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23 ABSTRACT

24 Bayesian Markov-chain Monte Carlo (McMC) techniques are increasingly being used in 

25 geophysical estimation of hydrogeologic processes due to their ability to produce multiple 

26 estimates that enable comprehensive assessment of uncertainty. Standard McMC sampling 

27 methods can, however, become computationally intractable for spatially distributed, high-

28 dimensional problems. We present a novel basis-constrained Bayesian McMC difference 

29 inversion framework for time lapse geophysical imaging. The strategy parameterizes the 

30 Bayesian inversion model space in terms of sparse, hydrologic-process-tuned bases, leading to 

31 dimensionality reduction while accounting for the physics of the target hydrologic process. We 

32 demonstrate the algorithm on cross-borehole electrical resistivity tomography (ERT) field data 

33 acquired during a heat-tracer experiment. We validate the ERT-estimated temperatures with 

34 direct temperature measurements at two locations on the ERT plane. We also perform the 

35 inversions using the conventional smoothness-constrained inversion (SCI). Our approach 

36 estimates the heat plumes without excessive smoothing in contrast with the SCI thermograms. 

37 We capture most of the validation temperatures within the 90% confidence interval of the mean. 

38 Accounting for the physics of the target process allows the detection of small temperature 

39 changes that are undetectable by the SCI. Performing the inversion in the reduced-dimensional 

40 model space results in significant gains in computational cost. 

41

42 INTRODUCTION

43 Understanding subsurface processes is critical to the design and efficient management of 

44 groundwater and energy resources. While traditional well-based sampling methods provide 

45 valuable insights into subsurface processes (e.g., LeBlanc et al., 1991), they are expensive and 

46 provide limited spatiotemporal information. The use of geophysical methods to investigate 
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47 spatially continuous hydrogeological processes is well documented (e.g., Singha et al., 2015). 

48 The inversion of geophysical data is, however, nontrivial due to limited noisy data (ill-

49 posedness) and solution non-uniqueness (Menke, 1984). Typically, regularization is required in 

50 order to stabilize the problem and obtain a unique result (Tikhonov and Arsenin, 1977). 

51 Traditional regularization constraints impose smoothness and/or force the solution toward 

52 some reference model (Menke, 1984) without accounting for our prior understanding of the 

53 physics of the target hydrologic process. In solute plume moments’ inference from tomograms, 

54 Day-Lewis et al. (2007) showed that the choice of regularization strongly influences the solution, 

55 often producing smoothed-out plumes with mass under-estimation. The coupled (Hinnel et al. 

56 2010) and basis-constrained (Oware et al., 2013) inversion frameworks were developed in order 

57 to address the lack of physics-based prior in the traditional regularization constraints. 

58 While deterministic methods provide simple and computationally efficient inversion 

59 frameworks, stochastic inversion (SI) techniques enable comprehensive interpretation of the 

60 estimates (Tarantola, 2005) with the capacity to estimate geologically realistic features (e.g., 

61 Oware, 2016). Bayesian Markov-chain Monte Carlo (McMC) is a commonly used SI strategy in 

62 hydrogeophysics (e.g., Irving and Singha, 2010). Standard McMC sampling methods can, 

63 however, become computationally expensive when working with spatially distributed (high-

64 dimensional) geophysical parameter fields. In such cases, performing McMC in a reduced-

65 dimensional space may help to render the stochastic inverse problem computationally tractable 

66 (e.g., Ruggeri et al, 2015). Multivariate statistical tools for dimensionality reduction (e.g., proper 

67 orthogonal decomposition (POD) or singular value decomposition (SVD), eigenvector, and 

68 wavelet transformations) typically find an orthogonal set of basis vectors that capture the 
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69 maximum amount of variability in a training dataset, thereby enabling a sparse representation of 

70 the chosen system. 

71 Hermans et al. (2016b) applied a prediction-focused approach (PFA, Satija and Caers, 2015) 

72 for direct stochastic prediction of hydrogeological parameters without the need for classic 

73 inversion. While PFA circumvents classic inversion of the data, it relies on trained statistical 

74 relationship for prediction without the process of actually fitting the data, which limits its ability 

75 to reconstruct features that are not well represented in the training data. Furthermore, the 

76 dimensionality reduction can also be achieved via frequency-amplitude-based bases and 

77 orthogonal moments. Lochbuhler et al. (2014) successfully applied discrete cosine transform 

78 (DCT) parameterization of the model space for probabilistic electrical resistivity characterization 

79 of a lab-scale CO2 injection experiment. We contend that, unlike process-tuned, non-parametric 

80 bases, the parametric DCT bases are fixed, which will limit their ability to reconstruct complex 

81 plume morphologies. In a synthetic example, Laloy et al. (2012b) successfully performed McMC 

82 in the lower-dimensional model space related to Legendre moments. In an attempt to produce 

83 realistic plume morphologies with mass conservation, they predefined mass and morphological 

84 features, which imposed hard constraints that are typically unknown a priori in real-world data.  

85 We present a novel basis-constrained Bayesian McMC (BcB-McMC) difference inversion 

86 framework to improve monitoring of hydrogeological processes. The method constrains the 

87 classical Bayesian inversion scheme with hydrologic-process-tuned, non-parametric bases to 

88 account for the physics of the target process. The key contributions of the algorithm are: 1) it 

89 allows the incorporation of site-specific, hydrologic-process-tuned non-parametric bases, 2) it 

90 parameterizes the Bayesian inversion problem in the reduced-dimensional space, and 3) it does 

91 not require prior specifications of mass and plume geometric features. It also provides a simple, 
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92 general framework to incorporate bases constructed from different methods for finding 

93 orthogonal bases. We illustrate the performance of the algorithm on a field-scale geoelectrical 

94 data acquired during a heat-tracer experiment. 

95 In spite of the numerous advantages of SI, most of the SI strategies in hydrogeophysics have 

96 focused on characterization of aquifer heterogeneities (e.g., Linde et al. 2006; Oware, 2016) with 

97 limited techniques addressing the important subject of subsurface solute-plume characterization. 

98 This contribution provides a new perspective on SI frameworks for geophysical monitoring of 

99 subsurface solute-plumes.  

100

101 BASIS-CONSTRAINED BAYESIAN McMC DIFERENCE INVERSION

102 Oware et al. (2013) presented the basis-constrained inversion wherein a vector of the target 

103 model, σ, is expressed as a linear combination of its basis vectors, B, and coefficients, c:  

104  𝛔= 𝐁𝐜.                                                 (1)

105 They implemented equation 1 in a classical Tikhonov deterministic inversion scheme to infer the 

106 optimal set of coefficients from geophysical measurements. Here, we formulate a Bayesian 

107 McMC version of the basis-constrained inversion as: 

108 𝐜𝑝𝑜𝑠𝑡 =  𝐜𝑝𝑟𝑖𝑜𝑟𝐿(𝛔│𝐝𝑜𝑏𝑠) =  𝐜𝑝𝑟𝑖𝑜𝑟𝐿(𝐁, 𝐜 │𝐝𝑜𝑏𝑠),           (2)

109 where cpost and cprior are the posterior and prior coefficients, respectively, and  is the 𝐿( ∙ )

110 likelihood function, which evaluates the probability of a proposed model given the observed 

111 data. We implement equation 2 as a difference inversion framework (LaBrecque and Yang, 

112 2001). In addition to its rapid convergence, difference inversion is intuitively appealing for 

113 monitoring hydrogeological processes due to its ability to detect small changes, eliminate 

114 systematic errors, and reduce inversion artifacts. Hence, adopting the Bayesian view of 
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115 regularization (e.g., MacKay, 1992) for computational stability, we compute the regularized 

116 likelihood as: 

117 𝐿(𝐁,𝐜,𝐖𝑑, 𝛽|𝐝𝑜𝑏𝑠) = exp [― 1
2

(𝐞𝑇 ∗ 𝐖𝑑 ∗ 𝐞+ 𝛽𝐜𝑇 ∗ 𝐖𝑐 ∗ 𝐜)],          (3)

118 where the data misfit expressed in terms of a difference is , 𝐞= [𝐝𝑡 ― 𝐝0]― [𝑓(𝐁𝐜)― 𝑓(𝛔0)]

119 with  and  representing data at the time-step of interest and background, respectively. The 𝐝𝑡 𝐝0

120 terms  and  are, respectively, the forward simulations from the classical inversion (𝑓(𝛔0) 𝑓(𝐁𝐜)

121 ) of the background data and the proposed model.  is the data weight matrix, , arbitrarily 𝛔0 𝐖𝑑 𝛽

122 set to 1e-6 here, is a fitting parameter. The value for can also be determined using the L-curve 𝛽 

123 approach (Hansen and O’Leary, 1993).  denotes the coefficient regularization operator, which 𝐖𝑐

124 contains the inverse of the fractional contributions of the singular values of the basis vectors, to 

125 impose prior structural constraints on c (e.g., Oware and Moysey, 2014). 

126 To summarize the workflow of the BcB-McMC, first, we perform Monte Carlo simulations 

127 of training images (TIs) tuned to the physics of the target hydrologic process to capture, for 

128 instance, multiple rates of advection and multiple scales of dispersion and complexities in the 

129 plume morphologies. We pull all the simulated time lapse hydrologic models together into a 

130 single robust library of TIs. Second, we construct orthogonal bases, B, from the TIs. Third, to 

131 obtain prior distributions of the coefficients, cprior, we project the TIs onto B. Fourth, we propose 

132 coefficients from cprior. We accept or reject the proposed coefficients based on the classical 

133 Metropolis-Hastings acceptance rule (Metropolis et al., 1953; Hastings, 1970). The posterior 

134 coefficients are then mapped onto the bases to obtain multiple realizations of the target. 

135

136 APPLICATION TO FIELD DATA

137 Heat-Tracer and ERT Experiments
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138 We demonstrate the performance of the algorithm on a field-scale heat-tracer experiment 

139 conducted in an alluvial aquifer and monitored with cross-borehole electrical resistivity 

140 tomography (XBh-ERT). Details of the heat-tracer and XBh-ERT experimental designs are 

141 outlined in Hermans et al. (2015). To summarize, water was continuously pumped to induce 

142 groundwater flow toward the pumping well. Hot water was then injected continuously in an 

143 injection well for 24 hours. Changes in electrical conductivity were monitored in a XBh-ERT 

144 panel perpendicular to the flow direction. Here, we focus on the inversion of the first six time-

145 lapse profiles (e.g., Hermans et al., 2018) acquired at 6 h, 12 h, 18 h, 21.5 h, 25 h, and 30 h after 

146 the commencement of the heat injection. After data filtering (Hermans et al., 2018), all the 

147 inversions involved only 410 quadrupoles for each time-step. During the experiments, direct 

148 temperatures were monitored in two piezometers, pz14 and pz15 located along the ERT plane. 

149

150 Inversion Procedure

151 The first step in the inversion involves Monte Carlo simulations of TIs tuned to the physics 

152 of the presupposed heat-tracer experiment. We used the same 3,000 (500 models x 6 time-steps) 

153 TIs employed by Hermans at al. (2018). The key in the TI simulations is to generate site-specific, 

154 physically realistic plume morphologies with uncertainties in the underlying hydrogeological 

155 properties consistent with prior knowledge of the site. Here, we considered Gaussian hydraulic 

156 conductivity (K) fields with uncertainties in the mean K and variance, anisotropy, and 

157 orientation. The heat transport assumes both advection and dispersion and retardation due to the 

158 heat capacity of the solids. We refer to Hermans et al. (2018) for more details about the 

159 generation of the TIs. We then constructed the basis vectors from the TIs (log of electrical 

160 resistivity) using proper orthogonal decomposition (POD). While there are various methods for 

161 finding the orthogonal bases, we chose POD/SVD due to its significant model-space 
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162 compression capability (Castleman, 1996). Figure 1 shows the first 20 principal basis vectors 

163 obtained from the 3,000 TIs. As noted by Oware et al. (2018), the ranges of the sampling 

164 coefficients are critical to reconstructing physically realistic solute plumes. Hence, parameter 

165 bounds must be imposed on the resampling (equation 2) of the coefficients.  To obtain physics-

166 based parameter bounds for the prior coefficients, we map the TIs onto B, i.e.:

167  𝐜𝑝𝑟𝑖𝑜𝑟 = 𝐁𝑇𝐓𝑖,                                           (4)

168 where Ti is the set of TIs. There is a unique set of coefficients associated with each TI from the 

169 mapping in equation 4. Histogram analyses (not shown) of the 3,000 coefficients associated with 

170 each coefficient reveal that most of the coefficients have approximately Gaussian distributions 

171 (e.g., Oware et al., 2018), which justifies an assumption of prior Gaussian distribution for the 

172 coefficients. Note that we also tested the assumption of prior uniform distribution over the range 

173 of each prior coefficient but found the prior Gaussian distribution to be superior. 

174 We also inverted all the datasets using the classical smoothness-constrained inversion (SCI). 

175 We employed the 2.5D ERT inversion code CRTomo (Kemna, 2000) for all resistivity forward 

176 simulations and the SCI. We utilized the following petrophysical relationship to convert the ERT 

177 tomograms into thermograms (e.g., Hermans et al., 2015): 

178 𝑇=
1
𝑚𝑓[𝜎𝑇𝜎𝑏 𝜎𝑓𝑏𝜎𝑓,25

― 1] + 25,                                           (5)

179 where  and  are the inverted bulk electrical conductivity of the background and the time step 𝜎𝑏 𝜎𝑇

180 of interest, respectively;  and  denote, respectively, fluid conductivity of the background 𝜎𝑓𝑏 𝜎𝑓,25

181 and at a reference temperature (25oC);  represents fractional change in electrical conductivity 𝑚𝑓

182 per degree Celsius. The parameters , ,  were, respectively, set to 0.0791 S/m, 0.061 𝜎𝑓,25 𝜎𝑓𝑏 𝑚𝑓

183 S/m, and 0.0194oC-1 (from Hermans et al., 2015). 

184
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185 RESULTS AND DISCUSSION

186 We ran the algorithm for 120,000 iterations using 20 basis vectors (Figure 1) to reconstruct 

187 the 1092 full-dimensional space, resulting in over 98% truncation in the dimensionality of the 

188 problem. The sampling path of the negative log-likelihood (Equation 3, Figure 2A) shows rapid 

189 burn-in of the algorithm, with burn-in occurring at about 2000 iterations. We noted all the 

190 inversions burned-in before the 4,000 iteration mark. Hence, burn-in was set to 4,000 resulting in 

191 a total of 116,000 posterior samples for all inversions. The rapid burn-in is attributable to the 

192 performance of the inversion in the reduced-dimensional space. For instance, consideration of 

193 only 20 inverison parameters will reduce the search space significantly compared to sampling in 

194 the full dimensional pixel-based model space. Further, while all 20 coefficents can be perturbed 

195 at each iteration, it is impractical to do same for all the model parameters of the full-dimensional 

196 space. 

197 We performed model autocorrelation analysis to determine the number of iterations required 

198 to generate statistically independent samples (Figure 2B). The autocorrelation curve intercepts 

199 the average correlation level (dashed line) at about 2000 iterations, which marks the correlation 

200 length. We repeated the analysis for multiple samples and found the correlation length to occur 

201 generally between iterations 2000 and 4000. We, therefore, set the correlation length to 3,500 

202 iterations, resutling in a total of 34 statistically independent posterior samples.   

203 The difference thermograms recovered from the 12h (t2), 21.5h (t4), and 30h (t6) time-steps 

204 based on the classical SCI and our approach are presented in Figure 3. Both strategies estimated 

205 similar locations and spatial extents of the heat plumes (Figure 3 Columns 1-4). While 

206 smoothing of the heat plume is apparent in the SC tomograms (Figure 3 Column 1), our 

207 approach produced plume morphologies without excessive smoothing (Figure 3 Columns 2-4). 

208 This is ascribable to the incorporation of physics-based prior information in our approach. The 
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209 standard deviation panels (Figure 3 Column 5) reveal the variabilities in uncertainty in the 

210 estimates. As expected, they show generally low uncertainty near the ERT well locations, a 

211 region of high data sensitivity. The ability of our strategy to reconstruct the different 

212 morphologies of the heat plume using the same set of basis-constraints (Figure 1), illustrates the 

213 flexibility of the strategy to recombine the bases in a manner that honors the ERT measurements.

214 The validation of estimated temperature break-through curves at the two piezometers, pz14 

215 and pz15, are presented in Figure 4.  Both strategies accurately predicted the general temporal 

216 behavior of the heat migration, with SCI out- or under-performing our strategy at certain time-

217 steps. The 90% confidence interval (CI) of the estimates from our approach captured almost all 

218 the true temperature measurements. In the data presented, a change of 1oC produced a 2% 

219 change in electrical conductivity (Hermans et al., 2018), which is undetectable in deterministic 

220 inversions. Hermans et al. (2015) estimated the limit of detection of ERT of this experiment at 

221 ~1.5 oC. It appears that accounting for the physics of the target process improves the limit of 

222 detection in our approach. Specifically, 6 hours (t1) of heat injection produced a change in 

223 temperature of ~0.5 oC at both pz14 and pz15 (Figures 4A and 4B). This small change in 

224 temperature was undetected by the SCI since it is well below the ~1.5 oC ERT detection limit. 

225 Our approach, in contrast, accurately estimated the small temperature change and captured the 

226 true values within 90% CI of the mean, indicating that accounting for the physics of the target 

227 process potentially helps improve estimation in poor data-resolution environments.

228

229 CONCLUSION

230 The use of geophysical imaging to non-invasively investigate hydrogeological processes is 

231 well-proven. While stochastic inversion is preferred for comprehensive interpretation and 

232 uncertainty assessment of geophysical estimates, the standard Markov-chain Monte Carlo 
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233 (McMC) method can become computationally prohibitive and unable to estimate physically 

234 realistic plume morphologies. We proposed here a novel basis-constrained Bayesian-McMC 

235 difference inversion framework. The strategy employs hydrologic-process tuned non-parametric 

236 basis vectors to account for the physics of the target process in a classical difference inversion 

237 framework in the reduced dimensionality space. This results in rapid burn-in of the algorithm, 

238 meaning small number of geophysical forward simulations prior to burn-in, which can translate 

239 into gains in computational costs of stochastic inversion algorithms. We found that incorporating 

240 physics-based prior information not only produces physically realistic solute plumes without 

241 smoothing, but also helps to improve estimation in poor data-resolution environments. Further 

242 research is, however, needed to demonstrate the full potential of physics-based regularization to 

243 improve estimation in poor data-sensitivity environments.
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325 Figure Captions

326

327 Figure 1.  First 20 principal proper orthogonal decomposition basis (POD heat plumes) 

328 constructed from the training images. Note, the colorbars are not on the same scale because of 

329 loss of patterns in the bases with small values. The focus is on the patterns captured in each basis 

330 since the magnitudes will be scaled by the coefficients during the inversion. 

331

332 Figure 2.  Sampling paths of: (A) negative log-likelihood to determine the burn-in period, and 

333 (B)  correlation coefficient for autocorrelation analysis. 

334

335 Figure 3.  Difference thermograms recovered from the ERT measurements at three different 

336 time-steps: (row 1) 12h, (row 2) 21.5h, and (row 3) 30h. Column 1 shows tomograms from the 

337 classical smoothness-constraint (SC) inversion, columns 2 , 3, 4, and 5 show, respectively, two 

338 posterior realizations, posterior mean and standard deviations from the basis-constraint Bayesian 

339 Markov chain Monte Carlo (BcC-McMC) difference inversion. pz14 and pz15 are, respectively, 

340 located at (1.125 m, 9 m) and (2.25 m, 8.5 m). 

341

342 Figure 4.  Validation of estimated temperature break-through curves at two validation locations: 

343 (A) pz14 and (B) pz15. (Blue lines) direct temperature measurements, and estimated temperature 

344 break-through curves from the: (orange lines) classical smoothness-constraint inversion (SCI), 

345 (yellow lines)  posterior mean of the basis-constraint (BC) Bayesian Markov chain Monte Carlo 

346 inversion. The two black dashed lines define the 90% confidence interval of the BC estimates.
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Figure 1.  First 20 principal proper orthogonal decomposition basis (POD heat plumes) constructed from the 
training images. Note, the colorbars are not on the same scale because of loss of patterns in the bases with 
small values. The focus is on the patterns captured in each basis since the magnitudes will be scaled by the 

coefficients during the inversion. 
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Figure 2.  Sampling paths of: (A) negative log-likelihood to determine the burn-in period, and (B) 
 correlation coefficient for autocorrelation analysis. 
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Figure 3.  Difference thermograms recovered from the ERT measurements at three different time-steps: 
(row 1) 12h, (row 2) 21.5h, and (row 3) 30h. Column 1 shows tomograms from the classical smoothness-
constraint (SC) inversion, columns 2 , 3, 4, and 5 show, respectively, two posterior realizations, posterior 
mean and standard deviations from the basis-constraint Bayesian Markov chain Monte Carlo (BcC-McMC) 

difference inversion. pz14 and pz15 are, respectively, located at (1.125 m, 9 m) and (2.25 m, 8.5 m). 
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Figure 4.  Validation of estimated temperature break-through curves at two validation locations: (A) pz14 
and (B) pz15. (Blue lines) direct temperature measurements, and estimated temperature break-through 
curves from the: (orange lines) classical smoothness-constraint inversion (SCI), (yellow lines)  posterior 

mean of the basis-constraint (BC) Bayesian Markov chain Monte Carlo inversion. The two black dashed lines 
define the 90% confidence interval of the BC estimates. 
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