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Abstract

Diffusion magnetic resonance imaging has emerged as the gold standard tool for studying the brain
white matter both in vivo and non-invasively, offering valuable insights into underlying tissue mi-
crostructure and brain connectivity. However, applying this technique to investigate the human
developing brain, such as in fetuses and newborns, poses unique challenges. In this sensitive pop-
ulation, the scanning time is limited for unpredictable motion risk minimization and for ethical
reasons. Additionally, images have a low signal-to-noise ratio and a low spatial resolution. Moreover,
the developing brain undergoes rapidly changing microstructural properties during the last months
of pregnancy and early months of birth. The application of current diffusion magnetic resonance
imaging methods to developing brains is severely constrained by all these aspects, necessitating the
development of tailored approaches. This thesis tackles this specific problem by proposing two deep
learning based methods that leverage high quality research datasets to improve constrained clinical
acquisitions. First, we have developed a method to enhance the through-plane resolution using a
deep autoencoder. We show its performance over conventional image interpolation methods of the
raw signal and in estimated diffusion tensor scalar maps. Second, we designed a model to predict
accurate orientation distribution functions from a low number of diffusion measurements that
are typically available in clinical settings. We extensively demonstrate its performance on newborn
subjects compared to state-of-the-art methods (such as constrained spherical deconvolution) that
need significantly more diffusion directions. We additionally show the out-of-domain generalizabil-
ity of the method on clinical cohorts of newborns and fetuses. Finally, aiming at deriving optimal
schemes for fetal sequences, we have conducted a quantitative validation study on a phantomwith
crossing-fibers, to quantify the time trade-off that is imposed by the clinical constraints, between
the number of gradient directions and the number of acquired volumes. Overall, we believe that the
aforementioned methods that harness the capabilities of deep neural networks to extract transferable
knowledge from large datasets, possess the potential to offer significant insights into the complex
mechanisms underlying the early development of the human brain.
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even when we have explained the performance of all

the cognitive and behavioral functions in the vicinity of

experience—perceptual discrimination, categorization,

internal access, verbal report—there may still remain a

further unanswered question: Why is the performance of

these functions accompanied by experience?

David Chalmers

1
Introduction

Perhaps the main mystery for which science is substantially missing formalism tools in the 21st cen-

tury is the notion of consciousness. It can be simply defined as the continuous stream of subjective

experience that switch off when we dreamless sleep and comes back the next morning211. In the

past, consciousness was an exclusive topic of philosophy but with a growing understanding of the

human brain, neural correlates of consciousness are more and more studied156,182,167,172,212,119. Yet,

the brain-mind gap is still to be filled30,210,58,102, to hope to address the so called hard problem of
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consciousness30 that is referred to in the quotation above. This would shed light on whether con-

sciousness is an emerging property of complex systems such as the nervous system, or a fundamental

property of the universe.

A highly likely necessary condition of understanding human consciousness is the computational

understanding of the central nervous system and specifically the brain, for which different configu-

rations give rise to different mental states.

The brain is an organ of fascination that deserves to be studied for several direct practical reasons

too. While their origin remains vastly unknown, neuro-psychiatric conditions such as depression,

anxiety, bipolar disorder, psychosis or Alzheimer’s disease have been shown to be associated with

different brain structural and functional states from early development to adulthood, and at differ-

ent scales146,234,202,148,200,136,27,45,75,44,24. In fact, the brain can be analysed at different levels, from

the nanometric molecular scale, passing by the micrometric neuronal scale to the millimeter and

centimeter scale of cortical circuits, brain lobes and tracts (Figure 1.1 and 1.2).

Figure 1.1: The different scales across which the brain is studied. The figure is adapted from smallpocketlibrary.com.

Functionally, at the micro-scale, electrophysiology using for example patch-clamp81, allows the

analysis of single neuronal firings. Structurally, ElectronMicroscopy47 can offer images of neuronal

circuits that can be reconstructed at individual neurons and single synapse level158,194. Although

this scale is highly accurate, it suffers from a low field of view which may hamper discoveries of pat-

terns occurring at a broader level. Additionally, data analysis is lagging behind data acquisition be-
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cause of the challenging task of analyzing petabytes of data159, despite the use ofmachine learning

for automation. In fact, the largest reconstructed human connectome194 (i.e. connectivity map) is

around 1mm3. This is the typical unit, i.e. voxel size at the macro-scale level (Figure 1.2).

Figure 1.2: Typical field of views of macro, meso and micro scales in analysing the brain. (Adapted figure19,198).

At the macro-scale, which is the scale of interest in this work, a whole-brain field of view can be

scanned, non-invasively, using magnetic resonance imaging (MRI). MRI is very unique in the sense

that depending on which physical property we tune the machine to, the image can reveal substan-

tially different tissue properties. Functionally, the blood oxygen level dependent (BOLD) signal,

reflects changes in deoxyhemoglobin saturation, driven by variations in brain blood flow and blood

oxygenation, which are correlated to neuronal activity. Hence, functional MRI (fMRI) can provide

co-activation maps between distant brain regions using the BOLD signal as a proxy of macro-scale

neuronal firing. Structurally, diffusionMRI (dMRI), by tracking brain water molecules, is the tool

of reference to map connectivity between brain regions.
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1.1 Aims and organization of this PhD thesis

These aforementionedMRI techniques have been extensively developed and applied to adult brains.

However for developing brains, especially fetal brains, several challenges such as low signal-to-noise

ratio (SNR), limited scanning time, and unpredictable motion hampers proper analyses of MR

images. This is particularly the objective of this thesis: developing advanced methods to better

uncover developing brains from dMRI.

In fact, a low SNR constrains the resolution of acquired images, that can hardly be used to ex-

tract valid anatomical information. We aimed at addressing this issue by employing super-resolution

techniques with machine learning (a branch of Artificial Intelligence that we will detail further in

Section 1.6). Additionally, restricted scanning time only allows the acquisition of a limited number

of diffusion images, which provides inaccurate information about the diffusion of water molecules

and hence the underlying brain structure. We aimed at coping with this problem using machine

learning by obtaining a mapping between reduced acquisitions and dMRI-derived metrics

reconstructed with high quality research based acquisitions. Lastly, since limited scanning time

imposes a trade-off between several acquisition choices, we aimed at quantifying this trade-off be-

tween the number of dMR images and the number of repeated acquisitions. For that aim, we have

scanned a phantom, i.e. a physical object that aims to simulate the brain tissue with different materi-

als.

This manuscript is organized as follows: in section 1.2, we describe the most important studies

relevant to the developing brain in terms of morphometry, myelination and white matter devel-

opment. In section 1.3, we introduce the concept of MRI and dMRI. In section 1.4, we describe

developing brain studies using dMRI, followed by a brief section 1.5 on clinical applications of fe-

tal (diffusion) MRI. Next, we give an overview of machine learning and describe its applications in

diffusionMRI (section 1.6). Following the format of “thesis with articles” recommended by

4



the University of Lausanne, we present in Chapter 2 a summary of the results for the 5 most im-

portant manuscripts written throughout the PhD (3 accepted115,110,111, 1 submitted114 and 1 ready

for submission113). In Chapter 3, we discuss and contextualize the results, then we provide an out-

look on future directions, and finally we draw the conclusions of the thesis. The 5 main manuscripts

are then attached. In the appendix chapter 5, we present a work that did not reach our goals but in-

spired our subsequent studies113,114, a second work on fetal brain segmentation on structural MRI,

a third work112 that uses similar methodologies113,114 on children and adults rather than newborns

and fetuses and a last work on the reconstruction of functional MRI images of fetal brains206.

1.2 The developing brain

The brain is a highly interconnected network of nerve cells, known as neurons66. These neurons

are composed of cell bodies that contain the nucleus, dendrites that are the electrochemical signal

receiver component of the neuron, and axons that are the signal emitter component (Figure 1.3 - a).

One way of anatomically categorizing the brain at the macro-scale is by splitting it into gray mat-

ter, white matter and cerebrospinal fluid. Gray matter roughly corresponds to dendrites, cell bodies,

unmyelinated axons and other structures such as glial cells, whereas white matter corresponds to

myelinated axons that gather together in bundles (Figure 1.3 - b) and serve as connectors between

neurons in different brain regions. The white matter is named for its light appearance due to the

lipids contained in the myelin sheath that surrounds axons, which is needed to enhance the trans-

mission speed of action potentials. Indeed, up to a 60 fold speed increase can be reached between for

instance unmyelinated axons in the brain and myelinated axons in the peripheral nervous system54.

Both gray matter and white matter undergo substantial changes during development. In fact,

the highest rate of volumetric growth across the lifespan occur in the fetal period, for both gray and

white matter, as was shown in a meta-study comprising 123,984MRI scans (Figure 1.4). During the
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(a)

(b)

x N

White matter fibers

Figure 1.3: (a) Illustration of the different components of a neuron (b) White matter fiber bundles ensheathed by myelin.
Combined figure from slidemodel.com and Avram et al. 13.

late weeks of gestation and early post-natal months, there are notable cerebral alterations, which can

be inferred from the non-linear increase of the cranial perimeter. This perimeter grows by approx-

imately 14 cm within the first two post-natal years, followed by a subsequent increase of only 7 cm

until adulthood54. Maturation and growth occur asynchronously; some regions, such as the sen-

sory areas, experience early and rapid development, while other areas, such as the frontal associative

regions, undergo slower development and continue to mature until the end of adolescence169.

1.2.1 Morphometry

Studying fetal brain development can provide valuable information to investigate in vivo brain mat-

uration changes across time. Morphometric changes such as tissue volume or cortical folding can be

studied from structural MRI. Significant changes in brain anatomy occur during the fetal period.

For instance, the brain goes from a completely smooth organ at 22 weeks of gestation to the devel-
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Figure 1.4: The rates of volumetric change for each tissue volume over the lifespan, estimated using the first derivatives
of the median volumetric trajectories (adapted figure21).

opment of the major sulci and gyri at the 32nd gestational week. The identification of sulci in the

developing brain can pose significant challenges due to their relatively smooth morphology during

early developmental stages42.

The initial investigations of the formation of cerebral folds were conducted using postmortem

fetal brains. In a pioneering study36, a total of 207 normal looking brains were analyzed and the

chronological appearance of major fissures and sulci was documented. The results indicated that

three successive folding phases are involved, with primary folds emerging at 20 GW, secondary folds

at 32 GW, and tertiary folds at 38 GW (Figure 1.5).

By the time of full-term birth (~40 GW), all the primary and secondary sulci are developed, and

the majority of tertiary sulci have also emerged. The resulting sulcal configuration in neonates is

similar to that of adults in terms of shape and folding variability, with the exception of certain re-

gions, such as the anterior cingulate, anterior temporal cortices, and mid-temporal sulcus. In these

areas, neonates display greater variability in sulcal depth than adults85.

In the literature, prematurity is suggested to be a potential causative factor for changes in the

dynamics of sulcal development due to differences between the intra-uterine and extra-uterine en-

vironments. Specifically, even in the absence of any obvious brain anomalies, the brains of pre-term

infants exhibit more prominent folds, less cerebrospinal fluid and a more compact overall shape
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Figure 1.5: Cortical surface reconstructions of pre‐term newborns at varying post‐menstrual ages (left value) and cor‐
responding whole‐brain sulcation index (right value). The cortical surfaces are color‐coded to represent variations in
surface curvature. Adapted figure42.

when compared to fetuses of the same age133. Moreover, the intensity and sharpness of folding, as

well as the shape of sulci, were found to be altered in pre-term infants, and these effects were influ-

enced by gestational age at birth.

1.2.2 Myelination

Prior to the advent of non-invasive brain imaging methods, human brain development was primar-

ily investigated through rare post-mortem examinations. Myelin staining was used to determine

the presence or absence of myelin in white matter region at a given age, but this information lacked

specificity to individual bundles and could therefore be misleading at bundle crossings. Accurate

measurements of myelin quantity remain elusive, hampering quantitative comparisons between

white matter regions54.

Myelination is another highly important process that reaches its peak during the first post-natal
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year. However, what is referred to as ”pre-myelination” is when the glial cells responsible for myeli-

nation (oligodendrocytes) proliferate and migrate along the axons18, which happens much before

birth. Subsequently, the process of myelination that induces significant changes in water molecule

content, entails the ensheathment of oligodendroglial processes around the axons, along with the

chemical maturation of the myelin sheath and an increase in macromolecular content175,54.

Post-mortem studies have provided detailed information about howmyelination progression

varies across cerebral regions, following caudo-rostral and central-peripheral directions. Microscopic

observation of myelin has been reported as early as 20 gestational weeks (GW) in the bulb and pons.

Mature myelin has been detected between 37 and 40 GW in the cerebellum and internal capsule.

During the period between the first and third post-natal months, myelination occurs in the poste-

rior limb of the internal capsule (PLIC), the optic radiations (OR), and the splenium of the corpus

callosum. Mature myelin can be found in the anterior limb of the internal capsule and the genu of

the CC at 6 months, in the occipital pole at 15 months, and in the frontal and temporal lobes at 23

months18.

1.2.3 Post-mortem studies of white matter

The organization of white matter (WM) connections has been reported through post-mortem stud-

ies. After neurons migrate to their final position, they proceed to form connections with other neu-

rons through the development of dendritic trees within the gray matter and the formation of axons

that traverses the WM. The initial wave of migrating neurons reside in the subplate (located beneath

the to-be cortex). This process of neural wiring occurs primarily during the second half of gestation

and involves a cascade of events, such as neuronal and synaptic overproduction, cellular apoptosis

regulating cell death programming, axonal retraction, and synaptic pruning. Synaptic pruning in

particular is a very important process that serves to eliminate redundant or anomalous circuits.

Structural MRI has been informative in morphometric studies, but also inWM development
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in early works. In fact, correlation studies103,179 between histology and high-resolution structural

MRI scans of post-mortem fetuses have been performed. Their findings revealed the presence of

three identifiable fiber systems in fetuses as young as 12 GW. These systems include the corpus cal-

losum (CC), the fornix, and the hemispheric stalk. The hemispheric stalk is a massive connection

between the telencephalon (cerebrum) and the diencephalon (areas between the cerebrum and the

brainstem) that contains all the projection fibers of the developing internal capsule.

Between 17 and 24 GW (mid-fetal period), there is a notable development of major cerebral fiber

systems in intermediate zone (the to-be white matter). The fiber architectonics of the fetal cerebrum

exhibits a tangential axon strata in the fronto-polar and occipito-polar regions. The fornix is well

developed below the corpus callosum (CC), while the CC, internal capsule, and external capsule

are growing. In the central white matter, the ”periventricular crossroads” are the intersections of the

major fiber systems, which include the callosal fibers in the transverse direction, associative fibers in

the sagittal direction, and thalamo-cortical/cortico-fugal fibers in the radial direction54.

Between 24 and 32 GW, there is a notable development of the corona radiata, which arises from

the transformation of the tangential fetal fiber-architectonic stratification. During this period, all

major segments of the cerebral white matter (WM) can be identified, including the corpus callosum

(CC), corona radiata, centrum semiovale (CS), and gyral white matter. The fibers continue to grow

at the periventricular crossroads and the ventricular part of the CC, and by term birth (~40GW), all

major fiber systems should be fully developed and in place.

After the process of maturation, fibers can be clustered according to their connection patterns

into three categories: (1) Commisural fibers connecting the two brain hemispheres, mainly the cor-

pus callosum; (2) Projection fibers connecting bidirectionally the cortex and thalamus, and the cortex

with the brain stem and the spinal cord; (3) Association fibers encompassing cortico-cortical connec-

tions such as the arcuate fasciculus that connects the frontal and the temporal lobes.

While post-mortem studies are very valuable, they do not completely reflect the in vivo normal
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development. Thus, other techniques are needed to study early stages of brain maturation both in

vivo and non-invasively.

1.3 Diffusion MRI

Before the progressive development of magnetic resonance imaging (MRI) as we know it today,Nu-

clear Magnetic Resonance (NMR)23,177 was used to measure the chemical structure of substances.

MRI relies on hydrogen nuclei that are exclusively composed of hydrogen atoms. After magnetic

stimulation, they create a signal that is transformed to an image by the application of the Fourier

transform. Since the signal received comes from all the tissue in the scanner, the typical way to in-

corporate localization is to introduce magnetic gradients, where the magnetization properties will

depend on the location. This is performed by applying varying gradients that are weaker than the

main magnetic field. Three gradients are necessary to produce a voxel (i.e. 3-dimensional) signal,

namely slice, frequency and phase encoding gradients.

T1-weighted and T2-weightedMRI images are the most commonly employed imaging tech-

niques in MRI. T1-weighted images rely on the longitudinal relaxation time of protons in tissues,

which reflects the time required for spinning protons to realign with the main magnetic field. In

contrast, T2-weighted images are more sensitive to variations in the decay rate of protons and reflect

the time required for spinning protons to lose phase coherence among the nuclei spinning perpen-

dicular to the main magnetic field, known as the transverse relaxation time.

Diffusion MRI (dMRI)131, with its unique capabilities of imaging the white matter both in vivo

and non-invasively, relies on the Brownian motion of water molecules. First described by Robert

Brown in 1827, after examining pollen grains suspended in water under a microscope, he observed a

continuous jittery motion. In 1905, Albert Einstein modelled the motion of these pollen particles in

one of his first major scientific contributions. The average particle displacement r (Equation 1.1) de-
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(a) Isotropic diffusion

(b) Anisotropic diffusion

Figure 1.6: (a) Isotropic and (b) anisotropic illustration of Gaussian diffusion. Figure from Hagmann et al.80.

pends on the displacement time Δ, on the particle size as well as the fluid temperature and viscosity

(D)

< r2 >= 2ΔD (1.1)

In a homogeneous medium, the diffusion distribution, also called the displacement distribution

is Gaussian. Depending on the shape of the medium, the diffusion can be either isotropic, when its

geometry is independent of directions such as in the brain cerebro spinal fluid (CSF), or oppositely

anisotropic when the diffusion occurs more along one specific direction, such as in coherent white

matter fiber tracts. Figure 1.6 shows the probability density function of both configurations.

The equations of diffusion NMRwere derived from Bloch equations23 in 1964 by Stejkal and

Tanner201 (Pulse Gradient Spin Echo, PGSE) before the invention of the 3D spatial localization

of the NMR signal using the three gradients128,143. Because of the complexity of the interaction
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of these three gradients with a fourth gradient, i.e. the diffusion gradient along a given direction,

Le Bihan et al.129 suggested the b-value term to pack exclusively the terms that only depend on the

sequence parameters (Equation 1.2).

Sg
S0

= exp
[
−γ2G2δ2

(
Δ − δ

3

)
D
]
, b = γ2G2δ2

(
Δ − δ

3

)
(1.2)

Sg is the diffusion weighted signal along a gradient direction g, S0 is a non-diffusion weighted sig-

nal (commonly denoted as b0). δ is the gyromagnetic ratio that depends on the isotope used (e.g.

42.58MHz T−1 for hydrogen proton) andG, δ and Δ are the PGSE sequence parameters, respec-

tively the magnitude of the gradient pulses, the time of each of the two gradient pulses and the time

between the two gradient pulses. D is the diffusion coefficient that can be extracted by fitting a

model to the measured data. The principle of the the PGSE sequence is to create a gradient along

the direction we aim to measure the diffusion using a radio frequency pulse. Hence the spins that

are present along that direction will resonate at different frequencies. After a certain time (i.e. Δ),

an inverse gradient is applied and the spins that did not diffuse will have a zero net magnetization

compared to the moving spins that will experience a phase shift. This phase shift will translate to a

signal loss or a low intensity voxel in the case of images.

It’s only in 1985-1986, i.e. 11-12 years after the elaboration of the diffusion NMR equations,

that the first MR images of the in vivo human brain were acquired using a whole-body sequence

along one gradient direction129,130. Few years later, diffusion was performed along more directions

in a cat brain157. In fact it was known that diffusion should be different between gradient directions

because of its non-restriction in the direction along the fibers compared to the orthogonal direction.

Diffusion MRI captures themicroscopic displacement of water molecules. A typical isotropic

voxel of dMRI in the adult brain (2mm3) contains an order of magnitude of 1023 water molecules

and hence captures a statistical displacement.
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The most commonmodel in dMRI is diffusion tensor imaging (DTI)17, that makes the as-

sumption that the water diffusion is Gaussian. The displacements can then be characterized by the

covariance matrix of the Gaussian function (Equation 1.3), namely the diffusion tensor, encom-

passing information about diffusion along the three axis. Because diffusion is supposed to be sym-

metric, the diffusion tensor contains 6 unique parameters and hence the need for at least 6 diffusion

acquisitions to solve the system of equations. In practice, more than 6 measurements are needed

because of the stochastic noise.

p(r) ≜ e−rTΣ−1r, with Σ = 2ΔD (1.3)

On the image scale, the diffusion tensor is a 6D object, i.e. a 3D tensor for each voxel, posing a

problem of vizualisation. Hence the reason to extract 3D scalar maps from it. For that aim, the ten-

sor is diagonalized to extract the eigenvalues that represents the diffusion strength along each axis on

the reference frame of the eigenvectors. For instance, if the eigenvalues are equal, we fall in the case

of isotropic diffusion, otherwise the diffusion is anisotropic (Figure 1.6). Using these eigenvalues,

one can extract several maps such as the fractional anisotropy (FA), themean diffusivity (MD),

the axial diffusivity (AD) or the radial diffusivity (RD).

FA represents a normalized measure of the variance of the eigenvalues, informing us about how

different the diffusion is between the three main axes. MD provides an average of the diffusivity,

i.e. independently of the directions. AD ignores the two weakest diffusion directions and provides

information about the main diffusion direction as opposite to RD, which quantifies the diffusion

perpendicular to the main direction. This is formulated in the equations below where λ1, λ2 and λ3

are the three eighenvectors of the diffusion tensor, where λ1 and λ3 are respectively the largest and

the smallest.

FA =

√
1
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23
(1.4)
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MD =
1
3
(λ1 + λ2 + λ3) (1.5)

RD =
1
2
(λ2 + λ3) (1.6)

AD = λ1 (1.7)

Another way to illustrate a diffusion tensor is to represent each voxel by a color code that corre-

sponds to the main diffusion direction. This map can be modulated by the FA values (Figure 1.7).

Figure 1.7: Diffusion tensor fractional anisotropy (FA) maps (top row) and color FA maps (bottom row) across gestational
weeks (adapted figure 117).

The assumption that the diffusion is Gaussian is easily violated in practice, meaning that DTI

provides a limited and gross reconstruction of the anatomy. In fact,DTI fails at reconstruct-

ing different fiber configurations such as fiber crossings, occurring in 30% to 90% of the vox-

els245,101. Furthermore, under certain circumstances, the gaussian assumption does not hold for
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complex tissues with different compartmental characteristics such as glial cells, that vary in shape

and in sub-cellular structures. The DTI hypothesis holds less in high b-value acquisitions (b ≥

1500s/mm2). In that case, water molecules have a higher probability to collide with the different

structures of the tissue and the diffusion will be along different axes and with different strength.

This scenario cannot be captured by a Gaussian model because of its limited degrees of freedom49.

Empirically, the linearity of the log(Sg/S0) (Equation 1.2) is not holding and a quadratic term in b

has to be added to correctly model the diffusion signal. Similarly to DTI maps, diffusion kurtosis

imaging (DKI) maps can be extracted by acquiring several diffusion weighted images and comput-

ing a diffusion kurtosis tensor.

Other models that aim to overcome the major limitations of DTI, i.e. its inability to correctly

represent fiber crossings or high-curvature areas, rely on theOrientation Distribution Func-

tion (ODF). ODFs are mathematical formulations of the probability distribution of fiber orien-

tations. Two predominant types of ODFs are used in diffusionMRI. The first is the diffusion ODF

(dODFs)220 that can be intuitively comprehended as a deformed sphere where the radius at each

point is proportional to the diffusion in the direction between the center of the sphere and that

point. It is defined in Equation 1.8 where u is the direction along which we want to estimate diffu-

sion, but since we do not know the probability density function P, the Funk-Radon transform218 is

used to estimate it.

Ψ(u) =
∫ ∞

0
P(αu)dα (1.8)

Diffusion ODFs can correctly reconstruct a broad range of fiber crossing angles, approximately

between 70° and 90°, however it does not have enough degrees of freedom to disentangle angles be-

tween 40° to 60°. Fiber ODFs (fODFs or FODs) can resolve these crossings using more degrees

of freedom. The underlying models are Spherical Deconvolutions (SD)217,100,28, that suppose that
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the observed DWI signal is the result of convolving the true fiber distribution with a response func-

tion, where the latter can be estimated from a region containing one single fiber population. Hence

to approximate the true fiber distribution, one has to perform the inverse operation, i.e. deconvolu-

tion, that is constrained on the positivity of the ODF. Fiber ODFs aim to directly model the fibers

orientation as opposite to diffusion ODFs that aim to model the diffusion of water molecules. Fig-

ure 1.8 shows the reconstruction of a crossing area of a biological phantom using the three models.

In the recent years, multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)100

became the most widely used model as it generates more accurate fODFs. In fact, the model takes

into account the response functions of three different tissues: white matter as in CSD217 but also gray

matter and CSF.

Among the different models, DTI requires the lowest number of measurements: theoretically a

minimum of 6 but practically 15-30 to cope with low SNR. ODF based models using SD typically

require at least 30-60 gradient directions. But these numbers can vary depending on several factors

including the b-value, the minimum angle of the crossing fibers and the SNR46.

Figure 1.8: Crossing fibers region in a biological phantom reconstructed by the DTI model, diffusion ODF and fiber
ODF models. While the tensor fails at reconstructing the crossing area, ODF models can achieve this at different levels.
Figure from Descoteaux et al. 50.
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1.4 The in vivo developing brain with diffusion MRI

DiffusionMRI (dMRI) is the tool of reference to shed light on white matter development in vivo.

Diffusion acquisitions and models were mainly developed for adult brains. However, the structure

of adult brains differs considerably from immature newborn and fetal brains.

1.4.1 Challenges and protocols of developing brains with dMRI

The developing brain has a high water content compared to the adult brain, which greatly affects

diffusion imaging. Because of the increased diffusivity, some studies38,92,164 have suggested a b-

value for developing brain imaging to be around 700-800 s/mm2. Many research studies122,64 have

incorporated these b-values into their acquisition protocol. However, a single low b-value is insuf-

ficient to model complex anatomical configurations46. High b-values similar to adults protocols

(1000-2000 s/mm2) are used when applying the neurite orientation dispersion and density imaging

(NODDI) model239 to neonatal images99,107. Indeed, ideal protocol parameters may vary depend-

ing on the study and factors like age range and imaging goals. For instance, the Baby Connectome

Project91 has opted for a protocol that is optimal across the wide age-range studied longitudinally.

Finally, most clinical studies stick with conventional protocols with high b-values (1000 s/mm2)

and 2mm3 resolutions141,219. Research protocols such as the one of the developing Human Con-

nectome Project (dHCP) has optimized diffusion space sampling, allowing for acquisitions of a

300-sample multi-shell diffusion dataset in 20 minutes with a final resolution of 1.17 × 1.17 × 1.5

mm3 . However, this research protocol can hardly be replicated in clinical settings.

Additionally, both neonates and fetuses are prone to involuntary movements such as sponta-

neous head and limb motions, which corrupt the acquired images. Limiting the acquisition time is

crucial in mitigating motion-related challenges in developing brain MRI studies to ensure accurate

interpretation and analysis of the imaging data. However, the limited time also translates to a small
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number of acquired directions, hampering accurate estimation of fiber orientations using existing

methods216,100.

These constraints are even more pronounced in fetuses because of the unpredictability of

the movements, the small fetal brain, the bigger distance of the fetal brain to the coils, and

the presence of maternal tissue. As a result, images with a low signal-to-noise ratio (SNR) are

typically acquired. Hence the need to acquire thick slices (high through-plane resolution, 3-5 mm)

to mitigate this problem. Some groups acquire several orthogonal acquisitions to improve the SNR

and increase the probability of acquiring images along different directions because of fetal motion.

Figure 1.9 summarizes typical fetal acquisitions in the different research teams.

While motion is aimed to be frozen by the echo planar imaging (EPI) acquisition within one

slice, it can still occur within one volume (i.e. along one gradient direction) and across different

volumes. Motion compensation strategies such as outlier rejection and registration are therefore

more important in developing brains. Moreover, non-linear distortions typically occur because of

the fast switching on and off of the diffusion gradients.

Finally, the contrast between gray and white matter in the fetal brain, especially in early gesta-

tion, is substantially blurred compared to adult brains, and hence methods such as state-of-the-art

MSMT-CSD100 may not be applicable in a straightforward manner.

1.4.2 in vivo studies of developing brains with diffusion MRI

Data obtained in vivo from pre-term infants and fetuses have corroborated findings from post-

mortem investigations. The use of dMRI has allowed for the delineation of the early laminar or-

ganization of the cerebrum, which includes the cortical plate, subplate zone, intermediate zone, sub-

ventricular and periventricular zones, and germinal matrix, in newborns born at 25-27 gestational

week (GW)138. Additionally, imaging studies of fetuses in utero have demonstrated the early depic-

tion of the pyramidal tract, as well as the splenium and genu of the corpus callosum (CC), which
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Figure 1.9: Diffusion MRI fetal brain protocols across different centers. We can see the variability of acquisition
schemes, the small b‐values and the low number of directions (except for the research oriented dataset of the devel‐
oping human connectome project, dHCP37).

can be reconstructed using tractography algorithms between 18 and 37 GW26,109,176. Furthermore,

the Probst bundles can be identified in cases of CC agenesis108. Association tracts and subcortical

projection tracts have also been identified in pre-term infants166,55.

In the last two decades, several studies have investigated the developmental changes in diffu-

sion tensor imaging (DTI) measures. In fact, the focus was mostly on tracking fractional anisotropy

(FA) and mean diffusivity (MD). Those studies have been then trying to explain these variations by

suggesting links to microscopic changes that happen at large scale such as dendritic arborization,

synaptic formation, neuronal differentiation or myelination.

Many studies reported a linear increase in FA and a decrease in MD over gestation183,26,191,88,95.

However, non-linear changes in DTI measures or an initial increase in MD in some white matter

(WM) areas have also been observed92,190,87,140,232. Schneider et al.190 examined 78 fetuses with GA
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ranging from 23 to 38 GW and found an initial increase in MD values in upper parts of the brain,

followed by a decrease after 30 GW. In another work191, they also conducted a longitudinal analysis

on 28 fetuses (21-34 GW) and reported a insignificant increase in MD in frontal WM. Similar MD

patterns were also observed in another study87.

Because of limited sample sizes, insufficient gestational age range, and differences in data process-

ing methods, apparent inconsistencies are observed across the above-mentioned studies. In addition,

DTI metrics are not quantitative and depend on acquisition parameters such as the b-value.

Diffusion-weighted imaging (DWI) can give insights into the WM organization. For instance,

Khan et al117 reconstructed major fiber tracts across gestational ages (Figure 1.7), albeit with various

limitations. Jakab et al.96 compared neurotypical brains with corpus callosal brains and character-

ized their differences by tractographic and connectomic analyses. Furthermore, Machavos-Riva et

al.139 analysed and characterized the tracts that connect the cerebellum to the brain stem, called the

cerebellar penduncles of 81 fetal brains. Other fiber regions such as the corticospinal tract, the for-

ceps major and the inferior fronto-occipital fasciculus were studied140 across 16 gestational weeks

(23-38).

Apart from individual subjects analyses, three fetal diffusion atlases exist today. The first that

was released is a DTI atlas71,70,117 that used 67 dMRI scans of neurotypical fetuses between 22 and

38 GW. Two recent atlases34,232 use more diffusion measurements and higher b-values and aim at

reconstructing atlases relying on more advanced models than DTI. One of them is composed of

113 subjects from 22 to 37 GW232 and the other one relies on 89 scans for subjects in the range 24-

38 GW34. The former study aimed at characterizing diffusion metrics of five main fiber bundles,

namely genu and splenium of corpus callosum, optic radiation, inferior longitudinal fasciculus and

cortico-spinal tract. Based on diffusivity trajectories, the latter34 speculated that the inflection point

of the diffusivity trajectory may be aligned with pre-myelination.
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1.5 Clinical MRI applications in developing brains

Fetal brain MRI is mostly dominated by T2-weighted imaging, compared to diffusion weighted

imaging (DWI) studies, and has its applications ranging from neuroscientific research as discussed

above to pure clinical purposes.

Clinically, fetal brain imaging is routinely performed with ultrasound and used the follow-

up of pregnancies and diagnosis of potential congenital pathologies. Alternatively, MRI, that

presents a very high sensitivity to depict soft tissue contrasts, is also indicated, if further in-

vestigation is needed to rule out, confirm or complement a suspected abnormality detected by

ultrasound.

In fact, Griffiths et al.77 have conducted a prospective and multicentric study on 570 fetus, where

they found a significant increase in accuracy diagnosis from 68% when only using ultrasound to 93%

when combining it with MRI. This difference in accuracy was higher for high gestational ages.

MRI has been extensively supporting ultrasound in ventriculomegaly cases, i.e. where the ventri-

cles are larger than normal. It can provide additional information76,127,189 such as its cause or other

misdiagnosed associated pathologies. Other brain abnormalities to whichMRI can contribute in

the diagnosis are posterior fossa malformations, corpus callosum agenesis or dysgenesis, and cortical

malformations11.

Additionally,DWI can be used in the detection of cytotoxic or vasogenic edema, for example

in hypoxia-ischemia, congenital infection, inherited metabolic diseases, or pregnancies at risk of fetal

brain damage25,69,79. The diffusion signal intensity depends on the underlying condition. For in-

stance diffusion is restricted in the case of cytotoxix edema, in ischemia for example, due to swelling

of cells when extracellular water goes into cells (intracellular edema). On the other hand diffusion is

increased in vasogenic edema, when the blood brain barrier is injured and fluid leaks from capillaries

into white matter (extracellular edema).
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1.6 Machine learning and diffusion MRI

Prior to detailing the application of machine learning to diffusion magnetic resonance imaging, a

concise overview of the principles of machine learning and artificial intelligence will be provided.

1.6.1 Machine learning overview

Artificial intelligence (AI) can be defined as the ability of a machine to perform a task that

was believed to be exclusively in the realm of humans. It can be categorized into symbolic and

non-symbolic AI. Non-symbolic AI and particularly connectionism aims at mapping an input to an

output, for example an image to a label or a wave sound like speech to its written text, by finding

correlations between the input and output, without necessarily being able to (humanly) explain the

decision process. On the other hand, symbolic AI, such as rule-based systems, operates in an if-else

paradigm and hence can trace back the decision process. Today, most successful AI systems fall into

the non-symbolic category and are typically referred to asmachine learning algorithms. Machine

learning can be further categorized into supervised, unsupervised and reinforcement learning. Su-

pervised learning needs labels to be trained, such as the label tumorous/non-tumorous in a medical

image, whereas unsupervised learning does not rely on labels and aims to find patterns in the data

using for instance clustering algorithms such as K-means82. Self-supervised learning was recently

introduced and is somehow a hybrid version of the two paradigms, aiming at training an algorithm

to predict a part of the input data from other parts of the same input data. Reinforcement learning,

mostly used in robotics, cognitive architectures and games such as chess, aims at inferring a function

from a reward signal. Both supervised and unsupervised algorithms were employed in this thesis as

opposite to reinforcement learning that is rarely employed in medical imaging and thus will not be

further discussed.

Example of popular machine learning algorithms are support vector machines (SVM)224, Ran-
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dom Forest86 and artificial neural networks (ANN)147. The latter is of particular interest and was

named after neuronal networks of the nervous system because of their local basic computations,

i.e. firing when action potential threshold is reached, and their global capabilities when working in

synchronicity generating high-level capabilities such as learning or detection. Deep learning (DL),

a sub-field of machine learning that is the most successful today because of the maturity of

the methods developed in the last few decades such as the back-propagation algorithm186 and

the availability of sufficient computer power (including Graphical Processing Units, GPUs)

and large datasets (the big data era). A consequence of efficiently training these algorithms is the

automatic feature learning from the input data that is not anymore performed by a human operator

as in classical machine learning. The algorithm automatically extracts relevant features that depend

on the current task, by efficiently finding the ones that discriminate the best the output, in the case

of supervised learning for example.

Deep learning is the field of deep artificial neural networks, i.e. ANNs with several layers, as op-

posed to shallow ANNs that have one middle layer between inputs and outputs. In fact, the success

of deep learning greatly resides in the high number of neurons distributed over several layers, i.e.

over-parametrized networks196,6,237. Although over-fitting, i.e. overly fitting the training data distri-

bution including the noise, may happen when the number of data points is low. There are several

theoretical frameworks that try to rigorously formulate the generalization problem, i.e. being able to

generalize to unseen data, such as the Vapnik-Chervonenkis (VC) dimension225 or Rademacher

complexity16, but their applications to deep neural networks remains unclear. In fact, it is not

straightforward because of several factors such as the architecture used, the hyperparameters, infor-

mation about the diversity within the dataset and fundamentally the absence of a general theoretical

framework for deep learning. Several strategies however were suggested to tackle this problem such

as dropout84,199 or data augmentation that were both employed in this thesis.

The cost of the great success of deep learning is the opacity of its models, often referred
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to as black boxes. Unlike symbolic AI, a deep learning network can hardly be broken down to be

(humanly) understood because of the high complexity of non-linear correlations that the network

learns between the input and the output. Several groups working in theoretical deep learning have

been trying for instance to understand regimes that govern high-dimensional learning with back-

propagation and gradient-descent12,51,228. Other groups have been trying to unify both schools (i.e.

symbolic AI and deep learning) into one learning paradigm using cognitive models that are inspired

from the brain that incorporates inductive biases20,73. Other groups in a field known as explainabil-

ity14,195,155,193,203,10 have been aiming at analyzing neural networks by studying the relevance of

internal representations to predict the output.

Deep learning is essentially successful in two areas: (1) natural language processing (NLP) with

applications such as machine translation241 or text generation such as GPT178; and (2) computer

vision which is the subject of this thesis, particularly medical imaging.

With the advent of deep learning, computer vision was revolutionized by convolutional neu-

ral networks (CNNs or ConvNets)132. This learning paradigm was in fact partly inspired by the

neurobiology of the visual cortex. Figure 1.10 - top, shows the ventral stream of the visual system

where a sensory input enters the eye, it is transferred by a thalamic structure called lateral genicu-

late nucleus (LGN) to primary visual cortex (V1) that contains neurons firing for low level features

such as edges and lines. The signal is then gradually aggregated in high-level visual areas (V2, V4) to

form shapes, objects or colors until reaching the final output such as a face in a the fusiform face area

(FFA) in inferior temporal cortex (IT), the brain area that is responsible for face processing.

CNNs share several properties with the visual system: (1) processing is divided into several con-

secutive layers (2) neurons process only a small subpart of the available information (3) neurons in

each layer combine their inputs to higher order features (4), many neurons perform the same task

for different parts of the input. Convolutions in CNNs are usually followed by pooling layers to

reduce the data size and hence reduce parameters. Similar patterns can be found in the processing
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system of the eye as can be seen in Figure 1.10 - bottom.

Figure 1.10: The ventral stream of the visual system where features are hierarchically reconstructed in the brain from
primary visual areas to high‐level visual areas such as the fusiform face area (FFA) in the Inferior Temporal cortex (IT).
Eye processing is also displayed in the bottom figure. Convolutional neural networks (CNNs) bear several similarities to
information processing of biological tissues. The figure is adapted from neurdiness.wordpress.com.

CNNs have proven to be successful in a wide range of computer vision tasks such as object recog-

nition, object detection, image classification or image segmentation. While most methods are de-

veloped in the context of natural images, medical imaging withMRI is no exception to the success

of CNNs. One of the first studies142 in brain MRI using CNNs aimed at detecting multiple scle-

rosis using CNNs in the first layers and a feed-forward neural network in the last layer for binary

classification.

Deep CNNs are widely used today in a variety of MRI tasks, from the segmentation of the

brain241,154,118,3,188, or the segmentation of brain structures such as white matter, gray matter or the
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cerebellum233,8,39,22 or segmentation, detection and classification of lesions and tumors123,78,15,7,94,9.

Segmentation with deep learning underwent a considerable boost after the advent of the U-Net ar-

chitecture185. Its high performance is commonly explained by the joint learning of high-context

low-resolution features and high-resolution low-context features thank to its skip connections. Reg-

istration and motion correction are also performed with deep learning nowadays43,56,29,197,89,235.

1.6.2 Applications of machine learning in dMRI

Machine learning is also widely employed in diffusionMRI today. We will start by detailing classical

machine learning application to dMRI, followed by deep learning applications in dMRI and finally

machine learning studies in the specific population of newborns and fetuses.

1.6.3 Classical machine learning in dMRI

Denoising dMRI images with a simple linear regression model in a self-supervised framework62 has

been successful in a variety of datasets. In this patch-based method, regressors are solely exposed to

the signal contained within volumes apart from the target volume. By assuming noise independence

across different volumes, i.e. predicting the noise of a target volume do not depend on the input

volumes, the regressors acquire the ability to attenuate noise while retaining the signal of interest.

Other studies have employed Random Forest for several purposes such as Image Quality Trans-

fer5 to improve the quality of datasets that are acquired using limited acquisition times using the

fine structural details of high-quality data sets with longer acquisition times. They were also used in

mapping the DWI signal to fiber tractography163 or for ischemic stroke identification152.

Support vector machine (SVM) is another machine learning algorithm that was utilized in diffu-

sionMRI. In a study192, SVMwas used to classify six distinct categories based on rotational invari-

ant features extracted from spherical harmonic decomposition of a high angular resolution diffusion
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imaging (HARDI) signal. The six classes were parallel and crossing neuronal fiber bundles in white

matter, grey matter, partial volume between white and grey matter, cerebrospinal fluid and back-

ground noise. SVMwas also used in the prediction of the survival rates in patients with brain cancer

using diffusion and perfusionMR images61. Several other studies150,63,149 of diffusionMRI using

classical machine learning can be found in a review by Ravi et al.181.

1.6.4 Deep learning in dMRI

Deep learning was used for several purposes in dMRI such as the development of customized

microstructure-sensitive loss functions in order to predict multishell data and enhance angular

resolution33. Quality control74, data harmonization across scanners160, brain tissue segmenta-

tion238, detecting abnormalities in multiple sclerosis patients226 and predicting motor outcomes

from dMRI pre-term data187 was also performed using deep neural networks.

Deep learning in diffusion MRI have been first used in a pioneer work by Golkov et al.72

with the goal of (1) reducing acquisition time and (2) decreasing the error accumulation of sub-

optimal modeling steps that are routinely employed in dMRI. In fact, these processing steps can

be thought of as handcrafted feature extraction. Golkov et al.72 suggest to directly learn the ob-

ject of interest, in particular diffusion kurtosis maps and neurite orientation dispersion and density

imaging (NODDI)239 maps by learning a mapping using an artificial neural network between a low

number of DWI measurements and the latter maps reconstructed using all available measurements.

That way, the error is fully back-propagated and minimized in an end-to-end paradigm. A 12-fold

gain in the number of samples required and hence in acquisition time was obtained. A similar ap-

proach will be used in this thesis in the case of fiber tracts estimation.

Another work used deep learning and spherical harmonics decomposition to estimate data of a

non-acquired shell from existing shells120. Another work209 have trained a deep CNN to predict

six high quality diffusion images along with one b0 derived from the tensor reconstructed from all
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available measurements, using as input structural images (T1- and T2-weighted) and the original

six diffusion measurements and one b0. Their results showed that the predicted volumes showed

comparable performance as a fully sampled scan in terms of diffusion tensor and tractography. In

contrast, Li et al.134, have directly predicted tensor maps with six diffusion measurements with

CNNs. These maps did not show a significant loss in accuracy compared to maps computed with

60-90 directions, even in pathological subjects, where lesions were still visible.

Other works have been trying to estimate fiber Orientation Distribution Functions (ODFs) using

deep learning. A study from Koppers et al.121 aimed to estimate the number of fibers and the fiber

orientation of a fiber ODF by discretizing the angles into 250 ranges using CNNs and spherical

harmonics basis. Nath et al.162 used the ex-vivo dMRI signal to predict fiber ODFs reconstructed

from histology ground truth. Another work135 deployed a 3D CNN to predict them using a small

neighborhood of the diffusion signal. Hosseini et al.90 used a two-stages Transformer-CNN to first

map 200 directions to 60 directions and the latter to fiber ODFs.

Instead of predicting fiber ODFs, another pioneer work in tractography is named TracSeg230.

In fact, it directly aims to perform tractography, using a segmentation paradigm. It learns a map-

ping using a 2.5D CNN (a CNN that takes 2D images from the three planes) in the shape of a U-

Net185, between the peaks extracted from applying constrained spherical deconvolution (CSD) to

the DWI images, and the corresponding segmented tract, with a total of 72 tracts. The authors ar-

gue that they did not aim at using the original DWI images as input data to the network, to be more

sequence agnostic. However, this happens at the cost of applying a model (i.e. CSD) prior to the

learning process.

Another study have been trying to learn non-acquired gradient directions from acquired ones,

instead of directly learning end-goal quantities (tracts, fiber ODFs, tensors or scalar maps). While

spherical harmonics decomposition can provide an interpolation basis for that, deep learning was

also used by Lyon et al.137 using a recurrent CNN in an encoder-decoder architecture. Their results
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show that the smaller number of input directions, the more the model outperforms SH interpola-

tion.

Autoencoders were trained to learn a regularizer used to reformulate CSD and achieved com-

petitive results with low b-values and a low number of diffusion directions168. Other works have

tried to improve spatial resolution using deep learning in diffusion such Tanno et al.205 who learned

a mapping with CNNs between low resolution and high resolution images. Their network addi-

tionally outputs an uncertainty map that is shown to be correlated with prediction errors. Super-

resolution was also performed in other works with CNNs60, a customized U-Net32,185 and genera-

tive adversarial networks (GANs)4.

Recently, models161,59 that take into account the spherical properties of the dMRI data, i.e. each

gradient volume come from a points in the sphere, are in the process of development. The signal

in the diffusion signal can also come from several b-values, i.e. different shells, and mixing shells

in training a network can be sub-optimal also if these properties are not taken into account. Deep

learning of diffusionMRI will likely undergo a significant boost when these models will become

well established, especially if they can incorporate the physics of dMRI in their learning framework.

1.6.5 Machine learning in dMRI of developing brains

Most machine learning studies on developing brains relate to newborns. Perhaps one of the first ma-

chine learning works applied to neonates is the work of Ziv et al.244 who analyzed brain connectivity

differences between a control group and a group with encephalopathy using a supervised (SVM)

and unsupervised models (Principal component analysis, PCA). Another study231 used SVM and

Random Forest to detect lesions and predict outcomes for neonatal hypoxic ischemic encephalopa-

thy patients. Vassar et al.,227 used logistic regression using metrics extracted from structural im-

ages and diffusion tensor maps find associations between these neuroimaging data obtained in the

near-term and subsequent language function in a cohort of extremely pre-term infants. A similar
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study221 have aimed at predicting language outcomes of pre-term neonates using Random Forest on

diffusion tensor metrics.

Deep learning has also been used in newborns dMRI in a diverse group of applications. First

works related to DTI scalar maps harmonization across different scanning sites has also been per-

formed using a GAN243. Similarly as previously done in adult dMRI, Karimi et al.105 proposed

to predict the fiber ODFs from the diffusion signal with a feed-forward neural network. The same

group of researchers also showed deep learning promises for the generation of biomarkers from at-

lases with a high accuracy106. Finally, most recent works tackled a prediction task, where a ResNet83

with spatial attention modules was trained to predict the acute bilirubin encephalopathy frommul-

timodal data includingMD of the diffusion tensor240.

Deep learning use in fetal diffusionMRI is however barely explored. To the best of our knowl-

edge, only one study104 have used deep learning on fetal brains. The authors study use pre-term

data to (1) synthesize fetal data from the diffusion tensor (color FA) of the pre-terms, to which the

noise of the fetal data is added and (2) predicts this color FA with this synthesized data.

1.7 Contributions of this PhD thesis

This work has focused on improving acquired diffusionMRI (dMRI) images of developing brains

using computer vision techniques and particularly deep learning. Specifically, we have aimed at

enhancing spatial and angular resolution of dMRI images of newborns and fetuses. In this thesis

we have used in vitro phantom acquisitions and real dMRI data. We mainly used a high quality

research-dedicated dataset (the developing Human Connectome Project, dHCP93) to train neural

networks on (pre-term) newborns and further adapt them to clinical acquisitions of fetuses from

two different hospitals.

Our first contribution relates to the spatial resolution enhancement. Anisotropic images are
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generally acquired in fetal and newborn (diffusion) MRI to freeze in-plane motion and increase

signal-to-noise ratio (SNR). This is typically circumvented using conventional interpolation meth-

ods, before further downstream analyses (diffusion tensor or Orientation Distribution Function

(ODF) estimation for example). In this thesis we proposed a convolutional autoencoder110 to ar-

tificially increase the through-plane spatial resolution using a weighted average on the latent space

representation. The same autoencoder, trained on pre-term newborns, was applied on fetuses. We

have also explored the same idea on the spherical harmonics domain of the signal111.

Our second contribution focused on the angular resolution enhancement to improve recon-

struction model (ODFs). Our first approach, a deep learning framework137 to infer new gradient

directions (see Appendix 5) did not succeed. We proposed then to directly learn ODFs using a mod-

ified U-Net185. Our method trained on ODFs reconstructed with a high number of diffusion mea-

surements (300) is able then to infer ODFs from very few samples (6-12)113,114. Such approach is

very appealing for dMRI in developing brains as in that context very few directions are often avail-

able in clinical practice mainly due to limited acquisition times. The network trained on pre-term

newborns has been tested on out of domain fetal brains and clinical newborns datasets.

Finally, the third contribution of this PhD thesis explored a more practical problem of optimal

acquisition schemes115. We setup an in vitro study using a phantom with fetal-like diffusion prop-

erties (mimicking expected low FA values in white matter of fetuses) to explore different acquisition

schemes. We conducted the study at 1.5 and 3 Tesla, and used these acquisitions (publicly avail-

able116) to quantify the limited time trade-off between the number of diffusion gradient directions

and orthogonal volumes.

Beyond these methodological contributions on the topic of this PhD, I have contributed to other

research projects related to fetal brain image analysis. I have developed a deep learning based brain

extraction tool for T2-weighted images that is used in-house (see Appendix 5) and implemented in

a publicly available software213. I have also collaborated in the development of T2-weighted brain
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tissue segmentation methods39,126,41,170,40,171. I have also supported the study of super-resolution

reconstruction of functional MRI of the fetal brain206 (see Appendix 5). Last but not least, I have

actively contributed to a software development project of MIALSRTK214,215, a BIDS (Brain Imag-

ing Data Structure) application213 which aims at makingMIALSRTK, a super-resolution pipeline

for fetal T2-weighted images, compatible with datasets formatted in the BIDS standards.
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2
Summary of Results

In this section, we summarize the main results of the papers included in the thesis. Namely, (1)

single volume through-plane super-resolution with autoencoders in signal domain110 and (2) in

spherical harmonics domain111; (3) fiber orientation distribution function estimation with deep

learning113,114; (4) a crossing-fibers phantom study115,116.
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2.1 Through-plane super-resolution with autoencoders in signal domain

This work110 used the latent space of an autoencoder to enhance the through-plane resolution of

diffusion magnetic resonance imaging (dMRI) data of pre-term newborns from the developing Hu-

man Connectome Project (dHCP) dataset. Quantitative and qualitative comparison was performed

against typically employed interpolations, in terms of the original signal, both b0 (b = 0 s/mm2) and

b = 1000 s/mm2, and in terms of diffusion tensor maps.

The autoencoder was able to generalize to b = 1000 s/mm2 despite being exclusively trained on

b0 images. The second observation was the expected higher error in the configuration where two

middle slices were removed and estimated/predicted, independently of the method used. Regarding

the original signal (b0 and b = 1000 s/mm2), the more slices were removed, the higher the error gap

between the baseline interpolation methods and the autoencoder enhancement. The autoencoder

had a significantly lower mean squared error (MSE) when compared to the baseline methods. The

general superior performance of the autoencoder is also evident in the DTI maps compared to the

optimal baseline technique (i.e., linear interpolation), particularly when two slices were removed.

Notably, the colored FA plot revealed that the autoencoder produced tracts consistent with the

ground truth (Figure 2.1). Moreover, the same network generalized to fetal data, where in a proof-

of-concept, we qualitatively show the validity of the DTI maps. The fetuses used were acquired in

a different scanner and with a different protocol than the network trained in the pre-term newborn

data (Figure 2.2).

2.2 Through-plane super-resolution with autoencoders in spherical har-

monics domain

This study111 is an extension of the previous work110 where we explored the ability of our network

to enhance the through-plane resolution in the spherical harmonics (SH) representation of the
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Figure 2.1: Qualitative comparison of colored FA in the one slice removed configuration for the best baseline interpola‐
tion method, i.e. Linear‐1 (left), autoencoder enhancement AE‐1 (middle) and GT (right). The red frame area highlight to
a region where the linear interpolation shows a more accurate result110.

signal. Additionally, we have compared the results (original signal and DTI maps) with the signal

domain network111 and with interpolations both in signal and SH representations, in the case of

removing and estimating one or two slices. Results indicate that SH proved to be more accurate in

reconstructing DTI-FAmaps, while the raw signal was more suitable for estimating raw data. We

hypothesized that this could be due to a global bias introduced to the back-projected raw signal by

the SH-trained autoencoder. However, the SH autoencoder better preserved orientation informa-

tion, resulting in better depiction of the FA, which is scale invariant. Finally, we successfully applied

our method, trained on newborn data, to enhance the through-plane resolution of anisotropic fetal

data, acquired in a different scanner with lower b-value and fewer gradient directions.
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Figure 2.2: Colored FA and FA (top row) illustration of autoencoder enhancement between two original adjacent fetal
slices in a still subject (35 GW). The bottom row shows a similar illustration of MD and FA for a moving subject (24
GW) 110. Image generated with the autoencoder of section 2.1.

2.3 Fiber orientation distribution function estimation with deep learn-

ing

We propose in this work113,114 a solution to address the challenge of estimating fiber orientation

distribution functions (FODs) from a limited number of diffusion measurements in newborns

and fetuses. Our approach involves using a deep learning method to map 6-12 diffusion gradient

volumes to the target FOD reconstructed with 300 measurements. We conducted extensive quan-

titative evaluation, which demonstrated that our deep learning method using significantly fewer

measurements can achieve comparable or superior results to standard methods such as Constrained

Spherical Deconvolution216, Constant Solid Angle2 or the Sparse Fascicle Model184. Comparison

was performed for the number of predicted fibers, their orientations and the apparent fiber density

(Table 2.1).

Furthermore, we demonstrated the out-of-domain generalization of the model to clinical datasets

of fetal and newborn subjects (Figure 2.3), despite differences in acquisition parameters and anatomy

relative to the training dataset. Domain transfer from research-oriented datasets to clinical datasets

can be a promising approach for developing cohorts such as preterm and fetal populations that

cannot afford long acquisition times. The proximity of the two acquisition b-values used in our
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Method b-values (s/mm2) Nm Angular error (Agreement rate in %) AFD error
Single fibers Two fibers Three fibers

DLn {0, 1000} 7 12.6◦(78.4%) 24.2◦(15.8%) 33.3◦(3.8%) 0.27 (±0.03)
CSD {0, 2600} 148 7.5◦(11.7%) 16.5◦(16.5%) 27.2◦(5.9%) 1.31 (±0.23)
CSA {0, 400, 1000, 2600} 300 47.0◦(27.7%) 41.4◦(14.8%) 36.1◦(7.9%) 3.46 (±0.46)
SFM {0, 400, 1000, 2600} 300 51.4◦(83%) 40.7◦(10%) 35.4◦(3.5%) 0.80 (±0.55)
ΔGS {0, 400, 1000, 2600} 150 13.8◦(80.4%) 29.1◦(30.3%) 35.4◦(27.9%) 0.2 (±0.025)

Table 2.1: Mean angular error, agreement rate on number of peaks and Apparent Fiber Density (AFD) error between
GT (MSMT‐CSD) and the different methods. ΔGS refers to the agreement within the ground truth. The number of
measurements (Nm) and the b‐values used are also reported. All results were statistically significant compared to ΔGS
(p ≤9e−10 for angular error, except SFM three fibers, and p ≤4.5e−3 for AFD error) 113.

training data (b = 400 s/mm2 and b = 500 s/mm2, respectively) likely contributed to the successful

generalization of the model from preterm to fetal datasets.

Figure 2.3: The deep learning method compared to CSD in different brain regions for 2 newborn subjects (left) and 2
fetal subjects (right) of 25 (top) and 29.4 (bottom) weeks of gestation. FODs are superimposed to the first SH coefficient
of the method used. The DL first SH coefficient is shown in full‐size too113.

2.4 A crossing-fibers phantom study

In this study115, we aimed at quantifying the acquisition trade-off between orthogonal volumes and

the diffusion gradient volumes, given the limited time of acquisition in clinical settings for the de-

veloping cohort. For that aim, we have extensively scanned a fetal customized crossing phantom116,
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with a high-resolution (angular and spatial) that we consider as a pseudo ground-truth and low res-

olutions fetal-like acquisitions. We observed that diffusion properties exhibited variability, which

was effectively reduced through scattered data interpolation of multiple volumes. Interestingly, we

found that increasing the number of directions did not consistently reduce error metrics such as FA,

MD and fiber orientations.
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3
Discussion

This section will discuss the contributions and results reported in this PhD thesis, placing them into

a broader context. Additionally, we will outline the forthcoming actions to address the limitations.

Finally, we will conclude the thesis by sharing some reflections and comments on the potential im-

pact of the research.
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3.1 Main contributions

The goal of this PhD work was to investigate different strategies for super-resolution in diffusion

MR images to support early human brain development studies. Given the various caveats and lim-

itations linked to this population, namely the low signal-to-noise ratio (SNR) and the limited scan-

ning time, we have tackled both spatial and angular resolution enhancement in the context of in

utero fetal-imaging and also newborns. We have first explored the enhancement of the raw diffusion

signal in the spatial and then in the angular domain. We have then bypassed the later step, because

of the complexity of the problem, by directly learning a model, namely orientation distribution

functions estimated with multi-shell multi-tissue constrained spherical deconvolution100 from few

available measurements. Specifically, the main methodological contributions of this thesis are the

following:

1. Proposing an unsupervised learning model using autoencoders to increase the spatial through-

plane resolution outperforming conventional interpolations methods

2. Developing a supervised learning model to improve microstructure estimation using a low

angular resolution

3. Quantifying the trade-off between the number of gradient directions and the number of

orthogonal volumes in fetal acquisitions using a crossing phantom

In the following paragraphs, we will further discuss these contributions and highlight their impact

in the medical imaging community.

The first research project focus of this PhD thesis was to tackle the enhancement of spatial resolu-

tion in diffusionMRI (dMRI), primarily in the context of anisotropic dMRI volumes or in the con-

text of slice outlier recovery of in newborns and fetuses. Traditionally, conventional interpolations

such as B-spline or linear are used for that aim. However, these methods do not exploit semantic
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contextual information. To address this problem, we proposed the use of autoencoders to increase

the through-plane resolution. Through-plane resolution in developing brains is typically higher

than in adults. In fetal dMRI, the values typically range between 2 to 5mm3 97,48,37,144,67,96 and

acquisitions are mostly anisotropic (Figure 1.9). In comparison, for newborns, isotropic acquisi-

tions (2-3mm3) are more common122,219,64. However, still major datasets including the developing

human connectome project (dHCP)93 encompasses data with anisotropic resolution. In circum-

stances where sequence optimization cannot be achieved, post processing algorithms are essential for

more accurate downstream analyses. In that regards, several methods including the work presented

in this thesis, have been aiming to address this issue in (diffusion) MRI with the help of machine

learning. Unsupervised methods such as the one presented in this thesis are very valuable in the high

variability that is presented in fetal and newborn brain scans. In fact, besides variations in (through-

plane) resolution, acquisitions also vary in the b-value (400, 500, 600, 700 s/mm2) and gradient

directions97,48,37,144,67,96,122,219,64, as there is no consensus on optimal acquisition parameters for the

population with developing brains.

As most deep-learning based super-resolution (SR) methods are supervised-learning meth-

ods35,173,60,52,32 (except few242,124 that do not require external data), their applicability for a broad

range of acquired dMRI protocols is limited. On the contrary, the method presented in this PhD

thesis is agnostic to the magnitude of the through-plane resolution, the b-value and the gradient

directions and hence is very valuable in the context of developing brains.

The second contribution of this thesis aimed at addressing a direct consequence of limited ac-

quisition time that is the low number of diffusion measurements. This caveat is more pronounced

in fetal brains for which clinical acquisitions inevitably do not go beyond few minutes97,48,144,67.

Hence, only simple models such as the diffusion tensor can be afforded. However, current state-of-

the-art reconstruction models216,100 require a significant number of directions (and high or mul-

tiple b-values)46 in order to estimate accurate diffusion metrics such as the number of fibers, fiber

42



orientations or the apparent fiber density180.

To tackle this problem, we have proposed a deep neural network to accurately learn a map-

ping between a small number of diffusion directions and the orientation distribution func-

tion (ODF) estimated with densely-sampled multiple-shell data that is impossible to acquire in

a clinical environment. Extensive validation on 320 dHCP newborn subjects has shown that our

model performs levels on par as state-of-the-art methods that require significantly more data. Ad-

ditionally, as a proof of concept, we demonstrate the generalizability of the network on 26 clinical

subjects. Among which, 11 fetuses that were validated by an expert neuroanatomist and compared

to histological data of equivalent gestational age.

Such mappings can save more than an order of magnitude in acquisition time, without compro-

mising accuracy. In fact, frameworks209,134 with similar goal of mapping few measurements to high

quality diffusion metrics have been developed for diffusion tensor (DTI) derived metrics. These

works are very valuable but they come with the known limitations of DTI.

Reducing acquisition time by different means has always been at the core of MRI research. Se-

quences such as Fast Spin Echo (FSE) or Echo Planar Imaging (EPI), parallel imaging algorithms or

compressed sensing are different attempts aiming at reducing scanning time. Deep learning, particu-

larly through the utilization of large-scale datasets, is definitely one of those techniques that are and

will greatly contribute to that aim. This will particularly benefit sensitive cohorts such as fetuses and

newborns.

An outcome of the first two contributions of this thesis is the use of large datasets (namely the

dHCP dataset) acquired with high standards protocols, to feed machine learning models and

learn patterns from a reduced version of the data. This under-sampled data, whether spatial or

angular, can represent clinically constrained datasets. In fact, in both works110,111,113,114, we have

shown that the models that were exclusively trained on these high quality datasets, could generalize

to clinical datasets that are reduced in both spatial and angular resolutions. This strategy of leverag-
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ing high quality data has also been explored in another work104 for fetal color FA prediction.

The third contribution of this PhD thesis relates to the quantification of dMRI accuracy versus

acquisition time. As previously discussed, time is a limiting factor in dMRI acquisitions and in prac-

tice, a trade-off has to be made between the angular and the spatial resolution. Moreover, there is

no general guidelines or consensus on optimal sequence schemes. To provide more insights on this

aspect, we proposed an in vitro quantification study of the time trade-off between the q-space

angular dimension and the number of orthogonal acquisitions. To that aim, we have scanned

a crossing phantom, that was customized to have a low fractional anisotropy (∼0.6) in single fiber

areas to simulate the low anisotropy of developing brains. Pulsed gradient spin-echo (PGSE) se-

quences of low resolution fetal acquisitions (3-6 orthogonal series of 1 × 1 × 4mm3; 9,16 and 25

directions) at 1.5T were compared to a ground truth high-resolution acquisition (1.5mm3; 61 direc-

tions) at 3T. The results showed more stability with more orthogonal acquisitions, especially when

they were combined with scattered data interpolation, and no additional benefit was observed with

high angular schemes.

Since a small number of directions can be sufficient, deep learning was leveraged to compensate

the missing directions, by directly estimating diffusion properties that would come from high reso-

lutions images.

Few works236,229 have tried to address the spatial-angular trade-off, but not in the context of de-

veloping brains nor in the case of multiple volumes acquisitions. Investigating this trade-off229 has

suggested while maintaining an acceptable level of spatial resolution, higher angular resolution has

a more substantial impact on improving tract reconstructions. As resolutions higher than 2mm3

benefit multi-fiber tractography methods only if angular resolution is not compromised. Another

study236 suggests that in deterministic tractography, a decrease in angular resolution had a more

pronounced negative impact on tractography results. However, lower spatial resolution datasets

(e.g., 2.5mm3) have exhibited a more drastic diminished quality in probabilistic tract reconstruc-
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tions. In addition, the choice of the trade-off is highly dependent on the complexity of fiber config-

uration. By simulating crossing, brushing, and kissing fibers, the authors236 suggest high spatial res-

olution is beneficial for resolving kissing fibers while, high angular resolution favors crossing fiber.

Therefore, how a region is constituted by different fiber orientation may alter the optimal trade-off

for that region.

3.2 Limitations and future steps

3.2.1 Network hallucinations

Both methodological contributions of this thesis, the spatial SR enhancement and the fiber ODF

estimation using few measurementsmake use of deep neural networks that are known to be black

boxes. In the absence of a clear framework on how they internally operate, there is no guarantee

that these models will not generate new non-existing structures or will not remove existing ones

(also known as hallucinations, in analogy with the phenomenon of hallucination in human psy-

chology). Hallucinations204,165 occur when the network is trained on a small and not diversified

dataset and hence becomes biased and too specialised. For instance, in the spatial SR enhancement

work110,111, it is not impossible that a small lesion present in adjacent slices will be wiped out by the

generative autoencoder.

This is a general problem in digital medicine in the deep learning era, and as of today, there is no

trivial solution to it. There exist however some strategies that aim at mitigating the risk of halluci-

nations. For instance, if available, the inclusion of abnormal/pathological data in the training phase

while guaranteeing an adequate ratio with normal cases. Another strategy to alleviate this problem

would be the use of patch-based methods, as more local information with a reduced field of view

(FOV) is used in this context.

In a recent work65, the problem of trusting learning-based systems in terms of the quality of the
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network output, was tackled in the context of semantic segmentation. The authors suggest a fail-

safe mechanism where prior expert knowledge is incorporated and merged a posteriori with the

network. This problem bears similarities with the problem of not trusting the network predictions

in the case of hallucinations, where a rule-based system can be combined as a post-processing step

with the network prediction.

3.2.2 Domain shifts

Hallucinations can also be seen as a consequence of domain shifts, these domains can be for instance

normal and pathological, different scanners, different acquisition protocols or different anatomies

such as fetal and (pre-term) newborns.

While in our work fiber ODF estimation using few measurements, we did not explore patho-

logical subjects, we have faced out-of-domain generalization problems for data of different scanners,

protocols and anatomies. Normalization by b0 seemed to be a robust solution to reduce the de-

pendence on the b-value (i.e. the protocol), however further steps can be explored for inter-scanner

variability such as data harmonization techniques151,160,174 that do not necessarily need paired sub-

jects.

To overcome the limited availability of (high quality) fetal dMRI brain data, in this thesis we

have leveraged data from pre-term neonates of the dHCP to train our neural networks. An implicit

assumption that is made in both projects, is the hypothetical global similarity between the pre-

term and the fetal brain and/or the ability of the network to generalize beyond the anatomy that it

was trained on. In fact, for both works, the network trained on pre-term newborns has been shown

to generate plausible fetal diffusion properties. Patch-based methods such as in our ODF estima-

tion is again a strategy that can address this generalization problem. Moreover, data augmentation

techniques, namely random noise injection and slight rotations, were crucial for the network to gen-

erate plausible FODs in the fetal data on the fiber ODF estimation project, and hence the network
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generalization for a different anatomy. In future work, we aim to take advantage of artificial data

generators such as those developed126 for fetal T2-weighted images. In fact, they can be adapted

to generate realistic fetal diffusion images that can be used as training data. We additionally aim at

directly training the neural networks on forthcoming releases of high-quality fetal data, such as the

dCHP fetal project37 for high quality FOD prediction from a small number of diffusion measure-

ments.

3.2.3 Motion

Motion, as one of the major problems in non-cooperative cohorts such as fetuses and newborns

was not the direct focus of our work. It was however addressed prior to our through-plane super-

resolution model, where intra-volume and inter-volumes motion was corrected using registration

tools153. The correction was then applied to the corresponding gradient directions. The autoen-

coder can however be used in the case of severe signal drops by recovering the corrupted slice using

the neighboring clean ones.

Regarding the fiber ODF estimationwork, motion is also an issue that was not taken into ac-

count in the current framework. In fact, motion correction will create ”new” directions and hence

we will be confronted with a sparse q-space grid. Our approach projects the diffusion samples to a

spherical harmonics representation, and hence is less dependant on gradient directions and potential

motion compensation.

Another potential extension of this work is the use of existing multiple volume super-resolution

diffusion pipelines145,144,48 or adapting recent state-of-the-art pipelines that were developed for

fetal T2-weighted images235. In fact, since we aimed for a minimal acquisition scheme with few

measurements, we have only used a single 4D volume at a time. However, in several centers, more

than one and sometimes orthogonal volumes are available in fetal brains. Merging them using super-

resolution techniques will certainly increase the SNR resulting in a better FOD estimation, which is
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in line with the results of our phantom study.

Concerning the crossing phantom study, one way to make such findings more realistic in the

context of fetal brains is to add - during acquisition - different levels of motion (translation, rota-

tion) using motion simulators. Then we would be able to correct this motion and compute the

diffusion properties for different configurations to be able to better quantify the acquisition trade-

off between the number of gradient directions and orthogonal volumes in a more clinical setting.

However, the interpretation of the results must to be limited in the context of the study. In order to

generalize the findings, additional work with diverse protocols, i.e. more ground truth acquisitions

and potentially with in-vivo animal data, need to be done to draw more generalizable conclusions,

which can be translated to dMRI acquisition protocols of fetal imaging.

3.3 Conclusion

The outcome of methodological researches that aim at improving early brain imaging hold signifi-

cant implications in understanding the developmental mechanisms and may pave the way for new

research directions or improved diagnostic and clinical applications in pediatric neuroimaging. In

fact, by reducing the burden of long scanning times through the implementation of deep neural

networks, different centers can be encouraged to incorporate diffusionMRI protocols into their

clinical routine. This, will in turn increase the size and diversity of early brain datasets in the com-

munity, which will further improve the prediction of models.

Anatomical information acquired from structural and diffusionMRI could be combined with

functional MRI - which is also a growing field in fetal brain imaging98,222,207 - to shed light on early

brain anatomically constrained functional patterns. Such studies can be very valuable to answer fun-

damental questions related to fetal self-awareness. For example, neural correlates of consciousness31

could be further explored in early development125. Furthermore, these studies provide an avenue to
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address pertinent practical questions, including the determination of if and when a fetus can have a

subjective experience, such as pain or joy208.
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Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower

through-plane than in-plane resolution. This anisotropy is often overcome by classical

upsampling methods such as linear or cubic interpolation. In this work, we employ an

unsupervised learning algorithm using an autoencoder neural network for single-image

through-plane super-resolution by leveraging a large amount of data. Our framework,

which can also be used for slice outliers replacement, overperformed conventional

interpolations quantitatively and qualitatively on pre-term newborns of the developing

Human Connectome Project. The evaluation was performed on both the original

diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our

autoencoder was its ability to act as a denoiser. The network was able to generalize

fetal data with different levels of motions and we qualitatively showed its consistency,

hence supporting the relevance of pre-term datasets to improve the processing of fetal

brain images.

Keywords: unsupervised learning, autoencoders, super-resolution, diffusion-weighted imaging, magnetic

resonance imaging (MRI), pre-term neonates, fetuses, brain

1. INTRODUCTION

The formation and maturation of white matter are at their highest rate during the fetal stage
of human brain development. To have more insight into this critical period, in utero brain
imaging techniques offer a unique opportunity. Diffusion weighted-magnetic resonance imaging
(DW-MRI) is a well-established tool to reconstruct in vivo and non-invasively the white matter
tracts in the brain (1, 2). Fetal DW-MRI, in particular, could characterize early developmental
trajectories in brain connections and microstructure (3–6). Hence, fetal DW-MRI has been of
significant interest for the past years where studies (7–9) have provided analysis using diffusion
tensor imaging (DTI) by computing diffusion scalar maps such as fractional anisotropy (FA) or
mean diffusivity (MD), using a limited number of gradient directions. A recent study focused on
reconstructing fiber Orientation Distribution Functions (fODF) (10) using higher quality datasets
and rich information including several gradient directions (32 and 80), higher b-values (750 and
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1,000 s/mm2), and signal-to-noise ratio (SNR) (3 Tesla magnetic
field strength). Additionally, the datasets were acquired in a
controlled and uniform research setting with healthy volunteers,
which can hardly be reproduced in the clinical environment.

Albeit promising results, acquiring high-quality data remains
the main obstacle in the field of fetal brain imaging. First,
unpredictable and uncontrollable fetal motion is a major
challenge. To overcome this problem, fast echo-planar imaging
(EPI) sequences are typically used to freeze intra-slice motion.
However, intra- and inter-volume motion still have to be
addressed in the post-processing steps using sophisticated
slice-to-volume registration (SVR) (11–13). Moreover, EPI
sequences generate severe non-linear distortions that need
adapted distortion correction algorithms (14). Additionally, the
resulting images display low SNR due to at least three factors: the
inherently small size of the fetal brain, the surrounding maternal
structures and amniotic fluid, and the increased distance to the
coils. In order to compensate for the low SNR in EPI sequences,
series with thick voxels (i.e., low through-plane resolution) are
often acquired. Finally, to shorten the acquisition time, small b-
values (b = 400 − 700s/mm2) and a low number of gradient
directions (10–15) (8, 9) are commonly used in fetal imaging,
which in turn will result in a low angular resolution.

Clinical protocols typically acquire several anisotropic
orthogonal series of 2D thick slices to cope with high motion and
low SNR. Then, super-resolution reconstruction techniques that
have been originally developed for structural T2-weighted images
(15–20) by combining different 3D low resolution volumes have
also been successfully applied in 4D fetal functional (21) and
diffusion MRI contexts (10, 12). Still, despite these two pioneer
works, super-resolution DW-MRI from multiple volumes has
been barely explored in vivo. In fact, the limited scanning time to
minimize maternal discomfort hampers the acquisition of several
orthogonal series, resulting in a trade-off between the number
of gradient directions and orthogonal series. Thus, DW-MRI
fetal brain protocols are not standardized from one center to
another (Supplementary Table S1) and more experiments have
to be conducted in this area to design optimal sequences (22, 23).
Sequence-based super-resolution methods that were applied in
adult brains (24–27) could also be explored and adapted to fetal
brains such as in Ning et al. (24) that acquire same orientation
shifted low-resolution images in the slice encoding direction
and in a non-overlapping gradient scheme to reconstruct one
high-resolution volume using compressed sensing. The term
super-resolution is used by both the image processing and the
MR sequence development communities, though in a slightly
different way. While the former works mainly on image space
and the latter works on k-space, both aim at increasing the image
resolution at different stages either using multiple volumes or
single volumes.

In fact, fetal DW-MRI resolution enhancement could also
benefit from single image super-resolution approaches, i.e., either
within each DW-MRI 3D volume separately or using the whole
4D volume including all diffusion measurements. It has indeed
been demonstrated that a linear or cubic interpolation of the
raw signal enhances the resulting scalar maps and tractography
(28). In practice, this is typically performed either at the signal

level or at DTI scalar maps (29). We believe that single volume
and multiple volumes super-resolution can also be performed
together, i.e., where the output of the former is given as the
input of the latter. This aggregation could potentially lead to
a better motion correction and hence to a more accurate final
high-resolution volume.

Several studies have proposed single image super-resolution
enhancement methods for DW-MRI but, to the best of our
knowledge, none of them has been applied neither to anisotropic
datasets nor to the developing brain. In Coupé et al. (30),
the authors utilized a non-local patch-based approach in an
inverse problem paradigm to improve the resolution of adult
brain DW-MRI volumes using a non diffusion weighted image
(b = 0s/mm2) prior. Although this approach yielded competitive
results, it was built upon a sophisticated pipeline which made it
not extensively used. The first machine learning study (31) have
used shallow learning algorithms to learn the mapping between
diffusion tensor maps of a downsampled high-resolution image
and the maps of the original image. Recently, deep learning
models which can implicitly learn relevant features from training
data were used to perform single image super-resolution with
a convolutional neural network (32, 33) and a customized U-
Net (34, 35). Both approaches produced promising results in
a supervised learning scheme. Supervision needs however large
high quality datasets that are scarce for the perinatal brain for the
reasons enumerated above.

The specific challenge of fetal DW-MRI is 3–5 mm acquired
slice thickness, with only a few repetitions available. Hence,
our main objective is to focus on through-plane DW-MRI
resolution enhancement. This would be valuable not only for
native anisotropic volumes but also for outlier slice recovery.
In fact, motion-corrupted slices in DW-MRI is either discarded,
which results in a loss of information, or replaced using
interpolation (36–38). We approached this problem from an
image synthesis point of view using unsupervised learning
networks such as autoencoders (AEs), as demonstrated in cardiac
T2-weighted MRI (39) and recent works in DW-MRI (40).
Here, we present a framework with autoencoders that are neural
networks learning in an unsupervised way to encode efficient
data representations and can behave as generative models if
this representation is structured enough. By accurately encoding
DW-MRI slices in a low-dimensional latent space, we were able
to successfully generate new slices that accurately correspond to
in-between “missing” slices. In contrast to the above referred
supervised learning approaches, this method is scale agnostic,
i.e., the enhancement scale factor can be set a posteriori to the
network training.

Realistically enhancing the through-plane resolution would
potentially help the clinicians to better assess whether the anterior
and posterior commissures are present in cases with complete
agenesis of the corpus callosum (6). It can reduce partial volume
effects and thus contribute to the depiction of more accurate
white matter properties in the developing brain.

In this work, we present the first unsupervised through-
plane resolution enhancement for perinatal brain DW-MRI.
We leverage the high-quality dataset of the developing Human
Connectome Project (dHCP) where we train and quantitatively
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TABLE 1 | Pre-term newborns and fetal attributes of the processed data that were used in our experiments.

GW Resolution (mm3) #directions b-value (s/mm2) Scanner #subjects

Pre-terms [29.3,37.0] 1.17x1.17x1.5 88 0 and 1,000 Philips 3T 31

Fetal

Sub-1 35 1x1x5 15 0 and 700 GE 1.5T –

Sub-2 29 1x1x4 15 0 and 700 GE 1.5T –

Sub-3 24 1x1x5 15 0 and 700 GE 1.5T –

Sub-4 23 1x1x4 15 0 and 700 GE 1.5T –

Sub-5 24 1x1x5 15 0 and 700 GE 1.5T –

Sub-6 27 1x1x5 15 0 and 700 GE 1.5T -

The distribution of gestational ages is shown in Supplementary Figure S1.

validate pre-term newborns that are anatomically close to
fetal subjects. We finally demonstrate the performance of our
approach in fetal brains.

2. MATERIALS AND METHODS

2.1. Data
2.1.1. Pre-term dHCP Data
We selected all the 31 pre-term newborns of 37 gestational
weeks (GW) or less at the time of scan (range: [29.3,37.0], mean:
35.5, median: 35.7) from the dHCP dataset (41) (subject IDs in
Supplementary Table S2). Acquisitions were performed using a
3T Philips Achieva scanner (32-channel neonatal head-coil and
70 mT/m gradients) with a monopolar spin-echo EPI Stejksal-
Tanner sequence (! = 42.5 ms, δ = 14 ms, TR = 3,800 ms,
TE = 90,ms, echo spacing = 0.81ms, EPI factor = 83) and a
multiband factor of 4, resulting in an acquisition time of 19:20
min. In a field of view of 150x150x102mm3, 64 interleaved slices
were acquired with an in-plane resolution of 1.5 mm, a slice
thickness of 3 mm, and a slice overlap of 1.5 mm. An isotropic
volume of 1.5 mm3 was obtained after super-resolution. The
dataset was acquired with a multi-shell sequence using four b-
values (b ∈ {0, 400, 1, 000, and 2, 600}s/mm2) with 300 volumes
but we have only extracted the 88 volumes corresponding to
b = 1, 000s/mm2 (b1000) as a compromise of high contrast-to-
noise ratio (CNR), i.e., b1000 has a higher CNR than b400 and
b2600 (42), and proximity to the b = 700s/mm2 that is typically
used in clinical settings for fetal DW-MRI. The main attributes
of the pre-term data are summarized in Table 1. Brain masks
and region/tissue labels segmented using a pipeline based on the
Draw-EM algorithm (43, 44) were available in the corresponding
anatomical dataset. All the images were already corrected
(42) for inter-slice motion and distortion (susceptibility, eddy
currents and motion). After pre-processing, the final image
resolution and FOV were, respectively, 1.17x1.17x1.5 mm3

and 128x128x64mm3.

2.1.2. Fetal Data
Fetal acquisitions were performed at 1.5T (MR450, GE
Healthcare, Milwaukee, WI, USA) in the University Children’s
Hospital Zürich (KISPI) using a single-shot EPI sequence (TE
= 63 ms, TR = 2200 ms) and 15 gradient directions at b =
700s/mm2 (b700). The acquisition time was approximately 1.3

min per 4D volume. The in-plane resolution was 1x1 mm2, the
slice thickness was 4–5 mm, and the field of view 256x256x14 −
22 voxels. Three axial series and a coronal one were acquired
for each subject. Brain masks were manually generated for
the b0 (b = 0s/mm2) of each acquisition and automatically
propagated to the diffusion-weighted volumes. Between 8 and 18,
T2-weighted images were also acquired for each subject where
corresponding brain masks were automatically generated using
an in-house deep learning based method using transfer learning
from Salehi et al. (45). Manual refinements were needed for a few
cases at the brain boundaries.

2.1.3. Fetal Data Processing
We selected three subjects with high quality imaging and
without motion artifacts (24, 29, and 35 GW) and three
subjects with a varying degree of motion (23, 24, and 27 GW).
Supplementary Figure S1 shows the distribution of gestational
age of both 31 pre-term newborns and the 6 fetal subjects used
in this study. A DW-MRI volume of a motion-free case (Sub-
2, 29 GW) and a pre-term of equivalent age are illustrated in
Figure 1. By performing quality control, we discarded highly
corrupted volumes due to motion resulting in severe signal
drops in two moving subjects and very low SNR volumes in one
motion-free subject. Table 2 presents the different characteristics
of each subject as well as its corresponding discarded volumes.
The coronal volume was not used to avoid any interpolation
confounding factor while co-registering different orientations.
All the subjects were pre-processed for noise, bias field
inhomogeneities, and distortions using the Nipype framework
(46). The denoising was performed using a Principal Component
Analysis based method (47), followed by an N4 bias-field
inhomogeneity correction (48). Distortion was corrected using
an in-house implementation of a state-of-the-art algorithm for
the fetal brain (14) consisting in rigid registration (49) of a
structural T2-weighted image to the b0 image, followed by a non-
linear registration (49) in the phase-encoding direction of the b0
to the same T2-weighted image. The transformation was then
applied to the diffusion-weighted volumes. A block matching
algorithm for symmetric global registration was also performed
for two subjects (sub-4, sub-6) with motion [NiftyReg, (50)]. The
b0 image of the first axial series was selected as a reference to
which we subsequently registered the remaining volumes, i.e.,
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FIGURE 1 | Illustration of the three orientations of a Diffusion weighted-magnetic resonance imaging (DW-MRI) volume from a still fetal subject (29 GW) and pre-term

newborn of the same gestational age.

TABLE 2 | Fetal motion level and discarded directions for each 4D volume.

Motion Discarded

level Axial-1 Axial-2 Axial-3 Coronal

Sub-1 No – – – All

Sub-2 No – – – All

Sub-3 No All except b0 – All except b0 All

Sub-4 High Vol 2,3,4,5,6,7 Vol 11,14 Vol 14 All

Sub-5 Average – Vol 6,7,15 Vol 11 All

Sub-6 Low Vol 11 Vol 11 Vol 11,14 All

the non b0 images from the first axial and all volumes from
the two others. Gradient directions were rotated accordingly.
Supplementary Figure S2 shows an example of a DWI volume
(from sub-4) of original, pre-processing, and motion correction.

2.2. Model
2.2.1. Architecture
Our network architecture, similarly to Sander et al. (39), is
composed of four blocks in the encoder and four in the decoder
(Figure 2). Each block in the encoder consists of two layers made
of 3 x 3 convolutions followed by a batch normalization (51) and
an Exponential Linear Unit non-linearity.

The number of feature maps is doubled from 32 after each
layer and the resulting feature maps are average-pooled. We

further added two layers of two 3 x 3 convolutions in which
the feature maps of the last layer were used as the latent-space
of the autoencoder. The decoder uses the same architecture as
the encoder but by conversely halving the number of feature
maps and upsampling after each block using nearest-neighbor
interpolation. At the final layer a 1 x 1 convolution using the
sigmoid function is applied to output the predicted image. The
number of network parameters is 6,098,689.

2.2.2. Training and Optimization
Wehave trained our network solely on b0 images (15 per subject),
using an 8-fold nested cross validation where we trained and
validated on 27 subjects and tested on four. The proportion
of the validation data was set to 15% of the training set. The
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FIGURE 2 | Illustration of the network architecture (top): Each box is a multi-channel feature map. The number of channels is denoted on top of each box. The violet

box represents the latent space of the autoencoder (BN: Batch Normalization. ELU: Exponential Linear Unit). An illustration of how we generated middle slice(s) is

shown in the bottom panel (Testing), for the case of an equal slice weighting (w = 0.5) and b1000.

training/validation set contains 25,920 slices of a 128 x 128 field of
view, totaling 424,673,280 voxels. Our network was trained in an
unsupervised manner by feeding normalized 2D axial slices that
are encoded as feature maps in the latent space. The number of
feature maps, and hence the dimensionality of the latent space,
was optimized (optimal value to 32) using Keras-Tuner (52).
The batch size and the learning rate were additionally optimized
and set to 32 and 5e-5, respectively. The network that was
initialized using (53) was trained for 200 epochs to minimize the
mean squared error loss between the predicted and the ground
truth image. We have utilized for this aim the Adam optimizer
(54) with the default parameters β1 = 0.5, β2 = 0.999, and the
network corresponding to the epoch with the minimal validation
loss was then selected. The implementation was performed in

the framework of TensorFlow 2.4.1 (55) and an Nvidia GeForce
RTX 2080 GPU was deployed for training. Network code and
checkpoint examples can be found in our Github repository1.

2.2.3. Inference
The network trained on b0 images was used for the inference
of b0 and b1000 volumes. Two slices were encoded in the
latent space and their N “in-between” slice(s) (N = 1,2 in our
experiments) were predicted using weighted averages of the
latent codes of the two slices. The weights for N = 1 and N =
2 were set proportionally to their distance to the neighboring

1www.github.com/Medical-Image-Analysis-Laboratory/Perinatal_SR_Auto
encoder
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original slices [as performed in Sander et al. (39)], i.e., an equal
weighting for N = 1 and { 13 ,

2
3 }, {

2
3 ,

1
3 } for N = 2. Performing a

grid search on ten weights (0.1–0.9 with a step of 0.1) confirmed
the optimality of the previous choice. An example of pre-term
b1000 data for a weight of 0.5 is shown in Figure 2 (Testing).
Similarly, the same b0 network was also used to enhance the
through-plane resolution of fetal b0 and b700 volumes. Finally,
since the network outputs were normalized between 0 and 1,
histogram normalization to the weighted average of the input
images was performed.

2.3. Experiments and Evaluation
2.3.1. Pre-term Newborns
Our network was separately tested on b0 images and the 88
volumes of b1000 using an 8-fold cross validation where 7-folds
contain four subjects and 1-fold contains three subjects. We
removed N intermediate slices (N = [1,2]) from the testing set
volumes in alternating order and used the (weighted) average
latent space featuremaps of the to-be adjacent slices to encode the
Nmissing slice(s) using the autoencoder (Figure 2, Testing). The
resulting latent representation was then decoded to predict the N
slices in the voxel space, which were compared to the previously
removed N slices, i.e., the ground truth (GT). The same N slices
were also generated using three baseline approaches: trilinear,
tricubic, and B-spline of 5th order interpolations [using Tournier
et al. (56) andAvants et al. (49)] for comparison.We denote them,
respectively, for removing one or two slices: Linear-1, Cubic-1,
Spline-1 and Linear-2, Cubic-2, Spline-2.

Latent space exploratory analysis - In order to have an intuitive
idea of the latent space representation, we have compared the
latent space representations between different gradient directions
of all possible pairs from the 88 volumes of the b1000 4D volume.
As two volumes with closely aligned gradient directions are more
similar than two volumes with orthogonal directions, we aimed
to check whether this property is globally preserved in the latent
encoding of our input images.

Robustness to noise - We have added different low levels
of Rician noise (57) to the original signal as follows: for each
pixel with a current intensity Sclean, the new intensity Snoisy =
√

(Sclean + GN1)2 + GN2
2 , where GN1 and GN2 are random

numbers sampled from a Gaussian distribution with zero mean
and a SD of Sclean(b = 0)/SNRout and SNRout is the desired SNR
we aim to simulate. Three SNRs of {27, 25, 23} and {20, 16, 13}
were simulated for b0 and b1000, respectively. We have used
higher noise levels for b1000 to better simulate the inherently
lower SNR in this configuration.

Scalar maps - By merging the b0 and b1000 using the
autoencoder enhancement, we reconstructed FA, MD, axial
diffusivity (AD), and radial diffusivity (RD) fromDTI using Dipy
(58) separately for AE-1 or AE-2, i.e., where we, respectively,
remove one (N = 1) or two slices (N = 2). We further
subdivided the computation in specific brain regions (cortical
gray matter, white matter, corpus callosum, and brainstem
as provided by the dHCP). Region labels were upsampled
and manually refined to match the super-resoluted/interpolated
volumes. We performed similar computation of the diffusion

maps generated using the trilinear, tricubic, and B-spline
interpolated signals.

2.3.2. Fetal
For each subject and each 3D volume (b0 or DW-MRI), we
generated one or two middle slices using the autoencoder, hence
synthetically enhancing the resolution from 1 x 1 x 4–5mm3 to a
simulated resolution of 1 x 1 x 2–2.5 mm3 and 1 x 1 x 1.33–1.67
mm3, respectively. We then generated whole-brain DTI maps
(FA, MD, AD, and RD) and showed the colored FA. Splenium
and genu structures of the corpus callosum were additionally
segmented on FA maps for subjects in which these structures
were visible. The mean FA and MD were reported for these
regions for original and autoencoder enhanced volumes.

2.3.3. Quantitative Evaluation
Raw diffusion signal - We computed the voxel-wise error
between the raw signal synthesized by the autoencoder and the
GT using the mean squared error (MSE) and the peak SNR
(PSNR). We compared the autoencoder performance with the
three baseline approaches: trilinear, tricubic, and B-spline of 5th

order interpolations.
Latent space exploratory analysis - We have computed the

average squared Euclidian voxel-wise distance between slices of
all 3D b1000 volume pairs. This was performed both at the input
space and at the latent space representation. The images were
flattened from 2D to one-dimensional vectors and compared
as follows:

d(u⃗, v⃗) = ∥u⃗− v⃗∥

=

√

(u1 − v1)
2 + (u2 − v2)

2 + . . . + (un − vn)
2 (1)

Where u⃗ and v⃗ are the vectors to be compared for all the n
corresponding pixels. The final distance between each two 3D
volumes is the average distance of all 2D distance computed in 1.

Robustness to noise - We computed with respect to the GT
signal, the error of the signal with noise, and the output of the
autoencoder using the signal with noise as input. We compared
the results using MSE separately for b0 and b1000.

Scalar maps - We computed the voxel-wise error between the
diffusion tensor maps reconstructed with the GT and the one by
merging the b0 and b1000 using the autoencoder enhancement.
We computed the error separately using either AE-1 or AE-
2. We used the MSE and the PSNR as metrics and the same
diffusion maps generated using the trilinear, tricubic, and B-
spline interpolated signal as a baseline.Moreover, we qualitatively
compare colored FA generated using the best baseline method,
autoencoder, and the GT.

3. RESULTS

3.1. Pre-term Newborns
First, we inspected the latent space and how the 88 DW-
MRI volumes are encoded with respect to each other. We can
notice in Figure 3 (right panel) that as two b-vectors’ angle
approaches orthogonality (90◦), the difference between the latent
representations of their corresponding volumes increases. On
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FIGURE 3 | Average pair-wise slice distance between gradient direction volumes in input space (left) and latent space (right).

FIGURE 4 | Illustration of the error difference in b1000 with respect to the ground truth (GT) for the best baseline method (trilinear, left) and autoencoder (AE, middle)

enhancement.

the contrary, the difference decreases the more the angle tends
toward 0◦ or 180◦. Although the pattern is more pronounced
in the input space (Figure 3, left panel), this trend is a
fulfilled necessary condition to the generation for coherent
representations of the input data by our network.

Moreover, our network that was exclusively trained on b0
images was able to generalize to b1000. In fact, the signal
similarity between b0 and DW images was also used in Coupé
et al. (30) in an inverse problem paradigm in which a b0 prior
was incorporated to reconstruct b700 volumes.

Figure 4 illustrates qualitative results and absolute
errors for N = 1 with respect to the GT (right) between
the best interpolation baseline (trilinear, left) and the
autoencoder enhancement (middle) for b1000. We overall
saw from these representative examples, higher absolute
intensities in the Linear-1 configuration than in the AE-
1. However, ventricles are less visible when using an
autoencoder. We hypothesize this is because of their
higher intensity in b0 images on which the network
was trained.
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The average MSE with respect to the original DW-MRI
signal within the whole brain is shown in Figure 5 for both
the autoencoder enhanced volume and the baseline methods

(trilinear, tricubic, and B-spline), for the configurations where
one (Method-1) or two (Method-2) slices were removed. The first
observation was the expected higher error for the configuration

FIGURE 5 | Mean squared error (MSE) between the three baseline methods (linear, cubic, and B-spline 5th order) and autoencoder (AE) enhancement both for b0 (left)

and b1000 (right). Two configurations were assessed: either N = 1, i.e., removing one slice and interpolating/synthesizing it (Linear-1, Cubic-1, Spline-1, AE-1) or N =

2, i.e., the same approach with two slices (Linear-2, Cubic-2, Spline-2, and AE-2). The autoencoder has a significantly lower MSE when compared to each respective

best baseline method (paired Wilcoxon signed-rank test p < 1.24e-09).

FIGURE 6 | MSE and peak signal-to-noise ratio (PSNR) between the best baseline (Linear) and the autoencoder (AE) enhancement for whole-brain diffusion tensor

maps, when removing and synthesizing/interpolating one or two slices. FA, Fractional Anisotropy; MD, Mean Diffusivity; AD, Axial Diffusivity; RD, Radial Diffusivity.
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where two slices are removed (N = 2), independently of the
method used. Additionally, the autoencoder enhancement clearly
outperformed the baseline methods in all configurations (paired
Wilcoxon signed-rank test p < 1.24e-09). Particularly, the more
slices we remove, the higher the gap between the baseline
interpolation methods and the autoencoder enhancement. For
b0, the MSE gain was around 0.0005 for N = 1 and 0.0015 for
N = 2 between the autoencoder and the average baseline method
(Spline-1 v.s. AE-1 and Linear-2 v.s AE-2). For b1000, the gain

between AE-1 and Cubic-1 was 0.0007 and 0.0015 between AE-2
and Cubic-2.

The overperformance of the autoencoder is also shown
overall in the DTI maps, where MD, AD, and RD were better
approximated when compared to the best baseline method
(linear interpolation), particularly in the configuration where
two slices were removed (Figure 6). However, the FA showed
the opposite trend, especially for the configuration, where
one slice was removed (AE-1 v.s. Linear-1). However, FA

FIGURE 7 | Mean squared error (MSE) with respect to the GT of the best baseline method (Linear) and the autoencoder (AE) enhancement in the different brain

structures [Cortical Gray Matter (GM), White Matter (WM), Brainstem, and Corpus Callosum] for each diffusion tensor map (FA, MD, AD, and RD) for one slice removal

(N = 1) and two slices removal (N = 2). Comparing the DTI maps of the merged brain region labels, we found that the AE-2 significantly outperforms other

conventional methods for MD, RD, and AD. (Paired Wilcoxon signed-rank test: **p < 0.0018 and *p < 0.017).
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FIGURE 8 | Qualitative comparison of colored FA in the one slice removed configuration for the best baseline interpolation method, i.e., Linear-1 (left), autoencoder

enhancement AE-1 (middle), and GT (right). The red frame area highlight a region where the linear interpolation shows a more accurate result.

for white matter-like structures (“WM”, corpus callosum, and
brainstem) showed higher performance with the autoencoder
as depicted for each structure in Figure 7. In fact, by plotting
colored FA for these two configurations, we observed that
the autoencoder generates tracts that were consistent with the
GT. For instance, autoencoder enhancement showed higher
frequency details around the superficial WM area (Figure 8,
top row) and removed artifacts between the internal capsules
better than the linear method (Figure 8, bottom row). However,
in some cases, the baseline method better depicted tracts
such as in the corpus callosum (Figure 8, middle row).

ODFs generated using spherical harmonics order 8 are also
depicted in Supplementary Figure S3 where the autoencoder
enhanced data show little qualitative differences with the
GT ODFs. Figure 9 shows similar comparisons for MD in
different brain regions between the baseline method (Linear), the
autoencoder, and the GT. Overall, quantitatively, for structures
in the case where two slices were removed, the autoencoder
enhancement outperformed the best baseline method in 15
out of 16 configurations (Figure 7). However, it is not always
the case when one slice is removed, such as in the AD of
the brainstem.
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FIGURE 9 | Qualitative comparison of mean diffusivity (MD) in the one slice removed configuration for the best baseline interpolation method, i.e., Linear-1 (left),

autoencoder enhancement AE-1 (middle), and GT (right).

FIGURE 10 | Mean squared error between noisy images and the GT vs. encoded-decoded noisy images and the GT. SNR_out is the desired SNR of the output in the

Rician noise formula (Subsection 2.3.1). We notice the robustness of the autoencoder to growing levels of noise both for b0 images (left) and b1000 images (right).

Figure 10 shows how our autoencoder was robust
to reasonable amounts of noise. In fact, simply
encoding and decoding the noisy input generates a

slice that was closer to the GT than the noisy slice,
as depicted for different levels of noise for both b0
and b1000.
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FIGURE 11 | Illustration of inter-volume motion in five different gradient directions of sub-4 (Table 2). Note the severe signal drop in the seventh direction because of

motion.

FIGURE 12 | Colored FA and FA (top row) illustration of autoencoder enhancement between two original adjacent fetal slices in a still subject (sub-1, 35 GW). The

bottom row shows a similar illustration of MD and FA for a moving subject (sub-4, 23 GW).

3.2. Fetuses
Figure 11 illustrates inter-volume motion between five diffusion-
weighted volumes where we also notice a severe signal drop in
the seventh direction (sub-4, 23 GW).

The autoencoder trained on pre-term b0 images was able
to coherently enhance fetal acquisitions both at b0 and DW-
MRI volumes at b700. The network was able to learn low-level
features that could generalize over anatomy, contrast, and b-
values. Corresponding FA and colored FA for a still subject
(sub-1, 35 GW) are illustrated in Figure 12 (top) where we
clearly see the coherence of the two synthesized images as we
go from one original slice to the next one. In fact, both the
corpus callosum and the internal/external capsules follow a
smooth transition between the two slices. Similarly, Figure 12
(bottom) exhibits MD and FA for a moving subject (sub-4, 23
GW) where we also notice, particularly for the MD, the smooth
transition between the originally adjacent slices. FA and MD for
the remaining subjects are shown in Supplementary Figure S4.
Tractography on a fetal subject (sub-1, 35 GW) using both the
original and autoencoder enhancement AE-1 DW-MRI is shown
in Supplementary Figure S5.

The splenium and genu of the corpus callosum were only
sufficiently visible in the three late GW subjects (sub-1, sub-2,
and sub-6). Figure 13 shows quantitative results for FA and MD
in the two structures. Both maps fall into the range of reported
values in the literature (59) for the respective gestational age, for
original and autoencoder enhanced volumes.

4. DISCUSSION

In this work, we have shown that (1) autoencoders can be used
for through-plane super-resolution in diffusionMRI, (2) training
on b0 images can generalize to gradient diffusion volumes of
different contrasts, and (3) as a proof of concept, training on
pre-term anatomy can generalize to fetal images.

In fact, we have demonstrated how autoencoders can
realistically enhance the resolution of DW-MRI perinatal brain
images. We have compared it to conventionally used methods
such as trilinear, tricubic, and B-spline interpolations both
qualitatively and quantitatively for pre-term newborns of the
dHCP database. Resolution enhancement was performed at the
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FIGURE 13 | FA and MD in genu and splenium of the corpus callosum for three subjects (sub-1, sub-2, and, sub-6 of, respectively, 27, 29, and 35 GW).

diffusion signal level and the downstream benefits propagated to
the DTI maps.

Additionally, our network that was solely trained on non-
diffusion weighted images (b0) was able to generalize to a b1000
contrast. In fact, the most intuitive approach is to infer b1000
images using a network trained on b1000. We have indeed tried
but the network did not converge for the majority of the folds.
This might be due to the high variability of b1000 images across
directions and their inherently low SNR. However, in the 1-
fold that the network converged, it slightly underperformed the
network that was trained on b0 only, on both b1000 pre-term
and b700 fetal images. Moreover, being b-value independent is
a desirable property since different b-values are used in different
centers, in particular for clinical fetal imaging (400, 500, 600,
700 s/mm2) (6, 10, 12, 29, 60). In fact, the same b0 network
trained on pre-term data was generalized to b700 fetal images
where we qualitatively show its advantage, hence supporting the
utility of pre-term data for fetal imaging, such as in Karimi
et al. (61), where they have used pre-term colored FA and DW-
MRI fetal scans to successfully predict fetal colored FA using a
convolutional neural network. Furthermore, FA and MD of the
corpus callosum, which were generated using the autoencoder
enhanced volumes, are in the range of values provided by a recent
study (59). This is a necessary but non sufficient condition for the
validity of our framework in fetal data.

Notably, our trained network was able to reduce the noise
from the data by learning the main features across images for
different noise levels. This can be explained by two points. First,
our autoencoder was exposed to different low levels of noise (as
the dHCP data was already denoised) and hence the encoded
features of the latent space are ought to be noise independent.
Second, generative autoencoders intrinsically yield high SNR

outputs due to the desired smoothness property of the latent
space (62).

The proposed framework could be applied to correct for
anisotropic voxel sizes and can be used for slice outliers
recovery in case of extreme motion artifacts for example. In
fact, the artificially removed middle slices in our experiments
can represent corrupted slices that may need to be discarded
or replaced using interpolation (36–38). Our autoencoder
can hence be used to recover these damaged slices using
neighboring ones.

The power of our method compared to conventional
interpolations resides in two points. First, the amount of data
used to predict/interpolate the middle slice. While only two slices
will be used in traditional interpolation approaches, our method
will in addition take advantage of the thousands of slices to which
the network has been exposed and from which the important
features have been learned (without any supervision) in the
training phase. Second, based on the manifold hypothesis, our
method performs interpolations in the learned encoding space,
which is closer to the intrinsic dimensionality of the data (63),
and hence all samples from that space will be closer to the true
distribution of the data compared to a naive interpolation in the
pixel/voxel space.

Although our network performed quantitatively better than
conventional interpolation methods in pre-term subjects, its
output is usually smoother and hence exhibits lesser details. This
is a well-known limitation of generative autoencoders, such as
variational autoencoders, and the consequence of the desirable
property of making the latent space smooth (62). Generative
Adversarial Networks (64) can be an interesting alternative
to overcome this issue. However, they have other drawbacks
as being more unstable and less straightforward to train (65)
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than autoencoders. But if trained properly, they can achieve
competitive results.

In this work, qualitative results only were provided on fetal
DW-MRI. We are limited by the lack of ground truth in this
domain, hence our results are a proof of concept. The future
release of the fetal dHCP dataset will be very valuable to
further develop our framework and proceed to its quantitative
assessment for fetal DW-MRI.

In future work, we want to add random Rician noise in
the training phase to increase the network robustness and
predictive power. We also want to extend the autoencoding to
the angular domain by using spherical harmonics decomposition
for each 4D voxel and hence enhancing both spatial and angular
resolutions (66).

Although unsupervised learning via autoencoders has
been recently used in DW-MRI to cluster individuals
based on their microstructural properties (67), this is to
the best of our knowledge, the first unsupervised learning
study for super-resolution enhancement in DW-MRI
using autoencoders.

As diffusion fetal imaging suffers from low through-
plane resolution, super-resolution using autoencoders is an
appealing method to artificially but realistically overcome
this caveat. This can help depict more precise diffusion
properties through different models, such as DTI or ODFs,
and potentially increase the detectability of fiber tracts that
are relevant for the assessment of certain neurodevelopmental
disorders (29).
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Figure S1: Histogram of the gestational age of pre-term and fetal subjects

Figure S2: DWI volume of original, pre-processed and motion corrected subject (sub-4, 23 GW)
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GT

AE-1

Figure S3: Orientation Distribution Functions (ODFs) of the GT and the autoencoder generated slice
(AE-1) overlayed on top of Fractional Anisotropy (FA) map where we can see the right internal capsule
and the corpus callosum in zoomed panels. Little qualitative difference can be observed. The left and right
slices represent the two adjacent axial slices.
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Figure S4: MD and FA illustration of AE enhancement between two adjacent fetal slices in two moving
subject (top rows: sub-6, 27 GW, sub-5, 24 GW) and two still subjects (bottom rows: sub-1, 35 GW, sub-3,
24 GW).
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AE-1

Original-1

Figure S5: Tractography of a fetus (sub-1, 35 GW) generated using ODFs with spherical harmonics
order 4, overlayed over the FA map. The streamlines were obtained using the MRtrix3 iFOD2 algorithm
(Tournier et al., 2019) for identical tractography parameters for both the original and autoencoder enhanced
data. The figure shows the streamline segments (2.5 mm) intersecting the slice using the red (left-right),
green (anterior-posterior) and blue (superior-inferior) coloring. The bottom part depicts the segment for an
autoencoder generated slice (AE-1) and the top part its equivalent in original stack. Yellow boxes show
white matter pathways with improved density for AE-1, while the red box show region with reduced density.
Overall, tractography using AE-1 recovers more locally coherent white matter structures.
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Abstract. Diffusion MRI (dMRI) of the developing brain can provide
valuable insights into the white matter development. However, slice thick-
ness in fetal dMRI is typically high (i.e., 3-5 mm) to freeze the in-plane
motion, which reduces the sensitivity of the dMRI signal to the un-
derlying anatomy. In this study, we aim at overcoming this problem
by using autoencoders to learn unsupervised efficient representations of
brain slices in a latent space, using raw dMRI signals and their spherical
harmonics (SH) representation. We first learn and quantitatively vali-
date the autoencoders on the developing Human Connectome Project
pre-term newborn data, and further test the method on fetal data. Our
results show that the autoencoder in the signal domain better synthe-
sized the raw signal. Interestingly, the fractional anisotropy and, to a
lesser extent, the mean diffusivity, are best recovered in missing slices
by using the autoencoder trained with SH coefficients. A comparison
was performed with the same maps reconstructed using an autoencoder
trained with raw signals, as well as conventional interpolation methods
of raw signals and SH coefficients. From these results, we conclude that
the recovery of missing/corrupted slices should be performed in the sig-
nal domain if the raw signal is aimed to be recovered, and in the SH
domain if diffusion tensor properties (i.e., fractional anisotropy) are tar-
geted. Notably, the trained autoencoders were able to generalize to fetal
dMRI data acquired using a much smaller number of diffusion gradients
and a lower b-value, where we qualitatively show the consistency of the
estimated diffusion tensor maps.

Keywords: Super-resolution· Autoencoders· Spherical Harmonics · Dif-
fusion Tensor Imaging· Pre-term· Fetal· Brain · MRI
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1 Introduction

Neonatal and fetal brain development involves complex cerebral growth and mat-
uration both for gray and white matter [4,10]. Diffusion MRI (dMRI) has been
widely employed to study this developmental process in vivo, including neonates
and fetuses [16,18,28]. As the diffusion weighted signal is sensitive to the dis-
placement of water molecules, several models have been proposed for estimating
the underlying anatomy such as diffusion tensor imaging (DTI) or spherical de-
convolution methods [2,32,6]. The accuracy of these models is dependant on the
angular and spatial resolution of the acquisitions that is typically limited for
the neonate and fetal subjects [19,22]. Stochastic motion and low signal-to-noise
ratio (SNR) due to the small size of the developing brain often translate to de-
graded images with low spatial resolution. Additionally, slice thickness in fetal
dMRI is typically high, varying between 3-5 mm, to freeze the in-plane motion,
and hence reduces the sensitivity of the dMRI signal to the underlying anatomy.
This highlights the need for methods to interpolate or synthesize new slices that
were either (1) corrupted because of motion or (2) acquired using anisotropic
voxel sizes. Interpolation is often performed either at scanner level or in post-
processing [19], and has been demonstrated to be relevant for raw signal recovery
and for subsequent analysis such as tractography [11]. Similarly, super-resolution
(SR) methods that aim at increasing dMRI resolution can be applied at the
acquisition-reconstruction level [27,29] or at post-processing [5,12,7]. The latter
used supervised learning methods, which require high resolution training data
that is often unavailable for the developing brain. Additionally, these methods
focus on enhancing the resolution homogeneously over all dimensions and were
not assessed for anisotropic voxels, commonly acquired for fetuses and neonates
[19,22]. Additionally to the raw dMRI signal interpolation, other representations
such as Spherical Harmonics (SH) could be of interest. SH are a combination
of smooth orthogonal basis functions defined on the surface of a sphere able to
represent spherical signals, such as the dMRI signal acquired using uniformly
distributed gradient directions [13,15]. Previous work used deep learning meth-
ods to map the SH coefficients from one shell to another [24,20]. However, no
prior work, to the best of our knowledge, relies on the SH decomposition to
enhance the spatial image resolution.

In this study, we have used unsupervised learning to extend the application
of autoencoders for through-plane super-resolution [30,21] in the image domain
to spherical harmonics domain where we synthesize SH coefficients of missing
slices. As such, our network has access to both angular and spatial information.
In contrast to training with non-DWI volumes [21], we have additionally trained
a second network on spherical averaged dMRI images to complement and com-
pare its performance in relation to the SH trained network. Moreover, we have
compared both methods to conventional interpolation methods both using raw
dMRI signals and their SH representation. The comparison was performed both
on the raw dMRI signal; and on fractional anisotropy (FA) and mean diffusivity
(MD) maps derived from the estimated diffusion tensors. Finally, we verified
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that the SH networks trained on pre-term data successfully generalized to fetal
images, where we present the coherence of the synthesized slices.

2 Methodology

2.1 Materials

Neonatal data - The developing Human Connectome Project (dHCP) data1

were acquired in a 3T Philips Achieva scanner in a multi-shell scheme (b ∈
{0, 400, 1000, 2600} s/mm2). Details on acquisition parameters can be found in
[17]. The data was denoised, motion and distortion corrected [3] and has a final
resolution of 1.17×1.17×1.5 mm3 in a FOV of 128×128×64 mm3. In addition
to b = 0 s/mm2 images (b0), we have selected the corresponding 88 volumes
with b = 1000 s/mm2 (b1000) from all pre-term subjects (31) defined with less
than 37 gestational weeks (GW) ([29.3, 37.0], mean=35.5). In the anatomical
dataset, brain tissue labels and masks [26] were provided.

Fetal data - The fetal data were acquired with the approval of the ethics
committee. Acquisitions were performed at 1.5T (GE Healthcare) with a single
shot echo planar imaging sequence (TE=63 ms, TR=2200 ms) using b = 700
s/mm2 (b700) and 15 directions. The acquisition FOV was 256× 256× 14− 22
mm3 for a resolution of 1×1×4−5 mm3. Three axial and one coronal acquisitions
were performed for each subject. Four subjects were used in our study: two of
35 and 29 GW where three axial volumes were used, and two young subjects of
24 GW where one axial volume was used. We have only used axial acquisitions
to avoid any confounding factor due to interpolation in the registration that
would be needed between the orthogonal orientations. Volumes were corrected
for noise [34], bias-field inhomogeneities [33] and distortions [25,1] and did not
require any motion correction.

2.2 Model

Network architecture - Our network is composed of four blocks in the encoder
and four blocks in the decoder, where each block consists of two layers of 3 ×
3 convolutions, a batch normalization and an Exponential Linear Unit (ELU)
activation function [9]. After each block of the encoder, a 2× 2 average pooling
operation was performed and the number of feature maps was doubled after
each layer. Hence starting from 32 feature maps to 256 while three additional
3x3 convolutions were added in the last block with 512, 256 and M feature maps
respectively, M ∈ {16, 32, 64, 128}. The last M feature maps were considered as
the latent space of our autoencoder. The decoder goes back to original input
dimensions by means of either 3 × 3 transposed convolutions with strides of
2 or by 2 × 2 nearest neighbor interpolations (mutually exclusive), where the
number of feature maps decreases by two after each layer from 512 to 32. A last

1 http://www.developingconnectome.org/data-release/second-data-release/
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1x1 convolution with sigmoid activation function was performed to generate the
predicted image.

Training - Using the same architecture, we have trained three networks, with
different inputs: b0 images (b0-net), average b1000 (Avg-b1000-net) (see Raw
signal networks subsection) and a maximum SH order (Lmax) of 4 (SH4-net) (see
Spherical harmonics networks subsection). Input images were first normalized
to the range [0, 1] by x = x−xmin

xmax−xmin
where xmin and xmax are the minimum

and maximum intensities respectively in a given slice. All networks were trained
using an Nvidia GeForce RTX 3090 GPU in the TensorFlow framework (version
2.4.1) with Adam optimizer [23] for 200 epochs using mean squared error loss
function, a batch size of 32 and a learning rate of 5× 10−5. The validation was
performed on 15% of the training data. The number of feature maps of the latent
space was optimized using Keras-tuner [8] and the checkpoint with the minimal
validation loss was finally selected for inference.

Raw signal networks - While b0-net was trained using b0 images, Avg-
b1000-net was trained on average b1000 images, as training directly on individual
b1000 images did not consistently converge [21]. We have thus trained Avg-b1000-
net on average b1000 images with the aim of increasing the SNR and reducing
variability. The average was computed over n randomly selected volumes, n ∈
{3, 6, 15, 30, 40}. Empirically, higher n means a lower risk of network divergence,
at the cost of increased smoothness/risk of losing image detail. Therefore n must
be tuned. In the end, b0-net was used to infer b0 images whereas Avg-b1000-net
was used to infer b1000 volumes.

Spherical harmonics network - We have fit SH representations by us-
ing Lmax=4 to the dMRI signal using Dipy [14] and fed the resulting 15 SH
coefficients, slice by slice, to SH4-net. Let us note that we preliminary com-
puted the mean squared error difference with respect to the ground truth data
when estimating SH and projecting back to original grid from SH bases of
Lmax ∈ {4, 6, 8}. As differences were relatively low between them (9.80, 8.64
and 9.95 for Lmax ∈ {4, 6, 8} respectively, scale ×10−4) and we aim at further
testing on fetal data (where only 15 DWI are available) we selected to stick in
what follows to Lmax=4.

Inference in neonates - For all networks (b0-net, Avg-b1000-net and SH4-
net), nested cross validation was performed where the 31 subjects were split
into 8 folds. For each subject and each volume in the testing set, we removed N
intermediate slices, N ∈ {1, 2} that were considered as the ground truth we aim
to predict. Using the two adjacent slices, we input each separately to the encoder
part of the network to get the M latent feature maps. These feature maps were
averaged using an equal weighting for N = 1 and a { 1

3 ,
2
3}, {

2
3 ,

1
3} weighting for

N = 2 (Figure 1). The missing slices were then recovered by using the decoder
part from the resulting latent feature maps. The output of the network was
then mapped back to the range of input intensities. This was performed using
histogram matching (using cumulative probability distributions) between the
network output as a source image and the (weighted) average of the two adjacent
input slices as a reference image. Finally, the histogram matched output of SH4-
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net was projected back to the original grid of 88 directions to recover the dMRI
signal in the image domain.

Fig. 1. Inference for two adjacent slices of the first coefficient of SH-Lmax order 4
illustrated for the case of N = 2 where α = 2

3
.

Evaluation in neonates - The inferred slices of Avg-b1000-net were com-
pared to conventional interpolations, namely trilinear, tricubic and B-spline of
5th order [31,1]. The comparison was performed separately for one and two miss-
ing slices (N ∈ {1, 2}) using the mean squared error (MSE). As all interpolation
baselines produce similar results with a slight overperformance for the linear
method (for N = 2, MSE of 0.003164, 0.003204 and 003211 for linear, cubic
and B-spline respectively), the former was chosen for further comparison with
autoencoders. The two networks were additionally compared for FA and MD
maps that were extracted from the diffusion tensors , as estimated in Dipy [14].
The DTI fit used the synthesized b0 by b0-net. The linear baseline was further
compared with SH4-net and with the signal recovered from the same interpo-
lation of the SH coefficients. The comparison was also extended for DTI maps
(FA, MD). To compute them, DTI fit of SH4-net relied on the b0 as synthe-
sized by b0-net, and the linear SH4 used corresponding linear interpolated b0.
All comparisons were done using MSE for FA and MD maps in white matter,
cortical gray matter, and corpus callosum. Moreover, we have fit SH representa-
tions of the ground truth signal by using Lmax = 4 which were compared after
projecting back to the original grid of 88 gradient unit vectors to the original
DWI signal, separately for (N ∈ {1, 2}). This was considered as the lower bound
error of SH4-net.

Application to fetal DWI - After fitting the SH coefficients with Lmax=4
to the fetal data. We have used SH4-net, i.e., trained on pre-term neonates to
infer SH coefficients of middle (N ∈ {1, 2}) slices of fetal subjects. The inference
was performed in a similar manner as for neonates (Figure 1). Cropping of fetal
images to 128 × 128 voxels was necessary before feeding them to the encoder.
Then, we generated the diffusion tensor based on this new DWI signal and b0
using b0-net, and visually assessed the consistency of the new slices in MD and
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FA maps for the four subjects. Only qualitative evaluation was performed for
fetal enhancement because of the lack of ground truth.

3 Results

Based on the validation loss, the optimal number of feature maps in the latent
space was found to be 32 for b0-net and Avg-b1000-net, and 64 for SH4-net. For
Avg-b1000-net, averaging n = 15 DWI was also found to be optimal. Moreover,
the transposed convolution in the decoder did not reduce the validation loss as
compared to performing a nearest neighbor interpolation. Hence all networks
used the latter in the decoder part to avoid unnecessary overparameterization
of the network.

3.1 DWI assessment

Autoencoder average b1000 trained network (Avg-b1000-net) produces superior
results compared to linear interpolation (Figure 2). The difference is higher for
the case of two slices removed (N = 2).

Fig. 2. Mean squared error (MSE) on dMRI images of autoencoder enhanced using
Avg-b1000-net slices (AE-1, AE-2 for N = 1, 2 respectively) and for the baseline in-
terpolation (linear on raw signal: Lin-1, Lin-2) and for SH4-net and SH linearly in-
terpolated (Lin4-1, Lin4-2 for N = 1, 2 respectively). The lower bounds for the SH
errors (SH4GT) were also included as a reference. (Method-1, Method-2 for synthesiz-
ing/interpolating N = 1 and N = 2 slices, respectively)

Comparing raw and SH domain enhancement (Figure 2), we first observe
that independently of the method (autoencoder or linear), working directly on



dMRI neonatal and fetal brain slice estimation 7

the raw signal outperforms working on SH and projecting back to signal. In fact,
autoencoder Avg-b1000-net outperforms linear interpolation, and for N = 1 it
is closely comparable to the SH encoding (SH4GT-1 in Figure 2). While the SH
autoencoder enhancement underperforms the classical SH linear interpolation
for N = 1, SH4-net slightly outperforms linear-SH for N = 2. This gap between
N = 1 and N = 2 for SH linear and autoencoder can be explained by the rich
information that the autoencoder was exposed to in the training phase from
similar images compared to the interpolation that has solely access to local
information.

3.2 FA and MD in newborns

Comparing DTI scalar maps (Figure 3) for the same previous configurations
(see Figure 2), we notice that the autoencoder enhancement outperforms the
linear interpolation in all brain regions (except MD for cortical gray matter
when removing one slice, i.e. N = 1) regardless of whether raw signal or SH
was used. This outperformance is significant (paired Wilcoxon signed-rank test)
for FA in all SH configurations, and for MD in one third of all configurations.
The difference is typically more pronounced when we remove two slices (N = 2).
Let us note that, opposite of what we observed at the DWI signal level, SH4-
net outperforms linearly interpolated SH. Furthermore, for the FA map, SH4-net
obtains the lowest mean squared errors, thus it is more suitable than autoencoder
Avg-b1000-net or the linear interpolation. The opposite trend, i.e. Avg-b1000-net
outperforming SH4-net with statistical significance, can be noticed for MD, with
exception of the corpus callosum.

3.3 Qualitative results of FA and MD in fetuses

The DWIs synthesized by SH4-net using the latent space were visually consis-
tent as they smoothly vary between the adjacent slices. Figure 4 displays the
corresponding FA and MD maps for four subjects. We can clearly delineate the
smooth transition between the two adjacent slices, especially in late gestational
weeks fetuses in which the structures are more visible. For instance, the corpus
callosum and the internal capsules of the synthesized slices displayed in FA maps
are coherent with respect to their neighbouring slices.

4 Conclusion

We have proposed autoencoders for dMRI through-plane slice inference in early
brain development. The assessment was performed in both raw signal and spher-
ical harmonics (SH) domains, where the latter proved to be more accurate for
DTI-FA maps reconstruction and the former for raw data estimation. We hy-
pothesize that this could be explained by some global bias introduced to the
back projected raw signal by the SH trained autoencoder. However, the orienta-
tion information (i.e., signal’s shape) was better preserved and hence, FA which
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Fig. 3. Mean squared error of fractional anisotropy (FA) and mean diffusivity (MD) for
different methods in three brain regions. See caption Figure 2 for methods description.
(Paired Wilcoxon signed-rank test: **: significant, p<0.028 - t: trending, p=0.06 - N.S.:
non significant: p>0.06)

Fig. 4. Fractional anisotropy (FA) and mean diffusivity (MD) for four fetal subjects
of respectively, from left to right, 4, 5, 4 and 4 mm of slice thickness. The middle
row (red frames) illustrates synthesized slices corresponding to the diffusion tensor
reconstructed with inferred DWI volumes with SH4-net and b0 with b0-net, using the
two neighboring original slices (top and bottom rows).
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is scale invariant, was clearly better depicted by SH autoencoder estimation.
Lastly, we have successfully applied our method trained on newborn data to en-
hance the through-plane resolution of fetal data acquired in a different scanner,
with a lower b-value and fewer gradient directions. Inferring missing slices or
realistically increasing the through-plane resolution has to potential to trans-
late to more accurate diffusion properties and hence a better uncovering of the
underlying brain structure. In future work, we aim to increase the angular res-
olution in fetal images by using supervised learning to map spherical harmonics
coefficients of order 4 (i.e., the maximal order that can be fit with clinical fetal
images) to higher orders (6 or 8) using pre-term data.
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ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation
distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However,
with standard FOD computation methods, accurate estimation of FODs requires a large number of measurements that usually
cannot be obtained for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map
as few as six diffusion measurements to the target FOD. To train the model, we use the FODs computed using High Angular
Resolution Diffusion Imaging (HARDI) measurements as target. Extensive quantitative evaluations show that the new deep
learning method, using significantly fewer measurements, achieves comparable or superior results to standard methods such
as Constrained Spherical Deconvolution. Furthermore, we demonstrate the generalizability of the new method across scanners,
acquisition protocols, and anatomy on two clinical datasets of newborns and fetuses. Finally, we compute agreement metrics
within the HARDI newborn dataset and advocate for the need for methods that are more tailored to the developing brain.

Introduction
Early brain growth is characterized by rapid and complex structural and functional developments that are vulnerable to various
genetic and environmental factors. The influence of early brain development and disorders on the brain health later in life has
received growing interest1–5. Magnetic Resonance Imaging (MRI) is a non-invasive method for assessing these developments
in vivo. Diffusion MRI (dMRI), specifically, offers a means to assess the micro-structure of the white matter using the diffusion
of water molecules as a proxy measure6, 7. However, application of dMRI to study the developing brain has been limited
due to motion, limited scan time, and low signal-to-noise ratio (SNR)8–10. Despite these limitations, prior works have shown
the potential of dMRI to probe the early brain development. For instance, several studies11–13 have used spatiotemporal
changes in Fractional Anisotropy (FA), Mean Diffusivity (MD) and different cortical morphology indices to characterize normal
brain development. Recent availability of large high-quality datasets such as those collected under the developing Human
Connectome Project (dHCP)14, 15 present a unique opportunity to expedite our understanding of the developing brain. These
datasets are of highest quality, including measurements at different b-values and gradient directions. As such, derived dMRI
quantities can be considered as reference values or ground truths to which derived metrics from more constrained clinical
datasets, which usually do not exceed 15 diffusion measurements with a single low b-value (500−750s/mm2), can be compared
to.

The prevailing way of extracting diffusion properties from the diffusion signal involves a model, typically a diffusion
tensor imaging (DTI) model16. More complex models such as multi-shell multi-tissue constrained spherical deconvolution
(MSMT-CSD), aiming to reconstruct Fiber Orientation Distribution Functions (FODs)17, 18 that allow depiction of more
intricate white matter configurations such as fiber crossings require densely sampled (multiple-shell) data. The output of these
models can be studied directly, i.e. by computing metrics such as FA or MD from the diffusion tensor or the apparent fiber
density19 from the FOD. Alternatively, they can be further processed globally to generate fiber tracts20, 21 that are responsible



for transmitting action potentials between different regions of the brain.
In general, mapping the acquired diffusion signal to an interpretable and informative diffusion metric requires a prior model.

Conventional model computation does not provide feedback of which parts of the raw signal are important and which are not
in estimating the given model. Differently, deep neural networks can treat the problem as a single learnable task that can be
optimized via back-propagation, by directly learning a mapping between the diffusion signal and the target diffusion quantity.
Hence, bypassing the sub-optimal model fitting step that can be sensitive to noise. Golkov et al.22 proposed the first deep
learning (DL) model that directly estimated diffusion kurtosis23 and neurite orientation dispersion and density measures24 from
a small number of diffusion measurements in adult brains. They showed a drastic decrease in scanning time with limited loss in
accuracy. Since then few other works have explored DL methods in adult brains as to directly estimate diffusion scalars or
model reconstruction (FODs). For instance, with superDTI25, accurate predictions of tensor maps using a neural network was
achieved using only six diffusion measurements. Their model was robust to various noise levels and could depict lesions present
in the dataset. Kopper et al.26, employed 2D convolutional neural network (CNN) in a classification approach to predict the
orientation of fibers, while Lin et al.27 utilized a 3D CNN to predict FODs based on a small neighborhood of the diffusion signal.
Karimi et al.28 used a multi-layer perceptron to predict FODs. However, this approach did not leverage the correlations between
neighboring voxels. A two-stage Transformer-CNN was used to map 200 measurements to 60 measurements by Hosseini et
al.29, followed by predicting FODs. Acquiring such a large number of measurements is infeasible for noncooperative cohorts,
such as neonates or fetuses.

To the best of our knowledge, these learning-based FOD estimation methods have not yet been critically evaluated for
fetal populations and in non-research protocols of newborns. In this study, we demonstrate that a deep convolutional neural
network with a large field of view (FOV) can accurately estimate FODs using only 6-12 diffusion-weighted measurements.
Firstly, we show, on N=465 subjects from the dHCP dataset, that a deep learning approach can achieve a level of accuracy that
is comparable to the accuracy of the state-of-the-art methods, while reducing the required number of measurements by a factor
of ∼21-43) . Secondly, we present evidence of a low agreement between state-of-the-art methods and acquisitions in terms of
various metrics. Finally, we show the generalizability of deep learning methods on two out-of-domain clinical datasets of 26 in
vivo fetuses and neonates that were scanned with different scanners and acquisition protocols.

Results
Research dMRI acquisitions of neonates
We trained our deep learning model (DLn) on dMRI data from neonates. FODs estimated with the MSMT-CSD method using
280 diffusion-weighted and 20 b0 measurements are used as estimation target. We refer to MSMT-CSD estimations as ground
truth (GT). The input to DLn consists of 6 diffusion-weighted measurements normalized with one b0 measurement. After
training, the network was applied on independent test data.

Qualitatively, the FODs estimated by DLn were very similar to those estimated by MSMT-CSD using 300 measurements
in 3 shells (Figure 1). We also compared our results with those of CSD using 148 measurements. CSD overestimates the
number of peaks in the non-white matter regions. Although estimating the 45 FOD coefficients using 6 measurements is an
under-determined problem, for the sake of comparison we present the CSD estimated FODs with the six measurements as those
used for DLn (CSD-6 in Figure 1). CSD-6 results show significant errors even in the location of major white matter tracts such
as the corpus callosum.

Quantitative assessment
On N=320 independent test subjects from the dHCP dataset, DLn showed low estimation error (with respect to the MSMT-CSD
GT) in terms of several metrics compared to the various standard estimation methods. We assessed the reproducibility of the GT
by applying MSMT-CSD on subsets of the measurements from the same subject. Specifically, we split the 300 measurements
into two disjoint subsets of 150 multi-shell measurements and applied MSMT-CSD on each subsets to compute two independent
FOD estimations, which we denote with GS1 and GS2. GS1 and GS2 can be viewed as two high-quality scans of the same
subject, conducted with a similar protocol.

In particular, the DLn model has lower error rates on apparent fiber density19 of 0.178 (±0.083) when compared to the GT,
which is in close proximity to the corresponding gold standard difference of 0.064 (±0.034), in terms of the mean and standard
deviation. In contrast, the other methods, namely Constrained Spherical Deconvolution (CSD)17 using 148 measurements
Constant Solid Angle30 (CSA) and the Sparse Fascicle Model (SFM) using all 300 measurements, display elevated error rates
when compared to the DLn model as can be depicted from Figure 2. It is noteworthy that statistical significance of all pairs of
models is observed, in particular p ≤4.8−11 paired t-test corrected for multiple comparisons with Bonferroni between the DLn
and the other methods.

Peaks count and orientations were also estimated from the FOD generated by all methods. We first identified a low level
of agreement rate (AR) for multiple fibers within the MSMT-CSD GT (∆GS) as can be shown in Figure 3 (a). The AR was
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Figure 1. Qualitative high level comparison between, from left to right, the MSMT-CSD GT using the 300 multi-shell
samples, the deep learning method DLn using six b = 1000 s/mm2 measurements and one b0, and CSD using 128
measurements of b = 2600 s/mm2 and 20 b0 images. Also shown on the right CSD-6, i.e. CSD with the same measurements
that the DL method used. Axial, coronal and sagittal views are shown from top to bottom and the background images
corresponds to fractional anisotropy (FA) extracted from the diffusion tensor estimated with all b = 1000 s/mm2 measurements.

extracted from the confusion matrix of the estimated number of peaks (Table 1, details in Methods section). For instance, the
1-peaks AR was 88.2%, while 46.7% and 47.2% were observed for 2-peaks and 3-peaks, respectively. Our proposed method,
DLn, achieved an agreement of 77.5%, 22.2%, and 8% for 1-peaks, 2-peaks, and 3-peaks, respectively, which was globally
the closest to the agreement between the gold standards when compared to other methods. Although the single-fiber model
(SFM) produced a relatively high level of agreement for 1-peaks with the ground truth (GT) at 84.6%, the agreement decreased
to 4.6% and 2.5% for 2-peaks and 3-peaks, respectively. In contrast, the constrained spherical deconvolution (CSD) model
achieved the lowest 1-peaks AR at 21.7%. This model showed a bias towards the estimation of multiple peaks, with 78% of the
voxels modeled as having two or three peaks, which could be explained by the high b-value (b = 2600 s/mm2) that contains
high levels of noise.

The relatively low agreement observed for voxels with multiple intravoxel fiber orientations might be attributed to their
incongruence across the GT, resulting in the absence of a consistent pattern to be learned by the neural network. In fact,
this is supported by the modest agreement between the two gold standards (∆GS) where both the subjects and the number of
measurements are the same, with only the gradient directions varying and already resulting in a drop of more than 50% in
multiple fibers depiction. It is noteworthy that the agreement between different methods such as CSD versus CSA, SFM versus
CSA, CSD versus DLn, among others, was also low. The confusion matrices for ∆GS agreement and the different methods can
be found in Table 1.

Our analysis, presented in the table of Figure 3 (b), quantifies the angular error for different FOD methods. Our proposed
learning model achieves an error rate that is comparable to GS1 and GS2. However, SFM and CSA methods demonstrate a
higher error rate for single and two-fiber voxels, whereas CSD outperforms the other techniques by achieving the lowest error
rate. This could be attributed to the low AR observed for CSD, which reduces the error computation to a smaller subset of
common voxels between the ground truth and CSD, as indicated in Figure 3 (a). The table of Figure 3 (b) also displays the
number of measurements and the b-values that each method used. Notably, the angular error exhibits a nearly linear increase
for voxels containing one, two, or three fibers. It is worth noting that training a network with 15 directions instead of 6 did not
lead to a noticeable improvement in the results.
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Figure 2. Apparent fiber density error with respect to the MSMT-GT for the different methods, along with the agreement
between the two gold standard datasets (∆GS) that is shown as an upper bound error. The different baseline methods used are
Constrained Spherical Deconvolution (CSD)17, using 128 gradient directions (b-value of 2600 s/mm2) and 20 b0 images;
Constant Solid Angle30 (CSA) and the Sparse Fascicle Model (SFM) model31 using all available 300 measurements. DLn
method, with less than an order of magnitude in the number of samples (six b=2600 s/mm2 samples) and one b0 image)
achieves the lowest error by a high margin.

∆GS CSD CSA SFM DLn

#Fibers 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 72.3 4.79 0.31 16.7 11.7 47.8 34.7 27.7 13.9 83.7 0.45 1.82 70.47 5.16 0.59
2 4.27 11.0 1.87 0.51 2.55 14.4 2.28 9.46 5.76 10.2 0.53 0.32 11.4 5.57 5.15
3 0.26 1.57 3.60 0.07 0.37 5.80 0.85 2.57 2.83 2.70 0.09 0.12 3.27 2.38 0.59

Table 1. Confusion matrices for number of peaks agreement (in %), normalized over all population. From left to right: gold
standards GS1 vs. GS2, followed by the different methods CSA, CSD, SFM and DLn compared to the GT MSMT-CSD. Each
confusion matrix reports the average result for 320 test subjects (except SFM with 56 subjects).

Finally, we explored the correlation with the quality control (QC) metrics provided by dHCP and the error metrics for ∆GS,
DLn, and CSD. The different error measures showed no correlation to QC metrics, i.e. SNR, outlier-ratio, nor scan age (Figure
10 in Supplementary Material for DLn) except for the motion as estimated by the SHARD32 pipeline. The more motion was
estimated the higher the correlation to a lower agreement rate and a higher AFD error across subjects for the intra-agreement
metrics of the MSMT-CSD GT (∆GS) and both methods (DLn and CSD) as can be shown in Figure 4. Statistical interaction
analysis did not show however any significant difference in the way DLn and CSD are influenced by motion (p = 0.8, p = 0.18
and p = 0.11 for single, two and three fibers respectively). Given that the motion was compensated32, we hypothesize that
subjects with strong initial motion have still an increased residual motion after correction.

Uncertainty
Using wild bootstrap (NWBS=60) on the six input directions of the 88 volumes of b = 1000 s/mm2 volumes, we have computed
uncertainty maps using normalized standard deviation (please see Methods section). Figure 5 shows these maps compared to
FA, where both images were applied a white matter mask. We can appreciate low uncertain regions in the highly anisotropic
regions such as corpus callosum (body, splenium and genu) and internal capsules. In fact, this is in line with the results (Figure
3) where the DLn model is less prone to errors in single coherent fiber populations as was previously studied in diffusion tensor
imaging33–35. Hence, since these uncertainty maps do not need any ground truth and can express an increased correlation with
erroneous predictions36, they can be used as an informative proxy to error detection, in case enough gradient directions are
available for bootstrap.
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Figure 3. (a) Agreement rates, extracted from confusion matrices as defined in the Methods section, for different methods
compared to the MSMT-CSD GT and for the agreement between the gold standard subsets. From right to left, the deep learning
method using six measurements and b0, SFM and CSA using 300 multishell samples, CSD using 148 measurements and the
agreement between the two gold standard (∆GS) mutually exclusive subsets using each 150 samples. (b) Mean and standard
deviation of angular error between GT (MSMT-CSD) and the different methods. ∆GS refers to GS1 and GS2 agreements. The
number of measurements (M) and the b-values used are also reported. All results were statistically significant compared to
∆GS (p ≤9e−10). Our method achieves results comparable to the agreement rate ∆GS while using six measurements. It is
worth noting that CSD is achieving slightly lower error because it misses more than 3 times GT-true single fiber voxels and
more than two times GT-true two-fiber voxels, as can be seen in its low agreement rate in (a).

Generalizability to clinical datasets
Neonates dMRI
The network DLn trained on dHCP neonates was tested on 15 clinical newborns using six b0-normalized input volumes of b
= 1000 s/mm2 as can be seen in Figure 6. As for the dHCP newborns, we can see the absence of high magnitude FODs in
non-white matter regions, as opposite to noise-sensitive CSD (estimated using all 30 b = 1000 s/mm2 diffusion measurements
and 5 b0 volumes) that displays several false positive crossing fibers. These false crossings can also be noticed in some known
single fiber areas such as the internal capsules as can be depicted in subject 1 of Figure 6.

In-utero fetal dMRI
We tested the proposed deep learning model, DL f , on 11 fetuses and compared it to CSD. In the absence of dMRI ground
truth, we qualitatively evaluate the results. In Table 2, we summarized the analyzed anatomical regions. We point out to the
frequency on which DL f or CSD was depicted as better or in which they seem equivalent. The evaluation was conducted by an
experienced developmental neuroanatomist and was based on former knowledge from histology.

This qualitative assessment relied on visually inspecting FOD maps in ROIs. We selected ROIs within regions whose tissue
components are relatively known during early development. Specifically, these ROIs included: i) regions in the proximity of
the frontal crossroad C2, ii) corpus callosum, iii) cortical plate (in the insula, superior temporal gyrus, prefrontal cortex), iv)
subplate (precentral gyrus and sulcus and prefrontal cortex) v) internal capsule, vi) cerebral peduncles, and vii) intermediate
zone (regions containing geniculocortical fibers, regions containing callosal fibers). Figure 7 depicts some of the aforementioned
ROIs within two example subjects across the two methods on the corresponding FOD maps.

Overall, DL f performed better than CSD in predicting fiber orientation across most regions. Specifically, upon visual
inspection, the regions surrounding the frontal crossroad region C2, genu of corpus callosum, intermediate zone containing
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Figure 4. Agreement rate for voxels containing one, two, and three fibers, and apparent fiber density (AFD) error for the inter
agreement between the gold standard datasets (∆GS), deep learning method (DLn) and CSD, as a function of motion
parameters (average translation and rotation parameters) for N=320 subjects. A negative correlation is generally observed with
agreement rate (Spearman’s rank correlation coefficients shown in the figure with corresponding p-value). Similarly, a positive
correlation with AFD error can be seen on the (b) panel. Other quality control (QC) metrics (Outlier ratio, Signal-to-noise ratio)
and scan age didn’t exhibit any trend with the prediction accuracy (See Figure Sx in Supplementary Materials?). Interaction
analysis showed that CSD and DLn were not significantly affected by motion (p ≥ 0.11).

callosal fibers, and prefrontal cortical plate were better defined using DL f . It is worth noting CSD systematically outperformed
DL f for cerebral peduncles and internal capsules on coronal sections. For the purpose of the current article, we added two
slides to Figure 8 showing corresponding histology slices stained with GFAP (stains glial fibrillary acidic protein) or SMI 312
(stains highly phosphorylated axonal epitopes of neurofilaments)37. The criteria for evaluation included orientation, magnitude,
and coherence of FODs. Specifically, in regions of corpus callosum38, cerebral peduncles, intermediate zone containing
geniculocortical or callosal fibers, and internal capsule we expected high coherence with high magnitude, and orientation
along or perpendicular to the main brain axes38, 39. In contrast, within ROIs in the proximity of the frontal C2 crossroad40,
we expected decreased coherence, with low magnitude and ambiguous orientation with FOD maps. Finally, the magnitudes,
orientation, and coherence within the cortical plate and subplate ROIs were based on diffusion39, 41 and histological descriptions
of underlying microstructure42. As depicted in Figure 8, DL f successfully defines the mediolateral orientation below the sulcus
and rostrocaudal orientation of fibers in the gyrus.
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Figure 5. From top to bottom: three dHCP test subjects of respectively 43, 42 and 40 weeks. Uncertainty maps, computed
using coefficient-normalized standard deviation of 60 bootstrapped gradient directions as described in the Methods section, are
shown on the right. On the left, corresponding FA maps calculated from the diffusion tensor, that highlights regions of high
anisotropy. Low uncertainty can be seen in such regions as the corpus callosum or the cortico-spinal tract, where the network
has lower prediction errors. A white matter mask was applied to all images.

Fetal brain region DL f Tied CSD
Frontal crossroad region 10 0 1
Genu of corpus callosum 11 0 0
Cortex of Insula 2 5 4
Posterior limb of internal capsule 7 2 2
Cortex of superior temporal gyrus 6 2 3
Subplate of the precentral gyrus 4 0 7
Internal capsule 3 0 8
Cerebral peduncles 1 1 9
Intermediate zone, genuculocortical 4 3 4
Intermediate zones, callosal 10 0 1
Prefrontal subplate 6 4 1
Prefrontal cortical plate 8 2 1
Count per ROI 7 1 3
Count per subject 9 0 2

Table 2. Comparison between the preferred method (DL f , CSD, or tied) for different regions of interest (ROI) in assessing the
validity of the fibers in neurotypical fetal brains.
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DLn CSD CSDDLn

Subject 1

Subject 2

Figure 6. Qualitative comparison for two clinical newborn subjects (subject 1 and subject 2 of 41.8 and 38.1 weeks
respectively) between the deep learning method DLn (trained on dHCP dataset) using six b = 1000 s/mm2 measurements and
one b0, and CSD using 30 measurements and 5 b0 images. The background images are the corresponding fractional anisotropy
(FA) maps.
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DLf CSD 
Example subject 1

Example subject 2

Frontal Crossroad Area C2

Genu of Corpus Callosum

Posterior Limb of Internal Capsule

Cortical Plate of Superior Temporal Gyrus

Genu of Corpus Callosum

Frontal Crossroad Area C2

Cortical Plate of Insula

Posterior Limb of Internal Capsule
Intermediate Zone Splenium of Callosum

Cortical Plate of Superior Temporal Gyrus

Axial Slices

Figure 7. Qualitative assessment: Visual inspection of ROIs within FOD maps for two example subjects computed with DL f
and CSD. ROIs were selected based on the knowledge of microstructure from histology and immunohistochemistry.
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Figure 8. Qualitative assessment: Panel (iii.) shows a slice of a 40 GW fetal brain stained with SMI 312 directed against
highly phosphorylated axonal epitopes of neurofilaments37, with rostral ROIs marked with an orange rectangle. This section is
an example of coronal sections which were taken into consideration for the assessment of accuracy for our (i) DL f and (ii) CSD
method. Note the compactness of stained regions (marked with asterisks (*) in the magnified panels above figure iii. suggesting
the mediolateral orientation of axonal fibers below the sulcus and rostrocaudal orientation with fanning of fibers within the
gyrus. Corresponding regions are marked as (a.) within the FOD maps of both methods. Panel (iv.) shows another example of
the coronal sections (40 GW fetal brain stained with GFAP) with 2 ROIs marked with red rectangles (e.g., the proximity of
frontal crossroad area C2 (b.) and corpus callosum (c.)) that were taken into consideration for the assessment of accuracy for
our (i) DL f and (ii) CSD method. Note the compactness of GFAP-stained regions in red rectangles suggesting the orientation
of axons in these regions in the magnified panels below.
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Discussion

In this study, we showed the effectiveness of deep neural networks in microstructure estimation of the developing human brain.
Quantitative evaluation was performed on the highly controlled research oriented dHCP dataset where we show using several
metrics that with six uniform measurements43, a carefully trained network can achieve performance level on par with the
standard methods such as CSD. In particular, apparent fiber density19, a measure that is sensitive to fiber partial volume fraction
was best estimated with the deep learning model.

We have additionally shown the out-of-domain generalization of the model to fetal and newborn clinical datasets, despite
acquisition and anatomical gaps with respect to the training dataset. In fact, transferring knowledge from rich research oriented
datasets (multiple b-values, multiple gradient directions, high magnetic field strength)14, 44 to clinical datasets can be a winning
strategy for developing cohorts such as from pre-terms to fetuses28, 45 that cannot afford prolonged acquisition times because of
increased motion, maternal discomfort and the sensitivity of this population.

Another important aspect of this study is the low agreement in estimating multiple intra-voxel fibers within the ground
truth multi-shell multi-tissue CSD, hampering deep learning methods from learning consistent crossing fibers across different
subjects. This highlights the need for acquisitions and reconstruction methods that are physically and anatomically informed,
and tailored to the developing brain46. The data preprocessing has also an impact on the quality of the reconstruction. We have
found an intra-agreement difference between two pipelines32, 47 that reached 16% and 23% for the agreement rate, and 15◦and
10◦, for two and three fibers estimation18 respectively. Hence our simple and efficient strategy of splitting HARDI datasets
into two independent subsets and computing their agreement for different metrics can provide a method to assess consistency
of preprocessing pipelines. Lastly, we have shown that uncertainty maps computed using wild bootstrap can be a proxy for
voxel-wise error detection.

Recently, fiber orientation distribution function prediction using deep learning has shown a growing interest spanning several
goals that go beyond the objective of directly learning FODs from raw data or its spherical harmonics representation27–29. For
instance two recent studies, one aiming at mapping 3T dMRI data to 7T FODs48 and one trying to simultaneously learn FODs
from all radial combinations of multiple shells data using spherical convolutions49 have been conducted. This last study can be
particularly interesting to increase the generalizability of our work to multiple b-values. In fact, our model generalization from
pre-term to fetuses is also due to the proximity of the two acquired b-values for training and evaluation (b = 400 s/mm2 and b =
500 s/mm2, respectively). In contrast, our network has failed predicting coherent FODs of a different fetal dataset acquired at b
= 700 s/mm2, likely because of the lower SNR and contrast difference, despite training our network on b0-normalized images.
Hence, data harmonization50 and other strategies enhancing generalization49 can be adapted for future work.

Another limitation of this study is the absence of pathological datasets, which we aim to include in future work. We also
intend to incorporate in the neural network, convolutions and deconvolutions that take into account the spherical property of the
diffusion signal (angular dimension) such as roto-translation equivariant convolutions51. Moreover, as there is no consensus on
the diffusion protocol of fetal brain diffusion imaging44, 52–55, we want to explore optimal gradient tables that recover the most
accurate white matter representation.

Methods

Data
Research dMRI acquisition protocol in neonates
We used the data from the third release of the publicly available dHCP dataset 1. Scans were performed on a 3T Philips Achieva
system with a customized 32-channel neonatal head coil. The protocol employed a TE of 90ms, TR of 3800ms, a multiband
factor of 4, a SENSE factor of 1.2, a Partial Fourier factor of 0.855, a 1.5mm in-plane resolution, and 3mm slice thickness with
1.5mm slice overlap14. The diffusion gradient scheme used four shells {0,400,1000,2600} s/mm2 with 20, 64, 88, and 128
samples, respectively. The slice order was interleaved with a factor of 3 and a shift of 2. Data were processed and reconstructed
with the SHARD32, 56 pipeline that included denoising, Gibbs ringing suppression, distortion correction and motion correction.
The resolution of the processed data is 1.5 mm3 isotropic with a field of view of 100×100×64 voxels.

Two subsets were extracted from the SHARD-processed dataset, (i) 465 subjects with age range [26.71, 45.14] weeks
(mean±std = 39.75±3.05 weeks), and (ii) a group of 77 pre-term subjects with ages ranging from 26.71 to 38.0 weeks
(mean±std = 34.79±2.52 weeks). We have generated a white matter mask by combining the White Matter and the Brainstem
labels provided by the dHCP with the voxels where Fractional Anisotropy (FA) was greater than 0.25. Finally, the dHCP labels
were resampled from T2-w resolution (0.5 mm3 isotropic) to 1.5 mm3 resolution.

1https://www.developingconnectome.org/data-release/third-data-release/

11/20



Clinical dMRI acquisitions in neonates
We retrospectively used data from 15 newborns ([38.14, 48] weeks, mean±std=41.25±2.34 weeks), while they were in
natural sleep, using Siemens Trio and Skyra machines at 3T. The imaging protocol included acquiring 5 b0 images and 30
diffusion-weighted images with b = 1000 s/mm2. The TR-TE values used were 3700-104 ms, and the voxel size was 2 mm
isotropic. Images were resampled 1.5 mm3 resolution.

Clinical dMRI acquisitions in fetuses
A total of 11 motion-free fetuses at different gestational weeks ([24, 38.71] gestational weeks (GW), mean±std=28.89±4.6
GW) were included in this study. All subjects were scanned using a 3T Siemens Skyra MRI scanner, with one b0 and 12
diffusion-sensitized images at b = 500 s/mm2, with a TR of 3000–4000 ms and a TE of 60 ms. Preprocessing of the data was
performed to correct for noise57 and bias field inhomogeneities58. Registration of the images to a T2 atlas59 was carried out
using rigid transformation, and b-vectors were subsequently rotated accordingly. The resulting images were upsampled from
2×2×3−4 mm3 to 1.5 mm3. Ethical approval for both clinical newborn and fetuses was granted by the institutional review
board committee.

Histological post-mortem fetuses
Neonatal post-mortem human brain specimens without evident pathological changes are part the Zagreb Collection of Human
Brains60. Tissue was obtained during regular autopsies either after spontaneous abortions, or after the death of prematurely
born infants at the clinical hospitals associated to the University of Zagreb, School of Medicine. After fixation in 4%
paraformaldehyde (PFA), tissue was embedded in paraffin. Sections were cut in coronal plane and proceeded with routine
immunohistochemistry protocol. In brief, after deparaffinization and 0.3% hydrogen peroxide treatment, sections were
incubated in blocking solution: 3% bovine serum albumin BSA and 0.5% Triton x-100 (Sigma, St. Louis, MO) in 0.1M
PBS. Next, sections were incubated with primary antibodies (anti-GFAP, Dako, z-0334, 1:1000; anti-SMI-312 [panaxonal
anti-neurofilament marker], Biolegend, 837904, 1:1000) at room temperature overnight. Following washes, sections were
incubated with secondary, biotinylated antibodies according to manufacturer’s protocol (Vectastain ABC kit, Vector Laboratories,
Burlingame, CA). Staining was developed using 3,3-diaminobenzidine (DAB) with enhancer (Sigma, St. Louis, MO) and slides
were coverslipped (Histomount mounting medium, National Diagnostics, Charlotte, NC). Finally, staining was visualised by a
high-resolution digital slide scanner NanoZoomer 2.0RS (Hamamatsu, Japan). Tissue sampling was performed in agreement
with the Declaration of Helsinki, 2000, previously approved by the Institutional Review Board of the Ethical Committee,
University of Zagreb, School of Medicine.

Model
Our study employed two different neural networks, one for inference on neonates (DLn) and another one on fetuses (DL f ). DLn
was trained on newborn subjects using six single-shell (b = 1000 s/mm2) and DL f was trained on pre-term subjects using twelve
single-shell (b = 400 s/mm2) measurements. To make the model independent on gradient directions, we projected the signal
onto spherical harmonics basis (SH) with SH-Lmax order 2 and 4 for DLn and DL f , respectively, to predict the fiber orientation
distribution (FOD) represented in the SH basis with SH-Lmax order 8. The latter is composed of 45 coefficients (45 channels for
the network) and was generated using 300 multi-shell measurements obtained using MSMT-CSD18. These measurements were
distributed over three shells with b-values of 400,1000,2600 s/mm2 and had 64, 88, and 128 samples, respectively, along with
20 b0 (b = 0 s/mm2) images. The input measurements for the model were based on the scheme proposed by Skare et al.43,
which minimized the condition number of the diffusion tensor reconstruction matrix.

Network architecture
The deep convolutional neural network can be seen in the yellow box of Figure 9. Its architecture resembles that of U-Net61

with two main modifications. Firstly, the network has extensive short and long-range residual connections, which provide
more context to subsequent layers. This design choice is particularly important given the low dimensionality of our input (6
channels) compared to the output (45 channels). Secondly, the conventional max-pooling operations in the contracting path
have been replaced with stride-2 convolutions to enable downsampling as a learnable step that is specific to each layer. The first
block is set to 36 feature maps that are doubled after each contracting block. Each layer is composed of convolutions that are
followed by Rectified Linear Unit (ReLu)62 activation functions, followed by a dropout63 layer. For the output layer, no ReLu
nor dropout were applied.

Training strategies
The input data was first normalized by b0 to improve network convergence and to reduce b-value dependency. Data were split
into training, validation and test sets: for DLn, 109, 36 and 320 subjects, respectively; for DL f , 58, 19, pre-terms and 11 fetal
subjects, respectively. To ensure balanced patch selection per batch, the number of FOD peaks (extracted using Dipy64) was

12/20



16x16x16x6

16x16x16x6

Predicted FOD

16x16x16x45

Residual Block

Residual Block

Residual Block

Residual Block:

16x16x16x45

Figure 9. Schematic illustration of the proposed deep learning framework for predicting the Fiber Orientation Distribution
(FOD). The input to the network consists of 3D patches derived from 6 diffusion measurements, which are normalized with b0.
The network predicts the spherical harmonic coefficients (of order SH-Lmax = 8) of the FOD for the input patch. Two example
patches are shown in blue and red. The network trained on pre-term newborns takes 12 instead of 6 measurements.

used as a criterion. The central voxel of each patch was restricted to be in the generated white matter mask and to have one
peak in 2

3 of the batch and more than one peak in 1
3 of the batch. This condition ensured that empty patches were not selected.

The patch size was empirically varied between in {83, 163, 363, 483} voxels (no performance increase was observed for patches
bigger than 163, so all networks use 163 voxels). At testing, the method employed a sliding window technique to sequentially
process all non-empty patches.

We have used Adam optimizer65 to minimize the ℓ2 norm loss function between the predicted 45 spherical harmonic
(SH) coefficients and the ground truth fiber orientation distribution (FOD) SH coefficients. Since the order of magnitude of
the coefficients depends on which SH-order the coefficient belongs to, we have used pre-defined weights to penalize small
coefficients. These weights were inversely proportional to the order of magnitude of the coefficient in the GT. Namely, these
weights were proportional to the first SH coefficient and were around 2.5, 4, 7.5 and 20 for coefficients of SH order 2, 4, 6 and
8, respectively. However, no gain was observed with this scheme so all coefficient weights were set to 1.

The batch size was set to 27 for DLn and 9 for DL f , and the initial learning rate was set to 10−4. The learning rate was
decreased by a factor of 0.9 whenever the validation loss did not improve after one epoch. The total number of training epochs
was 10000, and a dropout rate of 0.1 was used in all layers to reduce overfitting and improve generalization. In DL f , Gaussian
noise (µ = 0, σ = 0.025) was injected to input data to be robust to fetal noise. Moreover, small rotations (uniformly from
[−5◦,+5◦]) were applied to improve the robustness of the model to minor uncorrected movements due to small differences in
scanning field of view and fetal head motion.

Implementation details
All models were implemented using TensorFlow (1.6) and run on an NVIDIA GeForce GTX A6000 on a Linux machine with
125 GB of memory and 20 CPU cores. Convergence of each model took approximately 40 hours. Testing takes less than 1
minute per subject on the same machine. Code will be made publicly available.

Evaluation
Quantitative evaluation has been carried out for DLn predictions compared to the GT MSMT-CSD. Moreover, three state-of-the-
art techniques were computed as baseline models, namely: Constrained Spherical Deconvolution (CSD) method17, using 128
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gradient directions from the highest shell (b-value of 2600 s/mm2) and 20 b0 images; Constant Solid Angle model30 which is
referred to as CSA; and the Sparse Fascicle Model (SFM)31 for which the default regularization parameters were employed.
The latter was only applied on 57 dHCP subjects as it takes a significant time to be run (around 7 hours per subject).

DLn, using 6 b0-normalized diffusion measurements, was also tested on the clinical neonate dataset and compared against
CSD using all measurements (35). Similarly, DL f using 12 b0-normalized diffusion samples was tested and evaluated against
CSD. Because clinical datasets do not have densely sampled (multiple-shell) measurements that can be considered as high
quality ground truth, only qualitative evaluation was performed.

Agreement within ground truth (∆GS∆GS∆GS)
We evaluated the concordance between two distinct and mutually exclusive datasets derived from the 300 measurements of the
dHCP dataset (GS1 and GS2, denoting gold standards 1 and 2 respectively, and their metrics difference ∆GS). Each subgroup
consists of 150 samples (b ∈ 0,400,1000,2600 s/mm2), with 10, 32, 44, and 64 scans respectively (half of the total scans of the
GT). Both GS1 and GS2 can be regarded as independent high-quality scans of the same subject with a similar protocol (i.e. the
same b-values and the same number but different gradient directions). Hence, any discrepancies between them with respect to
diffusion metrics can be considered as an error upper bound of errors between the different methods and the full GT.

Quantitative performance on dHCP dataset
We conducted a quantitative validation by evaluating the performance of different fiber orientation distribution (FOD) estimation
methods. The validation was based on three metrics, namely, the number of peaks, angular error, and the apparent fiber
density (AFD)19. The number of peaks was computed for the FODs predicted by the network and those estimated by various
methods (GT, GS1, GS2, CSD, CSA, and SFM). We set up a maximum number of 3 peaks, a mean separation angle of 45◦,
and a relative peak threshold of 0.5. The choice of these parameters was guided by the work of Schilling et al.66, which
demonstrated the limitations of current diffusion MRI models in correctly estimating multiple fiber populations and low angular
crossing fibers. We compared the different models based on confusion matrices and the agreement rate (AR) that is extracted
from the latter. AR was defined for each number of peaks p as:

AR =
Ap

ΣDp
(1)

where Ap represents the percentage of voxels where both methods agree on p number of peaks and Dp denotes the
percentage of voxels where at least one of the two methods predicts p and the other predicts p′ (p ̸= p′). This metric hence
captures intuitively the rate of concordance between two methods.

Mean angular error was also computed for voxels containing the same number of estimated peaks. For voxels with
multiple fibers, we extracted the corresponding peaks between the selected method and the GT (or the agreement between
GS1 and GS) by computing the minimum angle between all configurations, namely 4 configurations for 2 peaks and 9 for 3
peaks. We subsequently eliminated those peaks and applied the same algorithm recursively until all peaks are matched. We also
compared the error related to the apparent fiber density (FOD amplitude) along with the agreement between GS1 and GS2. We
performed a statistical validation using paired t-test corrected for multiple comparisons with Bonferroni method to compare the
errors of the different methods with respect to GT and the difference between GS1 and GS2.

The different error measures were correlated to quality control (QC) metrics provided by the SHARD pipeline of dHCP32.
Namely, Signal-to-Noise Ratio that is calculated from denoising residuals; (2) Motion metrics, i.e. translation and rotation
quantifying subject activity during scan and (3) Outlier ratio, as detected in slice-to-volume reconstruction32. We averaged
both translation and rotation metrics to have one metric that we label as motion. We have also added the age of scan to the
different QC metrics to check for any potential correlation. We have performed this analysis for the GT MSMT-CSD to assess
the consistency of the dataset across the QC metrics.

Qualitative assessment of clinical datasets
Detailed assessment was performed for the FODs generated on the clinical fetal dataset by an expert fetal neuroanatomist (LV).
The images were blinded and the method used to reconstruct the maps was masked for the reader. The 12 ROIs were selected
based on the anatomical knowledge (previously reported in Kunz et al. 201467). Next, the corresponding slices of volumes
reconstructed with both methods were placed side by side and FODs were inspected in each ROIs using MRView68. Based on
the visual inspection and taking into the consideration coherence, orientation, and magnitudes, the ROIs were marked as ’better
with DL f ’, ’better with CSD’, or equal. After examining all the brains, we generated the table and counted ROIs and subjects
where DL f outperformed CSD, CSD outperformed DL f or tied.

14/20



Uncertainty estimation
A metric that expresses an increased likelihood on erroneous predictions can be very valuable in the absence of ground truth.
Uncertainty in that sense can be used for that aim. Post-hoc uncertainty using wild bootstrap that has been used in diffusion
tensor imaging69–71 was the method of choice that was most suited to our study. We randomly selected 6 gradient directions
(NWBS=60) from the 88 samples of the b = 1000 s/mm2 shell from the dHCP data. The 6 directions were constrained to have a
condition number43 of at most 2 to guarantee that the b-vectors are minimally uniformly distributed. We then computed for
each voxel, the standard deviation of the predicted FODs of the NWBS bootstrapped volumes (Equation 2). Given that FOD
coefficients have different orders of magnitude, this standard deviation was normalized by the norm of the FOD (Equation 3).
Specifically, for each voxel we calculate σnorm that we define as our uncertainty measure from:

σ =
1

NWBS

NWBS

∑
i=1

||FODi −µ||2 where µc =
1

NWBS

NWBS

∑
i=1

FODi,c and c ∈ {1,45} (2)

σnorm =
σ

m j
where m j =

1
45

45

∑
c=1

∣∣∣∣FOD j,c
∣∣∣∣ and j ∈ {1,NWBS} (3)
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Figure 10. Agreement rate (AR) and angular error (AE) for single, two and three fibers, and apparent fiber density (AFD)
error for the deep learning method (DLn), as a function of quality control (QC) metrics (Outlier ratio, Signal-to-noise ratio) and
scan age for N=320 subjects. No correlation is generally observed between the QC metrics and the error rates.
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Abstract. Diffusion Magnetic Resonance Imaging (dMRI) is a power-
ful non-invasive method for studying white matter tracts of the brain.
However, accurate microstructure estimation with fiber orientation dis-
tribution (FOD) using existing computational methods requires a large
number of diffusion measurements. In clinical settings, this is often not
possible for neonates and fetuses because of increased acquisition times
and subject movements. Therefore, methods that can estimate the FOD
from reduced measurements are of high practical utility. Here, we ex-
ploited deep learning and trained a neural network to directly map dMRI
data acquired with as low as six diffusion directions to FODs for neonates
and fetuses. We trained the method using target FODs generated from
densely-sampled multiple-shell data with themulti-shell multi-tissue con-
strained spherical deconvolution (MSMT-CSD). Detailed evaluations on
independent newborns’ test data show that our method achieved esti-
mation accuracy levels on par with the state-of-the-art methods while
reducing the number of required measurements by more than an order
of magnitude. Qualitative assessments on two out-of-distribution clinical
datasets of fetuses and newborns show the consistency of the estimated
FODs and hence the cross-site generalizability of the method.

1 Introduction

Depiction of white matter fiber tracts is of paramount importance for brain char-
acterization in health and disease. Diffusion-weighted magnetic resonance imag-
ing (dMRI) is the method of choice to study axon bundles that connect different
brain regions. Several models have been proposed to map the 4-dimensional
diffusion signal to objects such as tensors or fiber orientation distribution func-
tions (FODs) [23,32], which can be further processed to compute metrics such

⋆ Both authors contributed equally.
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as tract orientation and apparent fiber density [16,26]. Model-based FODs are
the mathematical frameworks of choice for microstructure estimation. In fact,
FODs accurately describe the underlying microstructure by a deformed sphere in
which different radii correspond to different intra-voxel fibers. Moreover, without
FODs, tracking stops prematurely and favors shorter fiber tracts [8]. Standard
FOD estimation methods [23,32,1,15,27] process voxels individually and thus do
not exploit correlations between neighboring voxels. As a result, these methods
demand dMRI measurements with multiple b-values and a high number of gra-
dient directions to account for the response function of each tissue type [15].
These acquisitions require prolonged scans that are not affordable for newborn
and fetal subjects because of the sensitivity of these cohorts and the increased
risk of motion. Acquisitions have to be fast to freeze in-plane motion; yet data
dropout rates are high in these cohorts because of motion artifacts. Reconstruct-
ing FODs in developing brains has been performed [30,5,7,4] using high-quality
datasets and rich information including several gradient directions, higher and/or
multiple b-values, and high signal-to-noise ratio (3 Tesla magnetic field strength).
Additionally, the datasets were acquired in a controlled and uniform research
setting with healthy volunteers, which can hardly be reproduced in the clinical
environment. Moreover, and in contrast to adult brains, anisotropy increases in
white matter fibers of developing brains because of increased water volume and
poor alignment of the fibers [6]. Gray matter on the other hand, during early ges-
tational weeks, is highly anisotropic because of the complexity of the formation
of cell bodies, glial cells, and the different neuronal structures [6]. This dynamic
period for microstructure [9,2] makes FOD estimation a more challenging task.
Adaptive learning-based methods can be leveraged to learn from high-quality
datasets and exploit this knowledge in clinical routine acquisitions.
Deep learning models, first suggested in [12], promise to overcome the error ac-
cumulation of suboptimal processing steps that are characteristic of standard
estimation techniques. This end-to-end learning paradigm has been then ap-
plied in dMRI for several purposes [24,22,25,18,13]. The authors in [24] have
accurately predicted tensor maps with six diffusion measurements. In [22], a 2D
convolutional neural network (CNN) was used to predict the orientation of the
fibers in a classification approach whereas [25] deployed a 3D CNN to predict
FODs using a small neighborhood of the diffusion signal. In [18], a feedforward
neural network was used to predict the FODs and found that 44 directions can
be sufficient. However, the network does not exploit neighboring voxels correla-
tions. A more recent work [13] used a Transformer-CNN block to first map 200
to 60 directions and the latter to FODs. However, for uncooperative cohorts such
as neonates or fetuses, this number of measurements is unrealistic to acquire.
To the best of our knowledge, no learning-based method to predict FODs has
been reported for newborn and fetal brains. In this work, we demonstrate that
a deep convolutional neural network with a large field of view (FOV) can ac-
curately estimate FODs using only 6-12 diffusion-weighted measurements. Our
contribution is three-fold. We first show that a deep learning method can achieve
an accuracy level that is comparable with the agreement between the state-of-
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the-art methods, while drastically reducing the number of measurements, for de-
veloping brains. We then show a low agreement between state-of-the-art methods
in terms of different metrics using data from a highly controlled setting, namely
the developing Human Connectome Project (dHCP). This addresses the need to
build reproducible and reliable pipelines for white matter characterization [29],
particularly for the developing brain. Finally, we demonstrate the generalizabil-
ity of our method on two clinical datasets of fetuses and newborns that were
acquired in completely different settings than those used in the training data.

Fig. 1. The proposed framework to predict Fiber Orientation Distribution (FOD) func-
tions in the spherical harmonics domain (SH-Lmax order 8). The network takes 3D
input patches from 6 diffusion measurements and outputs patches of SH coefficients.
Network architecture details can be found in Figure S1 of Supplementary materials
and code at1.

2 Methodology

2.1 Paradigm

The method is based on directly learning a mapping between the raw diffusion
signal and the FOD in a supervised manner (Figure 1). Our model inputs are
respectively 6 single-shell (b = 1000 s/mm2) measurements for the neonate net-
work (DLn) and 12 single-shell (b = 400 s/mm2) measurements for the fetal
inference network (DLf ), trained on pre-term subjects (as in [17,19]). To be
independent on gradient directions, projection of the signal onto spherical har-
monics basis (SH) (SH-Lmax order 2 and 4 respectively for the two networks)
was performed to predict the FOD represented in the SH basis (SH-Lmax order
8). To train the model, these target coefficients are estimated from 300 multi-
shell measurements using MSMT-CSD [15]. These measurements are distributed

1 https://github.com/Medical-Image-Analysis-Laboratory/Perinatal_fODF_DL_
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over 3 shells of {400, 1000, 2600} s/mm2 with 64, 88 and 128 samples, respec-
tively, and 20 b0 (b = 0 s/mm2) images. The few measurements used as input
to the model were based on the scheme in [31], whereby the gradient directions
minimized the condition number of the diffusion tensor reconstruction matrix.

2.2 Data processing

dHCP Newborns - We have selected two subsets from the developing Human
Connectome Project (dHCP) dataset (1) 100 subjects (weeks: [32.1, 44.7], mean:
40, standard deviation: 2.4) and (2) 68 pre-term subjects (weeks: [29.3, 37.0],
mean: 34.9, standard deviation: 1.8). The data was acquired with a 3T Philips
Achieva scanner in a multi-shell scheme (b ∈ {0, 400, 1000, 2600} s/mm2) [14]
and was denoised, motion and distortion corrected [3]. It has a final resolution of
1.17×1.17×1.5 mm3 in a field of view of 128×128×64 voxels. We have upsam-
pled the data to 1 mm isotropic resolution to account for network isotropic 3D
patches. We have additionally normalized the input data by b0. A white matter
mask was generated using the union of the White Matter and the Brainstem
labels provided by the dHCP, and the voxels where Fractional Anisotropy (FA)
was higher than 0.25. A resampling of the dHCP labels from T2-w resolution
(0.5 mm3 isotropic) to 1 mm3 resolution was performed.
Clinical newborns & fetuses - Acquisitions of 8 neonates ([38.1, 39.4, 40.1,
40.4, 40.7, 40.9, 41.8, 42] weeks), were performed during natural sleep at 3T
(Siemens Trio and Skyra). Five b0 images and 30 b = 1000 s/mm2 were acquired.
The TR-TE were 3700-104 ms and voxel size was 2 mm isotropic. Eight fetal
subjects ([24, 25, 26.3, 26.6, 26.7, 26.9, 29.4, 38.7] gestational weeks, GW) were
scanned using a 3T Siemens Skyra MRI scanner (TR=3000–4000 ms, TE=60 ms)
with one b0 and 12 diffusion-sensitized images at b = 500 s/mm2. All subjects
were processed for noise [34] and bias field inhomogeneities [33]. Rigid registra-
tion to a T2 atlas [11] was performed and b-vectors were rotated accordingly for
fetal data. The different volumes were upsampled to 1 mm3 and normalized by
b0. The studies were approved by the institutional review board committee.

2.3 Training

Two networks, DLn and DLf (see subsection 2.1 above), were trained using
Adam optimizer [21] to minimize the ℓ2 norm loss function between the predicted
45 SH coefficients and the ground truth FOD SH coefficients generated using the
300 directions and the 4 b-values ({0, 400, 1000, 2600} s/mm2), i.e.

minimize
∑45

i=1

∥∥∥FODpred
i − FODGT

i

∥∥∥2
We used 70% of the subjects for training, 15% for validation, and 15% for testing.
We used the number of FOD peaks (extracted from Dipy [10]) to balance patch
selection per batch. The central voxel of each patch was constrained to be in
the generated white matter mask and to be 1 peak in 2

3 of the batch and more
than one peak in 1

3 of the batch. This condition implicitly guarantees the non
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selection of empty patches. The patch size was empirically set to 163 voxels. The
batch size was set to 27 for DLn and 9 for DLf , and the initial learning rate
to 10−4 and was decreased by 0.9 whenever the validation loss did not improve
after one epoch. The total number of training epochs was 10000 and a dropout
rate of 0.1 was used in all layers to reduce overfitting and improve generalization.
In DLf , Gaussian noise injection (mean=0, sigma=0.025) was applied as well as
small rotations (uniformly from [−5°,+5°]) to make the model robust to minor
uncorrected movements due to small differences in FOV and fetal head motion.

2.4 Evaluation of dHCP newborns

Comparison with state-of-the-art methods - In addition to comparing our
network (DLn) prediction with FODs estimated using MSMT-CSD of 300 direc-
tions (considered as ground truth, GT), we have assessed the agreement between
two mutually exclusive subsets extracted from the ground truth (gold standards
1 and 2, respectively GS1 and GS2). Each subset contains 150 directions (b
∈ {0, 400, 1000, 2600} s/mm2) with respectively 10, 32, 44, and 64 measure-
ments (half measurements of GT data). GS1 and GS2 subsets can be considered
as independent high-quality scans, and differences in terms of subsequent metrics
can be considered as an upper bound error for the different methods deployed.
Furthermore, we have computed three state-of-the-art methods: (1) Constrained
spherical deconvolution (CSD) [32] using the 128 gradient directions of the high-
est shell, i.e. b = 2600 s/mm2 and 20 b0 images; (2) Constant Solid Angle ODF
(Q-Ball) model [1] that we refer to as CSA and (3) the Sparse Fascicle Model
(SFM) [27] model for which we have used the default regularization parameters.
We also compared our method with the multilayer perceptron (MLP) in [18],
which has been shown to outperform the method of [25].
Error metrics - Quantitative validation was performed based on the number of
peaks, the angular error and the apparent fiber density (AFD) [26]. The number
of peaks was generated from the FOD predicted by the network and the ones
estimated by the different methods (GT, GS1, GS2, CSD, CSA and SFM) using
the same parameters (mean separation angle of 45°, a maximum number of 3
peaks and relative peak threshold of 0.5). The conservative choice of these pa-
rameters was guided by [28] which shows the limitations of current dMRI models
at depicting multiple number of peaks and low angular crossing fibers. We have
compared these models in terms of confusion matrices, and the agreement rate
(AR). AR is defined for each number of peaks p as: AR =

Ap

ΣDp
where Ap is the

percentage of voxels on which both methods agree on p number of peaks and
Dp the percentage of voxels where at least one of the two methods predicts p
and the other p′ where p ̸= p′. For the voxels containing the same number of
peaks, we have computed the angular error with respect to the GT, as well as
between GS1 and GS2. For voxels with multiple fibers, we have first extracted
corresponding peaks between the two methods by computing the minimum angle
between all configurations (4 for 2 peaks and 9 for 3 peaks); we then removed
these peaks and recursively apply the same algorithm. We have also compared
AFD, that is defined as the FOD amplitude. AFD was extensively demonstrated
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as a biologically plausible measure that is not only sensitive to the fiber partial
volume fraction but also to fiber density or membrane permeability [26]. Sta-
tistical validation using paired t-test corrected for multiple comparisons with
Bonferroni method was performed between the errors of the different methods
with respect to GT and the difference between GS1 and GS2.

2.5 Evaluation of clinical datasets

DLf was tested on fetal volumes whereas DLn was tested on the clinical new-
born dataset. Due to the lack of ground truth for both clinical datasets, we
qualitatively assess the network predictions with 12 and 6 measurements, as
compared to CSD using all available measurements (SH-Lmax order 4 and 8),
respectively for fetuses and newborns.

3 Results

The networks consistently learned a mapping between the six/twelve diffusion
measurements and the ground truth FOD constructed with 300 measurements
across 4 b-values, as evaluated on the independent test data (Figures 2 and 3).

3.1 In-domain quantitative evaluation in newborns dHCP

Number of peaks - We first observe a low agreement (AR) between the two
gold standard acquisitions (GS1 vs. GS2), that is more pronounced for mul-
tiple fibers voxels. For instance, 1-peaks AR is 80.4%, 30.3% for 2-peaks and
27.9% for 3-peaks. SFM achieves a relatively high 1-peaks agreement with the
GT of 83% and the lowest with multiple fibers voxels (10% and 3.5% for 2- and
3-peaks, respectively). In contrast, CSD estimates a high number of multiple
fibers (16.5% and 5.9% for 1- and 2-peaks respectively) and achieves the lowest
1-peaks AR with 11.7%. In fact, the latter is biased towards multiple peaks esti-
mation with more than 90% of the voxels modeled as either two or three peaks.
This might be explained by the high b-value (b = 2600 s/mm2) containing high
levels of noise. Our method, DLn, achieves an agreement for 1-, 2- and 3-peaks
of respectively 79%, 16% and 3% that is globally the closest to the agreement
between the gold standards when compared to other methods. We believe that
the relatively low agreement for multiple intravoxel fiber orientations is due to
their incongruence across GT subjects, and hence the absence of a consistent
pattern to be learned by the neural network. In fact, this is supported by the
modest agreement between the two gold standards (∆GS), in which both the
subjects and the number of measurements are the same, only the gradient di-
rections vary and already result in a drop of 70% in multiple fibers depiction.
It is worth noting that the agreement between the different methods (CSD vs.
CSA, SFM vs. CSA, CSD vs. DLn, etc) was also low. The confusion matrices
for ∆GS agreement and the different methods can be found in Table S1 and the
comparison with [18] in Section 3 of Supplementary materials.
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Method b-values (s/mm2) Nm Angular error (Agreement rate in %) AFD error

Single fibers Two fibers Three fibers

DLn {0, 1000} 7 12.6°(78.4%) 24.2°(15.8%) 33.3°(3.8%) 0.27 (±0.03)

CSD {0, 2600} 148 7.5°(11.7%) 16.5°(16.5%) 27.2°(5.9%) 1.31 (±0.23)

CSA {0, 400, 1000, 2600} 300 47.0°(27.7%) 41.4°(14.8%) 36.1°(7.9%) 3.46 (±0.46)

SFM {0, 400, 1000, 2600} 300 51.4°(83%) 40.7°(10%) 35.4°(3.5%) 0.80 (±0.55)

∆GS {0, 400, 1000, 2600} 150 13.8°(80.4%) 29.1°(30.3%) 35.4°(27.9%) 0.2 (±0.025)
Table 1. Mean angular error, agreement rate on number of peaks and Apparent Fiber
Density (AFD) error between GT (MSMT-CSD) and the different methods. ∆GS refers
to GS1 and GS2 agreements. The number of measurements (Nm) and the b-values used
are also reported. All results were statistically significant compared to ∆GS (p ≤9e−10

for angular error, except SFM three fibers, and p ≤4.5e−3 for AFD error).

Angular error - The agreement in terms of the number of peaks does not
guarantee that the fibers follow the same orientation. Table 1 shows the angular
error and the agreement rate (AR) in numbers of peaks for the different con-
figurations. In GS1 and GS2, the angular difference increases almost linearly
for one, two and three fibers. Our learning model achieves an error rate that is
comparable (although statistically different, p ≤9e−10) to GS1 and GS2. SFM
and CSA achieve a higher error rate for single and two fiber voxels, whereas
CSD achieves the lowest. This is because of the low AR and hence the error is
computed among a small subset of common voxels between the GT and CSD
as shown in Table 1. It is worth mentioning that using 15 directions instead
of 6 as input to the network did not improve the results; and in general, these
angular errors are higher than those reported for adult data, such as the Human
Connectome Project as in [13]. We hypothesize this can be due to immature and
high variability of the developing brain anatomy.
Apparent Fiber Density - The last column in Table 1 shows the differences
between AFD averaged over the 15 test subjects. Our model achieves the closest
error rate of 0.27 (±0.03) to the GT compared with the gold standards difference
of 0.2 (±0.025), in terms of mean and standard deviation. The other methods
have an increased error rate compared toDLn with factors of around 2.5, 4.5 and
9.5-fold for SFM, CSD and CSA respectively. Results were statistically signifi-
cant (p ≤4.5e−3) compared to the agreement between the gold standard models.

3.2 Generalizability to clinical acquisitions (newborns and fetuses)

DLf successfully generalized to fetal data as can be seen in Figure 3 (right)
for two subjects. Callossal fibers are clearly delineated on the top and bottom
subjects. The radial coherence of cortical plate at early gestation [20] is also
highlighted on the same panels. Similarly, DLn generalized to the new newborn
dataset (Figure 3, left), despite differences in scanner and protocol. Both cortico-
spinal tract and corpus callosum are shown in the bottom subject. As opposed
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Fig. 2. Qualitative comparison between the deep learning method DLn, the MSMT-
CSD GT and CSD in two brain regions of a newborn dHCP subject.

to CSD that overestimated false positive crossing fibers, likely due to residual
noise, the deep learning method trained on MSMT-CSD directly produced low
amplitude FODs in isotropic or non-consistent regions. The results for six other
subjects can be found in Figure S2 in Supplementary materials.

Fig. 3. The deep learning method compared to CSD in different brain regions for 2
newborn subjects (left) and 2 fetal subjects (right) of 25 (top) and 29.4 (bottom) weeks
of gestation. FODs are superimposed to the first SH coefficient of the method used.

4 Conclusion

We have demonstrated how a deep neural network can successfully reconstruct
high angular multi-shell FODs from a reduced number (6 to 12) of diffusion mea-
surements. The substantially lower number of samples is compensated by learn-
ing from high-quality training data and by exploiting the spatial neighborhood
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information. The network was quantitatively evaluated on the dHCP dataset
which was acquired in a highly controlled setting that cannot be reproduced in
clinical settings. We showed that our method relying on six measurements can
be leveraged to reconstruct plausible FODs of clinical newborn and fetal brains.
We compared our model to commonly used methods such as CSD and MSMT-
CSD between two gold standard datasets. The results exhibit low agreements
between the different methods, particularly for multiple fiber orientations, de-
spite using high angular multi-shell data. This highlights the need to build robust
and reproducible methods for microstructure estimation in developing brains.
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1 Network architecture

Fig. S1. The 3D network architecture is inspired by U-Net [Ronneberger et al., 2015].
Two modifications have been performed to the conventional U-Net to adapt it to the
low number of measurements supplied in the input: (1) extensive short and long-range
residual connections to provide more context to subsequent layers, and (2) the substi-
tution of max-pooling operations in the contracting path by stride-2 convolutions to
make the downsampling a learnable step and hence layer-specific. Convolutions were
followed by Rectified Linear Unit (ReLu) activation functions and the number of fea-
ture maps in the first block was set to 36.

2 More results: dHCP newborns

∆GS CSA CSD SFM DLn

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 68.9 7.62 0.79 22.5 35 21.2 9.32 9.68 60.7 81.3 1.77 0.32 74.2 4.82 0.66
2 7.7 8.34 2.02 2.08 7.73 5.38 0.22 1.47 13.5 11.1 1.47 0.17 11.5 3.38 0.33
3 0.73 1.86 2.09 0.55 2.06 2.51 0.02 0.17 4.93 3.41 0.26 0.15 3.49 1.4 0.23

Table S1. Confusion matrices for number of peaks agreement (in %), normalized over
all population. From left to right: gold standards GS1 vs. GS2, followed by the different
methods CSA, CSD, SFM and DLn compared to the GT MSMT-CSD. Each confusion
matrix reports the average result for 15 test subjects.
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3 More results: comparison with a deep learning method

We have carried out a further comparison of our method against the multilayer
perceptron (MLP) approach proposed by Karimi et al., 2021 on the same dHCP
data. To avoid overfitting, given the smaller amount of data in our study, we have
adjusted the original architecture empirically to [nsig, 40, 40, 40, 50, 60, 70, ntar].
For our implementation, the parameters nsig and ntar were set to 6 and 45,
respectively. The results detailed in Table S2 indicate that the performance of
the MLP method was lower than that achieved by our proposed method.

Method b-values (s/mm2) Nm Angular error (Agreement rate in %) AFD error

Single fibers Two fibers Three fibers

DLn {0, 1000} 7 12.6°(78.4%) 24.2°(15.8%) 33.3°(3.8%) 0.27 (±0.03)

MLP {0, 1000} 7 49.9°(65%) 39.4°(11.8%) 37.1°(4.9%) 0.67 (±0.12)
Table S2. Mean angular error, agreement rate on number of peaks and Apparent
Fiber Density (AFD) error between our method (DLn) and the MLP.

4 More results: Clinical newborns and fetuses

Clinical newborns Clinical fetuses

DLn CSD CSDDLf

Fig. S2. The deep learning method compared to CSD in different brain regions for 3
newborn subjects (left) and 3 fetal subjects (right) of 26.4, 26.6 and 38.9 gestational
weeks of respectively top, middle and bottom rows. FODs are superimposed to the first
SH coefficient of the method used. The DL first SH coefficient is shown in full-size too.
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Abstract. Diffusion Magnetic Resonance Imaging (dMRI) has become
widely used to study in vivo white matter tissue properties non-invasively.
However, fetal dMRI is greatly limited in Signal-to-Noise ratio and spa-
tial resolution. Due to the uncontrollable fetal motion, echo planar imag-
ing acquisitions often result in highly degraded images, hence the ability
to depict precise diffusion MR properties remains unknown. To the best
of our knowledge, this is the first study to evaluate diffusion properties in
a fetal customized crossing-fiber phantom. We assessed the effect of scan-
ning settings on diffusion quantities in a phantom specifically designed
to mimic typical values in the fetal brain. Orthogonal acquisitions based
on clinical fetal brain schemes were preprocessed for denoising, bias field
inhomogeneity and distortion correction. We estimated the fractional
anisotropy (FA) and mean diffusivity (MD) from the diffusion tensor,
and the fiber orientations from the fiber orientation distribution func-
tion. Quantitative evaluation was carried out on the number of diffusion
gradient directions, different orthogonal acquisitions, and enhanced 4D
volumes from scattered data interpolation of multiple series. We found
out that while MD does not vary with the number of diffusion gradient
directions nor the number of orthogonal series, FA is slightly more ac-
curate with more directions. Additionally, errors in all scalar diffusion
maps are reduced by using enhanced 4D volumes. Moreover, reduced
fiber orientation estimation errors were obtained when used enhanced
4D volumes, but not with more diffusion gradient directions. From these
results, we conclude that using enhanced 4D volumes from multiple se-
ries should be preferred over using more diffusion gradient directions in
clinical fetal dMRI.
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1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) has been the mainstay of non-
invasive white matter investigation in vivo. As the diffusion signal is sensitive to
the displacement of water molecules in brain tissues, various biophysical models
have been proposed for estimating the underlying tissue architecture. These mod-
els can either be Gaussian, e.g., diffusion tensor imaging (DTI) is the most simple
and widely used model to characterize the diffusion process, or non-Gaussian,
e.g., q-ball imaging [31], diffusion spectrum imaging [34,2], and spherical de-
convolution [30,3], which estimate Orientation Distribution Functions (ODFs)
for resolving multiple intravoxel fiber orientations. However, the unavailability
of a ground truth makes the quantitative validation of these models an elusive
goal. Monkey brains have been used for connectivity validation of dMRI when
compared to histological connectivity obtained from viral tracer injections [1].
Nevertheless, a direct comparison of diffusion orientations at the voxel level is
challenging using orientations derived from histological data [27].

On the other hand, phantoms provide an additional possibility for the quan-
titative evaluation because they offer more controlled, reproducible, and easily
accessible experiments. Physical phantoms have been used in dMRI validation
setups. For example, the reproducibility of MD measurements was assessed in
[17], whereas the recovery of the Ensemble average propagator was validated in a
crossing phantom in [23]. In the Fiber Cup [10,5] and ISBI 2018 [26] challenges,
tractography reconstructions were compared to ground-truth fiber configurations
from physical phantoms. Synthetic software-based phantoms also proved to be
a valid alternative to physical phantoms for validation purposes, e.g., see [21,24]
and references therein.

In fact, fetal subjects are a sensitive cohort, thus preventing from assess-
ing different acquisition configurations. Hence, the evaluation of our technique
on a quantitative dMRI phantom is crucial before applying it to in vivo data.
However, designing a phantom that matches a fetal brain is extremely complex
and challenging. In this work, we use a small size phantom with a customized
fractional anisotropy (FA) in the single fiber population in the upper values
reported in fetal brains. Indeed, in their atlas, Khan et al. [15] modelled the
splenium of the corpus callosum (CC) of a fetus of 37 gestational weeks with
an approximately close FA. Similar values were reported both for the genu and
the splenium of the CC [8]. Therefore, our phantom is relevant to perform a
benchmark analysis in fetuses in the 3rd trimester of gestation. Additionally, the
dMRI signal obtained from physical phantoms is similar to in vivo data and is
more realistic than the dMRI signal obtained from numerical simulations.

Fetal dMRI severely suffers from the unpredictable motion and artifacts
caused by the small fetal brain structure that is surrounded by amniotic fluid
and maternal organs. Scanning times are typically shorter than that of postna-
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tal studies, limiting the possibility of long diffusion MRI acquisitions based on
a large number of diffusion gradient directions and high b-values, which are re-
quired to disentangle complex fiber configurations. Furthermore, the use of fast
Echo Planar Imaging acquisitions to freeze intra-slice motion leads to highly
blurred and distorted images. These images also have a low Signal-to-Noise ra-
tio (SNR), due to the tissue properties of the fetal white matter. Orthogonal
scans of anisotropic resolution are usually acquired to overcome these pitfalls.
In clinical practice, there is a strong constraint on scanning time, often below
10 minutes. This does not allow to acquire a high number of orthogonal vol-
umes and a high number of diffusion directions at the same time. Additionally,
clinical protocols are not consensual between sites. Typically, clinical fetal brain
dMRI have an in-plane resolution of 1-2 mm, a slice thickness of 3-5 mm, the
number of gradient directions ranges between 4 and 32, and unique b-values be-
tween 400 and 1000s/mm2 are employed [12,19,20]. Conversely, in the pioneer
research initiative of Developing Human Connectome Project protocol (DHCP)
[4,6], up to 141 diffusion volumes can be acquired with multiple b-values (400
and 1000s/mm2) and a scanning time of about 15 minutes per 4D volume.

Our study focuses on the quantitative evaluation of the accuracy of DTI and
ODF reconstructions from in vivo fetal dMRI acquisitions to identify a good
trade-off between the number of series and the number of diffusion gradient
directions in a more clinically realistic scenario (summarized in Figure 1).

2 Methodology

2.1 Materials

Fetal crossing phantom - We used a customized fiber crossing phantom (di-
ameter & height of 150mm) [22] made of two interleaved polyester fiber strands
encapsulated in an aqueous solution. The fibers diameter is of 15µm, the cross-
ing angle between the two strands is approximately 60◦, and a customized FA to
mimic fetal values in the single fiber population of 0.6 was requested. These val-
ues were reported by the vendor who computed them from 128 diffusion-weighted
images (DWI) and b = 1000s/mm2. (Figure 1A).

MRI acquisitions - High-resolution (HR) (spatial and angular) images
were acquired at 3T (MAGNETOM Prisma-Fit, Siemens Healthcare, Erlangen,
Germany), with a 16-channel body array coil and a 32-channel spine coil us-
ing a pulsed gradient spin-echo (PGSE) sequence with four different b-values,
400, 700, 1000 and 3000s/mm2. The spatial resolution was 1.5mm3 isotropic with
a field of view of 256x256x88 mm3 , acquired with 61 directions. The echo time
(TE) was 52 ms, the repetition time (TR) was 4200 ms and the flip angle was
90◦. Only the b = 700s/mm2 acquisition was considered as the pseudo ground
truth (pseudo-GT) in the validation framework.
Low-resolution (LR) acquisitions were performed at 1.5T (MAGNETOM Sola,
Siemens Healthcare, Erlangen, Germany), with an 18-channel body array coil
and a 32-channel spine coil, using a PGSE sequence (TE=82 ms, TR=2000 ms,



4 H. Kebiri et al.

(E
) 

EV
A
LU

AT
IO

N Main peak anglesMDFA

(D
) 

R
EC

O
N

ST
R
U

C
T
IO

N

Tensor ROIROI fiber ODF

(A
) 

 
A
C
Q

U
IS

IT
IO

N

Denoising

Distortion correction

Bias field correction

Masking
(B

) 
 

P
R
EP

R
O

C
ES

SI
N

G
(C

) 
 

C
O

N
FI

G
U

R
AT

IO
N

S

1.0x1.0x2.0mm3 

or 
2.0x2.0x2.0mm3

SDI combining 
3 or 6 series: 

1.0x1.0x1.0mm3 
1.0x1.0x2.0mm3 2.0x2.0x2.0mm3

Coregistration: 
coronal-sagittal    coronal-axial      sagittal-axial 

Pseudo ground truth 
3T 

b=700 s/mm² 
61 directions 

1.5x1.5x1.5mm3

Low-resolution series 
1.5T 

b=700 s/mm² 
9, 16 or 25 directions 

1.0x1.0x4.0mm3

In
te

rp
ol

at
io

n

In
te

rp
ol

at
io

n

In
te

rp
ol

at
io

n

Fig. 1. Summary of our phantom evaluation framework for fetal dMRI acquisitions.

flip angle=90◦). The acquisition time was approximately one minute per 4D vol-
ume. The in-plane resolution was 1x1 mm2, the slice thickness was 4mm and
the field of view 207x207x69 mm3. We used b = 700s/mm2 and either 9, 16 or
25 directions, uniformly distributed in the half-sphere. In order to correct non-
linear distortions, we also acquired a 1mm isotropic T2-weighted (T2-w) image
using a Sampling Perfection with Application optimized Contrasts using differ-
ent flip angle Evolution (SPACE) sequence (TE=380 ms, TR=3200 ms). Both
our data1 and code2 will be available to ensure reproducibility of the results.

2.2 Data processing

Preprocessing - Both the pseudo-GT and LR datasets were preprocessed as
follows: a denoising step using a Principal Component Analysis based method
[33], followed by an N4 bias-field inhomogeneity correction [32]. Distortion was
corrected using a state-of-the-art algorithm for fetal brain [16]. We started by
a rigid registration of the distortion free T2-w image to the b0 (b = 0s/mm2)
1 www.zenodo.org/record/5153507.YQgEA3UzbRY
2 www.github.com/Medical-Image-Analysis-Laboratory/FetalBrainDMRI_CrossingPhantom
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image followed by a non-linear registration in the phase-encoding direction of
the b0 to the same T2-w image. The transformation was then applied to the
diffusion-weighted images.
Definition of regions-of-interest (ROI) - Masks of the fiber endpoint re-
gions (single fiber and crossing fiber ROIs) were obtained using mathematical
morphology operations, intensity thresholding in the b0 image and manual re-
finement. Manual segmentation of each region was performed in the 1x1x2 mm3

resolution and propagated by nearest neighbor interpolation and manual refine-
ment to other resolution volumes. Borders were not considered to avoid partial
volume effect. The single fiber ROI was further subdivided in six ROIs: ROI 1
and ROI 2 in which the fibers are oriented horizontally and ROI 3-6 where they
are oblique (Figure 1D).
Interpolation - Since the pseudo-GT and LR series have very different resolu-
tions, they were both mapped to a middle ground resolution of 1x1x2 mm3 and
2x2x2 mm3 using trilinear interpolation. We chose these trade-off resolutions to
avoid to significantly degrade the pseudo-GT by introducing artifacts and to en-
hance the LR volumes as it was demonstrated in [7]. Additionally, up-sampling
LR DWI images by a factor of two is a common practice in clinical fetal dMRI
[13]. The 1x1x2 mm3 resolution was used for unique volumes, i.e., either ax-
ial, coronal or sagittal and the 2x2x2 mm3 resolution for combined ones, i.e.,
axial-coronal, axial-sagittal or coronal-sagittal. For the combined volumes, we
registered the b0 images of the coronal and the sagittal acquisitions to the b0
image of the axial one using landmarks [9]. This transformation was then ap-
plied to the DWI images. To reduce error propagation related to interpolation,
we have performed the latter after the preprocessing. We have also computed
the different metrics at the different resolutions to quantify variations linked to
interpolating the data.
Scattered data interpolation - We generated a HR volume from a set of ei-
ther three or six LR orthogonal series using Scattered Data Interpolation (SDI)
reconstruction [25] as implemented in MIALSRTK (version 2.0.1) [28]. It was ap-
plied separately to each DWI image and each b0. This consisted in co-registering
to an axial reference volume, resampled to isotropic high-resolution, all the se-
ries as a first step. Then, the intensity of each voxel in the HR volume grid was
computed by averaging the intensities of the corresponding neighboring voxels in
the LR volumes using a Gaussian kernel. To match the underlying point spread
function of the data, the Gaussian kernel profile was set to be perpendicular to
the slice plane with a zero mean and a Full Width at Half Maximum (FWHM
of ∼ 2.355 standard deviation) equal to the voxel resolution.
Reconstruction - We reconstructed (1) the diffusion tensor from which we de-
rived both the FA and mean diffusivity (MD) maps and (2) the fiber ODF using
the constrained spherical deconvolution (CSD) method [30] from which the main
peak (i.e., fiber orientation) was determined. The fiber ODF is represent ed in
the Spherical Harmonics (SH) basis, where an order 4 (15 parameters) was used
to best fit all directions (15, 25 for the LR volumes and 61 for the pseudo-GT)
and be able to make a one-to-one comparison. In the CSD algorithm, we have
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constrained the maximum number of peaks to two and the minimum separation
angle to 25◦. Dipy (version 1.3.0) [11] was used for reconstruction and visualiza-
tion, and MRtrix3 [29] for fiber ODF visualization.
Evaluation metrics - To be able to fairly compare diffusion metrics, unbi-
ased by different b-values, we only used as reference the HR data acquired with
the same b-value i.e. b = 700s/mm2 (i.e., pseudo-GT) as the LR data. Scalar
maps were evaluated by computing the relative difference between images, i.e.,
difference between the average LR and the average pseudo-GT map, divided
by the average pseudo-GT map. The coefficient of variation (CV, i.e., standard
deviation/mean) was also used to quantify the variability of scalar maps.

3 Results

3.1 Scalar maps

Evaluation of pseudo-GT - We first assessed the pseudo-GT compared to the
diffusion properties given by the vendor. The estimated FA from the pseudo-GT
was found to be equal to 0.367 (horizontal orange line in Figure 2) which did not
correspond to the FA reported by the vendor (0.6) in the single fiber population.
This is not surprising since FA strongly depends on the acquisition parameters,
and in particular on the b-value. Indeed, the same observation was made in the
Fiber Cup study [10], where an increase of 75% in the mean FA was reported
between b = 650s/mm2 and b = 2000s/mm2. The computed FA of 0.367 falls
in the same range of FA reported in [14] (using b = 700s/mm2 & 32 directions)
for various fetal brain structures. Conversely, the mean MD = 1.165mm2/s was
more consistent with the value reported by the vendor (i.e., ∼ 1.2mm2/s).

Let us note that scalar maps did not show major differences across different
pseudo-GT interpolations, with a CV of 0.5% for single fiber and up to 6.5% for
crossing populations. This is lower than the CV of the FA (up to 22%) and MD
(up to 12%) values within single and crossing fibers areas of each scalar maps.

Assessment of enhanced acquisitions - Figure 2 shows the results from
the LR scalar maps for the different configurations compared to the pseudo-
GT (two horizontal lines). The orange color refers to the single fiber population
and the blue color to the crossing fiber populations, and the bigger the disk
diameter the more diffusion directions are used in the reconstruction. For FA,
SDI methods outperform the other configurations, especially when considering
the single fiber population that shows a difference from the pseudo-GT of 6.1%.
Single LR volumes and combinations of pairs are more sensitive to the number
of diffusion directions (in these cases, the more directions, the smaller the error),
whereas SDI does not show this influence.

The axial acquisition exhibits a singular behaviour compared to the two other
single-volume acquisitions, depicting a higher FA in the crossing area compared
to the single fiber area. By inspecting the scanner FA map, we found out an
already high FA, particularly in the crossing area of 17% more than in the
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Fig. 2. Scalar maps estimation error compared to the pseudo-GT (horizontal lines,
single fiber in orange, crossings in blue, see Figure 1D). Axial, Coronal, and Sagittal
data correspond to single volumes with a resolution of 1x1x2 mm3. Ax-Cor, Ax-Sag,
and Cor-Sag denote combined volumes with a resolution of 2mm isotropic. SDI3 and
SDI6 are the interpolated scattered data by using three or six 1mm isotropic volumes,
respectively.

coronal and the sagittal maps. So merging orthogonal volumes can reduce any
potential discrepancy between the different acquisitions (due to outliers and
artifacts in the data or due to the anisotropy of the acquisitions capturing the
non-symmetrical anatomy across planes of the fibers) and SDI provides the most
robust solution.

Differently than FA, MD errors are not influenced by the number of directions
neither for single, pairs nor SDI volumes. Both merging pairs of orthogonal
volumes and SDI reconstructions help attenuate the high error rate of the sagittal
volume by a difference from the average pseudo-GT of about 15% (single fiber
population) and 20% (crossing area). The difference between the LR and pseudo-
GT values can be explained by the magnetic field strength. Indeed, it was shown
in [18], that MD was significantly different between 1.5T and 3T acquisitions.
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3.2 Fiber orientation errors

Fiber orientations estimation in the pseudo-GT across interpolations is stable
in the different ROIs. The maximum standard deviation in ROIs 1-2, where
the fibers are close to the x-axis coordinates, is 1.6◦, whereas it reaches 4.5◦

in ROIs 3-6 where the fibers are rotated by around 50◦. As depicted in Figure
3, the angular error of the LR estimated orientations doesn’t correlate to the
different orthogonal volumes configurations, except for SDI that always shows
a lower angular error than, at least, the most under-performing single volume
reconstruction. Furthermore, we can observe that the standard deviation of the
angular error (vertical lines in Figure 3) strongly depends on the region of in-
terest. For instance, ROI 1 angles are less variant and closer to the pseudo-GT
whereas in ROI 2, the sagittal acquisition compromises the estimated angle of
other reconstructions where it belongs. In contrast to ROI 4 and ROI 6, the
errors in ROI 3 and ROI 5 are not dramatic as they are located below the mean
separation angle of 25◦. Importantly, the error difference between the LR and
the pseudo-GT volumes is independent of the number of diffusion directions used
to compute the main ODF peak.

Fig. 3. Mean angular error in different single fiber ROIs corresponding to Figure 1D
for different configurations. Graphs for each ROI are positioned in the corresponding
order of their locations on the phantom. A: Axial, C: Coronal, S: Sagittal.

Figure 4A shows fiber ODFs overlaid on the FA map of a LR volume. As can
be noted, only very few crossing fibers can be detected at b = 700s/mm2.
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Fig. 4. (A) Fiber ODFs of a LR coronal image overlaid on the FA map. Red arrow:
detected crossing. (B) Voxels detected as two peaks in the high resolution acquisition
using b-values of 700, 1000 and 3000s/mm2 (left to right, respectively).

Results shown in Figure 4B demonstrated that in the HR data, fiber crossings
(i.e., two peaks) can only be significantly resolved at b = 3000s/mm2. In the
crossing region, a median inter-fiber angle of 62◦ close to that reported by the
vendor (i.e., 60◦) was detected by using a SH order of 8, although with a high
standard deviation of 29◦. For this reason, we did not perform fiber orientation
analyses in the fiber crossing area of the LR data.

4 Conclusion and Discussion

We have demonstrated how reported diffusion properties of a fetal customized
crossing phantom vary across orthogonal series and the number of diffusion di-
rections, and how scattered data interpolation of multiple volumes can reduce
this variability and so better approximate the pseudo ground truth. Increasing
the number of directions did not consistently reduce error metrics (MD, FA, and
fiber orientations) because of the low b-value and the relatively low number of
directions employed, which only allow estimating a single fiber per voxel. The
main limitation of this study is the absence of unpredictable motion which is
one of the main challenges in fetal MRI. However, random motion could be a
confounding factor to evaluate different acquisition schemes. Hence setting up
a first ideal motion-free scenario to quantify the maximum expected variability
of fetal dMRI measurements is a key starting point. Hence, these conclusions
have to be taken as an upper bound that can be achieved. In future studies,
we plan to extend this work by considering other acquisition protocols (such as
the DHCP protocol), by using motion-induced acquisitions for testing different
super-resolution reconstruction methods [6], and by implementing scan-rescan
analyses in different scanners.
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5
Appendix

This section incorporates results related to four studies: (1) Angular super-resolution of the diffu-

sion signal with convolutional LSTMs and Transformers; (2) Automated fetal brain segmentation

of 2Dmagnetic resonance images: transfer learning and 3D topology correction; (3) Direct segmen-

tation of brain white matter tracts in diffusionMRI112 and (4) Spatio-temporal motion correction

and iterative reconstruction of in-utero fetal fMRI206. The first study is related to our works of

resolution enhancement, exploring whether the scheme in Lyon et al.137 could also infer new diffu-
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sion directions in developing brains. However, our study did not reach the expected improvements.

The second project aimed at segmenting fetal brains from T2-weighted images and was accepted

in the European Congress of Magnetic Resonance in Neuropediatrics (ECMRN20). The third

study employs a similar methodological approach to our FOD estimation work114 but applied for

white matter tract segmentation to a population of 2-8 years and adults112, and not developing

brains which is the focus of this thesis. The last project tackles the problem of motion correction

and super-resolution reconstruction in fetal fMRI206 and was accepted inMICCAI22.

5.1 Angular super-resolution with deep neural networks

In this section, we will briefly detail methods and results about the angular super-resolution of the

diffusion signal.

5.1.1 Methodology

This study aimed at applying the method developed by Lyon et al.137 in adult brains (using the

Human Connectome Project223) to developing brains of newborns and fetuses, and potentially

enhance it by the use of Transformers53. We used two datasets: the second release of the newborn

developing Human Connectome Project (dHCP) dataset93 and a fetal clinical dataset.

In a nutshell, the RCNN (Recurrent Convolutional Neural Network) model takes as input qin

diffusion 3D patches along with their corresponding b-vector, repeated and concatenated in the

channel dimension. A cascade of convolutions and distributed convolutions is then applied until

combining the feature maps of each qin feature using a convolutional LSTM block. In the decoder

part, the hidden internal state of the LSTM is concatenated with the qout target b-vectors, for which

we aim to predict their corresponding diffusion volume. Convolutions blocks are then applied with

residual connections from the target b-vectors until predicting the final qout patches. Further details
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can be found in the original paper137.

In our work, we have used the same pre-term subjects of the dHCP dataset that we employed in

our through-plane super-resolution study110, i.e. 37 subjects of 88 directions from b=1000 s/mm2.

We have additionally resampled the data to isotropic resolution, i.e. from 1.17 × 1.17 × 1.5mm3 to

1.25mm3 to account for the 3D network. The fetal data is also the same data used in our previous

work110, i.e. 6 subjects of 15 directions of b=700 s/mm2, with a spatial resolution of 1 × 1 × 3 − 5

mm3.

Since our goal was ultimately to generate new gradient volumes in the fetal data, we have trained

the RCNN network on the pre-term subjects that has 88 directions, first using the original 3D ar-

chitecture, then by converting it to 2D because of the thick fetal slices, i.e. high anisotropy of the

fetal data, and finally by incorporating Transformers at different stages of the network, mostly after

the convolutional blocks as this is a good practice in training Transformers53,57 in the case of small

datasets such as in our medical imaging field. Similarly to Lyon et al.137, we have also used spherical

harmonics (order 2) interpolation as a baseline method for comparison68.

We have used cross validation after splitting the pre-term training data into six folds of 4 subjects

each. We have used qin=10 for training, as in the original model137 and qout=5 (i.e. qin+qout= num-

ber of directions in fetal data). We have varied the patch size (PS ∈ {102,322,642} for 2D networks

and PS ∈ {103,163} for 3D networks) as it is an important parameter of the model. We have addi-

tionally trained a network on 10 carefully selected fetal subjects.

5.1.2 Results

The patch size effect was clear and in favor of higher patches as can be seen in the case of 2D net-

works in Figure 5.1. The order of magnitude of errors of 3D networks with a patch size of 163 was

similar to 2D networks of patch size 322. Figure 5.2 however does not show a clear advantage for the

RCNNmethod (2D or 3D) and the spherical harmonics interpolation baseline.
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Figure 5.1: Validation loss of the trained models with different patch sizes, i.e. 102, 322 and 642 voxels. Image gener‐
ated with Tensorboard 1.

Regarding fetal data, the network generated plausible predictions as can be seen in Figure 5.3, on

one of qout=5 gradient directions, for both network prediction and ground truth (GT). We can how-

ever notice smooth images generated by the RCNN. The left panel of the same Figure 5.3 shows for

100 random points in the corresponding slice on the right panel, how the prediction and the GT

evolve. For the two top slices, the error is higher compared to the two bottom slices. In fact, it is not

surprising that the error is higher around the extremities of the brain compared to slices in the mid-

dle of the brain. Quantitative results for the network trained on fetal data (Figure 5.4) show that a

simple spherical harmonics interpolation generates better results than the RCNN.
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Figure 5.2: Root mean squared error (RMSE) of four out of the six folds, for the 2D‐ and 3D‐RCNN trained on different
patch sizes. Spherical harmonics interpolation baseline is also shown on the first raw. Best and worst two scores are
shown in blue and red, respectively
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Figure 5.3: On the left, 100 random points extracted from brain voxels where red refers to ground truth values and blue
to network prediction values by the 2D‐RCNN trained with 32x32 patches. On the right we can see the corresponding
slices of the GT and network predictions.

Figure 5.4: Root mean squared error (RMSE) of validation and training subjects of spherical harmonics interpolation and
RCNN trained on fetal data.
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Following that, we aimed at incorporating Transformers in several parts of the network, by for

instance replacing the LSTM part by a transformer or combining the LSTMwith a transformer, for

which we varied parameters such as the (D) or theDh that sets the dimensionality of the query/key/value

matrix53. Although achieving some incremental improvements by fine-tuning these parameters

(Figure 5.5) and adding data augmentation to artificially increase our dataset, the results did not

reach our expectations and we have hence aimed to directly predict FODs114 instead of learning

new non-acquired gradient directions. We hypothesize that the developing brain datasets (newborns

and especially fetuses) do not show enough learnable patterns, at the level of the original raw signal,

due to noise and high variability of the anatomy, and hence it is hard to train a neural network on

this type of data.

Figure 5.5: Validation loss on multiple models using Transformers with different parameters and by combining it with the
LSTM module. Image generated with Tensorboard1.
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5.2 Automated fetal brain segmentation of 2D magnetic resonance images:

transfer learning and 3D topology correction

5.2.1 Background

Fetal brain extraction in 2D thick series acquired by magnetic resonance imaging (MRI) is usually

the first step for further processing such as super-resolution reconstruction, brain tissue segmenta-

tion, or in utero resting state fMRI analysis. Manual annotation of brain voxels is time consuming

and hence inappropriate to automated analysis and large-scale studies. With the advent of deep su-

pervised learning, fetal brain segmentation can be performed in real-time in 2D clinical scans with

reasonably high accuracy. However, large labelled datasets are required in the training phase. De-

spite some solutions are publicly available, the generalization of such techniques to process unseen

data (such as acquired with different scanners or sequence parameters) is not straightforward. In

this work we present a transfer of learning, that is, how to adapt pre-existing deep learning solutions

to fetal brain segmentation of a new clinical dataset acquired in a different hospital. Moreover, we

added a post-processing 3D topology correction within the 2D brain mask series.

5.2.2 Materials and methods

Our dataset was acquired at the Lausanne University Hospital (CHUV). It consists of 227 series

from 39 fetal brains, 20 pathological and 19 healthy subjects, ranging between 20 and 36 weeks

of gestation. Repeated orthogonal T2-wHalf-Fourier Acquisition Single-shot Turbo spin Echo

(HASTE) sequences (slice thickness 3 mm) were performed on each subject at 1.5 Tesla.

We fine-tuned the well-established U-Net convolutional neural network for 2D brain segmenta-

tion from clinical images. We explored two different scenarios: 1) training this model from scratch

on our dataset using an average of 4,767 slices (Random_init_U-Net) or 2) using pre-trained weights
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from previous published work where an average of 13,000 slices were used for training, correspond-

ing to 385 series of 41 fetal brains acquired at 3T from Boston Children’s hospital. We refer to this

approach as Pre-trained_U-Net.

The network was trained on 2D slices because of fetal motion and hence did not use any 3D

brain continuity information. The training lasted for about 200 epochs and used ADAM optimiser

and a weighted cross-entropy loss function. Evaluation was performed through the dice score in a

leave-four-out cross validation setup.

A second contribution of this work uses information from neighbouring slices within a series by

using morphological operations such as closing, opening and connected components in order to

refine the binary brain mask output by the 2DU-net. Wilcoxon rank sum test was performed with

R software to compare Random_init_U-Net and Pre-trained_U-Net configurations in both healthy

and pathological datasets.

5.2.3 Results

Directly testing the pre-trained weights does not generate plausible segmentations as the training

data was very different from our acquisitions (3T v.s. 1.5T and different acquisition parameters).

Accuracy obtained by training our network using the CHUV data only obtains an average dice

score of 71%. We hypothesise as overall that the number of datapoints used is rather limited. In con-

trast, the pre-trained U-Net achieved improved results with an average dice of 0.85. It significantly

outperforms (p<0.05) U-Net_random_init as can be shown in the quantitative figure of the poster

below, in both healthy and pathological datasets. Some remaining errors were corrected by 3D brain

continuity strategies, e.g. using the fact that the surface area of the brain cannot abruptly drop and

increase within a one slice neighbourhood as demonstrated in the qualitative figure of the poster

below.
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5.2.4 Conclusion

Directly testing the pre-trained weights does not generate plausible segmentations as the training

data was very different from our acquisitions (3T v.s. 1.5T and different acquisition parameters).
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score of 71%. We hypothesise as overall that the number of datapoints used is rather limited. In con-

trast, the pre-trained U-Net achieved improved results with an average dice of 0.85. It significantly

outperforms (p<0.05) U-Net_random_init as can be shown in the quantitative figure of the poster

below, in both healthy and pathological datasets. Some remaining errors were corrected by 3D brain

continuity strategies, e.g. using the fact that the surface area of the brain cannot abruptly drop and

increase within a one slice neighbourhood as demonstrated in the qualitative figure of the poster
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5.3 Direct segmentation of brain white matter tracts in diffusion MRI

5.4 Spatio-temporal motion correction and iterative reconstruction of

in-utero fetal fMRI

171



Direct segmentation of brain white matter tracts
in diffusion MRI
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Abstract. The brain white matter consists of a set of tracts that con-
nect distinct regions of the brain. Segmentation of these tracts is often
needed for clinical and research studies. Diffusion-weighted MRI offers
unique contrast to delineate these tracts. However, existing segmenta-
tion methods rely on intermediate computations such as tractography
or estimation of fiber orientation density. These intermediate computa-
tions, in turn, entail complex computations that can result in unnec-
essary errors. Moreover, these intermediate computations often require
dense multi-shell measurements that are unavailable in many clinical and
research applications. As a result, current methods suffer from low ac-
curacy and poor generalizability. Here, we propose a new deep learning
method that segments these tracts directly from the diffusion MRI data,
thereby sidestepping the intermediate computation errors. Our experi-
ments show that this method can achieve segmentation accuracy that is
on par with the state of the art methods (mean Dice Similarity Coeffi-
cient of 0.826). Compared with the state of the art, our method offers far
superior generalizability to undersampled data that are typical of clinical
studies and to data obtained with different acquisition protocols. More-
over, we propose a new method for detecting inaccurate segmentations
and show that it is more accurate than standard methods that are based
on estimation uncertainty quantification. The new methods can serve
many critically important clinical and scientific applications that require
accurate and reliable non-invasive segmentation of white matter tracts.

Keywords: white matter tracts · segmentation · neuroimaging

1 Introduction

The brain white matter is organized into a set of distinct tracts. These tracts
are bundles of myelinated axons that connect different brain regions such as
the cerebral cortex and the deep gray matter. Although they are tightly packed
and often cross one another, each tract has an entirely different function and
connects different regions of the brain [32, 36]. Accurate segmentation of these
tracts is needed in clinical studies and medical research. For example, in surgical
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planning one needs to know the precise extent of the individual tracts in order
to assess the risk of damage to specific neurocognitive functions that may result
from surgical removal of brain tissue. As another prominent example, changes in
the micro-structural properties of different tracts is commonly used in studying
brain development and disorders.

Magnetic resonance imaging (MRI) is the modality of choice for non-invasive
assessment of white matter tracts in vivo. Although some of the tracts may be
identifiable on T1, T2, or FLAIR images [36], accurate segmentation of most
tracts is only possible with diffusion MRI. Individual tracts may be extracted
from whole-brain tractograms by specifying inclusion and exclusion regions of
interest (ROIs). This process, which is usually referred to as “virtual dissec-
tion”, is time-consuming, subjective, and it has low reproducibility [24]. Some
prior works have aimed at automating the virtual dissection process by learning
to compute the inclusion/exclusion ROIs [28, 37]. It is also possible to extract
the tracts from a whole-brain tractogram by grouping similar streamlines using
a clustering approach. This can be done by comparing individual streamlines
with a predefined set of tracts in an atlas [7, 13]. Some techniques additionally
take into account the location of the streamlines relative to anatomical land-
marks in the brain [25, 26]. Tractography-based methods are inherently limited
by the errors in streamline tractography [14]. To avoid these errors, some meth-
ods segment the tracts on diffusion tensor or fiber orientation images, thereby
avoiding the tractography. Some of the segmentation techniques that have been
explored in the past include Markov Random Fields [3], k-nearest neighbors
technique [19], template matching [6], and more recently deep learning [5, 34].
However, none of these intermediate parameters (e.g., the diffusion tensor) have
an unambiguous biophysical meaning and their computation entails unavoidable
estimation errors. Moreover, the intermediate computations for most existing
methods assume availability of dense multi-shell diffusion MRI measurements,
which are not acquired in many clinical and research applications. As a result,
existing methods have low accuracy and limited generalizability when applied
to typical clinical scans.

In this work, we develop and validate a new method that segments white
matter tracts directly from the diffusion MRI data. The new method does not
require tractography or computation of other intermediate parameters. More-
over, we present a simple but effective technique for detecting less accurate
segmentations. We show that the new methods achieve superior accuracy and
generalizability compared with the existing methods.

2 Materials and methods

2.1 Segmentation model

Our method, shown schematically in Figure 1, is based on a fully convolutional
network (FCN). The network architecture is similar to nnU-Net (we refer to [9]
for the details of the architecture). Our method predicts tract segmentations
directly from the diffusion MRI data. To enhance the generalizability of the
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method and to enable it to work with scans acquired using different gradient
tables (i.e., different gradient strengths and/or different gradient directions): (i)
We train the model with measurements that are typically acquired for diffusion
tensor imaging (DTI). DTI-style scans include single-shell measurements at a
b-value of around 750-1200 s/mm2 [10]. They are the most common acquisition
in clinical and research applications. We normalize these measurements by a
non-weighted (b=0) measurement. (ii) We project the normalized data onto
a fixed spherical harmonics (SH) basis. We use SH bases formulations of [30]
with an order 2, which results in 6 SH coefficients regardless of the number of
measurements. We use these 6 coefficient maps as input to the FCN.

Fig. 1: Overview of the proposed tract segmentation method.

Our approach of using the data as the model input has three advantages:
(1) It eliminates the need to compute intermediate parameters (e.g., fiber

orientation distribution or tractogram), thereby avoiding the associated compu-
tational errors [23, 22]. If the goal is tract segmentation, there is no need to incur
those errors by going through intermediate computations.

(2) It improves the generalizability of the method with respect to different
acquisition schemes. If, for example, the input is the tractogram, the tract seg-
mentation results can be significantly influenced by the tractography method
that is used to compute the tractogram. Moreover, computation of intermediate
parameters may demand especial measurement schemes that may be unavailable
at test time. For example, methods that are based on fiber orientation distribu-
tion typically require high angular resolution measurements, which can result in
a loss of accuracy if such measurements are not available [4, 34].

(3) It offers a highly effective data augmentation method during both training
and test/inference. Data augmentation during training improves the training of
large deep learning models with limited data. It is especially common in applica-
tions such as medical imaging where labeled data are costly to obtain. Test-time
data augmentation, on the other hand, can be used to improve prediction ac-
curacy and also to estimate prediction uncertainty [1, 16, 17]. Our train- and
test-time data augmentation strategies are explained below.

Let us denote the set of b0-normalized measurements in a scan with {x(qi)}mi=1,
where qi is the unit vector indicating the gradient direction for the ith measure-
ment. During training, in each iteration we select a subset of size 6-12 from
the m measurements {x(qj)}j∈S⊆{1,...,m}, chosen uniformly at random without
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replacement. We select these measurements such that the gradient directions
for each pair of measurements are far apart in the q space, using an approach
similar to [10, 27]. We use the selected measurement subset (after projecting
onto the SH basis) as input to the model. This can act as a highly effective and
computationally-efficient data augmentation strategy as it presents a different
view of the input to the model in each training iteration.

During inference, we use n different measurement subsets, selected similarly
as in training described above, to predict n different segmentations. Let us de-
note the segmentation probability map for a specific tract with each of these
measurement subsets as {yk}nk=1. We compute the voxel-wise average of these
predictions to obtain a final segmentation prediction, which we denote with ȳ.
Furthermore, we can compute a measure of disagreement between these n predic-
tions to estimate segmentation uncertainty. Disagreement between segmentation
predictions is usually quantified using metrics of volume overlap or surface dis-
tance [29]. Each of these metrics quantifies the segmentation error from a narrow
perspective. Furthermore, these metrics discard the probability information by
binarizing the segmentations. Recent segmentation uncertainty quantification
methods have also followed a purely voxel-wise approach [15, 33], which ignores
the spatial distribution of the segmentation probabilities. To characterize the
disagreement in a way that accounts for the complete probability distribution
of the predicted segmentations, we use a method based on the Wasserstein Dis-
tance, also known as earth mover’s distance (EMD) [21]. Given two probability
distributions p and q defined on the same metric space, this distance is defined as
EMD(p, q) = infγ∈Γ (p,q) E(x,y)∼γd(x, y), where d is a distance measure and Γ (p, q)
is the set of joint probability distributions whose marginals are equal to p and
q. Intuitively, if p and q are considered as two piles of earth, EMD is the cost
of turning one into the other. Although EMD can be easily quantified for scalar
variables, to the best of our knowledge there are no methods for computing EMD
for probability distributions in IR2 or IR3. Here, we adopt an approximation that
was originally proposed in [35] for comparing multi-dimensional histograms. We
demonstrate this computation for a simple 3× 3 histogram in Figure 2. Given a
pair of multi-dimensional histograms (or probability distributions), the method
first unfolds the histograms as shown in the example in Figure 2 and finds a
minimum distance pairing between the two. The distance between the two his-
tograms is defined as the sum of the pair-wise distances in the pairing.

Fig. 2: An illustration of the extension of the Wasserstein Distance to multi-
dimensional signals, proposed in [35].
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Based on this approximation, we compute the EMD between two segmenta-
tion probability maps in R3 as EMD(p, q) =

∑1
t=0 d

(
P (t), Q(t)

)
, where P is the

cumulative sum of unfolded p as shown in Figure 2 and the same for Q, and
d computes the ℓ2 distance between the paired P and Q. This computation re-
quires that the two inputs have the same mass, which we satisfy by normalizing
the segmentations to have a unit sum. Furthermore, to reduce the computa-
tion time, we reduce the size of the segmentation volumes by a factor of 4 in
each dimension via cubic interpolation. Given the set of n segmentation predic-
tions computed as explained above, we estimate the segmentation uncertainty
as u = 1

n

∑
k EMD(yk, ȳ).

2.2 Implementation details

The segmentation network was implemented in TensorFlow 1.6 and run on an
NVIDIA GeForce GTX 1080 GPU on a Linux machine with 64 GB of memory
and 20 CPU cores. The network takes 3D patches of size 963 voxels as input
and estimate the tract segmentation map for that patch. The network input
has 6 channels as described above. The network output has 41 channels for
the 41 tracts considered in this work. A complete description of these tracts
can be found in [34]. We merged the left and right sections of bilateral tracts,
such as arcuate fasciculus, into one label. We trained the network to maximize
the Dice similarity coefficient (DSC) between the predicted and ground-truth
segmentation of the tracts using Adam [12] with a batch size of 1 and a learning
rate of 10−4, which was reduced by half if after a training epoch the validation
loss did not decrease. We compare our method with TractSeg [34]. TractSeg
was shown to be vastly superior to many tractography dissection methods [34].
Therefore, we do not compare with those methods.

3 Experimental Results and Discussion

We applied the method on 105 subjects in the Human Connectome Project study
[8, 31]. Manual segmentations of 72 tracts for these subjects are publicly avail-
able [34]. We followed a five-fold cross-validation approach, each time leaving
21 subjects for test and training on the remaining 84 subjects. Table 1 summa-
rizes the performance of the proposed method and TractSeg. We report DSC,
95 percentile of the Hausdorff Distance (HD95), and average symmetric surface
distance (ASSD). In addition to TractSeg, we compare our method with atlas-
based segmentation (MAS), whereby 20 training images are registered to the
test subject and the registration transforms are used to warp the segmentation
labels from the training images to the test image. Voxel-wise averaging is then
used to estimate the segmentations for the test image. We implemented this in
two ways: MAS-FA, where we computed the registrations based on fractional
anisotropy (FA) images using ANTS [2], and MAS-FOD, where we computed
the registrations based on fiber orientation density images using mrregister [18].
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Table 1: Segmentation performance of different methods. Asterisks denote signifi-
cantly better results at p = 0.01.
Data method DSC HD95 (mm) ASSD (mm)
Multi-shell, m=270 TractSeg 0.829± 0.056 2.50± 1.33 0.740± 0.202

b=1000 shell, m=90

TractSeg 0.800± 0.071 2.78± 1.51 0.799± 0.285
MAS-FA 0.765± 0.080 3.12± 2.01 1.004± 0.801
MAS-FOD 0.792± 0.076 2.76± 1.55 0.815± 0.289
Proposed 0.826± 0.056∗ 2.48± 1.28∗ 0.746± 0.201∗

b=1000 shell, m=6

TractSeg 0.687± 0.155 5.29± 6.51 1.471± 1.427
MAS-FA 0.760± 0.089 3.30± 2.27 1.124± 1.038
MAS-FOD 0.693± 0.140 4.10± 3.13 1.270± 1.361
Proposed 0.825± 0.058∗ 2.48± 1.27∗ 0.747± 0.211∗

Segmentation performance results are presented in Table 1. Figure 3 shows
example tract segmentations predicted by our method and TractSeg. Our method
using only the DTI measurements (b=1000) achieved segmentation accuracy
that was very close to TractSeg using the multi-shell data with three times as
many measurements. Paired t-tests did not show any significant differences (at
p = 0.01) between our method and TractSeg in terms of any of the three criteria.
When TractSeg was applied on the b=1000 measurements, its performance was
worse than our method in terms of all three criteria. To simulate under-sampled
clinical scans, we selected 6 of the b=1000 measurements as proposed in [10, 27].
As shown in Table 1, the performance of our method remained almost unchanged,
whereas the performance of TractSeg deteriorated significantly. Paired t-tests
with a p = 0.01 threshold showed that (1) the performance of our method did
not change in terms of any of the three criteria on any of the 41 tracts when
6 measurements were used compared with 90 measurements. (2) Our method
achieved significantly higher DSC and significantly lower HD95 and ASSD (all
with p < 0.01) with both 90 and six measurements compared with the other
three methods. As shown in Figure 3, segmentations produced by our method are
almost indistinguishable between 90 and 6 measurements. Although we cannot
present the segmentation results for all tracts, Table 2 shows the mean DSC for
six of the tracts, including anterior commissure and fornix which were the two
most difficult tract to segment for our method and for TractSeg.

We further tested our method on scans of children between 2-8 years of age
from an independent dataset [20]. Each scan in this dataset included 30 mea-
surements in a single shell at b=750. We chose six measurements as input to
our model as described above. We manually extracted 32 tracts from 12 differ-
ent subjects on this dataset. Our method achieved DSC, HD95, and ASSD of
0.786± 0.076, 2.85± 1.20, and 1.017± 0.291, respectively. Although this shows
a drop in accuracy, it is a highly encouraging result given the fact that this
was a completely independent test dataset that was different from our train-
ing dataset in two important ways: (1) subject age: young children (2-8 years)
versus adults (21-36 years), and (2) measurement b-value of 750 versus 1000.
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Fig. 3: Example segmentation results for the proposed method and TractSeg. Green
indicates voxels with correct segmentation; red and blue indicate, respectively, false
negatives and false positives.

Table 2: Mean DSC for six tracts. CCg: genu of corpus callosum; ThPr: thalamo-
prefrontal; MCP: middle cerebellar peduncle; OpR: optic radiation; AC: anterior com-
missure; FNX: fornix. Asterisks denote significantyl better results at p = 0.01.
Data method CCg ThPr MCP OpR AC FNX
Multi-shell, m=280 TractSeg 0.867 0.883 0.871 0.827 0.696 0.689

Single shell, m=88 TractSeg 0.862 0.857 0.826 0.731 0.617 0.528
Proposed 0.901∗ 0.897∗ 0.864∗ 0.810∗ 0.703∗ 0.675∗

Single shell, m=6 TractSeg 0.772 0.783 0.740 0.704 0.366 0.436
Proposed 0.903∗ 0.897∗ 0.857∗ 0.811∗ 0.680∗ 0.666∗

Compared with our method, TractSeg failed on this dataset, completely missing
most of the tracts and achieving a mean DSC of 0.070. To further evaluate the
reproducibility of our method on this dataset, we selected two disjoint subsets of
six measurements from each scan and applied our method to segment the tracts.
We computed the DSC between the tracts computed with the two measurement
subsets. We did this for 100 scans, each from a different subject. The DSC for our
method was 0.867± 0.041, whereas it was 0.115± 0.109 for TractSeg. Example
results for our method on this dataset are shown in Figure 4.

Figure 5 shows a plot of our proposed segmentation uncertainty, u, versus
accuracy in terms of DSC. It shows that u is highly effective in identifying the
less accurate segmentations. If we choose segmentations with a DSC of 0.70 and
lower to be inaccurate, with a threshold of u = 0.30 we can detect such seg-
mentation with sensitivity=0.86, specificity=0.92, and accuracy=0.91. In Table
6 we compare method with the two standard methods based on estimation seg-
mentation uncertainty: dropout, and ensemble methods. We refer to [15] for a
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Fig. 4: Example segmentation results for our proposed method on an independent
dataset. Green indicates voxels with correct segmentation; red and blue indicate, re-
spectively, false negatives and false positives.

description of these methods. Our method achieves overall better results. Note
that the ensemble method requires training of multiple models. We trained 10
models in this experiment, which increased the training time by a factor of 10.

Fig. 5: Plot of our proposed uncertainty u
versus accuracy in terms of DSC.

Method Acc Sen Spc
EMD 0.91 0.86 0.92
Drp 0.82 0.82 0.84
Ens 0.88 0.90 0.88

Fig. 6: Comparison of differ-
ent methods for identifying in-
accurate segmentations, defined
as those with DSC<0.70. (Drp:
dropout; Ens: ensembles; Acc:
accuracy; Sen: sensitivity; Spc:
specificity.)

3.1 Computational time and other experiments

Training time for our method is approximately 24 hours. Our method segments a
test image in 2.4 seconds. TractSeg requires approximately 60 seconds to segment
an image. MAS methods require much longer time, approximately 3 minutes for
MAS-FA and 12 minutes for MAS-FOD.

In recent years attention-based vision models have become very common in
medical image segmentation. To experiment with one such model, we applied
the model of [11], which has been developed specifically for 3D medical image
segmentation. This model achieved a DSC of 0.740± 0.125, which was far lower
segmentation performance those reported above.
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4 Conclusions

Our method shows great promise in segmenting various white matter tracts. The
appeal of our method is twofold: (1) Superior accuracy on under-sampled data
that are typical of clinical scans, as clearly demonstrated by our results in Figure
3 and Tables 1 and 2. (2) Superior generalizability to multi-center data. This was
clearly demonstrated in our experiment with an independent validation dataset,
with some examples presented in Figure 4.
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Abstract. Resting-state functional Magnetic Resonance Imaging (fMRI)
is a powerful imaging technique for studying functional development of
the brain in utero. However, unpredictable and excessive movement of fe-
tuses have limited its clinical applicability. Previous studies have focused
primarily on the accurate estimation of the motion parameters employing
a single step 3D interpolation at each individual time frame to recover
a motion-free 4D fMRI image. Using only information from a 3D spa-
tial neighborhood neglects the temporal structure of fMRI and useful
information from neighboring timepoints. Here, we propose a novel tech-
nique based on four dimensional iterative reconstruction of the motion
scattered fMRI slices. Quantitative evaluation of the proposed method
on a cohort of real clinical fetal fMRI data indicates improvement of
reconstruction quality compared to the conventional 3D interpolation
approaches.

Keywords: Fetal fMRI · image reconstruction · motion-compensated
recovery · regularization.

1 Introduction

Functional magnetic resonance imaging (fMRI) offers a unique means of observ-
ing the functional brain architecture and its variation during development, aging,
or disease. Despite the insights into network formation and functional growth of
the brain,in utero fMRI of living human fetuses, and the developmental func-
tional connectivity (FC), however, remain challenging. Since the fMRI acuisition
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takes several minutes, unconstrained and potentially large movements of the fe-
tuses, uterine contractions, and maternal respiration can cause severe artifacts
such as in-plane blurring, slice cross-talk, and spin-history artifacts that likely
vary over time. Without mitigation, motion artifacts can considerably affect the
image quality, leading to a bias of subsequent conclusions about the FC of the
developing brain.

Standard motion correction approaches, including frame-by-frame spatial re-
alignment along with discarding parts of data with excessive motion, have been
adopted so far to address motion artifacts of in utero fMRI [20, 10, 17]. More
recently, cascaded slice-to-volume registration [13] combined with spin history
correction [4], and framewise registration based on the 2nd order edge features
instead of raw intensities [11] were suggested. These studies used 3D linear inter-
polation of motion scattered data at each volume independently to reconstruct
the entire time series. Since in utero motion is unconstrained and complex, the
regular grid of observed fMRI volumes becomes a set of irregularly motion scat-
tered points possibly out of the field-of-view of the reconstruction grid, which
might contain gaps in regions with no points in close proximity. Therefore inter-
polation in each 3D volume cannot recover the entire reconstruction grid.

Here we propose a new reconstruction method that takes advantage of the
temporal structure of fMRI time series and rather than treating each frame
independently, it takes both the spatial and the temporal domains into account to
iteratively reconstruct a full 4D in utero fMRI image. The proposed method relies
on super-resolution techniques that attracted increasing attention in structural
fetal T2-weighted imaging, aiming to estimate a 3D high-resolution (HR) volume
from multiple (semi-)orthogonal low resolution scans [5, 15, 3]. In case of fMRI,
orthogonal acquisitions are not available, instead the reconstruction of a 4D
image from a single sequence acquired over time is desired (An illustration of the
problem is shown in Figure 1). Currently, existing single-image reconstruction
methods are generally proposed for 3D structural MR images with isotropic
voxels, while the effect of motion is implicitly modeled via blurring the desired
HR image [14]. None of these methods have been tailored for 4D fMRI with
high-levels of movement such as the fetal population.

Our contribution is threefold: (1) we develop a 4D optimization scheme based
on low-rank and total variation regularization to reconstruct 4D fMRI data as
a whole (2) we explicitly model the effect of motion in the image degradation
process since it is the main source of gaps between interpolated slices; (3) we
show the performance of our algorithm on the highly anisotropic in utero fMRI
images. Experiments were performed on 20 real individuals, and the proposed
method was compared to various interpolation methods.

2 Method

We first describe the fMRI image acquisition model and then its corresponding
inverse problem formulation to recover a 4D artifact-free fMRI from a single scan
of motion corrupted image, using low-rank and total variation regularizations.
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2.1 The Reconstruction Problem

fMRI requires the acquisition of a number of volumes over time (fMRI time-
series, bold signal) to probe the modulation of spontaneous (or task-related)
neural activity. This activity is characterized by low frequency fluctuations (<
0.1Hz) of bold signals and therefore temporal smoothing is often applied as a pre-
processing step in fMRI analysis. We aim at estimating the motion-compensated

reconstruction of fMRI time series (X ∈ RB̂×K̂×Ĥ×N ) from observed motion-
contaminated fMRI volumes (T ∈ RB×K×H×N ) that integrates temporal smooth-
ing within a full 4D iterative framework. Both X and T are composed of N 3D
volumes Xn,Tn acquired over N timepoints. In MR image acquisition, a degra-
dation process yields a low-resolution image from the latent high-resolution im-
age:

Tn = DSMnXn + z (1)

where D is a 3D downsampling operator, S is a 3D blurring operator, M is the set
of estimated motion parameters (three rotation and three translation parameters
for each slice tn,h ∈ RB×K of the volume Tn, estimated prior to optimization
(Sec. 3.1)), and z represents the observation noise. The application of Mn in the
model here is equivalent to transforming each slice by the motion followed by
resampling them on a 4D regular grid. Successful recovery of X from the T not
only ensures the compensation of motion but also smoother bold signals due to
the implicit temporal structure present in the data. However, since the Eq.(1) is
ill-posed, direct recovery of X is not possible without enforcing a prior. Hence,
the reconstruction of the latent desired 4D image X is achieved by minimizing
the following cost function based on the inverse problem formulation:

min
X

N∑
n=1

∥DSMnXn −Tn∥2 + λℜ(X ) (2)

where ℜ(X ) is a spatio-temporal regularization term, and λ balances the contri-
butions of the data fidelity and regularization terms. We propose two regular-
ization terms in this context, 4D low-rank for missing data recovery and total
variation for preserving local spatial consistency.

4D Low-Rank Regularization Rank as a measure of nondegenerateness of
the matrix, is defined by the maximum number of linearly independent rows or
columns in the matrix. Since self-similarity is widely observed in fMRI images,
low rank prior has been successfully used in matrix completion of censored fMRI
time series [1]. Here we use low rank as a regularization term to help retrieve rel-
evant information from all image regions. To compute the rank for a 4D image
X , we first unfold it into a 2D matrix along each dimension [7]. Specifically,
suppose the size of X is B × K × H × N , we unfold it into four 2D matri-
ces

{
X(i), i = 1, 2, 3, 4

}
with size of B × (K ×H ×N) ,K × (B ×H ×N) , H ×

(B ×K ×N), and N × (B ×K ×H) where X(i) means unfold X along dimen-
sion i. Then we compute the sum of the singular values in each matrix for their
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Fig. 1. Illustration of the image reconstruction using super-resolution technique. Over-
sampling exists in case of 3D structural MRI (left panel), however, there is not enough
data for separate reconstruction of each 3D fMRI volume (middle panel). Here we pro-
pose to reconstruct the whole 4D fMRI at once using both spatial and temporal data
structure (right panel).

trace norms
∥∥X(i)

∥∥
tr

. Finally, the rank of X is approximated as the combination
of trace norms of all unfolded matrices [14]:

ℜrank(X ) =
4∑

i=1

αi

∥∥X(i)

∥∥
tr

(3)

where {αi} are parameters satisfying αi ≥ 0, and
∑4

i=1 αi = 1. By minimizing
this term, we obtain a low-rank approximation of X . The low rank regularization
is applied in the entire 4D data retrieving useful information for the reconstruc-
tion task from both spatial and temporal domains.

Total Variation Regularization Total variation (TV) is defined as integrals
of absolute gradient of the signal. For a 4D functional image X :

ℜtv(X ) =
N∑

n=1

∫
|∇Xn| dbdkdh (4)

where the gradient operator is performed in 3D spatial space. TV regularization
has been largely adopted in image recovery because of its powerful ability in edge
preservation [15, 14]. Here, we use TV in 3D space instead of 4D space based on
the notion that primarily the spatial neighborhood exhibits consistency and thus
TV in temporal domain may not be effective.

2.2 Optimization

The proposed 4D single acquisition reconstruction is thus formulated as below:

min
X

N∑
n=1

∥DSMnXn −Tn∥2 + λrank ℜrank (X ) + λtv

N∑
n=1

ℜtv (Xn) (5)



Spatio-temporal reconstruction of fetal fMRI 5

Algorithm 1 4D motion-compensated reconstruction of fMRI time series

Input: Single scan fMRI image T , realignment parameters
Initialize: The desired X by resampling motion-transformed image T with linear
interpolation. Set auxiliary variable Y

(0)
i = 0, U

(0)
i = 0, i = 1, 2, 3, 4

while
∥∥X k −X k−1

∥∥ /∥T ∥ > ε do

Update X k by using gradient descent:

argminX
∑N

n=1

∥∥∥DSMnX
(k−1)
n −Tn

∥∥∥2

+
∑4

i=1
ρ
2

∥∥∥X (k−1) − Y
(k−1)
i + U

(k−1)
i

∥∥∥2

+

λtv

∑N
n=1

∫ ∣∣∣∇X
(k−1)
n

∣∣∣ dbdhdk (7)

Update Y
(k)
i by using Singular Value Thresholding:

Y
(k)
i = foldi

[
SV Tλrankαi/ρ

(
X (k)

(i) + U
(k−1)

i(i)

)]
(8)

with foldi
(
Yi(i)

)
= Yi

Update U
(k)
i = U

(k−1)
i +

(
X (k) − Y

(k)
i

)
(9)

end while

We employ the alternating direction method of multipliers (ADMM) algorithm
to minimize the cost function in Eq.(5). ADMM has been proven efficient for solv-
ing optimization problems with multiple non-smooth terms [2]. Briefly, we first

introduce redundant variables {Yi}4i=1 with equality constraints X(i) = Yi(i), and

then use Lagrangian dual variables {Ui}4i=1 to integrate the equality constraints
into the cost function:

minX ,{Yi}4
i=1,{Ui}4

i=1

∑N
n=1 ∥DSMnXn −Tn∥2 + λrank

∑4
i=1 αi

∥∥Yi(i)

∥∥
tr

+
∑4

i=1
ρ
2

(
∥X − Yi + Ui∥2 − ∥Ui∥2

)
+ λtv

∑N
n=1

∫
|∇Xn| dbdkdh

(6)

We break the cost function into subproblems for X , Y, and U, and iteratively
update them. The optimization scheme is summarized in Algorithm 1.

3 Experiments and Results

3.1 Data

Data acquisition: Experiments in this study were performed on 20 in utero
fMRI sequences obtained from fetuses between 19 and 39 weeks of gestation.
None of the cases showed any neurological pathology. Pregnant women were
scanned on a 1.5T clinical scanner (Philips Medical Systems, Best, Nether-
lands) using single-shot echo-planar imaging (EPI), and a sensitivity encoding
(SENSE) cardiac coil with five elements. Image matrix size was 144×144, with
1.74×1.74mm2 in-plane resolution, 3mm slice thickness, a TR/TE of 1000/50
ms, and a flip angle of 90°. Each scan contains 96 volumes obtained in an inter-
leaved slice order to minimize cross-talk between adjacent slices.
Preprocessing: For preprocessing, a binary brain mask was manually delin-
eated on the average volume of each fetus and dilated to ensure it covered the
fetal brain through all ranges of the motion. A four dimensional estimate of
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Fig. 2. Reconstruction of in-utero fMRI for a typical fetus, and the estimated slice-
wise realignment parameters. When motion is small (volume No.20) all interpolation
methods recovered a motion compensated volume, and our approach resulted in a
sharper image. In contrast, with strong motion relative to the reference volume (volume
No.65), single step 3D interpolation methods are not able to recover the whole brain,
and parts remain missing, whereas the proposed 4D iterative reconstruction did recover
the entire brain.

the bias field for spatio-temporal signal non-uniformity correction in fMRI series
was obtained using N4ITK algorithm [18] as suggested previously [12]. Intensity
normalization was performed as implemented in mialSRTK toolkit [16]. Finally,
motion parameters were estimated by performing a hierarchical slice-to-volume
registration based on the interleaved factor of acquisition to a target volume
created by automatically finding a set of consecutive volumes of fetal quiescence
and averaging over them [13]. Image registration software package NiftyReg [8]
was used for all motion correction steps in our approach. Demographic infor-
mation of all 20 subjects as well as the maximum motion parameters estimated
were reported in Supplementary Table S1.

3.2 Experimental Setting and Low-Rank Representation

We first evaluated to which extent in utero fMRI data can be characterized
by its low-rank decomposition. The rapid decay of the singular values for a
representative slice of our cohort is shown in Supplementary Figure S1. We used
the top 30, 60, 90, and 120 singular values to reconstruct this slice and measured
signal-to-noise ratio (SNR) to evaluate the reconstruction accuracy. The number
of used singular values determines the rank of the reconstructed image. Using
the top 90 or 120 singular values (out of 144), the reconstructed image does not
show visual differences compared to the original image while it has a relatively
high SNR (Figure S1).

For the full 4D fMRI data of our cohort with the size of 144×144×18×96, four
ranks, one for each unfolded matrix along one dimension is computed. Each is
less than the largest image size 144. These ranks are relatively low in comparison
to the total number of elements, implying in utero fMRI images could be repre-
sented using their low-rank approximations. We set α1 = α2 = α3 = α4 = 1/4
as all dimensions are assumed to be equally important, λrank = 0.01, λtv = 0.01
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were chosen empirically. The algorithm stopped when the difference in iterations
was less than ε = 1e− 5.

3.3 Evaluation of Image Reconstruction

A number of interpolation methods was employed to be compared with our re-
constructed image including linear, cubic spline, and SINC interpolation. For
each method, we applied the same realignment parameters as the ones used
in our model, and in accordance with standard motion correction techniques,
each 3D volumes of fMRI time series was interpolated separately. We quantified
sharpness [9] of the average recovered image, standard deviation of bold signal
fluctuations (SD) through-out the sequence, and the Structural Similarity In-
dex (SSIM) which correlates with the quality of human visual perception [19].
Higher values of sharpness and SSIM, and lower values of SD are indicative of
better recovery.

Figure 2 shows, from left to right, the reference volume, two corresponding
slices in the observed image, and the results of different reconstruction methods.
Volume No.20 exhibits minor motion, volume No.65 exhibits strong motion. The
motion estimate plots on the right show their respective time points. The figure
shows the recovered slices of these two volumes using 3D linear, cubic, SINC, and
the proposed 4D LR+TV method, respectively. In the case of excessive complex

Fig. 3. Evaluation metrics for a typical fetus (a) and the whole cohort (b). Panel
(a) shows an example slice in the average volume (top row) and voxel-wise standard
deviation of the bold signal during fMRI acquisition. Higher Laplacian (sharpness)
and SSIM, and lower standard deviation are indicative of better recovery. Panel (b)
demonstrates these metrics in our fetal dataset.
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Fig. 4. Carpet plot and functional connectivity maps achieved for an example subject
using the observed fMRI time series and the time series recovered by 4D iterative
reconstruction.

motion (30° out of the plane combined with in-plane rotation and translation),
the 3D interpolation methods cannot recover the whole slice as they utilize in-
formation only from the local spatial neighborhoods. The reconstructed slice
by the proposed 4D iterative reconstruction approach recovers the image infor-
mation, is sharper, and preserves more structural detail of the brain. Figure 3
shows a qualitative and quantitative comparison of reconstruction approaches.
Figure 3 (a) shows the average volume (top row), and the standard deviation
of intensity changes over time (bottom row) for one subject. 4D reconstruction
achieves sharper structural detail, and overall reduction of the standard devia-
tion, which is primarily related to motion as described earlier. Although linear
interpolation results in signals as smooth as the proposed method, severe blur-
ring is observed in the obtained image by this approach. Figure 3 (b) provides the
quantitative evaluation for the entire study population. The proposed method
significantly (p<0.01, paired-sample t-tests for each comparison) outperforms all
comparison methods. The average gain of sharpness over the observed image is
2294 in our method compared to 1521 for 3D SINC, 959 for 3D Cubic, and 294 for
3D Linear, and the average reduction of SD relative to the observed image is -17
in our method compared to -9.34 for 3D SINC, -12.70 for 3D Cubic, and -16.50
for 3D Linear. The difference between linear interpolation and our approach did
not reach the statistical significance level for SSIM (p=0.28). In summary, 4D
iterative reconstruction reduces standard deviation over time, while increasing
sharpness and recovered structure, which the 3D approaches failed to achieve.

3.4 Functional Connectivity Analysis

Figure 4 illustrates the impact of the accurate motion correction and reconstruc-
tion for the analysis of functional connectivity (FC) in the fetal population. The
details of the pipeline employed for extracting subject-specific FC maps is ex-
plained in the supplementary material. When using the time series recovered by
our proposed approach for FC analysis, the number of motion-corrupted cor-
relations decreased significantly as visible in the carpet plot of signals, and the
associated connectivity matrix.
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4 Conclusion

In this work, we presented a novel spatio-temporal iterative 4D reconstruction
approach for in-utero fMRI acquired while there is unconstrained motion of
the head. The approach utilizes the self-similarity of fMRI data in the temporal
domain as 4D low-rank regularisation together with total variation regularization
based on spatial coherency of neighboring voxels. Comparative evaluations on
20 fetuses show that this approach yields a 4D signal with low motion induced
standard deviation, and recovery of fine structural detail, outperforming various
3D reconstruction approaches.
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Table S1. Gestational age, motion characteristics, and the achieved values of the evaluation metrics including sharpness (quantified by
Laplacian), standard deviation of BOLD signal fluctuations (SD), and structural similarity index (SSIM) of all fetuses. The proposed
method (LRTV) outperformed other reconstruction methods in terms of sharpness and SD significantly, and the difference between linear
interpolation and our approach did not reach the statistical significance level for SSIM (p=0.28)

GA max trans(mm) max rot(°) Sharpness SD SSIM
(week+day) x y z roll pitch yaw Raw Linear Cubic Sinc LRTV Raw Linear Cubic Sinc LRTV Raw Linear Cubic Sinc LRTV

S1 19w5d 6.87 8.06 2.89 6.17 5.86 4.48 1159 1145 12504 13161 13786 38.29 34.15 34.76 35.40 34.94 0.9682 0.9727 0.9725 0.9721 0.9673
S2 22w5d 21.86 8.11 19.29 27.88 20.63 27.95 9383 9523 10187 10721 11053 77.43 59.11 64.36 68.70 58.26 0.8755 0.9210 0.9109 0.9031 0.9105
S3 28w3d 2.04 1.94 13.73 10.27 17.16 1.51 6610 7352 9094 10251 10282 59.85 46.05 50.09 53.63 45.82 0.8229 0.8807 0.8684 0.8577 0.8673
S4 29w2d 2.39 4.00 6.95 5.18 3.82 2.81 10636 10435 10776 11214 11864 59.38 45.45 50.31 54.59 45.95 0.8046 0.8650 0.8465 0.8323 0.8499
S5 27w1d 7.34 3.93 4.61 1.66 4.09 2.79 6533 9049 9059 9159 9314 59.22 46.85 49.51 52.00 45.98 0.8216 0.8885 0.8825 0.8772 0.8790
S6 25w5d 13.83 5.56 7.84 13.88 25.73 15.54 9134 9379 9977 10428 10979 77.49 56.74 61.79 65.98 55.17 0.8125 0.8758 0.8609 0.8503 0.8679
S7 26w3d 5.97 2.42 2.37 2.23 3.54 2.60 9168 8928 9462 9919 10405 57.61 49.71 52.14 54.56 48.87 0.8519 0.8905 0.8825 0.8742 0.8787
S8 30w2d 3.94 7.45 3.93 16.63 2.34 21.84 8942 8530 9156 9780 10245 75.52 56.02 59.96 63.29 56.57 0.8241 0.8895 0.8789 0.8703 0.8814
S9 29w5d 5.23 6.99 2.24 6.55 5.29 4.95 9753 11573 12698 113751 13786 76.71 53.89 58.10 61.90 53.97 0.7734 0.8618 0.8517 0.8432 0.8487
S10 31w6d 11.12 3.68 3.97 3.06 13.96 4.16 9223 9658 10368 11074 11444 63.67 48.41 53.08 57.19 48.05 0.7821 0.8302 0.8139 0.7999 0.8132
S11 32w4d 3.80 2.00 2.09 2.87 2.49 1.75 8715 8459 9205 9817 9754 69.73 53.88 57.32 60.43 53.78 0.7582 0.8382 0.8255 0.8149 0.8194
S12 29w5d 3.48 3.35 3.33 2.00 2.19 4.69 16344 16142 17332 18436 19875 72.10 55.71 61.49 66.50 55.25 0.7776 0.8570 0.8368 0.8205 0.8389
S13 36w1d 2.17 2.75 3.80 9.54 5.96 6.22 9862 9531 10088 10509 11122 87.33 54.95 58.48 61.65 54.28 0.7041 0.8554 0.8422 0.8302 0.8390
S14 34w5d 42.33 20.62 15.89 7.33 16.43 10.52 9230 9051 10164 11093 12054 64.13 45.16 49.59 53.43 44.74 0.6508 0.7839 0.7529 0.7293 0.7655
S15 23w6d 12.93 12.44 7.42 3.04 4.74 4.29 20016 20999 21363 21625 23388 70.93 55.90 60.42 64.48 55.21 0.8264 0.8904 0.8746 0.8615 0.8756
S16 29w4d 2.83 5.09 3.10 19.82 12.99 21.57 19293 19943 20304 20566 22160 77.39 54.03 58.29 61.99 51.95 0.7637 0.8617 0.8444 0.8314 0.8531
S17 29w3d 20.97 9.18 8.07 7.61 17.55 16.10 11628 11225 11735 12266 13096 79.02 57.64 64.22 69.69 56.74 0.7582 0.8331 0.8114 0.7955 0.8215
S18 24w4d 4.33 5.65 6.13 6.05 3.97 5.04 11628 11225 11735 12266 13096 64.57 53.39 56.06 58.36 52.26 0.8657 0.9084 0.9005 0.8942 0.8955
S19 34w3d 4.48 1.51 12.55 10.16 12.93 3.16 8454 8959 9404 9651 10116 88.02 72.88 74.73 76.55 71.88 0.7576 0.8561 0.8443 0.8344 0.8341
S20 39w2d 0.94 3.78 1.06 3.57 2.95 1.74 17439 17633 17725 17891 21223 70.36 58.90 60.18 61.68 58.92 0.7554 0.8494 0.8443 0.8367 0.8256
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Fig. S1. Low rank approximation of in-utero fMRI of a fetus with gestational age of
34w+4d. Top row shows the original slice, singular-value plot, and zoomed singular-
value plot of indices from 80 to 144. Bottom row shows the four reconstructed slices
and their differences with the original image by using top 30, 60, 90, and 120 singular
values, respectively. SNR values were reported at the bottom of each reconstructed
slices.

Fig. S2. subject-specific functional connectivity analysis was performed in the native
functional space. For this, cortical ROIs were first obtained using an automatic atlas-
based segmentation of T2 scans acquired during the same session as the fMRI, using
a publicly available atlas of fetal brain anatomy [6]. The resulting parcellation con-
sists of 78 ROIs and was mapped to the motion corrected fMRI space using a rigid
transformation. For each parcel, the average time series of all voxels was computed, and
aCompCor nuisance regression and temporal filtering were performed subsequently. FC
matrix was estimated by measuring Pearson’s correlation between the average time se-
ries of parcels.
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