, akin to QDA

and generalized QDA, the training of our relative turbulence indicator/classifier involves

parameter estimation within each class.

In practice, the parameters in the quadratic form of the classifier (see Eq. 5.10) are

unknown and must be estimated from the training data. This necessitates a mechanism

for labeling the training set into bear and bull states. Unfortunately, the state variable

is latent and cannot be identified without ambiguity. Consequently, we discuss potential

procedures to unveil historical states in the following section.

The rationale for distinguishing between bear and bull phases, as opposed to a simplistic

classification based solely on the sign of market returns, which is commonly done in the
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literature, rests on three considerations. Firstly, relying on the sign of market returns

introduces a dependence on the chosen data frequency (e.g., daily, weekly, or monthly re-

turns), potentially limiting system functionality to a specific temporal resolution. Secondly,

categorizing returns as either positive or negative based on their sign fails to discriminate

between returns close to zero and those significantly deviating from it in absolute terms.

Thirdly, the overarching objective is to derive a discerning signal for identifying opportune

and adverse investment periods. The desired indicator should demonstrate persistence

and parsimony in issuing trading signals, selectively activating trades in the presence of

genuine shifts in market dynamics. The inherent volatility in the sign of market returns

renders it inadequate for this purpose.7

5.3.2 Bears and bulls

Wall street jargon uses bears and bulls as symbols to differentiate between positive and

negative market developments respectively. However, these terms lack a precise definition

regarding the duration or extent of price changes that categorize a phase as bearish or

bullish. Despite their significance, there is surprisingly limited literature addressing this

issue. Kole and van Dijk (2017) distinguish between parametric and semi-parametric

models. Parametric procedures find their foundation in the seminal work of Hamilton (1989)

who applied a Markov switching model to the quarterly growth rates of the American gross

domestic product and derived an optimal dating rule from inferred smoothed probabilities.

Such tools rely on a specification of a statistical model for the return distributions in either

states and use the estimated parameters of the models to obtain the chronology of turning

points. The latent state variable follows a Markov chain. Building on this, Maheu and

McCurdy (2000) applied a Markov switching approach to internally identify a high mean,

low variance bull state and a low mean, high variance bear state.

Semi-parametric methods are rule based procedures operating directly on the non-

stationary price series, rather than on the invariants, seeking local peaks and troughs.

Lunde and Timmermann (2004) developed an algorithm that incorporates a magnitude

parameter for both bear and bull phases. According to their approach, for a phase to be

classified as bearish or bullish, stock market prices must demonstrate significant changes

7Even if we can predict the sign with a probability exceeding 50%, the real-world imposition of
transaction costs would likely erode any positive paper returns.
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from their previous peak or trough.

Pagan and Sossounov (2003) defined bear and bull markets by adapting a pattern

recognition technique initially formulated by Bry and Boschan (1971) for detecting turning

points in business cycles.This method underwent further refinement by Harding and Pagan

(2002). Their algorithm segments a time series into upward and downward trending phases,

relying on two duration parameters that specify the minimum phase and cycle lengths.

In the forthcoming sections, we amalgamate the concepts proposed by Harding and

Pagan (2002) and Lunde and Timmermann (2004). This integration involves the inclusion

of a magnitude parameter into the pattern recognition technique. Additionally, subtle

adjustments are made to enhance its adaptability to data frequencies beyond the initial

monthly or quarterly requirements.

The methodology uses as input the prices of an equity series, denoted as {pt}Tt=1, along

with two user-defined control variables, namely B and b. These control variables determine

the minimum length of a cycle and the minimum length of a phase, respectively. The

algorithm’s objective is to identify turning points, characterized as local maxima and

minima (peaks and troughs), based on the following criterion: a peak occurs at time t if

pt−τ , ..., pt−τ+1 < pt > pt+1, ..., pt+τ (similarly, a trough is identified when pt−τ , ..., pt−τ+1 >

pt < pt+1, ..., pt+τ ).

Employing a recursive scheme, the identified turning points undergo further processing

to satisfy two conditions. Initially, peaks and troughs are adjusted to alternate; thus, if

two consecutive peaks or troughs are detected, the algorithm eliminates the peak or trough

with the lower or higher value of pt, respectively. Subsequently, the algorithm ensures

that a cycle phase (from peak to trough or from trough to peak) lasts for a minimum of

b dates, while the complete cycle (from peak to peak or from trough to trough) has a

minimum duration of B dates. However, an exception may arise if the price change since

the last local extremum exceeds a certain magnitude (in absolute terms), determined by

an additional input parameter denoted as θ. As as result, the algorithm produces a state

variable yt ∈ {1, 2}, where the value 1 signifies bear markets, and the value 2 corresponds

to bull markets.

The categorization into bear and bull phases using the described technique is inherently

influenced by the chosen parameter values. To enhance the robustness of the procedure,

we adopt an ensemble approach, deriving a state variable by averaging (and rounding to
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the next integer) over a grid of parameter values, where b varies across {10, 15, 21, 31, 42}

and B across {30, 45, 63, 93, 126}. For the magnitude parameters, we maintain a consistent

value of θ = 0.2.

5.3.3 Smoothing

The methodology we devised to distinguish positive from negative turbulence demonstrates

strong statistical predictive power for short-term forecasts of the latent state. However,

this statistical accuracy does not translate into economic rewards when realistic transaction

costs are considered. Figure 5.3 illustrates the impressive performance difference of a

hedging strategy based on decision rule (5.10), derived from our index of relative turbulence

∆t. The strategy involves taking a long position in the MSCI World Index along with a

short position in the index as a full hedge whenever the indicator is negative. Despite the

impressive performance before considering costs, the strategy’s net returns are adversely

impacted by transaction costs, assuming costs (fees and spreads) ranging from 10 to 20

basis points (Bp).

It is evident that a reduction in trading activity is necessary to achieve a satisfactory

balance between trading rewards and costs. The simplest approach involves smoothing

the indicator on a rolling basis, such as through filtering with a simple or exponentially

weighted moving average. Our tests indicate that an appropriate balance can be achieved

with smoothing. However, the challenge then lies in setting the smoothing parameter,

which poses a risk of overfitting. Despite running the backtest out-of-sample for a given

smoothing rule, the smoothing parameter is chosen in-sample, making it a potentially

dangerous game.

We propose leveraging upon the wealth of econometric tools designed to address the

stylized facts introduced in Section 5.2.1 and to model a smoothly8 varying turbulence

measure in a fully data-driven manner using a series of univariate GARCH or SV processes.

Recall from Equation (5.3) that turbulence is driven by the sum of variance and

covariance effects, and their dynamics can be effectively captured by volatility models. To

avoid the need to model dependence in the covariance terms, we first apply a change of

8The term smoothly is used informally to convey the idea of a less rough or fluctuating indicator, rather
than in a strict mathematical sense.
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Figure 5.3: Impact of transaction costs on the cumulative returns attained by hedging
rule R2.

base by rotating demeaned return series with the orthonormal9 matrix of eigenvectors Γ of

the static sample covariance matrix to obtain uncorrelated principal components using the

map X 7→ S = (X−µ)Γ. Recall that we can factorize the covariance matrix into canonical

form Σ = ΓΛΓ−1, where Λ is a diagonal matrix of ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn

and is equivalent to the covariance matrix of the components. Because Λ is a diagonal

matrix, its inverse is also diagonal with [Λ−1]ii =
1
λi
. Hence, in transformed space, the

squared Mahalanobis distance reduces to the squared Euclidean distance:

dt = (xt − µ̂)⊤Σ̂−1(xt − µ̂) = z⊤t Σ̂
−1zt = z⊤t (ΓΛΓ

−1)−1zt = z⊤t ΓΛ
−1Γ⊤zt (5.11)

where zt = xt − µ̂. Rewriting st = Γ⊤zt,

dt = s⊤t Λ
−1st =

n∑
i=1

s2t,i/λi = ||s̃t||22 ; s̃t = λ−
1
2 st. (5.12)

Turbulence can thus be formulated as the sum of standardized squared components10.

This formulation shows that the dynamics of turbulence depends of the sum of squared

components. If, analogous to squared returns, squared components exhibit similar auto-

correlation, it makes sense to capture this dynamic with a time series model. We suggest

9Each column vector has length one and is orthogonal to all the other column vectors. For square
orthonormal matrices, the inverse is simply the transpose.

10Note that under x ∼ N(µ,Σ)→ λ−1/2s ≡ s̃ ∼ N(0, 1) and
∑n

i=1 s̃
2
i ≡ d ∼ χ2(n).
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fitting a GARCH or SV model. From a modelling aspect it may seem odd to consider

GARCH and SV as exchangeable tools since they fundamentally differ in the construction

and assumptions on the volatility states. Nevertheless, we do so because inferentially, both

processes lead to similar results in our context. For the following analytical presentation,

we use a standard SV model.

Given observations st = Γ⊤zt in the orthogonal space, the SV model assumes the

following structure for the i-th component st,i:

st,i = exp(ht,i/2)ϵt,i ϵt,i ∈ N(0, 1) (5.13)

ht,i = µi + φi(ht−1,i − µi) + νiηt,i ηt,i ∈ N(0, 1) (5.14)

ht,i denotes the value of the log-variance process at day t for component i which is

assumed to follow a stationary AR(1) process with persistence |φi| < 1. The standard SV

model employs three parameters ϑi = (µi, φi, νi) which are to be estimated. µi refers to

the level, φi to the persistence, and νi to the standard deviation of the log-variance.

The log-variance process is initialized by h0|(µi, νi, φi) ∼ N(µi,
νi

(1−φ2
i )
). Then, it holds

that ht,i|(ht−1,i, µi, νi, φi) ∼ N(µi ++φi(ht−1,i − µi), νi).

Our approach is to plugin the squared components s2t,i = exp(ht,i)ϵ
2
t,i into equation

(5.12) and to replace the noise term ϵ2t,i ∼ χ2(1) with its expected value E(ϵ2t,i) = 1.

Doing so, we retrieve the following persistent measure of turbulence

Dt =
n∑

i=1

λ−1
i eµi+φi(ht−1,i−µi)+νiηt,i . (5.15)

Repeating steps (5.11) - (5.15) for both regime specific mean and covariance estimators,

i.e., µ̂1, Σ̂1 for regime C1 and µ̂2, Σ̂2 for regime C2, we further obtain persistent measures

of good and bad turbulence separately, denoted Dt,1 and Dt,2. As for the computation of

∆t, we scale both terms by their empirical variances. The scaled turbulence measures,

denoted D̃t,1 and D̃t,2, define a discriminant as

ψt = D̃t,1 − D̃t,2 (5.16)
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giving raise to decision rule

xt ∈

 C1 if ψt < 0

C2 else
(5.17)

and adjusted hedging rule

R2 : h(xt) =

 1 if xt ∈ T ∩ C1 T := {D(x) ∈ R | D(x) ≥ P−1(p)}

0 else.

5.3.4 Refinements

In consideration of practical application, we propose several refinements to the previously

introduced theoretical concepts, aiming to enhance the overall performance of the system.

Minimum torsion. When employing an eigenvalue transformation, there is a possibility

that the last components may not exhibit autocorrelation in the squared values, making

the fitting of a GARCH or SV model inappropriate. One approach is to simply ignore the

last components, which is equivalent to dimensionality reduction. The advantage of such

an approach lies in the saving of computation time and the filtering out of noise. However,

the challenge is to determine at which component to set the cutoff.

An alternative is to utilize a linear transformation that minimally disrupts the original

return series. This concept of minimum (linear) torsion (MT) was introduced by Meucci

et al. (2013). The authors developed a numerical procedure to determine the transformation

that minimizes the tracking error concerning the return series while maintaining zero

correlation among the transformed components. Their algorithm efficiently solves the

following quadratically constrained quadratic program:

ΓMT =arg min
Cor(ZΓ)=I

√√√√ 1

n

n∑
i=1

V

(
(ZΓ)i − Zi

V(Zi)

)
(5.18)

where Z = X − µ. We refer to Meucci et al. (2013) for details on the solution procedure.
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Robust estimators. Robust estimators of multivariate location and dispersion may be

preferable for the computation of the Mahalanobis metric. Various options are available

(see e.g., Olive (2004)). In our empirical study we employ the quadratic shrinkage approach

of Ledoit and Wolf (2022) for the covariance matrix and the sample median for the location.

Weighted Mahalanobis distance. Given the upcoming empirical analysis, where we

seek to improve upon a buy-and-hold investment in the capitalization-weighted MSCI

World index, it is reasonable to incorporate a weighting of the country indices proportional

to their constituents’ weights in the parent index. Therefore, we compute turbulence by

dt = (W (xt − µ̂))⊤Σ̂−1(W (xt − µ̂)) = (xt − µ̂)⊤W⊤Σ̂−1W (xt − µ̂) (5.19)

where W = diag(w) is a diagonal matix of weights. Notice that weighting the data does

not change the correlation structure but effects the variance-covariance matrix.

Setting zt = xt − µ̂ and using the spectral decomposition Σ̂ = ΓΛΓ−1 we can further

write:

dt = z⊤t W
⊤ΓΛ−1Γ⊤Wzt = swt

⊤Λ−1swt =
n∑

i=1

swt,i
2/λi = ||s̃wt ||22

where swt = Γ⊤Wzt and s̃
w
t = λ−

1
2 swt .

5.4 Empirical study

This section aims to empirically test the theoretical concepts discussed earlier, with the goal

of assessing the effectiveness of the introduced measures of turbulence in guiding investment

decisions. Answering this question is not straightforward and is fraught with ambiguity.

Two main avenues are available: statistical inference and backtesting. Statistical inference

allows for conclusions regarding the explanatory and predictive power of the indicators,

while backtesting serves as a reality check. However, statistical significance in the former

case does not guarantee significant financial rewards in the latter due to real-world frictions

like transaction costs, as illustrated in the example visualized in Figure 5.3.

The tension between statistical accuracy and economic profitability prompts us to
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restrict the use of statistical analysis to descriptive comparisons of different turbulence mea-

sures. Ultimately, the practical utility of these measures hinges on economic considerations

and needs to be addressed accordingly.

Our focus is, therefore, on a backtesting framework, which we will describe shortly.

Before delving into that, however, we need to further clarify the objective of the hedging

exercise. In the initial stage, the goal is to enhance efficiency in terms of risk-adjusted

returns. However, solely achieving a high Sharpe ratio is not compelling if it results from

excessive risk reduction. Ideally, we aim for an increased Sharpe ratio while matching the

return of the buy-and-hold index. This is a challenging objective, as we do not permit any

form of leverage, meaning that all performance must be gained through timing.11

A second goal is to mitigate drawdowns. Consequently, the performance statistics of

interest include average (geometric) return, volatility, Sharpe ratio, and the five largest

drawdowns.

In the following we provide a description of used stock market data and proceed with a

statistical analysis of introduced turbulence measures before backtesting turbulence based

binary hedging strategies.

5.4.1 Data and backtesting framework

Data. Our empirical examination relies on index return data sourced from the index

provider MSCI. The MSCI World Index is a globally recognized stock market index that

monitors the performance of large and mid-cap companies spanning 23 developed countries

(as of the time of writing). To conduct an out-of-sample backtest, we incorporate Greece,

which was reclassified by MSCI as an emerging market in 2013, and exclude Israel before

May 2009, when it attained the status of a developed market.

Our computations are based on daily total12 return prices spanning the period from

1999-01-01 to 2023-04-18.

Backtesting framework. All turbulence measures are constructed out-of-sample using

an expanding window so that each element in the resulting indicator series is guaranteed

11In the industry, asset managers often use a static portfolio as a benchmark, holding 50% in the index
and 50% in cash, or they choose a weighting such as to calibrate the volatility of the static portfolio to
that of the hedged strategy (which is necessarily lower than that of the index since it is not invested at
times). We, however, keep the (MSCI World) index as our base strategy that we seek to improve upon.

12I.e., dividends are reinvested.
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to be only computed on data available up to that point in time. This involves a series of

computational steps which are repeated daily. At every day τ ∈ {k, k + 1, ..., T} in the

history starting at some point k, define the training data {xt}τt=1 to contain returns from

the first available day t = 1 to the current day t = τ and proceed as follows:

1. Estimate µ̂τ = E({xt}τt=1) and Σ̂τ = Cov({xt}τt=1) to get dτ = (xτ−µ̂τ )
⊤Σ̂−1

τ (xτ−µ̂τ ).

1. Compute the binary bear/bull state sequence {yt}τt=1 on the benchmark price series

(i.e., the MSCI World Index in our application) using the pattern recognition

technique described in section 5.3.2.

2. Estimate µ̂τ,1 = E({xt}1({yt}τ1=1)), Σ̂τ,1 = Cov({xt}1({yt}τ1=1)) and µ̂τ,2 = E({xt}1({yt}τ1=2)),

Σ̂τ,2 = Cov({xt}1({yt}τ1=2)). and compute ∆τ as in equation 5.9.

3. Transform the training data, i.e., {xt}τt=1, by a MT decomposition (equation 5.18) of

Σ̂τ,1 and Σ̂τ,2 to get uncorrelated components {st,i,1}τt=1 and {st,i,2}τt=1, i = 1, ..., n.

4. Fit a SV model to the components obtained in the previous step.

5. Compute ψ(xτ ) by equations 5.15 and 5.16.

Notice that the re-fitting of the orthogonal SV model is a time-intensive task, requiring

daily repetition as the MT-components undergo a complete historical change with each

new data point in the return series. We suggest utilizing the state-of-the-art open-source

platform STAN13 for this purpose.

To keep things simple and replicable, applied hedging rules neutralize the equity

exposure during risky episodes by selling the long position in the MSCI World index (i.e.,

holding cash at a zero interest rate). In a real-world application it would be natural to

short index futures. Also, it would be wiser to build a more granular hedging scheme

rather than the binary full-hedge or no-hedge approach followed here for simplicity.

Tested strategies account for transaction cost of 0.1% which generates a strong penalty

on excessive trading. Furthermore, a lag of one day between computation and trade

execution is considered.

13See https://mc-stan.org/.
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We begin our study with an evaluation of hedging rule R1 from which we derive the

following sub-rules:

R1,a : h(xτ ) = 1 if dτ ≥ F̂−1
n (p) else 0.

R1,b : h(xτ ) = 1 if Dτ ≥ F̂−1
n (p) else 0.

R1,c : h(xτ ) = 1 if dτ ≥ χ−2
n (p) else 0.

R1,d : h(xτ ) = 1 if Dτ ≥ χ−2
n (p) else 0.

R1,V IX : h(xτ ) = 1 if VIX > 25 else 0.

R1,V IX serves as a straightforward benchmark strategy, implementing a hedge whenever

the CBOE Volatility Index14 (VIX) is elevated (considered as VIX > 25). While the VIX

is specific to the U.S. market, it can act as a proxy for the risk of the MSCI World index,

given the latter’s substantial investment in U.S. stocks (∼ 70% as of the time of writing).

The variations among rules R1,a to R1,d stem from differences in the turbulence measure’s

smoothing using the orthogonal SV filter and the choice of the inverse distribution defining

the turbulent and quiet thresholds (empirical versus χ2). In this context, we set the level

of p to 0.9. It’s noteworthy that the empirical percentile method’s results are highly

sensitive to the choice of p. While a value of p ≈ 0.8 yields the best backtest results,

outperforming the index in all performance measures, we believe the method’s sensitivity

to the percentile threshold’s parameterization disqualifies it for further use. Conversely,

the cutoff percentile based on the theoretical χ2 model has minimal impact on results for

a broad range of values, especially when SV-smoothing is additionally applied.

In a subsequent analysis, we examine strategies associated with hedging rule R2, which

overrides R1,c and R1,d when our ’normative’ discriminant ψ(xτ ) categorizes turbulences

as good.

14See https://www.cboe.com/tradable_products/vix/.
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R2,c : h(xτ ) = 1 if (R1,c = 1) ∩ (∆τ < 0) else 0 see eq. (5.9).

R2,d : h(xτ ) = 1 if (R1,d = 1) ∩ (ψτ < 0) else 0 see eq. (5.16).

R2,QDA : h(xτ ) = 1 if xτ ∈ C1 else 0 see eq. (5.7).

R2,QDA denotes the benchmark strategy for this second application which employs

ordinary QDA to exit the equity exposure whenever the model classifies the cross-section

of returns to come from a bear regime (as defined in section 5.3.2).

5.4.2 Descriptive analysis

Given that our proposed hedging rules are binary in nature, we evaluate their performance

using standard classification model metrics. Two scenarios are considered for true class

labels: firstly, utilizing the bear-bull labels, as outlined in section 5.3.2, derived in-sample

from the complete return series of the MSCI World Index; secondly, based on the sign of

daily index returns. The predictors are computed out-of-sample and lagged by one day.

In our context, an effective predictor should strike a balance between minimizing both

type I and type II errors. A type II error (false negative) occurs when we fail to initiate a

hedge when warranted, leading to losses due to adverse market developments. Conversely,

a type I error (false alarm) arises when we mistakenly implement a hedge when unnecessary,

resulting in trading costs and missed positive returns.

Table 5.1 provides an overview of the performance of the classification rules. Caution

is warranted when interpreting the relatively high accuracy values observed in the two

percentile-based rules (R1,a and R1,b) and the VIX-based benchmark model. These models

excel in predicting non-events, as they are inherently conservative in triggering a hedge.

However, they exhibit shortcomings in accurately identifying positive instances. This

discrepancy is evident in their elevated specificity, representing the proportion of correctly

identified actual negative instances, and concurrently low sensitivity15, reflecting the

proportion of correctly identified actual positive instances. The subpar performance in

15In general, a sensitivity of 0.5 is considered relatively low, indicating that the model is not effective at
capturing positive instances, and there is a significant risk of false negatives.
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terms of F-scores, calculated as the harmonic mean of precision (the proportion of correctly

predicted positive instances among all predicted positives) and recall (i.e., sensitivity),

further underscores the models’ failure to achieve a satisfactory balance between accurately

identifying positive instances and avoiding false positives.

Strategies R1,c and R1,d demonstrate improvements with sensitivities of 0.47 and 0.50,

respectively. Nevertheless, these models only identify approximately half of the actual

positive instances, indicating a significant risk of false negatives. The same goes for R2,c

which exhibits a sensitivity of 0.52. R2,d achieves the highest sensitivity at 0.62, indicating

superior performance in identifying positive cases. R1,V IX lags behind with a sensitivity of

0.20, so does R2,QDA with a sensitivity at 0.41. In terms of an overall ranking, considering

all performance metrics, we find that R2,d outperforms others, followed by R2,c, R1,c, R1,d,

R1,b, R1,a, R2,QDA, and R1,V IX .

Table 5.2 illustrates results when employing the sign of daily index returns as the

labeling method. Overall, performance metrics decrease, while the relative ranking

among different classifiers remains mostly consistent. Notably, R2,c stands out as an

exception, demonstrating an improvement in overall performance, showcasing remarkable

predictive capacity for the direction of next-day index returns. Regrettably, the statistical

attractiveness of the model does not translate into economic success, as elaborated in the

subsequent section.

R1,a R1,b R1,c R1,d R1,V IX R2,c R2,d R2,QDA

Sensitivity 0.20 0.23 0.47 0.50 0.20 0.52 0.62 0.41
Specificity 0.93 0.91 0.72 0.69 0.94 0.65 0.82 0.82
Accuracy 0.72 0.71 0.65 0.64 0.73 0.61 0.77 0.70
Balanced Accuracy 0.56 0.57 0.60 0.59 0.57 0.58 0.72 0.62
Precision 0.52 0.49 0.40 0.39 0.55 0.37 0.58 0.47
F-Score 0.29 0.31 0.43 0.44 0.29 0.43 0.60 0.44

Table 5.1: Performance metrics of the different hedging rule classifiers (lagged by one
day). Bear and bull states computed in-sample on the entire available history of the MSCI
World Index by the pattern recognition method introduced in section 5.3.2 serve as labels
of the true class.
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R1,a R1,b R1,c R1,d R1,V IX R2,c R2,d R2,QDA

Sensitivity 0.13 0.14 0.37 0.38 0.12 0.66 0.42 0.32
Specificity 0.91 0.88 0.69 0.65 0.91 0.81 0.79 0.81
Accuracy 0.57 0.55 0.55 0.53 0.57 0.75 0.63 0.59
Balanced Accuracy 0.52 0.51 0.53 0.52 0.52 0.74 0.61 0.56
Precision 0.53 0.46 0.48 0.46 0.53 0.73 0.61 0.57
F-Score 0.22 0.21 0.42 0.42 0.20 0.70 0.50 0.41

Table 5.2: Performance metrics of the different hedging rule classifiers (lagged by one day).
As true class labels, the sign of the daily returns of the MSCI World Index is used.

5.4.3 Backtest results

Figure 5.4 presents the results of backtesting various iterations of hedging rule R1. Contrary

to expectations from the statistical analysis, the straightforward benchmark strategy using

the VIX effectively mitigates the largest drawdowns and improves efficiency before factoring

in transaction costs. However, it falls short of aligning with the return of the buy-and-hold

investment in the index.16 The difference between net and gross performance is relatively

small because the VIX-based approach triggers relatively few trades, rarely surpassing

the critical level of 25, and when it does, it tends to persist above that threshold for an

extended period. The most challenging phase for the strategy unfolded in 2022, where the

crossing of the critical value occurred multiple times consecutively but consistently later

than optimal. This period posed challenges for many volatility-driven risk management

strategies.

Rules R1,a and R1,c exhibit significant performance disparities between net and gross

results due to their high trading activity. The χ2 rule, triggering even more trades than

the empirical percentile method, widens this gap further. However, the χ2 rule proves to

be more effective in protecting against drawdowns. Specifically, R1,a struggles to identify

slowly developing crises, such as the extended bear phase following the dot-com bubble

and the unfolding of the great financial crisis in 2007. In contrast, it reacts promptly to

rapid and V-shaped shocks, as seen in the response to the Covid-crash in 2020.

Both hedging rules exhibit enhanced stability when turbulence is computed with

the orthogonal SV model. Rule R1,d, in particular, excels in mitigating drawdowns.

16It’s worth noting that alternative threshold choices, such as VIX > 30, yield somewhat improved
performance. To avoid overfitting, we adhere to the 25 threshold, selected based on economic intuition
before conducting experiments.
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Though, this comes at the cost of extended periods out of the market, resulting in missed

opportunities during positive market developments.

Figure 5.4: Cumulative returns (log-scale) of strategies related to hedging rule R1. Net
series include transaction costs of 10Bp.

The decision to abstain from hedges during periods of elevated turbulence, as long

as they are classified as favorable, leads to a substantial improvement in returns without

compromising on protection. Similar to previous observations, the use of the SV filter

plays a pivotal role in curbing trading costs. The benchmark strategy associated with

the second hedging rule, ordinary QDA, exhibits promising performance on theoretical

grounds. However, the excessive trading it generates proves to be prohibitively costly in

practice. The cumulative returns of the backtests related to hedging rule R2 are shown in
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figure 5.5.

Figure 5.5: Cumulative returns (log-scale) of strategies related to hedging rule R2, Net
series include transaction costs of 10Bp.

Performance statistics for all strategies are presented in tables 5.3 and 5.4. For a more

in-depth drawdown analysis, we refer to Appendix 5A, where a comparison of the five

largest drawdowns per strategy is provided. It is reasonable to assert that all strategies,

with the exception of R1,a, achieve their objective of reducing drawdowns, both in terms

of magnitude and duration to recovery.
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Mean (geometric, p.a.) Std.Dev. (p.a.) Sharpe Ratio MaxDD

MSCI World Index 0.063 0.157 0.401 -0.548

R1,a, Net 0.047 0.125 0.377 -0.525
R1,a, Gross 0.089 0.125 0.713 -0.447

R1,b, Net 0.053 0.114 0.462 -0.344
R1,b, Gross 0.058 0.114 0.513 -0.340

R1,c, Net 0.005 0.088 0.057 -0.281
R1,c, Gross 0.069 0.088 0.784 -0.168

R1,d, Net 0.041 0.082 0.498 -0.248
R1,d, Gross 0.049 0.082 0.600 -0.215

R1,V IX , Net 0.034 0.100 0.340 -0.408
R1,V IX , Gross 0.044 0.100 0.437 -0.359

Table 5.3: Summary statistics for the different hedging strategies related to hedging rule
R1. The backtests assume trading costs of 10Bp (Net) or no costs (Gross).

Mean (geometric, p.a.) Std.Dev. (p.a.) Sharpe Ratio MaxDD

MSCI World Index 0.063 0.157 0.401 -0.548

R2,c, Net -0.010 0.105 -0.094 -0.495
R2,c, Gross 0.119 0.105 1.142 -0.315

R2,d, Net 0.067 0.096 0.697 -0.253
R2,d, Gross 0.096 0.096 0.996 -0.196

R2,QDA, Net 0.009 0.096 0.090 -0.322
R2,QDA, Gross 0.061 0.096 0.637 -0.230

Table 5.4: Summary statistics for the different hedging strategies related to hedging rule
R2. The backtests assume trading costs of 10Bp (Net) or no costs (Gross).

5.4.4 Simulation study

Our aim is to show that when simulated data display the characteristics of i) volatility

clustering, ii) asymmetric volatility-return dependence and iii) synchronous volatility, then

our suggested turbulence indicator proves useful in the management of investment risks.

We test the following two data generative processes (dgp).

Multivariate asymmetric GARCH. We generate multivariate return series by em-

ploying the generalized orthogonal GARCH model (GO-GARCH) introduced by van der

Weide (2002). This model can be formulated to incorporate skewed student-t residuals and
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asymmetric modeling of positive and negative shocks on univariate conditional variances,

following the methodology outlined by Glosten et al. (1993). The model parameters are

estimated using the daily return series of the MSCI country indices, and synthetic series

are generated based on these parameters. The resulting set of synthetized series exhibits

similar covariance structure, clustering, and asymmetry in the volatility process, albeit

with different price evolutions.

To ensure alignment with the original data, the simulated series undergo further scaling

and shifting (univariately) to match the mean and variance of the original return series.

Despite these adjustments, volatility synchronization is not achieved.17

Alternative weighting. We generate counterfactual return series by adjusting historical

data using a synthetic weight vector. The real returns imply weights πt = 1, for all

t = 1, ..., T trading days. We generate alternative weights π̃t ≥ 0 for t = 1, ..., T , by

simulating from an ARMA(1,1) process with AR and MA coefficients set to 0.95 and -0.5,

respectively, and ensuring that
∑
t = 1Tπt = T . Factoring the returns with those weights

leads to blocks of consecutive daily returns experiencing either an increase or decrease

in magnitude. Importantly, the modification is applied uniformly to all cross-sectional

returns through the common weight factor π̃t, thus preserving synchronous volatility.

This straightforward approach retains the sign of historical returns while altering

their magnitudes. As a result, synthetic price patterns differ significantly compared to

the original data while maintaining a likely high correlation. The procedure introduces

autocorrelation in the synthetic returns, which can, however, be removed via another

ARMA(1,1) filter. The obtained residuals form the final artificial return series after scaling

them to match the mean and variance of the original data. These synthetic time series

exhibit the three desired characteristics.

Results. Figures 5.6 and 5.7 illustrate the results obtained through backtesting of

hedging rule R2 on 100 artificially generated datasets. The graphs depict the percentage-

points enhancements in the performance metrics of our hedging strategies compared to

their synthetic buy-and-hold indices which is always an equally weighted portfolio of the

17This lack of synchronization becomes apparent when examining plots of rolling volatilities (or garch-
implied volatilities) of the synthetic series, which are omitted here due to space constraints. The correlation
between these synthetic series is about 0.2, in contrast to a correlation of roughly 0.7 observed in rolling
volatilities of real returns.
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simulated series. For instance, an improvement of .05 in standard deviation indicates a

reduction by 5 percentage-points in the annualized value. For mean and Sharpe ratio the

interpretation would be an increase in the annualized statistics by 5 percentage-points.

For drawdown, the y-scale shows the percentage-point reduction of the sum of the five

largest drawdowns.

Our focus is on strategy R2,d (R2,c is added to confirm the method’s theoretical

strength observed on real data and the strong penalty it endures from transaction costs).

As expected, risk metrics improve under both dgp. This is obvious for volatility since we

introduce zero-returns during the days where the hedge is held. The improvement in terms

of drawdown can be explained by the asymmetric volatility-return dependence and the

persistence in the second moments under either dgp. Average returns, on the other hand,

are slightly negatively affected by the hedging for the GARCH simulations. Nevertheless,

the Sharpe ratio is substantially improved as a result of the large decrease in volatility

(nearly 4.5 percentage-points on average after costs). On the re-weighted data, which keep

the synchronous volatility property of the original data, the hedge takes out risk while

exceeding the return of the index, on average and net of costs, leading to considerable

increase in terms of efficiency (i.e., Sharpe ratio).

Figure 5.6: Performance differences obtained by applying hedging rule R2 on 100 syntheti-
cally generated datasets using the GO-GARCH simulator.
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Figure 5.7: Performance differences obtained by applying hedging rule R2 on 100 syntheti-
cally generated datasets using the method of reweighting historical dates.

5.5 Conclusion

We have explored the utilization of the Mahalanobis distance as a measure for gauging

turbulence within global financial markets and its pertinence in the context of risk

management. Initially introduced by Kritzman and Li (2010), the Mahalanobis-based

indicator was explained as a tool for multivariate outlier detection and we have discussed

methods for determining a threshold to distinguish periods of market turbulence from

calmer times.

We have examined the empirically observed property of the turbulence measure to

exhibit temporal clusters and to generally coincide with negative market developments when

experiencing spikes. We were able to trace these properties back to two well-known stylized

facts of asset returns, volatility clustering and asymmetric volatility-return dependence,

which are expected to persist in the future, thus providing a theoretical justification for a

Mahalanobis-based hedging approach. However, through the help of a simulation study,

we found that these two properties alone were insufficient to support a Mahalanobis-based

hedging strategy when the objective is not only to reduce risk (in terms of volatility and

drawdowns) but also to maintain competitive returns. We identified a third criterion,
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termed synchronous volatility, as crucial.

As the main contribution of this study, we introduced a method to distinguish turbulence

into positive and negative market developments, labeled as good and bad, utilizing a basic

generative model known as quadratic discriminant analysis. This approach calculates the

difference between two Mahalanobis distances under different market conditions, marking

another notable statistical application of the Mahalanobis distance, besides the detection

of outliers, namely cluster analysis. The adaptation of a pattern recognition technique,

initially designed for identifying economic cycles, facilitated the labeling of bear and bull

markets, a prerequisite for learning class-specific parameters.

Various turbulence-based hedging rules were formulated and subjected to empirical

examination. The assessment included both a statistical framework, utilizing classification

metrics, and an economic framework, conducted through backtesting and the analysis of

multiple performance measures. It became apparent that statistical significance does not

always translate seamlessly into commensurate economic reward, a phenomenon attributed

to transaction costs. In this context, a data-driven smoothing approach, based on an

orthogonal stochastic volatility model, was proposed to reduce trading activity while

achieving a balanced trade-off between errors of type I (missed signals) and type II (false

alarms).
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Appendix

5A Drawdown Statistics

Gross Net
Strategy From Trough To Depth From Trough To Depth

MSCI
World
Index

2007-07-15 2009-03-09 2013-04-11 -0.538 2007-07-15 2009-03-09 2013-04-11 -0.538
2002-03-20 2003-03-12 2004-12-22 -0.344 2002-03-20 2003-03-12 2004-12-22 -0.344
2020-02-20 2020-03-23 2020-09-02 -0.331 2020-02-20 2020-03-23 2020-09-02 -0.331
2022-01-05 2022-10-12 - -0.228 2022-01-05 2022-10-12 - -0.228
2015-05-22 2016-02-11 2016-12-08 -0.174 2015-05-22 2016-02-11 2016-12-08 -0.174

R1,a 2007-07-16 2009-03-02 2011-02-01 -0.447 2007-06-05 2009-03-02 2013-12-26 -0.525
2002-01-07 2003-03-12 2004-01-16 -0.278 2002-01-07 2003-03-12 2004-12-22 -0.325
2011-02-21 2011-08-19 2012-02-20 - 0.180 2015-05-22 2016-02-11 2017-02-21 -0.163
2015-05-22 2015-09-29 2016-12-08 -0.131 2021-11-17 2022-05-12 - -0.161
2021-11-17 2022-03-08 2022-06-24 -0.121 2018-01-29 2018-12-20 2019-04-05 -0.117

R1,b 2002-03-20 2003-03-12 2004-11-12 -0.340 2002-03-20 2003-03-12 2004-11-15 -0.344
2007-07-16 2009-04-28 2011-01-12 -0.319 2007-07-16 2009-04-28 2011-02-14 -0.336
2011-02-21 2011-11-25 2013-03-05 -0.254 2011-02-21 2011-11-25 2013-03-08 -0.263
2015-05-22 2016-02-11 2017-02-21 -0.207 2015-05-22 2016-02-11 2017-03-01 -0.212
2018-01-29 2019-01-22 2019-11-27 -0.133 2018-01-29 2019-01-22 2019-12-27 -0.150

R1,c 2021-11-17 2022-11-02 - -0.168 2014-09-05 2023-03-15 - -0.281
2014-09-22 2016-02-03 2017-09-11 -0.148 2001-11-27 2003-03-31 2005-02-04 -0.230
2002-01-07 2002-09-18 2003-09-02 -0.135 2010-04-16 2010-07-05 2013-05-17 -0.134
2010-04-16 2010-07-05 2011-01-11 -0.118 2006-04-21 2006-07-18 2006-12-15 -0.122
2018-09-24 2019-01-03 2019-04-12 -0.115 2013-05-22 2013-08-30 2014-08-19 -0.120

R1,d 2014-09-22 2016-11-04 2018-01-05 -0.215 2014-09-22 2016-11-04 2018-09-21 -0.248
2002-03-20 2003-01-27 2003-09-08 -0.157 2002-03-20 2003-01-27 2003-10-16 -0.163
2020-02-20 2020-12-14 - -0.150 2020-02-20 2020-12-14 - -0.158
2018-09-24 2018-12-25 2019-10-30 -0.148 2018-09-24 2018-12-25 2019-11-04 -0.155
2013-05-22 2013-08-30 2013-12-23 -0.098 2007-07-16 2010-02-25 2010-10-13 -0.114

R1,V IX 2007-07-16 2010-08-31 2014-08-26 -0.359 2007-07-16 2011-11-02 2017-09-12 -0.408
2015-05-22 2016-02-24 2017-05-08 -0.201 2021-11-17 2022-12-28 - -0.216
2021-11-17 2022-12-28 - -0.195 2002-01-07 2003-04-16 2003-12-29 -0.197
2002-01-07 2003-01-16 2003-12-22 -0.188 2018-09-24 2018-12-20 2019-03-18 -0.116
2018-09-24 2018-12-19 2019-03-15 -0.114 2006-05-10 2006-06-13 2006-10-05 -0.104

Table 5A.5: The five largest drawdowns per strategy related to hedging rule R1.
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Gross Net
Strategy From Trough To Depth From Trough To Depth

R2,c 2008-05-20 2009-03-09 2010-02-18 -0.315 2002-01-07 2009-03-09 - -0.496
2020-02-13 2020-03-23 2020-11-09 -0.214 2001-12-07 2001-12-14 2001-12-27 -0.019
2002-01-07 2003-03-11 2003-06-04 -0.149 2001-11-27 2001-12-03 2001-12-05 -0.018
2007-07-16 2008-01-22 2008-04-28 -0.119 2001-12-31 2002-01-01 2002-01-03 -0.008
2015-12-24 2016-02-11 2016-03-30 -0.087 - - - -

R2,d 2007-06-05 2009-02-10 2009-07-23 -0.197 2007-06-05 2009-02-11 2009-09-10 -0.253
2021-11-17 2023-01-05 - -0.131 2021-11-17 2023-01-05 - -0.174
2014-12-08 2016-02-08 2016-12-09 -0.121 2014-12-08 2016-02-08 2017-06-02 -0.165
2002-03-20 2002-09-13 2003-05-02 -0.101 2002-03-20 2003-02-20 2003-05-30 -0.118
2011-05-03 2011-12-19 2012-02-17 -0.094 2011-05-03 2011-12-19 2012-03-15 -0.117

R2,QDA 2011-05-03 2011-11-25 2013-04-29 -0.230 2007-07-16 2011-11-25 2018-01-23 -0.322
2021-11-17 2022-10-20 - -0.216 2021-11-17 2022-11-09 - -0.289
2007-07-16 2009-07-10 2010-01-04 -0.173 2001-12-07 2004-08-12 2006-10-23 -0.221
2015-04-28 2016-02-29 2017-02-10 -0.167 2018-09-24 2019-01-03 2019-12-13 -0.148
2018-09-24 2018-12-25 2019-04-15 -0.129 2020-02-20 2020-04-13 2020-08-24 -0.088

Table 5A.6: The five largest drawdowns per strategy related to hedging rule R2.
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Chapter 6

Conclusion

Bears and bulls are deeply ingrained animal symbols in financial culture used to describe

market sentiment and trends. Meanwhile, monkeys have become emblematic of chance and

randomness within both financial and statistical contexts. In finance, the metaphorical

image of monkeys throwing darts reflects the stochastic process of sampling – a central

theme of this dissertation.

The primary contribution that this work offered to the finance community lies in tech-

niques for sampling from high-dimensional and truncated distributions, thereby enabling

the analysis of systematic effects between portfolio characteristics and performance under

real-world scenarios.

Chapters 2 and 3 introduced geometric random walks, a subset of Markov chain Monte

Carlo methods tailored for sampling from distributions confined within geometric bodies.

These methods were employed for sampling portfolios with targeted attributes, such as

maintaining a predetermined variance or adhering to strict investment criteria like upper

limits on individual investments or groups of securities, risk thresholds, or factor exposures.

Chapter 2 introduced two novel walks crafted to sample portfolios with a predetermined

variance. From an algorithmic point of view, the sampling problem is very challenging as

it involves the computation of volume of and sampling from non-convex and disconnected

spherical patches arising by the intersection of a non-standard simplex with a sphere.

Aside from solving the geometrically hard problem, the contribution with introduced tools

lies in their application to explore the low-volatility anomaly – the empirical observation

that assets with lower risk levels often produce higher returns, diverging from predictions

made by classical economic theory. Through empirical analysis across various markets and
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sub-markets, the chapter confirmed the presence of the low-volatility anomaly while also

questioning conventional sorting-based methodologies.

Chapter 3 delved deeply into geometric random walks, offering a comprehensive survey

of existing methods and presenting novel complexity results. These techniques were

applied to analyze factor anomalies within a constrained setup, providing insights into the

relationship between factor tilts and performance. Additionally, the chapter scrutinized the

common practice of using random portfolios for performance analysis to test investment

skill, exposing flaws in the techniques used to construct these portfolios through geometric

reasoning.

Chapter 4 offered a geometric perspective on nonparametric bootstrap methods (iden-

tified in the previous chapter as a common approaches for generating random portfolios).

It presented a unified representation of classical and Bayesian frameworks using random

weights, establishing a link between resampling plans and the distribution of weights. A

direct computational method for the exact Bayesian bootstrap distribution was introduced,

which eliminates randomization error. Additionally, it was demonstrated that the exact

moments of bootstrap distributions depend on the Lp norm of the random weights. More-

over, methods to integrate prior information into bootstrap procedures were proposed

through a parametrization of the weight distribution. Furthermore, applications were

discussed where it is common to employ bootstrap standard errors, which by the geometric

perspective, can be determined without the need for resampling.

Chapter 5 explored the Mahalanobis distance as a measure of financial turbulence and

its application in risk management. It linked empirical observations of turbulence coinciding

with negative market events to known asset return patterns. A set of jointly sufficient

conditions on the data generating process of asset returns were identified to validate

its applicability for dynamic hedging and methods for setting thresholds to distinguish

turbulent from calm periods were discussed. Additionally, the chapter introduced a

methodology related to quadratic discriminant analysis to disentangle turbulent episodes

into good and bad, in the sense of positive and negative market developments, by adapting

a pattern recognition technique to identify up- and downward trending markets (bear and

bull states) initially devised to date economic cycles. Various turbulence-based hedging

rules were discussed and evaluated empirically, emphasizing the need to balance statistical

significance with economic considerations, notably transaction costs. A data-driven
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smoothing approach based on an orthogonal stochastic volatility model was proposed to

improve the trade-off between signal accuracy and trading activity.
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